1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 PMCID: PMC12145239 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
3
|
Jacob J, Aggarwal A, Bhattacharyya S, Sahni D, Sharma V, Aggarwal A. Fisetin and resveratrol exhibit senotherapeutic effects and suppress cellular senescence in osteoarthritic cartilage-derived chondrogenic progenitor cells. Eur J Pharmacol 2025; 997:177573. [PMID: 40189080 DOI: 10.1016/j.ejphar.2025.177573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Chondrogenic progenitor cells (CPCs) in the articular cartilage of knee osteoarthritis (OA) patients exhibit cellular senescence and its associated secretory phenotype (SASP). We hypothesized that the senescence of CPCs can be suppressed using natural compounds. This study aimed to evaluate the senotherapeutic effects of fisetin and resveratrol to suppress the cellular senescence in CPCs. In vitro, pre-treatment of CPCs with increasing doses of fisetin and resveratrol (5μM-100μM) were non-cytotoxic, decreased the senescence index and dampened the expression of cellular senescence markers, p53 and p38MAPK. Additionally, SASP-related genes and proteins (MMP-9, MMP13) and inflammatory mediators (IL-1β, TGF-β, and IL-6) were downregulated. Further, in silico analysis confirmed the high binding affinity of these natural drugs to OA-related proteins. Overall, fisetin and resveratrol dampened the senescence of CPCs by downregulating the p53 effector protein and effectively reducing the SASP. From this study, natural compound candidates proved to be potential drug candidates that suppress senescence via p53.
Collapse
Affiliation(s)
- Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Aditya Aggarwal
- Department of Orthopedics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
4
|
Cong Y, Li X, Hong H. Current strategies for senescence treatment: Focused on theranostic performance of nanomaterials. J Control Release 2025; 382:113710. [PMID: 40220869 DOI: 10.1016/j.jconrel.2025.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Accepted: 04/06/2025] [Indexed: 04/14/2025]
Abstract
Age-related diseases imposed heavy burdens to the healthcare systems globally, while cell senescence served as one fundamental molecular/cellular basis for these diseases. How to tackle the senescence-relevant problems is a hotspot for biomedical research. In this review article, the hallmarks and molecular pathways of cell senescence were firstly discussed, followed by the introduction of the current anti-senescence strategies, including senolytics and senomorphics. With suitable physical or chemical properties, multiple types of nanomaterials were used successfully in senescence therapeutics, as well as senescence detection. Based on the accumulating knowledges for senescence, the rules of how to use these nanoplatforms more efficiently against senescence were also summarized, including but not limited to surface modification, material-cargo interactions, factor responsiveness etc. The comparison of these "senescence-selective" nanoplatforms to other treatment options (prodrugs, ADCs, PROTACs, CART etc.) was also given. Learning from the past, nanotechnology can add more choice for treating age-related diseases, and provide more (diagnostic) information to further our understanding of senescence process.
Collapse
Affiliation(s)
- Yiyang Cong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China
| | - Hao Hong
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
5
|
Ma L, Zhang H, Liu Y, Liu Y, Zhou J, Yang H, Xu B. Exploring the Molecular Mechanisms of Fisetin in Treating Periodontitis Through Multiomics and Network Pharmacology. Int Dent J 2025; 75:2204-2221. [PMID: 39755534 DOI: 10.1016/j.identj.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Periodontitis (PD) is a common chronic inflammatory oral disease that severely affects patients' quality of life. Fisetin has been shown to possess antioxidant and anti-inflammatory properties in various biological systems. METHODS This study first identified the molecular targets of fisetin for PD through network pharmacology analysis. The therapeutic effects of fisetin were then evaluated in an animal model of PD and validated through in vitro experiments. Additionally, we utilised single-cell and spatial transcriptomics technologies to identify key cell populations in PD and their spatial distribution. RESULTS The study demonstrated that fisetin significantly reduced alveolar bone destruction in the rat model of PD. Single-cell transcriptomics revealed that fisetin primarily affects fibroblast populations. In vitro experiments showed that fisetin alleviated the cytotoxicity caused by high oxidative stress levels in human periodontal ligament fibroblasts (PDLFs) . CONCLUSION Fisetin inhibits the progression of periodontitis by reducing oxidative stress levels in fibroblast populations. These findings support the potential of fisetin as a therapeutic agent for periodontitis and provide a scientific basis for future clinical trials and treatment strategies. CLINICAL RELEVANCE By significantly reducing alveolar bone destruction and modulating fibroblast function, fisetin presents a novel therapeutic strategy for managing periodontitis. These results provide a scientific foundation for the design of clinical trials aimed at evaluating the efficacy of fisetin in PD patients. If validated in clinical settings, fisetin could be incorporated into treatment regimens, offering a pharmacological option that complements conventional periodontal therapies, thereby improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lingzhi Ma
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hongrong Zhang
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yali Liu
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yan Liu
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jing Zhou
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hefeng Yang
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| | - Biao Xu
- Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
6
|
Fei L, Zhang D, Mao Y, Mkunga JJ, Chen P, He C, Shan C, Yang X, Cai W. Metabolomics combined with network pharmacology reveals the regional and variety heterogeneity of grape metabolites and their potential antioxidant mechanisms. Food Res Int 2025; 211:116443. [PMID: 40356120 DOI: 10.1016/j.foodres.2025.116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
China is one of the world's three major grape-producing regions. However, limited research has focused on the differential metabolites of cross-regional and cross-varietal grapes, and the specific metabolites responsible for their pharmacological effects. Thus, this study comparatively analyzed the antioxidant activities and metabolite compositions of grapes from different regions and varieties to explore the potential antioxidant mechanisms of flavonoid metabolites. The results revealed that the production region primarily influenced the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) of grapes, whereas variety significantly affected the ferric ion reducing antioxidant power (FRAP). Both region and variety had highly significant effects on the total phenolic content (TPC) and total flavonoid content (TFC) of grapes (P < 0.001) and showed significant effects on the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) and grape metabolites (P < 0.05). However, variety exerted a stronger influence on metabolite composition than region (P < 0.001). Flavonoid metabolites have emerged as key antioxidants, with compounds such as kaempferol, fisetin, and 6-hydroxyluteolin playing critical roles. These metabolites primarily exert their antioxidant effects through signaling pathways, notably the PI3K-Akt pathway. Among all samples, Xinjiang's 'Summer Black' grapes showed the best antioxidant capacity. These findings provide insights into the biochemical basis underlying the differences grapes in China, offering a theoretical foundation for further research on the pharmacological efficacy and antioxidant mechanisms of secondary metabolites in Chinese grapes.
Collapse
Affiliation(s)
- Liyue Fei
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Office of the Party Committee of Xinjiang Production and Construction Corps, Urumqi, Xinjiang, China
| | - Yiwen Mao
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Johane Johari Mkunga
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Dar-es-salaam Institute of Technology, Dar-es-salaam, Tanzania
| | - Panpan Chen
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Chenglong He
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; School of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Shan
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xinquan Yang
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Wenchao Cai
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
7
|
Fang H, Yu E, Liu C, Eapen C, Cheng C, Hu T. Metabolic landscape and rewiring in normal hematopoiesis, leukemia and aging. Semin Cancer Biol 2025; 111:1-15. [PMID: 39933639 DOI: 10.1016/j.semcancer.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Recent advancements in metabolism research have demonstrated its critical roles in a lot of critical biological processes, including stemness maintenance, cell differentiation, proliferation, and function. Hematopoiesis is the fundamental cell differentiation process with the production of millions of red blood cells per second in carrying oxygen and white blood cells in fighting infection and cancers. The differentiation processes of hematopoietic stem and progenitor cells (HSPCs) are accompanied by significant metabolic reprogramming. In hematological malignancy, metabolic reprogramming is also essential to the malignant hematopoiesis processes. The metabolic rewiring is driven by distinct molecular mechanisms that meet the specific demands of different target cells. Leukemic cells, for instance, adopt unique metabolic profiles to support their heightened energy needs for survival and proliferation. Moreover, aging HSPCs exhibit altered energy consumption compared to their younger counterparts, often triggering protective mechanisms at the cellular level. In this review, we provide a comprehensive analysis of the metabolic processes involved in hematopoiesis and the metabolic rewiring that occurs under adverse conditions. In addition, we highlight current research directions and discuss the potential of targeting metabolic pathways for the management of hematological malignancies and aging.
Collapse
Affiliation(s)
- Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Enze Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Chang Liu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Christy Eapen
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Chunming Cheng
- Stephenson Cancer Center at Oklahoma University, Oklahoma City, OK 73104, United States.
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States.
| |
Collapse
|
8
|
Stojanović SD, Thum T, Bauersachs J. Anti-senescence therapies: a new concept to address cardiovascular disease. Cardiovasc Res 2025; 121:730-747. [PMID: 40036821 PMCID: PMC12101330 DOI: 10.1093/cvr/cvaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Accumulation of senescent cells is an increasingly recognized factor in the development and progression of cardiovascular (CV) disease (CVD). Senescent cells of different types display a pro-inflammatory and matrix remodelling molecular programme, known as the 'senescence-associated secretory phenotype' (SASP), which has roots in (epi)genetic changes. Multiple therapeutic options (senolytics, anti-SASP senomorphics, and epigenetic reprogramming) that delete or ameliorate cellular senescence have recently emerged. Some drugs routinely used in the clinics also have anti-senescence effects. However, multiple challenges hinder the application of novel anti-senescence therapeutics in the clinical setting. Understanding the biology of cellular senescence, advantages and pitfalls of anti-senescence treatments, and patients who can profit from these interventions is necessary to introduce this novel therapeutic modality into the clinics. We provide a guide through the molecular machinery of senescent cells, systematize anti-senescence treatments, and propose a pathway towards senescence-adapted clinical trial design to aid future efforts.
Collapse
Affiliation(s)
- Stevan D Stojanović
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- PRACTIS Clinician Scientist Program, Dean’s Office for Academic Career Development, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Carl Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
9
|
Centonze M, Aloisio Caruso E, De Nunzio V, Cofano M, Saponara I, Pinto G, Notarnicola M. The Antiaging Potential of Dietary Plant-Based Polyphenols: A Review on Their Role in Cellular Senescence Modulation. Nutrients 2025; 17:1716. [PMID: 40431456 PMCID: PMC12114605 DOI: 10.3390/nu17101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physiological functions and an increased risk of chronic diseases. A key mechanism of this process is cellular senescence, the permanent arrest of the cell cycle in response to stress or damage, which contributes to the accumulation of dysfunctional cells in tissues. Recent research has highlighted the role of polyphenols, bioactive compounds present in numerous plant-based foods, in positively modulating these processes. Polyphenols exert antioxidant effects, regulate gene expression and improve mitochondrial function, helping to delay cellular aging and prevent age-related diseases. In addition, some polyphenols exhibit senolytic properties, selectively eliminating senescent cells and promoting tissue regeneration. This review summarizes the current evidence on the effects of polyphenols on aging and cellular senescence, exploring the underlying molecular mechanisms and discussing their potential in nutritional strategies aimed at promoting healthy aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (M.C.); (E.A.C.); (V.D.N.); (M.C.); (I.S.); (G.P.)
| |
Collapse
|
10
|
Ryan P, Lee J. In vitro senescence and senolytic functional assays. Biomater Sci 2025. [PMID: 40375674 DOI: 10.1039/d4bm01684j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of in vitro systems used for inducing cellular senescence-referred to as "senescence assays"-and for screening senolytic drugs-referred to as "senolytic assays". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.
Collapse
Affiliation(s)
- Patrick Ryan
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Jungwoo Lee
- Molecular & Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
11
|
Mohan A, Dummi Mahadevan G, Anand Iyer V, Mukherjee TK, Haribhai Patel V, Kumar R, Siddiqui N, Nayak M, Maurya PK, Kumar P. Dietary flavonoids in health and diseases: A concise review of their role in homeostasis and therapeutics. Food Chem 2025; 487:144674. [PMID: 40381561 DOI: 10.1016/j.foodchem.2025.144674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Over the past few decades, extensive research has delved into the health advantages of flavonoids, exploring their physiological effects through cell-based assays, epidemiological studies, and human intervention trials. The regular intake of plant-derived flavonoids has shown therapeutic potential against noncommunicable pathophysiological conditions, including carcinoma and various inflammatory disorders. Among the myriads of flavonoids, many have been shown to inhibit the aggregation of amyloid-beta peptides in Alzheimer's disease, while anthocyanins exhibit cardioprotective effects by improving endothelial function and lowering blood pressure. In addition, their efficacy is known to manage infectious communicable diseases caused by various bacteria and viruses, such as S. pneumoniae and SARS-CoV-2. Currently, flavonoids are being used to develop new drugs for both communicable and noncommunicable diseases because of their intricate metabolism and bioavailability, leveraging their anti-inflammatory and antioxidant properties. This concise review provides insights into the potential of flavonoids for therapeutics and disease management, particularly with respect to cardiovascular health, neuroprotection, and antimicrobial action. The implications of these findings underscore the necessity for further exploration of flavonoid-rich diets and their incorporation into therapeutic practices to harness their full health benefits.
Collapse
Affiliation(s)
- Aditi Mohan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Gurumurthy Dummi Mahadevan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India.
| | - Venkatesh Anand Iyer
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, West Bengal 700135, India
| | - Vishal Haribhai Patel
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Manoranjan Nayak
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
12
|
Shen T, Wang X, Zhang X, Pei J, Wang Z, Li Q, Zhao L. Engineering of Flavonoid 3'-O-Methyltransferase for Improved Biomodification of Fisetin in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11132-11145. [PMID: 40269570 DOI: 10.1021/acs.jafc.4c12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Fisetin is mainly extracted from Rhus succedanea L., but it is also found in a variety of foods, vegetables, and herbs, and is commonly used in dietary supplements for its health benefits. However, its limited stability, low oral bioavailability, and poor absorption hinder its developmental applications. Methylation modification has emerged as an effective strategy to enhance the solubility, stability, and lipid solubility of fisetin. In this study, we identified a novel 3'-O-methyltransferase, PeCCoAOMT, characterized its enzymatic properties in vitro, and investigated its potential for producing 3'-O-methylated fisetin in Escherichia coli. Through strain screening, selection of protein tags and plasmid vectors, and optimization of culture conditions, the strain BTP was fermented in Lysogeny broth medium containing 5 g/L glycerol for 48 h at 37 °C. Finally, the strain BTP produced 530.44 mg/L of 3'-O-methylated fisetin, with a molar conversion rate of 63.02%, representing a 6.63-fold increase in titer compared to the initial strain, which is the highest level reported to date. This study provides valuable insights into the engineering of flavonoid O-methyltransferases and lays the foundation for the high-level biosynthesis of engineered microbial methylated flavonoids.
Collapse
Affiliation(s)
- Tianyu Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Haichang South Road, Lianyungang, Jiangsu 222001, China
| | - Qi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Yu FH, Yin BF, Liu MY, Zhang WJ, Zhao ZD, Wang L, Li XT, Li PL, Li ZL, Xu RX, Ding L, Zhu H. Modulation of senescent Lepr + skeletal stem cells via suppression of leptin-induced STAT3‒FGF7 axis activation alleviates abnormal subchondral bone remodeling and osteoarthritis progression. Stem Cell Res Ther 2025; 16:227. [PMID: 40325465 PMCID: PMC12054238 DOI: 10.1186/s13287-025-04342-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Recent studies have suggested that targeting senescent cells in joint tissues may alleviate osteoarthritis (OA) progression. However, this strategy encounters significant challenges, partially due to the high degree of cellular heterogeneity in osteoarthritic tissues. Moreover, little information is available on the role of skeletal stem cell (SSC) senescence, as compared to differentiated cells, in OA progression. METHODS In this study, single-cell RNA sequencing (scRNA-seq) on articular cartilages and subchondral bones of the knee joints of mice with post-traumatic osteoarthritis (PTOA) were performed. Further in vivo and in vitro studies were performed to reveal the role and mechanisims of senescent SSCs during the development of OA lesions and progression by microCT, pathological analysis, and functional gain and loss experiments. The one-way ANOVA was used in multiple group data analysis. RESULTS scRNA-seq and pathological data demonstrated that the leptin receptors (Lepr) positive SSCs underwent cellular senescence during OA progression. In addition, the leptin-Lepr signaling pathway induced signal transducer and activator of transcription 3 (STAT3) expression in SSCs, which consequently augmented the transcription of fibroblast growth factor 7 (FGF7). Further scRNA-seq and in vivo analyses revealed that FGF7 exacerbated abnormal bone remodeling in subchondral bones and OA progression by enhancing bone formation and suppressing bone resorption. In vitro analysis revealed that FGF7 induced the osteogenic differentiation of SSCs but inhibited osteoclastogenesis in a concentration-dependent manner. CONCLUSIONS In summary, our findings demonstrate that the leptin-Lepr signaling pathway promotes SSC senescence and exacerbates subchondral bone remodeling by activating the STAT3-FGF7 axis during OA progression, which may shed light on novel therapeutic strategies for OA.
Collapse
Affiliation(s)
- Fu-Hao Yu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Bo-Feng Yin
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Ming-Yu Liu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Wen-Jing Zhang
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Zhi-Dong Zhao
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, People's Republic of China
| | - Lei Wang
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, People's Republic of China
| | - Xiao-Tong Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Pei-Lin Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Zhi-Ling Li
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Run-Xiang Xu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | - Li Ding
- Department of Hematology, Air Force Medical Center, Fourth Military Medical University, Road Fucheng 30, Beijing, 10142, People's Republic of China.
- Graduate School, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, People's Republic of China.
- Anhui Medical University, Hefei, People's Republic of China.
| | - Heng Zhu
- Department of Stem Cells and Regenerative Medicine, Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, People's Republic of China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
- School of Life Sciences, Hebei University, Baoding, People's Republic of China.
- Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
14
|
Zhang Z, Yang R, Zi Z, Liu B. A new clinical age of aging research. Trends Endocrinol Metab 2025; 36:440-458. [PMID: 39227191 DOI: 10.1016/j.tem.2024.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Aging is a major risk factor for a variety of diseases, thus, translation of aging research into practical applications is driven by the unmet need for existing clinical therapeutic options. Basic and translational research efforts are converging at a critical stage, yielding insights into how fundamental aging mechanisms are used to identify promising geroprotectors or therapeutics. This review highlights several research areas from a clinical perspective, including senescent cell targeting, alleviation of inflammaging, and optimization of metabolism with endogenous metabolites or precursors. Refining our understanding of these key areas, especially from the clinical angle, may help us to better understand and attenuate aging processes and improve overall health outcomes.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhike Zi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China.
| |
Collapse
|
15
|
MacDonald JA, Bradshaw GA, Jochems F, Bernards R, Letai A. Apoptotic priming in senescence predicts specific senolysis by quantitative analysis of mitochondrial dependencies. Cell Death Differ 2025; 32:802-817. [PMID: 39762561 DOI: 10.1038/s41418-024-01431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 05/21/2025] Open
Abstract
Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.
Collapse
Affiliation(s)
- Julie A MacDonald
- Dana Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Gary A Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Fleur Jochems
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, CX, Amsterdam, The Netherlands
| | - Anthony Letai
- Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Yang L, Wu W, Yang J, Xu M. Nanoparticle-mediated delivery of herbal-derived natural products to modulate immunosenescence-induced drug resistance in cancer therapy: a comprehensive review. Front Oncol 2025; 15:1567896. [PMID: 40356750 PMCID: PMC12066338 DOI: 10.3389/fonc.2025.1567896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Immunosenescence, the age-associated decline of the immune system, is pivotal in fostering drug resistance within the tumor microenvironment (TME). The accumulation of senescent immune cells and the release of pro-inflammatory senescence-associated secretory phenotype (SASP) factors create a milieu that supports tumor survival and undermines therapeutic efficacy. Traditional cancer treatments often fail to address this underlying issue, leading to suboptimal outcomes. This article proposes an innovative strategy to overcome immunosenescence-induced drug resistance through the nanoparticle-mediated delivery of herbal-derived natural products (HDNPs), which possess senolytic and immunomodulatory properties capable of clearing senescent cells and rejuvenating immune function. Nanoparticle delivery systems enhance these compounds' stability, bioavailability, and targeted delivery to the TME and senescent immune cells. By harnessing the synergistic effects of HDNPs and nanotechnology, this approach offers a novel and multifaceted solution to drug resistance in cancer therapy. It holds the potential to restore immune surveillance, reduce pro-survival signaling in cancer cells, and enhance the efficacy of conventional treatments. This paradigm shift emphasizes the importance of addressing immunosenescence as a therapeutic target and paves the way for more effective and personalized cancer interventions.
Collapse
Affiliation(s)
- Lichang Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Wei Wu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Yang
- Xuzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Xuzhou, China
| | - Manman Xu
- Department of Geriatrics, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Park JH, Jeong EY, Kim YH, Cha SY, Kim HY, Nam YK, Park JS, Kim SY, Lee YJ, Yoon JH, So B, Kim D, Kim M, Byun Y, Lee YH, Shin SS, Park JT. Epigallocatechin Gallate in Camellia sinensis Ameliorates Skin Aging by Reducing Mitochondrial ROS Production. Pharmaceuticals (Basel) 2025; 18:612. [PMID: 40430436 PMCID: PMC12114381 DOI: 10.3390/ph18050612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Reactive oxygen species (ROS) generated by mitochondrial dysfunction damage cellular organelles and contribute to skin aging. Therefore, strategies to reduce mitochondrial ROS production are considered important for alleviating skin aging, but no effective methods have been identified. Methods: In this study, we evaluated substances utilized as cosmetic ingredients and discovered Camellia sinensis (C. sinensis) as a substance that reduces mitochondrial ROS levels. Results:C. sinensis extracts were found to act as senolytics that selectively kill senescent fibroblasts containing dysfunctional mitochondria. In addition, C. sinensis extracts facilitated efficient electron transport in the mitochondrial electron transport chain (ETC) by increasing the efficiency of oxidative phosphorylation (OXPHOS), thereby reducing mitochondrial ROS production, a byproduct of the inefficient ETC. This novel mechanism of C. sinensis extracts led to the restoration of skin aging and the skin barrier. Furthermore, epigallocatechin gallate (EGCG) was identified as an active ingredient that plays a key role in C. sinensis extract-mediated skin aging recovery. Indeed, similar to C. sinensis extracts, EGCG reduced ROS and improved skin aging in an artificial skin model. Conclusions: Our data uncovered a novel mechanism by which C. sinensis extract reverses skin aging by reducing mitochondrial ROS production via selective senescent cell death/increased OXPHOS efficiency. Our results suggest that C. sinensis extract or EGCG may be used as a therapeutic agent to reverse skin aging in clinical and cosmetic applications.
Collapse
Affiliation(s)
- Ji Ho Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Eun Young Jeong
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Ye Hyang Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - So Yoon Cha
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Ha Yeon Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Yeon Kyung Nam
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Jin Seong Park
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - So Yeon Kim
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Yoo Jin Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Jee Hee Yoon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Byeonghyeon So
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Duyeol Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Minseon Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea;
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
| | - Song Seok Shin
- Hyundai Bioland Co., Ltd., 22, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28162, Republic of Korea; (E.Y.J.); (Y.H.K.); (S.Y.C.); (H.Y.K.); (Y.K.N.); (J.S.P.); (S.Y.K.)
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea; (J.H.P.); (Y.J.L.); (J.H.Y.); (B.S.); (D.K.); (M.K.)
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
18
|
Ji XM, Dong XX, Li JP, Tai GJ, Qiu S, Wei W, Silumbwe CW, Damdinjav D, Otieno JN, Li XX, Xu M. Fisetin Clears Senescent Cells Through the Pi3k-Akt-Bcl-2/Bcl-xl Pathway to Alleviate Diabetic Aortic Aging. Phytother Res 2025. [PMID: 40259678 DOI: 10.1002/ptr.8507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
Vascular aging is a major contributor to age-related cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) induced early arterial aging and excessive senescent cells (SCs) burden in vessels. Inhibiting cellular senescence or eliminating SCs could effectively improve aging-related CVDs. Fisetin, a flavonoid extracted from cotinus coggygria scop, has shown potential in alleviating aging by clearing SCs. This study investigated the unexplored mechanisms and efficacy of fisetin in alleviating T2DM-related aortic aging. The T2DM mouse model was induced using a high-fat diet and low-dose streptozotocin injection. Chronic fisetin treatment's protective effects against aortic aging were assessed via senescence-associated beta-galactosidase (SA-β-Gal) staining, histopathology, and vasomotor function. RNA-sequencing and western blotting identified relevant signaling pathways and protein expression. Fisetin's effects on SCs and senescence-associated secretory phenotype (SASP) factors were evaluated through cell viability, apoptosis, and co-culture assays. Docking simulations suggested fisetin as a potential Phosphoinositide 3-kinase (Pi3k) inhibitor. In vivo, chronic fisetin treatment reduced aortic SCs burden, alleviating T2DM-related and natural aortic aging. In vitro, fisetin selectively induced apoptosis of senescent endothelial cells via regulating the Pi3k-Protein Kinase B (Akt)-B-cell lymphoma (Bcl)-2/Bcl-xl pathway and suppressed SASP and its detrimental effects. Furthermore, fisetin combined with metformin therapy showed superior anti-aging effects on T2DM-related aortic aging compared to metformin monotherapy. In conclusion, chronic fisetin treatment alleviates T2DM-related aortic aging via clearing the SCs burden and abrogating the SASP factors. Fisetin combined with metformin therapy might be a potential therapeutic strategy for T2DM-related CVDs.
Collapse
Affiliation(s)
- Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Xin Dong
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ceaser Wankumbu Silumbwe
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Joseph Nicolao Otieno
- Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciencea, Dar es Salaam, Tanzania
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
19
|
Na D, Zhang Z, Meng M, Li M, Gao J, Kong J, Zhang G, Guo Y. Energy Metabolism and Brain Aging: Strategies to Delay Neuronal Degeneration. Cell Mol Neurobiol 2025; 45:38. [PMID: 40259102 PMCID: PMC12011708 DOI: 10.1007/s10571-025-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/09/2025] [Indexed: 04/23/2025]
Abstract
Aging is characterized by a gradual decline in physiological functions, with brain aging being a major risk factor for numerous neurodegenerative diseases. Given the brain's high energy demands, maintaining an adequate ATP supply is crucial for its proper function. However, with advancing age, mitochondria dysfunction and a deteriorating energy metabolism lead to reduced overall energy production and impaired mitochondrial quality control (MQC). As a result, promoting healthy aging has become a key focus in contemporary research. This review examines the relationship between energy metabolism and brain aging, highlighting the connection between MQC and energy metabolism, and proposes strategies to delay brain aging by targeting energy metabolism.
Collapse
Affiliation(s)
- Donghui Na
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Zechen Zhang
- Mudi Meng Honors College, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng Meng
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China
| | - Junyan Gao
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
- Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China.
- Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
20
|
Jang HD, Lee CH, Kwon YE, Kim TH, Kim EJ, Jung JI, Min SI, Cheong EJ, Jang TY, Kim HK, Choi SE. Effects of Alnus japonica Pilot Scale Hot Water Extracts on a Model of Dexamethasone-Induced Muscle Loss and Muscle Atrophy in C57BL/6 Mice. Int J Mol Sci 2025; 26:3656. [PMID: 40332160 PMCID: PMC12027306 DOI: 10.3390/ijms26083656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
This study investigates the effects of pilot scale Alnus japonica hot water extract (AJHW) on muscle loss and muscle atrophy. Building on previous in vitro studies, in vivo experiments were conducted to evaluate muscle strength, mass, fiber size, protein synthesis, and antioxidant activity. The results showed that AJHW significantly restored muscle strength, increased muscle mass, enhanced the expression of muscle synthesis markers, such as Akt and mTOR, and apoptosis inhibition markers, such as Bcl-2, compared to the muscle atrophy control. Muscle degradation markers, such as Atrogin1, MuRF1, FoxO3α, and the apoptosis activation marker Bax, were decreased compared to the muscle atrophy control. Additionally, AJHW significantly boosted the activity of antioxidant factors like SOD, catalase, and Gpx, suggesting its protective role against oxidative stress-induced muscle damage. The enhanced effects were attributed to the high content of hirsutanonol and hirsutenone, which synergized with oregonin, compounds, identified through phytochemical analysis. While these findings support the potential of AJHW as a candidate for preventing muscle loss, further studies are needed to confirm its efficacy across diverse atrophy models and to elucidate its exact mechanisms.
Collapse
Affiliation(s)
- Hyeon Du Jang
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (H.D.J.); (C.H.L.)
| | - Chan Ho Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (H.D.J.); (C.H.L.)
| | - Ye Eun Kwon
- Dr.Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon-si 24341, Republic of Korea; (Y.E.K.); (T.H.K.)
| | - Tae Hee Kim
- Dr.Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon-si 24341, Republic of Korea; (Y.E.K.); (T.H.K.)
| | - Eun Ji Kim
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon-si 24252, Republic of Korea; (E.J.K.); (J.I.J.)
| | - Jae In Jung
- Industry Coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Chuncheon-si 24252, Republic of Korea; (E.J.K.); (J.I.J.)
| | - Sang Il Min
- Division of Transplantation and Vascular Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea;
| | - Eun Ju Cheong
- College of Forest and Environmental Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (E.J.C.); (T.Y.J.)
| | - Tae Young Jang
- College of Forest and Environmental Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (E.J.C.); (T.Y.J.)
| | - Hee Kyu Kim
- Gangwon State Forest Science Institute, 24, Hwamokwon-gil, Chuncheon-si 24207, Republic of Korea;
| | - Sun Eun Choi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon-si 24341, Republic of Korea; (H.D.J.); (C.H.L.)
- Dr.Oregonin Inc., #802 Bodeum Hall, Kangwondaehakgil 1, Chuncheon-si 24341, Republic of Korea; (Y.E.K.); (T.H.K.)
| |
Collapse
|
21
|
Nunes ADC, Pitcher LE, Exner HA, Grassi DJ, Burns B, Sanchez MBH, Tetta C, Camussi G, Robbins PD. Attenuation of Cellular Senescence and Improvement of Osteogenic Differentiation Capacity of Human Liver Stem Cells Using Specific Senomorphic and Senolytic Agents. Stem Cell Rev Rep 2025:10.1007/s12015-025-10876-x. [PMID: 40220121 DOI: 10.1007/s12015-025-10876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Expansion of adult stem cells in culture increases the percent of senescent cells, reduces their differentiation capacity and limits their clinical use. Here, we investigated whether treatment with certain senotherapeutic drugs would reduce the accumulation of senescent cells during expansion of human liver stem cells (HLSCs) while maintaining their differentiation capacity. Our results demonstrate that chronic treatment with the senomorphic XJB-5-131 or the senolytics cocktail D + Q reduced the number of senescent cells and significantly reduced the expression of senescence-associated genes and several inflammatory SASP factors in later passage HLSCs. Additionally, treatment with XJB-5-131 and D + Q improved the capacity of HLSCs to undergo osteogenic differentiation following extensive in vitro expansion. Overall, our data demonstrate that treatment with XJB-5-13 or D + Q results in a reduction in the percentage of replication-induced senescent HLSCs and likely other types of adult stem cells and improve the potential therapeutic use of later passage human stem cells.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Louise E Pitcher
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Henry A Exner
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Brittan Burns
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Centre, University of Torino, Torino, Italy
- 2i3T Societ Per la Gestione Dell'incubatore di Imprese e per il Trasferimento Tecnologico Scarl, University of Torino, Torino, Italy
| | | | - Giovanni Camussi
- Molecular Biotechnology Centre, University of Torino, Torino, Italy
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paul D Robbins
- Masonic Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
22
|
Yang Y, Mayo A, Levy T, Raz N, Shenhar B, Jarosz DF, Alon U. Compression of morbidity by interventions that steepen the survival curve. Nat Commun 2025; 16:3340. [PMID: 40199852 PMCID: PMC11978790 DOI: 10.1038/s41467-025-57807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Longevity research aims to extend the healthspan while minimizing the duration of disability and morbidity, known as the sickspan. Most longevity interventions in model organisms extend healthspan, but it is not known whether they compress sickspan relative to the lifespan. Here, we present a theory that predicts which interventions compress relative sickspan, based on the shape of the survival curve. Interventions such as caloric restriction that extend mean lifespan while preserving the shape of the survival curve, are predicted to extend the sickspan proportionally, without compressing it. Conversely, a subset of interventions that extend lifespan and steepen the shape of the survival curve are predicted to compress the relative sickspan. We explain this based on the saturating-removal mathematical model of aging, and present evidence from longitudinal health data in mice, Caenorhabditis elegans and Drosophila melanogaster. We apply this theory to identify potential interventions for compressing the sickspan in mice, and to combinations of longevity interventions. This approach offers potential strategies for compressing morbidity and extending healthspan.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Center for Interdisciplinary Studies, Westlake University, Hangzhou, Zhejiang, China.
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naveh Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ben Shenhar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Jarosz
- Department of Chemical & Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Driscoll M, Sedore CA, Onken B, Coleman-Hulbert AL, Johnson E, Phillips PC, Lithgow G. NIA Caenorhabditis Intervention Testing Program: identification of robust and reproducible pharmacological interventions that promote longevity across experimentally accessible, genetically diverse populations. GeroScience 2025:10.1007/s11357-025-01627-4. [PMID: 40178707 DOI: 10.1007/s11357-025-01627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
A core facet of the National Institute on Aging's mission is to identify pharmacological interventions that can promote human healthy aging and long life. As part of the comprehensive effort toward that goal, the NIA Division of Biology of Aging established the Caenorhabditis Intervention Testing Program (CITP) in 2013. The C. elegans model (with an ~ 21 day lifespan) has led the field in dissection of longevity genetics and offers features that allow for relatively rapid testing and for the potential elaboration of biological mechanisms engaged by candidate geroprotectants. CITP builds on this foundation by utilizing a genetically diverse set of intervention test strains so that "subjects" represent genetic diversity akin to that that between mouse and humans. Another distinctive aspect of the CITP is a dedicated focus on reproducibility of longevity outcomes as labs at three independent test sites confirm positive outcomes. The overall goal of the Caenorhabditis Intervention Testing Program (CITP) is to identify robust and reproducible pro-longevity interventions affecting genetically diverse cohorts in the Caenorhabditis genus. A strong Data Collection Center supports data collection and dissemination. Pharmacological interventions tested by CITP can be nominated by the general public, directed by in-house screens, or supported by published scientific literature. As of December 2024, CITP tested > 75 compounds and conducted > 725,000 animal assays over 891 trials. We identified 12 compounds that confer a ≥ 20% increase in median lifespan to reproducibly and robustly extend lifespan across multiple strains and labs. Five of these interventions have pro-longevity impact reported in the mouse literature (most CITP positive interventions are not tested yet in mouse). As part of the celebration of the 50th Anniversary of the NIA, we review the development history and accomplishments of the CITP program, and we comment on translation and the promise of advancing understanding of fundamental aging biology that includes the pharmacological intervention/health interface.
Collapse
Affiliation(s)
- Monica Driscoll
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | | - Brian Onken
- Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
24
|
Razazian M, Bahiraii S, Sohail A, Mandl M, Jannat I, Beilhack G, Alesutan I, Voelkl J. Fisetin ameliorates vascular smooth muscle cell calcification via DUSP1-dependent p38 MAPK inhibition. Aging (Albany NY) 2025; 17:885-907. [PMID: 40179317 PMCID: PMC12074812 DOI: 10.18632/aging.206233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Medial vascular calcification is highly prevalent in advanced age and chronic kidney disease (CKD), where it is associated with increased risk for cardiovascular events and mortality. Vascular smooth muscle cells (VSMCs) actively regulate this process, which can be augmented by inflammation and cellular senescence. Thus, the present study investigated the impact of fisetin, a flavonol with anti-inflammatory and senolytic properties, on VSMC calcification. Fisetin treatment suppressed calcific marker expression and calcification of VSMCs as well as p38 MAPK phosphorylation induced by pro-calcific conditions. These effects were abolished by silencing of dual-specificity phosphatase 1 (DUSP1), a negative regulator of p38 MAPK activity. Moreover, knockdown of DUSP1 alone was sufficient to increase calcific marker expression in VSMCs, effects blunted by pharmacological p38 MAPK inhibition. Accordingly, DUSP1 knockdown aggravated calcification of VSMCs during pro-calcific conditions. In addition, fisetin ameliorated the effects of uremic conditions in VSMCs exposed to serum from dialysis patients. Fisetin also inhibited vascular calcification as well as calcific marker expression ex vivo in mouse aortic explants exposed to high phosphate and in vivo in a cholecalciferol overload mouse model. In conclusion, fisetin acts as a potent anti-calcific agent during VSMC calcification, an effect involving DUSP1-mediated regulation of p38 MAPK-dependent pro-calcific signaling.
Collapse
MESH Headings
- Animals
- Dual Specificity Phosphatase 1/metabolism
- Dual Specificity Phosphatase 1/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Flavonols/pharmacology
- Flavonoids/pharmacology
- Humans
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Male
- Cells, Cultured
- Renal Insufficiency, Chronic
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Azmat Sohail
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Markus Mandl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz 4020, Austria
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 13353, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin 13347, Germany
| |
Collapse
|
25
|
Borri M, Jacobs ME, Carmeliet P, Rabelink TJ, Dumas SJ. Endothelial dysfunction in the aging kidney. Am J Physiol Renal Physiol 2025; 328:F542-F562. [PMID: 39933752 DOI: 10.1152/ajprenal.00287.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Global population aging is an escalating challenge in modern society, especially as it impairs the function of multiple organs and increases the burden of age-related diseases. The kidneys, in particular, experience function decline, reduced regenerative capacity, and increased susceptibility to injury as they age. As a result, the prevalence of chronic kidney disease (CKD) rises with aging, further contributing to the growing health burden in older populations. One of the key factors in this process is the dysfunction of specialized renal endothelial cells (RECs), which are essential for maintaining kidney health by regulating blood flow and supporting filtration, solute and water reabsorption, and vascular integrity. As the kidneys age, REC dysfunction drives vascular and microenvironmental changes, contributing to the overall decline in kidney function. In this review, we outline the structural and functional effects of aging on the kidney's macrovascular and microvascular compartments and provide a phenotypic description of the aged endothelium. We particularly focus on the molecular and metabolic rewiring driving and sustaining growth-arrested EC senescence phenotype. We finally give an overview of senotherapies acting on ECs, especially of those modulating metabolism. Given that the pathophysiological processes underlying kidney aging largely overlap with those observed in CKD, REC rejuvenation could also benefit patients with CKD. Moreover, such interventions may hold promise in improving the outcomes of aged kidney transplants. Hence, advancing our understanding of REC and kidney aging will create opportunities for innovations that could improve outcomes for both elderly individuals and patients with CKD.
Collapse
Affiliation(s)
- Mila Borri
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien J Dumas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
26
|
Hudson HR, Sun X, Orr ME. Senescent brain cell types in Alzheimer's disease: Pathological mechanisms and therapeutic opportunities. Neurotherapeutics 2025; 22:e00519. [PMID: 39765417 PMCID: PMC12047392 DOI: 10.1016/j.neurot.2024.e00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 04/19/2025] Open
Abstract
Cellular senescence is a cell state triggered by programmed physiological processes or cellular stress responses. Stress-induced senescent cells often acquire pathogenic traits, including a toxic secretome and resistance to apoptosis. When pathogenic senescent cells form faster than they are cleared by the immune system, they accumulate in tissues throughout the body and contribute to age-related diseases, including neurodegeneration. This review highlights evidence of pathogenic senescent cells in the brain and their role in Alzheimer's disease (AD), the leading cause of dementia in older adults. We also discuss the progress and challenges of senotherapies, pharmacological strategies to clear senescent cells or mitigate their toxic effects, which hold promise as interventions for AD and related dementias (ADRD).
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Xuehan Sun
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA.
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine in St Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA.
| |
Collapse
|
27
|
Luna A, Chou K, Wragg KM, Worley MJ, Paruchuri N, Zhou X, Blin MG, Moore BB, Salmon M, Goldstein DR, Deng JC. Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice. Aging Cell 2025; 24:e14437. [PMID: 39754380 PMCID: PMC11984683 DOI: 10.1111/acel.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice. Here, we tested if the aged mice survival or weight loss IAV infections could be improved using three different senolytic regimens. We found that neither dasatinib plus quercetin, fisetin, nor ABT-263 improved outcomes. Furthermore, both dasatanib plus quercetin and fisetin treatments further suppressed immune infiltration than aging alone. Additionally, our data show that the short-term senolytic agents do not reduce senescent markers in our aged mouse model. These findings suggest that acute senolytic treatments do not universally reverse aging related immune phenotype against all respiratory viral infections.
Collapse
Affiliation(s)
- Adrian Luna
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Kai‐Neng Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathleen M. Wragg
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew J. Worley
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nikhil Paruchuri
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofeng Zhou
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel G. Blin
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Veterans Affairs Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| |
Collapse
|
28
|
Thakur BK, Malaise Y, Choudhury SR, Neustaeter A, Turpin W, Streutker C, Copeland J, Wong EOY, Navarre WW, Guttman DS, Jobin C, Croitoru K, Martin A. Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer. Nat Microbiol 2025; 10:855-870. [PMID: 40033140 DOI: 10.1038/s41564-025-01938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Diet, microbiome, inflammation and host genetics have been linked to colorectal cancer development; however, it is not clear whether and how these factors interact to promote carcinogenesis. Here we used Il10-/- mice colonized with bacteria previously associated with colorectal cancer: enterotoxigenic Bacteroides fragilis, Helicobacter hepaticus or colibactin-producing (polyketide synthase-positive (pks+)) Escherichia coli and fed either a low-carbohydrate (LC) diet deficient in soluble fibre, a high-fat and high-sugar diet, or a normal chow diet. Colonic polyposis was increased in mice colonized with pks+ E. coli and fed the LC diet. Mechanistically, mucosal inflammation was increased in the LC-diet-fed mice, leading to diminished colonic PPAR-γ signalling and increased luminal nitrate levels. This promoted both pks+ E. coli growth and colibactin-induced DNA damage. PPAR-γ agonists or supplementation with dietary soluble fibre in the form of inulin reverted inflammatory and polyposis phenotypes. The pks+ E. coli also induced more polyps in mismatch-repair-deficient mice by inducing a senescence-associated secretory phenotype. Moreover, oncogenic effects were further potentiated by inflammatory triggers in the mismatch-repair-deficient model. These data reveal that diet and host genetics influence the oncogenic potential of a common bacterium.
Collapse
Affiliation(s)
| | - Yann Malaise
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Neustaeter
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, Ontario, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christian Jobin
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kenneth Croitoru
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
29
|
Rodríguez-Castillo AJ, Pacheco-Tena C, Cuevas-Martínez R, Sánchez-Ramírez BE, González-Chávez SA. Anti-inflammatory Potential of Plants of Genus Rhus: Decrease in Inflammatory Mediators In Vitro and In Vivo - a Systematic Review. PLANTA MEDICA 2025; 91:238-258. [PMID: 40054491 DOI: 10.1055/a-2535-1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Plants from the Rhus genus are renowned for their medicinal properties, including anti-inflammatory effects; however, the mechanisms underlying these effects remain poorly understood. This systematic review, conducted following PRISMA guidelines, evaluated the anti-inflammatory effects of Rhus plants and explored their potential pharmacological mechanisms. A total of 35 articles were included, with the majority demonstrating a low-risk bias, as assessed using the SYRCLE tool. Rhus verniciflua, Rhus chinensis, Rhus coriaria, Rhus succedanea, Rhus tripartite, Rhus crenata, and Rhus trilobata were analyzed in the reviewed articles. In vitro studies consistently demonstrated the ability of Rhus plants to reduce key inflammatory mediators such as TNF-α, IL-1β, and IL-6. In vivo studies confirmed these effects in murine models of inflammation, with doses mostly of 400 and 800 mg/kg body weight, with no reports of toxicity. Fifty-four distinct inflammatory mediators were assessed in vivo; no pattern of mediators was identified that could elucidate the anti-inflammatory mechanisms of the action of Rhus in acute or chronic inflammation. The clinical trial reported anti-inflammatory effects in humans at 1000 mg/kg for 6 weeks. The review data on the Rhus-mediated reduction in inflammatory mediators were integrated and visualized using the Reactome bioinformatics database, which suggested that the mechanism of action of Rhus involves the inhibition of inflammasome signaling. These findings support the potential of Rhus plants as a basis for developing anti-inflammatory therapies. Further research is needed to optimize dosage regimens and fully explore their pharmacological applications.
Collapse
Affiliation(s)
- Alejandra Jazmín Rodríguez-Castillo
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - César Pacheco-Tena
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Rubén Cuevas-Martínez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | - Susana Aideé González-Chávez
- Laboratorio PABIOM, Facultad de Medicina y Ciencias Biomédicas; Universidad Autónoma de Chihuahua, Chihuahua, México
| |
Collapse
|
30
|
Olascoaga S, Konigsberg M, Espinal‐Enríquez J, Tovar H, Matadamas‐Martínez F, Pérez‐Villanueva J, López‐Diazguerrero NE. Transcriptomic signatures and network-based methods uncover new senescent cell anti-apoptotic pathways and senolytics. FEBS J 2025; 292:1950-1971. [PMID: 39871113 PMCID: PMC12001159 DOI: 10.1111/febs.17402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025]
Abstract
Cellular senescence is an irreversible cell cycle arrest caused by various stressors that damage cells. Over time, senescent cells accumulate and contribute to the progression of multiple age-related degenerative diseases. It is believed that these cells accumulate partly due to their ability to evade programmed cell death through the development and activation of survival and antiapoptotic resistance mechanisms; however, many aspects of how these survival mechanisms develop and activate are still unknown. By analyzing transcriptomic signature profiles generated by the LINCS L1000 project and using network-based methods, we identified various genes that could represent new senescence-related survival mechanisms. Additionally, employing the same methodology, we identified over 600 molecules with potential senolytic activity. Experimental validation of our computational findings confirmed the senolytic activity of Fluorouracil, whose activity would be mediated by a multitarget mechanism, revealing that its targets AURKA, EGFR, IRS1, SMAD4, and KRAS are new senescent cell antiapoptotic pathways (SCAPs). The development of these pathways could depend on the stimulus that induces cellular senescence. The SCAP development and activation mechanisms proposed in this work offer new insights into how senescent cells survive. Identifying new antiapoptotic resistance targets and drugs with potential senolytic activity paves the way for developing new pharmacological therapies to eliminate senescent cells selectively.
Collapse
Affiliation(s)
- Samael Olascoaga
- Posgrado en Biología Experimental, DCBSUniversidad Autónoma Metropolitana IztapalapaMexico CityMexico
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Mina Konigsberg
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | | | - Hugo Tovar
- Computational Genomics DivisionNational Institute of Genomic MedicineMexico CityMexico
| | - Félix Matadamas‐Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias‐UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXIInstituto Mexicano del Seguro SocialMexico CityMexico
| | - Jaime Pérez‐Villanueva
- División de Ciencias Biológicas y de la Salud, Departamento de Sistemas BiológicosUniversidad Autónoma Metropolitana‐Xochimilco (UAM‐X)Mexico CityMexico
| | - Norma Edith López‐Diazguerrero
- Laboratorio de Bioenergética y Envejecimiento Celular, Departamento de Ciencias de la SaludUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| |
Collapse
|
31
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
32
|
Khan A, Alzahrani HA, Felemban SG, Algarni AS, Alenezi ABS, Kamal M, Rehman ZU, Asdaq SMB, Ahmed N, Alharbi BM, Alanazi BS, Imran M. Exploring TGF-β signaling in benign prostatic hyperplasia: from cellular senescence to fibrosis and therapeutic implications. Biogerontology 2025; 26:79. [PMID: 40159577 DOI: 10.1007/s10522-025-10226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
As men get older, they often develop benign prostatic hyperplasia (BPH), an enlarged prostate that is not cancerous or dangerous. Although the etiology of BPH is unknown, increasing evidence indicates that the TGF-β signaling pathway might be a key player in its pathogenesis. TGF-β is a pleiotropic cytokine involved in proliferation, differentiation, and extracellular matrix re-modeling, which are all dysregulated in BPH. Cellular senescence is primarily initiated by TGF-β--induced, irreversible growth arrest and usually limits the prostate gland's hyperplastic growth. Moreover, senescent cells generate a Senescence-Associated Secretory Phenotype (SASP), which consists of numerous proinflammatory and profibrotic factors that can worsen disease ontogeny. In addition, TGF-β is among the most fibrogenic factors. At the same time, fibrosis involves a massive accumulation of extracellular matrix proteins, which can increase tissue stiffness and a loss of normal organ functions. TGF-β-mediated fibrosis in BPH changes the mechanical properties of the prostate and surrounding tissues to contribute to lower urinary tract symptoms. This review discusses the complicated molecular signaling of TGF-β underlying changes in cellular senescence and fibrosis during BPH concerning its therapeutic potential.
Collapse
Affiliation(s)
- Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia
| | - Hayat Ali Alzahrani
- Medical Laboratory Technology Department, College of Medical Applied Science, Northern Border University, Arar, Saudi Arabia
| | - Shatha Ghazi Felemban
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Alanood Saeed Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Zia Ur Rehman
- Health Research Centre, Jazan University, P.O. Box 114, 45142, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia
| | | | - Naveed Ahmed
- Department of Assistance Medical Sciences, Applied College, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Bashayer Mohammed Alharbi
- Department of Pharmacy, Johns Hopkins Aramco Healthcare, P.O. Box 10352, 31311, Dhahran, Eastern Province, Saudi Arabia
| | - Bander Sharqi Alanazi
- Department of Nursing Administration, Northern Area Armed Forces Hospital, 31991, Hafer AlBaten, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, 73213, Saudi Arabia.
| |
Collapse
|
33
|
Wang S, Huo T, Lu M, Zhao Y, Zhang J, He W, Chen H. Recent Advances in Aging and Immunosenescence: Mechanisms and Therapeutic Strategies. Cells 2025; 14:499. [PMID: 40214453 PMCID: PMC11987807 DOI: 10.3390/cells14070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Cellular senescence is an irreversible state of cell cycle arrest. Senescent cells (SCs) accumulate in the body with age and secrete harmful substances known as the senescence-associated secretory phenotype (SASP), causing chronic inflammation; at the same time, chronic inflammation leads to a decrease in immune system function, known as immunosenescence, which further accelerates the aging process. Cellular senescence and immunosenescence are closely related to a variety of chronic diseases, including cardiovascular diseases, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Studying the mechanisms of cellular senescence and immunosenescence and developing targeted interventions are crucial for improving the immune function and quality of life of elderly people. Here, we review a series of recent studies focusing on the molecular mechanisms of cellular senescence and immunosenescence, the regulation of aging by the immune system, and the latest advances in basic and clinical research on senolytics. We summarize the cellular and animal models related to aging research, as well as the mechanisms, strategies, and future directions of aging interventions from an immunological perspective, with the hope of laying the foundation for developing novel and practical anti-aging therapies.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Tong Huo
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Mingyang Lu
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Yueqi Zhao
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Jianmin Zhang
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| | - Wei He
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
| | - Hui Chen
- Department of Immunology, CAMS Key Laboratory T-Cell and Cancer Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing 100005, China; (S.W.); (T.H.); (M.L.); (Y.Z.); (J.Z.)
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China
| |
Collapse
|
34
|
Nishimura H, Murata Y, Mullen MT, Yamaura K, Singer J, Huard C, Lind DRG, Hambright WS, Bahney CS, Philippon MJ, Huard J. Combination Therapy of Losartan and Fisetin Reduces Senescence and Enhances Osteogenesis in Human Bone Marrow-Derived Mesenchymal Stem Cells. J Tissue Eng Regen Med 2025; 2025:9187855. [PMID: 40224958 PMCID: PMC11944977 DOI: 10.1155/term/9187855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/24/2024] [Indexed: 04/15/2025]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are well established for their osteogenic potential but are prone to senescence with aging or in vitro expansion. Drug treatments that reduce cellular senescence may enhance the regenerative capacity of BM-MSCs. This study investigates the effects of losartan and fisetin, both separately and in combination, on cellular senescence and osteogenesis. Human BM-MSCs were exposed to low and high concentrations of each drug for 24 h. Our findings showed that high-dose losartan exhibited cytotoxicity, focusing subsequent analyses on the low doses. Both low-dose losartan and fisetin effectively mitigated cellular senescence, with combined treatment showing synergistic effects in reducing senescence markers. From these initial findings, subsequent experiments utilized low doses of both compounds to evaluate their effect on differentiation capacity. Our multimodal approach, incorporating flow cytometry, senescence-associated heterochromatin foci (SAHF) immunohistochemistry, senescence-associated secretory phenotype (SASP) quantification, and differentiation potential assays, revealed that the combination of 23.6 μM of losartan and 50 μM of fisetin was optimal for reducing cellular senescence and enhancing osteogenesis in BM-MSCs. These results support potential therapeutic strategies to counteract age-related declines in bone health and improve healing. By targeting cellular senescence while promoting osteogenesis, losartan and fisetin offer promising avenues for future research aimed at enhancing the regenerative capacity of BM-MSCs in the context of musculoskeletal regenerative medicine.
Collapse
Affiliation(s)
- Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Yoichi Murata
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Michael T. Mullen
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jacob Singer
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Charles Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Dane R. G. Lind
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - William S. Hambright
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Marc J. Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
- The Steadman Clinic, Vail, Colorado, USA
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
35
|
Spiegel M. Fisetin as a Blueprint for Senotherapeutic Agents - Elucidating Geroprotective and Senolytic Properties with Molecular Modeling. Chemistry 2025; 31:e202403755. [PMID: 39688310 PMCID: PMC11914956 DOI: 10.1002/chem.202403755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/18/2024]
Abstract
Targeting senescent cells and the factors that accelerate this pathological state has recently emerged as a novel field in medicinal chemistry. As attention shifts to synthetic substances, studies on natural agents are often overlooked. In this paper, we present a detailed computational modeling study that encompasses quantum mechanics and molecular dynamics to elucidate the senotherapeutic activity of fisetin, a natural flavonoid. The mitochondrial environment, serving as a proxy for senescence, received special attention. Throughout the study, fisetin's outstanding geroprotective properties-exhibiting significant potential against ⋅OOH, O2⋅-, and ⋅OH radicals, surpassing those of Trolox or ascorbate-were identified. Furthermore, fisetin demonstrated a high capacity to restore oxidatively damaged biomolecules to their pristine forms, thereby renewing the functionality of proteins and amino acids. The senolytic properties were examined in terms of Bcl-2 and Bcl-xL inhibition. The results indicated that fisetin not only binds effectively to these proteins but also, with appropriate modifications, may exhibit specific selectivity toward either target. This study highlights fisetin's remarkable activity in these areas and provides a molecular description of the underlying processes, paving the way for future research.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Organic Chemistry and Pharmaceutical TechnologyFaculty of PharmacyWroclaw Medical UniversityBorowska 211A50–556WroclawPoland
| |
Collapse
|
36
|
Wei S, Le Thi P, Zhang Y, Park MY, Do K, Hoang TTT, Morgan N, Dao T, Heo J, Jo Y, Kang YJ, Cho H, Oh CM, Jang YC, Park KD, Ryu D. Hydrogen Peroxide-Releasing Hydrogel-Mediated Cellular Senescence Model for Aging Research. Biomater Res 2025; 29:0161. [PMID: 40092651 PMCID: PMC11907071 DOI: 10.34133/bmr.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Cellular senescence, a process that induces irreversible cell cycle arrest in response to diverse stressors, is a primary contributor to aging and age-related diseases. Currently, exposure to hydrogen peroxide is a widely used technique for establishing in vitro cellular senescence models; however, this traditional method is inconsistent, laborious, and ineffective in vivo. To overcome these limitations, we have developed a hydrogen peroxide-releasing hydrogel that can readily and controllably induce senescence in conventional 2-dimensional cell cultures as well as advanced 3-dimensional microphysiological systems. Notably, we have established 2 platforms using our hydrogen peroxide-releasing hydrogel for investigating senolytics, which is a promising innovation in anti-geronic therapy. Conclusively, our advanced model presents a highly promising tool that offers a simple, versatile, convenient, effective, and highly adaptable technique for inducing cellular senescence. This innovation not only lays a crucial foundation for future research on aging but also markedly accelerates the development of novel therapeutic strategies targeting age-related diseases.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Moon-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Khanh Do
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Thi Thai Thanh Hoang
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nyssa Morgan
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tam Dao
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jimin Heo
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - You Jung Kang
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hansang Cho
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young C Jang
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
- Atlanta VA Medical Center, Decatur, GA, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ki-Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
37
|
Fatima R, Soni P, Sharma M, Prasher P, Kaverikana R, Mangalpady SS, Sharifi-Rad J, Calina D. Fisetin as a chemoprotective and chemotherapeutic agent: mechanistic insights and future directions in cancer therapy. Med Oncol 2025; 42:104. [PMID: 40074915 DOI: 10.1007/s12032-025-02664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Cancer remains a leading cause of mortality globally, characterized by the uncontrolled proliferation of abnormal cells, invasion of healthy tissues, and potential metastasis. Natural compounds have become a focus in cancer research due to their potential therapeutic roles. Among these, fisetin, a dietary flavonoid, demonstrates notable anti-cancer properties through various molecular mechanisms. This review evaluates the chemoprotective and chemotherapeutic potential of fisetin, focusing on its mechanisms of action against cancer and its capacity to enhance cancer treatment. A systematic literature search was conducted across PubMed, Web of Science, and Scopus databases using keywords related to fisetin and cancer. The review synthesizes findings from in vitro and in vivo studies examining fisetin's effects on signaling pathways, apoptosis induction, oxidative stress modulation, and synergistic potential with chemotherapeutic agents. Fisetin has shown the ability to suppress tumor growth and metastasis by modulating critical signaling pathways, including PI3K/Akt/mTOR, NF-κB, and MAPK. It induces apoptosis in cancer cells through mitochondrial and endoplasmic reticulum stress responses and demonstrates antioxidative properties by reducing reactive oxygen species. Additionally, fisetin enhances the efficacy of conventional chemotherapies, indicating its role as a potential adjuvant in cancer treatment. Fisetin presents a promising natural compound with diverse anti-cancer effects, impacting cell cycle arrest, apoptosis, and oxidative stress pathways. Further clinical studies are warranted to fully elucidate its therapeutic potential and to optimize its delivery for improved bioavailability in cancer patients.
Collapse
Affiliation(s)
- Rabab Fatima
- Department of Chemistry, UPES, Dehradun, 248007, India
| | - Priyal Soni
- Amity Institute of Pharmacy, Amity University, Lucknow, 226010, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | | | - Rajesh Kaverikana
- Department of Pharmacology, Nitte (Deemed to Be University), NGSM Institute of Pharmaceuticals, Mangaluru, India
| | | | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
38
|
Foster TC, Kumar A. Sex, senescence, senolytics, and cognition. Front Aging Neurosci 2025; 17:1555872. [PMID: 40103928 PMCID: PMC11913825 DOI: 10.3389/fnagi.2025.1555872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
This review focuses on sexual dimorphism in cellular senescence and senolytic treatment in relation to brain health and age-related cognitive decline. The stressors of aging, DNA damage, inflammation, and oxidative stress induce cell senescence, a hallmark of aging. Senescent cells change their function and molecular profile and are primed to release pro-inflammatory cytokines. The functional changes include the activation of cell signals to prevent cell death. The release of pro-inflammatory cytokines from peripheral senescent cells during middle age induces senescence of neighbor cells and heightens the level of systemic inflammation, contributing to neuroinflammation. In response to neuroinflammation and oxidative stress, some neurons alter their physiology, decreasing neuronal excitability and synaptic transmission. Senescent neurophysiology is protective against cell death due to excitotoxicity, at the expense of a loss of normal cell function, contributing to age-related cognitive decline. The level of peripheral cell senescence and systemic inflammation may underlie sexual dimorphism in the prevalence, symptoms, and pathogenesis of age-related diseases, including neurodegenerative diseases. Sex differences have been observed for senescence of astrocytes, microglia, and peripheral cells, including those involved in innate and adaptive immune responses. Interventions that remove senescent cells, such as senolytic drugs, can reduce or ameliorate some of the aging-related loss of function. Similarities and differences in senolytic responses of males and females depend on the system examined, the treatment regimen, the level of senescent cell burden, and the age when treatment is initiated. Estrogen impacts several of these factors and influences the transcription of genes promoting growth, proliferation, and cell survival programs in a manner opposite that of senolytic drugs. In addition, estrogen has anti-aging effects that are independent of cell senescence, including rapidly modifying senescent neurophysiology. Thus, it is important to recognize that, in addition to sex differences in cell senescence, there are other sexually dimorphic mechanisms that contribute to the aging process. The results indicate that senolytics interact with fundamental biology, including sex hormones.
Collapse
Affiliation(s)
- Thomas C Foster
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics and Genomics Graduate Program, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
39
|
Nakano Y, Johmura Y. Functional diversity of senescent cells in driving ageing phenotypes and facilitating tissue regeneration. J Biochem 2025; 177:189-195. [PMID: 39760855 DOI: 10.1093/jb/mvae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025] Open
Abstract
As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the ageing process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development and repair. This review provides a comprehensive examination of the dual nature of senescent cells, evaluating their deleterious contributions to chronic inflammation, tissue dysfunction and disease, as well as their beneficial roles in maintaining physiological homeostasis. Additionally, we explored the therapeutic potential of senolytic agents designed to selectively eliminate detrimental senescent cells while considering the delicate balance between transient and beneficial senescence and the persistence of pathological senescence. A deeper understanding of these dynamics is critical to develop novel interventions aimed at mitigating age-related dysfunctions and enhancing healthy life expectancies.
Collapse
Affiliation(s)
- Yasuhiro Nakano
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
- Integrated Systems of Aging Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 Japan
| |
Collapse
|
40
|
Alshaebi F, Sciortino A, Kayed R. The Role of Glial Cell Senescence in Alzheimer's Disease. J Neurochem 2025; 169:e70051. [PMID: 40130281 PMCID: PMC11934031 DOI: 10.1111/jnc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Glial cell senescence, characterized by the irreversible arrest of cell division and a pro-inflammatory secretory phenotype, has emerged as a critical player in the pathogenesis of Alzheimer's disease (ad). While much attention has been devoted to the role of neurons in ad, growing evidence suggests that glial cells, including astrocytes, microglia, and oligodendrocytes, contribute significantly to disease progression through senescence. In this review, we explore the molecular mechanisms underlying glial cell senescence in ad, focusing on the cellular signaling pathways, including DNA damage response and the accumulation of senescence-associated secretory phenotypes (SASP). We also examine how senescent glial cells exacerbate neuroinflammation, disrupt synaptic function, and promote neuronal death in ad. Moreover, we discuss emerging therapeutic strategies aimed at targeting glial cell senescence to mitigate the neurodegenerative processes in ad. By providing a comprehensive overview of current research on glial cell senescence in Alzheimer's disease, this review highlights its potential as a novel therapeutic target in the fight against ad.
Collapse
Affiliation(s)
- Fadhl Alshaebi
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Alessia Sciortino
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
- Departments of Neurology, Neuroscience and Cell BiologyUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative DiseasesUniversity of Texas Medical BranchGalvestonTexasUSA
| |
Collapse
|
41
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
42
|
Légaré C, Berglund JA, Duchesne E, Dumont NA. New Horizons in Myotonic Dystrophy Type 1: Cellular Senescence as a Therapeutic Target. Bioessays 2025; 47:e202400216. [PMID: 39723693 PMCID: PMC11848125 DOI: 10.1002/bies.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is considered a progeroid disease (i.e., causing premature aging). This hypervariable disease affects multiple systems, such as the musculoskeletal, central nervous, gastrointestinal, and others. Despite advances in understanding the underlying pathogenic mechanism of DM1, numerous gaps persist in our understanding, hindering elucidation of the heterogeneity and severity of its symptoms. Accumulating evidence indicates that the toxic intracellular RNA accumulation associated with DM1 triggers cellular senescence. These cells are in a state of irreversible cell cycle arrest and secrete a cocktail of cytokines, referred to as a senescence-associated secretory phenotype (SASP), that can have harmful effects on neighboring cells and more broadly. We hypothesize that cellular senescence contributes to the pathophysiology of DM1, and clearance of senescent cells is a promising therapeutic approach for DM1. We will discuss the therapeutic potential of different senotherapeutic drugs, especially senolytics that eliminate senescent cells, and senomorphics that reduce SASP expression.
Collapse
Affiliation(s)
- Cécilia Légaré
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
| | - J. Andrew Berglund
- RNA InstituteCollege of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
- Department of Biological Sciences, College of Arts and SciencesUniversity at Albany‐SUNYAlbanyNew YorkUSA
| | - Elise Duchesne
- School of Rehabilitation SciencesFaculty of MedicineUniversité LavalQuebecQuebecCanada
- CHU de Québec – Université Laval Research CenterQuébecQuébecCanada
- Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN)Centre intégré universitaire de santé et de services sociaux du Saguenay‐Lac‐Saint‐JeanSaguenayQuebecCanada
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris)Centre Intégré Universitaire de Santé et de Services Sociaux Capitale‐NationaleQuébecQuebecCanada
| | - Nicolas A. Dumont
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- School of rehabilitationFaculty of MedicineUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
43
|
Qin Y, Liu H, Wu H. Cellular Senescence in Health, Disease, and Lens Aging. Pharmaceuticals (Basel) 2025; 18:244. [PMID: 40006057 PMCID: PMC11859104 DOI: 10.3390/ph18020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Cellular senescence is a state of irreversible cell cycle arrest that serves as a critical regulator of tissue homeostasis, aging, and disease. While transient senescence contributes to development, wound healing, and tumor suppression, chronic senescence drives inflammation, tissue dysfunction, and age-related pathologies, including cataracts. Lens epithelial cells (LECs), essential for maintaining lens transparency, are particularly vulnerable to oxidative stress-induced senescence, which accelerates lens aging and cataract formation. This review examines the dual role of senescence in LEC function and its implications for age-related cataractogenesis, alongside emerging senotherapeutic interventions. Methods: This review synthesizes findings on the molecular mechanisms of senescence, focusing on oxidative stress, mitochondrial dysfunction, and the senescence-associated secretory phenotype (SASP). It explores evidence linking LEC senescence to cataract formation, highlighting key studies on stress responses, DNA damage, and antioxidant defense. Recent advances in senotherapeutics, including senolytics and senomorphics, are analyzed for their potential to mitigate LEC senescence and delay cataract progression. Conclusions: LEC senescence is driven by oxidative damage, mitochondrial dysfunction, and impaired redox homeostasis. These factors activate senescence path-ways, including p53/p21 and p16/Rb, resulting in cell cycle arrest and SASP-mediated inflammation. The accumulation of senescent LECs reduces regenerative capacity, disrupts lens homeostasis, and contributes to cataractogenesis. Emerging senotherapeutics, such as dasatinib, quercetin, and metformin, show promise in reducing the senescent cell burden and modulating the SASP to preserve lens transparency.
Collapse
Affiliation(s)
- Ying Qin
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Haoxin Liu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
| | - Hongli Wu
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (Y.Q.); (H.L.)
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
44
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
45
|
Fu TE, Zhou Z. Senescent cells as a target for anti-aging interventions: From senolytics to immune therapies. J Transl Int Med 2025; 13:33-47. [PMID: 40115034 PMCID: PMC11921816 DOI: 10.1515/jtim-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Aging and age-related diseases are major drivers of multimorbidity and mortality worldwide. Cellular senescence is a hallmark of aging. The accumulation of senescent cells is causally associated with pathogenesis of various age-associated disorders. Due to their promise for alleviating age-related disorders and extending healthspan, therapeutic strategies targeting senescent cells (senotherapies) as a means to combat aging have received much attention over the past decade. Among the conventionally used approaches, one is the usage of small-molecule compounds to specifically exhibit cytotoxicity toward senescent cells or inhibit deleterious effects of the senescence-associated secretory phenotype (SASP). Alternatively, there are immunotherapies directed at surface antigens specifically upregulated in senescent cells (seno-antigens), including chimeric antigen receptor (CAR) therapies and senolytic vaccines. This review gives an update of the current status in the discovery and development of senolytic therapies, and their translational progress from preclinical to clinical trials. We highlight the current challenges faced by senotherapeutic development in the context of senescence heterogeneity, with the aim of offering novel perspectives for future anti-aging interventions aimed at enhancing healthy longevity.
Collapse
Affiliation(s)
- Tianlu Esther Fu
- Faculty of Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
46
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Carver CM, Rodriguez SL, Atkinson EJ, Dosch AJ, Asmussen NC, Gomez PT, Leitschuh EA, Espindola-Netto JM, Jeganathan KB, Whaley MG, Kamenecka TM, Baker DJ, Haak AJ, LeBrasseur NK, Schafer MJ. IL-23R is a senescence-linked circulating and tissue biomarker of aging. NATURE AGING 2025; 5:291-305. [PMID: 39658621 PMCID: PMC11839461 DOI: 10.1038/s43587-024-00752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Cellular senescence is an aging mechanism characterized by cell cycle arrest and a senescence-associated secretory phenotype (SASP). Preclinical studies demonstrate that senolytic drugs, which target survival pathways in senescent cells, can counteract age-associated conditions that span several organs. The comparative efficacy of distinct senolytic drugs for modifying aging and senescence biomarkers in vivo has not been demonstrated. Here, we established aging- and senescence-related plasma proteins and tissue transcripts that changed in old versus young female and male mice. We investigated responsivity to acute treatment with venetoclax, navitoclax, fisetin or luteolin versus transgenic senescent cell clearance in aged p16-InkAttac mice. We discovered that age-dependent changes in plasma proteins, including IL-23R, CCL5 and CA13, were reversed by senotherapeutics, which corresponded to expression differences in tissues, particularly in the kidney. In plasma from humans across the lifespan, IL-23R increased with age. Our results reveal circulating factors as candidate mediators of senescence-associated interorgan signal transduction and translationally impactful biomarkers of systemic senescent cell burden.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Sonia L Rodriguez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Dosch
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Niels C Asmussen
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ethan A Leitschuh
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Jair M Espindola-Netto
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Madison G Whaley
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Theodore M Kamenecka
- Department of Molecular Medicine, UF Scripps Institute, The Scripps Research Institute, Scripps Florida, Jupiter, FL, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Nathan K LeBrasseur
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Neuroscience, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
48
|
Costa CM, Pedrosa SS, Kirkland JL, Reis F, Madureira AR. The senotherapeutic potential of phytochemicals for age-related intestinal disease. Ageing Res Rev 2025; 104:102619. [PMID: 39638096 DOI: 10.1016/j.arr.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
During the last few decades, life expectancy has increased worldwide along with the prevalence of several age-related diseases. Among aging pathways, cellular senescence and chronic inflammation (or "inflammaging") appear to be connected to gut homeostasis and dysbiosis of the microbiome. Cellular senescence is a state of essentially irreversible cell cycle arrest that occurs in response to stress. Although senescent cells (SC) remain metabolically active, they do not proliferate and can secrete inflammatory and other factors comprising the senescence-associated secretory phenotype (SASP). Accumulation of SCs has been linked to onset of several age-related diseases, in the brain, bones, the gastrointestinal tract, and other organs and tissues. The gut microbiome undergoes substantial changes with aging and is tightly interconnected with either successful (healthy) aging or disease. Senotherapeutic drugs are compounds that can clear senescent cells or modulate the release of SASP factors and hence attenuate the impact of the senescence-associated pro-inflammatory state. Phytochemicals, phenolic compounds and terpenes, which have antioxidant and anti-inflammatory activities, could also be senotherapeutic given their ability to act upon senescence-linked cellular pathways. The aim of this review is to dissect links among the gut microbiome, cellular senescence, inflammaging, and disease, as well as to explore phytochemicals as potential senotherapeutics, focusing on their interactions with gut microbiota. Coordinated targeting of these inter-related processes might unveil new strategies for promoting healthy aging.
Collapse
Affiliation(s)
- Célia Maria Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - Sílvia Santos Pedrosa
- Biorbis, Unipessoal LDA, Edifício de Biotecnologia da Universidade Católica Portuguesa, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| | - James L Kirkland
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Clinical Academic Center of Coimbra, Coimbra 3004-531, Portugal.
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
49
|
Fang Y, Peck MR, Quinn K, Chapman JE, Medina D, McFadden SA, Bartke A, Hascup ER, Hascup KN. Senolytic intervention improves cognition, metabolism, and adiposity in female APP NL-F/NL-F mice. GeroScience 2025; 47:1123-1138. [PMID: 39120687 PMCID: PMC11872876 DOI: 10.1007/s11357-024-01308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Senescent cells accumulate throughout the body and brain contributing to unhealthy aging and Alzheimer's disease (AD). The APPNL-F/NL-F amyloidogenic AD mouse model exhibits increased markers of senescent cells and the senescence-associated secretory phenotype (SASP) in visceral white adipose tissue and the hippocampus before plaque accumulation and cognitive decline. We hypothesized that senolytic intervention would alleviate cellular senescence thereby improving spatial memory in APPNL-F/NL-F mice. Thus, 4-month-old male and female APPNL-F/NL-F mice were treated monthly with vehicle, 5 mg/kg dasatinib + 50 mg/kg quercetin, or 100 mg/kg fisetin. Blood glucose levels, energy metabolism, spatial memory, amyloid burden, and senescent cell markers were assayed. Dasatinib + quercetin treatment in female APPNL-F/NL-F mice increased oxygen consumption and energy expenditure resulting in decreased body mass. White adipose tissue mass was decreased along with senescence markers, SASP, blood glucose, and plasma insulin and triglycerides. Hippocampal senescence markers and SASP were reduced along with soluble and insoluble amyloid-β (Aβ)42 and senescence-associated-β-gal activity leading to improved spatial memory. Fisetin had negligible effects on these measures in female APPNL-F/NL-F mice while neither senolytic intervention altered these parameters in the male mice. Considering women have a greater risk of dementia, identifying senotherapeutics appropriate for sex and disease stage is necessary for personalized medicine.
Collapse
Affiliation(s)
- Yimin Fang
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Mackenzie R Peck
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kathleen Quinn
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Jenelle E Chapman
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - David Medina
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Samuel A McFadden
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neuroscience Institute, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62702, USA.
| |
Collapse
|
50
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|