1
|
Payandeh Z, Tangruksa B, Synnergren J, Heydarkhan-Hagvall S, Nordin JZ, Andaloussi SE, Borén J, Wiseman J, Bohlooly-Y M, Lindfors L, Valadi H. Extracellular vesicles transport RNA between cells: Unraveling their dual role in diagnostics and therapeutics. Mol Aspects Med 2024; 99:101302. [PMID: 39094449 DOI: 10.1016/j.mam.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/11/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.
Collapse
Affiliation(s)
- Zahra Payandeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden
| | - Benyapa Tangruksa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden; Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, 541 28, Skövde, Sweden; Global Patient Safety - Biopharma, AstraZeneca, 431 83, Gothenburg, Mölndal, Sweden
| | - Joel Z Nordin
- Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - John Wiseman
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Mohammad Bohlooly-Y
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Gothenburg, Mölndal, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Mölndal, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41346, Sweden.
| |
Collapse
|
2
|
de Gonzalo-Calvo D, Karaduzovic-Hadziabdic K, Dalgaard LT, Dieterich C, Perez-Pons M, Hatzigeorgiou A, Devaux Y, Kararigas G. Machine learning for catalysing the integration of noncoding RNA in research and clinical practice. EBioMedicine 2024; 106:105247. [PMID: 39029428 PMCID: PMC11314885 DOI: 10.1016/j.ebiom.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
The human transcriptome predominantly consists of noncoding RNAs (ncRNAs), transcripts that do not encode proteins. The noncoding transcriptome governs a multitude of pathophysiological processes, offering a rich source of next-generation biomarkers. Toward achieving a holistic view of disease, the integration of these transcripts with clinical records and additional data from omic technologies ("multiomic" strategies) has motivated the adoption of artificial intelligence (AI) approaches. Given their intricate biological complexity, machine learning (ML) techniques are becoming a key component of ncRNA-based research. This article presents an overview of the potential and challenges associated with employing AI/ML-driven approaches to identify clinically relevant ncRNA biomarkers and to decipher ncRNA-associated pathogenetic mechanisms. Methodological and conceptual constraints are discussed, along with an exploration of ethical considerations inherent to AI applications for healthcare and research. The ultimate goal is to provide a comprehensive examination of the multifaceted landscape of this innovative field and its clinical implications.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| | | | | | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology and Department of Internal Medicine III, University Hospital Heidelberg, Germany; German Center for Cardiovascular Research (DZHK) - Partner Site Heidelberg/Mannheim, Germany
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Artemis Hatzigeorgiou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece; Hellenic Pasteur Institute, Athens, Greece
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
3
|
Jin Y, Liu Y, Yu W, Zhang Y, Pan K, Wang M, Xu A. Exosomal microRNAs associated with tuberculosis among people living with human immunodeficiency virus. J Clin Tuberc Other Mycobact Dis 2024; 36:100453. [PMID: 38872871 PMCID: PMC11169466 DOI: 10.1016/j.jctube.2024.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Objective To investigate the diagnostic value of selected exosomal miRNAs for Tuberculosis (TB) among people living with human immunodeficiency virus (PLHIV). Methods A total of 43 adult HIV patients, including 20 diagnosed with TB and 23 controls, were enrolled. The levels of six exosomal miRNAs (miR-20a, miR-20b, miR-26a, miR-106a, miR-191, and miR-486) were measured using qRT-PCR. Results The levels of these six exosomal miRNAs (miR-20a, miR-20b, miR-26a, miR-106a, miR-191, and miR-486) were significantly higher in the plasma of TB patients compared to controls among PLHIV. The Receiver Operating Characteristic (ROC) curve of these six miRNAs showed a fair performance in distinguishing TB patients from controls, with Area Under Curve (AUC) values of 0.78 (95 %CI 0.63-0.93), 0.81 (95 %CI 0.67-0.95), 0.77 (95 %CI 0.61-0.93), 0.84 (95 %CI 0.70-0.98), 0.82 (95 %CI 0.68-0.95) and 0.79 (95 %CI 0.65-0.93), respectively. These miRNAs showed higher AUC values for extrapulmonary tuberculosis compared to pulmonary tuberculosis. An analysis of subgroups was performed based on CD4 + T cell count (<200 and ≥ 200 cells·µL-1). In the high CD4 count group, all these six exosomal miRNAs appeared to have higher AUC values compared to the low CD4 count group. Conclusions These six exosomal miRNAs could serve as potential biomarkers for diagnosing TB among PLHIV.
Collapse
Affiliation(s)
- Yujiao Jin
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Yuan Liu
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Wenyan Yu
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Yan Zhang
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Kenv Pan
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Miaochan Wang
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| | - Aifang Xu
- Department of Clinical Laboratory, Xixi Hospital of Hangzhou, Hangzhou 310023, Zhejiang, China
| |
Collapse
|
4
|
Sun X, Li W, Zhao L, Fan K, Qin F, Shi L, Gao F, Zheng C. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol 2024; 15:1401867. [PMID: 38846947 PMCID: PMC11153741 DOI: 10.3389/fimmu.2024.1401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Tuberculosis (TB), caused by the bacterial pathogen Mycobacterium tuberculosis (MTB), remains one of the most prevalent and deadly infectious diseases worldwide. Currently, there are complex interactions between host cells and pathogens in TB. The onset, progression, and regression of TB are correlated not only with the virulence of MTB but also with the immunity of TB patients. Exosomes are cell-secreted membrane-bound nanovesicles with lipid bilayers that contain a variety of biomolecules, such as metabolites, lipids, proteins, and nucleic acids. Exosome-mediated cell-cell communication and interactions with the microenvironment represent crucial mechanisms through which exosomes exert their functional effects. Exosomes harbor a wide range of regulatory roles in physiological and pathological conditions, including MTB infection. Exosomes can regulate the immune response, metabolism, and cellular death to remodel the progression of MTB infection. During MTB infection, exosomes display distinctive profiles and quantities that may act as diagnostic biomarkers, suggesting that exosomes provide a revealing glimpse into the evolving landscape of MTB infections. Furthermore, exosomes derived from MTB and mesenchymal stem cells can be harnessed as vaccine platforms and drug delivery vehicles for the precise targeting and treatment of TB. In this review, we highlight the functions and mechanisms through which exosomes influence the progression of TB. Additionally, we unravel the critical significance of exosomal constituents in the diagnosis and therapeutic applications of TB, aiming to offer novel perspectives and strategies for combating TB.
Collapse
Affiliation(s)
- Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Yao S, Liu B, Hu X, Tan Y, Liu K, He M, Wu B, Ahmad N, Su X, Zhang Y, Yi M. Diagnostic value of microRNAs in active tuberculosis based on quantitative and enrichment analyses. Diagn Microbiol Infect Dis 2024; 108:116172. [PMID: 38340483 DOI: 10.1016/j.diagmicrobio.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Tuberculosis (TB) infection remains a crucial global health challenge, with active tuberculosis (ATB) representing main infection source. MicroRNA (miRNA) has emerged as a potential diagnostic tool in this context. This study aims to identify candidate miRNAs for ATB diagnosis and explore their possible mechanisms. METHODS Differentially expressed miRNAs in ATB were summarized in qualitative analysis. The diagnostic values of miRNAs for ATB subtypes were assessed by overall sensitivity, specificity, and area under the curve. Additionally, we conducted enrichment analysis on miRNAs and target genes. RESULTS Over 100 differentially expressed miRNAs were identified, with miR-29 family being the most extensively studied. The miR-29 family demonstrated sensitivity, specificity, and area under the curve of 80 %, 80 % and 0.86 respectively for active pulmonary TB (PTB). The differentially expressed miR-29-target genes in PTB were enriched in immune-related pathways. CONCLUSIONS The miR-29 family exhibits good diagnostic value for active PTB and shows association with immune process.
Collapse
Affiliation(s)
- Shuoyi Yao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Changsha, China
| | - Bin Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Tan
- School of Medicine, Changsha Social Work College, Changsha, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, China
| | - Meng He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bohan Wu
- School of Life Sciences, Central South University, Changsha, China
| | - Namra Ahmad
- School of Life Sciences, Central South University, Changsha, China
| | - Xiaoli Su
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
6
|
Yadav R, Singh AV, Kushwaha S, Chauhan DS. Emerging role of exosomes as a liquid biopsy tool for diagnosis, prognosis & monitoring treatment response of communicable & non-communicable diseases. Indian J Med Res 2024; 159:163-180. [PMID: 38577857 PMCID: PMC11050750 DOI: 10.4103/ijmr.ijmr_2344_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT From an initial thought of being used as a cellular garbage bin to a promising target for liquid biopsies, the role of exosomes has drastically evolved in just a few years of their discovery in 1983. Exosomes are naturally secreted nano-sized vesicles, abundant in all types of body fluids and can be isolated intact even from the stored biological samples. Being stable carriers of genetic material (cellular DNA, mRNA and miRNA) and having specific cargo (signature content of originating cells), exosomes play a crucial role in pathogenesis and have been identified as a novel source of biomarkers in a variety of disease conditions. Recently exosomes have emerged as a promising 'liquid biopsy tool'and have shown great potential in the field of non-invasive disease diagnostics, prognostics and treatment response monitoring in both communicable as well as non-communicable diseases. However, there are certain limitations to overcome which restrict the use of exosome-based liquid biopsy as a gold standard testing procedure in routine clinical practices. The present review summarizes the current knowledge on the role of exosomes as the liquid biopsy tool in diagnosis, prognosis and treatment response monitoring in communicable and non-communicable diseases and highlights the major limitations, technical advancements and future prospects of the utilization of exosome-based liquid biopsy in clinical interventions.
Collapse
Affiliation(s)
- Rajbala Yadav
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Ajay Vir Singh
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Shweta Kushwaha
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Devendra Singh Chauhan
- Department of Microbiology & Molecular Biology, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
7
|
Mi L, Gao J, Li N, Liu Y, Zhang N, Gao Y, Peng X, Zhang L, Xu K. Human umbilical cord mesenchymal stem cell-derived exosomes loaded miR-451a targets ATF2 to improve rheumatoid arthritis. Int Immunopharmacol 2024; 127:111365. [PMID: 38104370 DOI: 10.1016/j.intimp.2023.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation, with synovial fibroblasts (SFs) playing a pivotal role in its pathogenesis. Dysregulation of microRNA (miRNA) expression in SFs contributes to RA development. Exosomes (Exos) have emerged as effective carriers for therapeutic molecules, facilitating miRNA transfer between cells. This study explores the therapeutic potential of Exos derived from human umbilical cord mesenchymal stem cells (hUCMSCs), loaded with miR-451a, to modulate ATF2 expression, aiming to address RA in both in vivo and in vitro settings. METHODS In this study, hUCMSC and RA SFs were isolated and identified, and hUCMSC-Exos were extracted and characterized. The influence of hUCMSC-Exos on RA SFs was detected. And hUCMSC-Exos targeting RA SFs was traced. HUCMSCKD-AGO2 was prepared by knocking down AGO2 in hUCMSC. HUCMSCKD-AGO2-Exos was extracted and characterized,and their influence on RA SFs was detected. The miRNA profiles before and after hUCMSC-Exos intervention in RA SFs were mapped to identify differential miRNAs. RT-qPCR was used to verify the differential miRNAs, with hsa-miR-451a finally selected as the target gene. The effect of miR-451a on SFs was detected. The latent binding of miR-451a to activating transcription factor 2 (ATF2) was analyzed. The effect of hUCMSC-ExosmiR-451a on SFs was detected, and the expression of miR-451a and ATF2 was measured by RT-PCR. In vivo, hUCMSC-ExosmiR-451a was injected into the ankle joint of CIA rats, and arthritis index, joint imaging and synovial pathology were assessed. The expression of miR-451a and ATF2 in synovial tissue was detected. Finally, the safety of hUCMSC-ExosmiR-451a in CIA rats was evaluated. RESULTS This study revealed that hUCMSC-Exos can inhibit RA SFs proliferation, migration and invasion through miRNAs. High throughput sequencing detected 13 miRNAs that could be transmitted from hUCMSCs to RA SFs via hUCMSC-Exos. miR-451a inhibited RA SFs proliferation, migration and invasion by regulating ATF2. hUCMSC-Exos loaded with miR-451a targeted ATF2 to inhibit RA SFs proliferation, migration and invasion, and improve joint inflammation and imaging findings in CIA rats. CONCLUSIONS This study demonstrates that miR-451a carried by hUCMSC-Exos can play a role in inhibiting RA SFs biological traits and improving arthritis in CIA rats by inhibiting ATF2. The findings suggest a promising treatment for RA and provide insights into the mechanism of action of hUCMSC-Exos in RA. Future research directions will continue to explore the potential in this field.
Collapse
Affiliation(s)
- Liangyu Mi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Ying Liu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyue Peng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China; Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Shepelkova GS, Evstifeev VV, Berezovskiy YS, Tarasov RV, Bagirov MA, Yeremeev VV. Lung Inflammation Signature in Post-COVID-19 TB Patients. Int J Mol Sci 2023; 24:16315. [PMID: 38003504 PMCID: PMC10671676 DOI: 10.3390/ijms242216315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Tuberculosis (TB) remains a leading cause of infectious disease mortality worldwide, despite the COVID-19 pandemic. The mechanisms by which SARS-CoV-2 affects tuberculosis progression have not yet been established. Here, we compared the level of inflammation in the wall of the tuberculoma and in the parenchymal lung tissue of 30 patients diagnosed with tuberculoma without a history of COVID-19 and 30 patients diagnosed with tuberculoma 3 months after COVID-19. We also characterized TB activity in these patients using a panel of TB-associated miRNAs. Histopathological changes were examined in the resection material, and the expression level of cytokine/chemokine genes was determined by qRT-PCR. In patients with a history of COVID-19, the histological data obtained suggested activation of tuberculosis. In the same group of patients, as opposed to those without a history of COVID-19, equally high levels of pro-inflammatory cytokines/chemokines were expressed both in the tuberculoma wall and in the periphery of the resected specimen. A full set of miRNAs (miR-191, miR-193a, miR-222, miR-223, miR-155, miR-26a, and miR-150) were downregulated in the sera of patients with TB and active COVID-19 co-infection compared to controls. Our observations indicate signs of tuberculosis activation resulting from COVID-19 infection.
Collapse
Affiliation(s)
- Galina S. Shepelkova
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
| | - Vladimir V. Evstifeev
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
| | - Yuriy S. Berezovskiy
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
- Moscow Regional Clinical Tuberculosis Center, Moscow 127055, Russia
| | - Ruslan V. Tarasov
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
| | - Mamed A. Bagirov
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
| | - Vladimir V. Yeremeev
- Central Tuberculosis Research Institute, Moscow 107564, Russia; (V.V.E.); (Y.S.B.); (R.V.T.); (M.A.B.)
| |
Collapse
|
9
|
Zhang X, Pan L, Zhang P, Wang L, Shen Y, Xu P, Ren Y, Huang W, Liu P, Wu Q, Li F. Single-cell analysis of the miRNA activities in tuberculous meningitis (TBM) model mice injected with the BCG vaccine. Int Immunopharmacol 2023; 124:110871. [PMID: 37708706 DOI: 10.1016/j.intimp.2023.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Our previous study revealed the transcriptome atlas of specific cell types in tuberculous meningitis (TBM) model mice injected with the BCG vaccine via scRNA sequencing. However, the activities of miRNAs in TBM at single-cell resolution remain to be explored. METHOD Cell type-specific miRNA activities were investigated by using motif enrichment analyses (miReact) on the transcriptome data of 15 cell types. The target mRNAs of miRNAs were predicted and subjected to enrichment analysis. Furthermore, miRNAs and their target mRNAs with opposite expression trends were chosen to construct functional networks. Besides, qRT-PCR and RNA scope were performed to verify the expression level of representative miRNA. RESULTS The tSNE dimensionality reduction presented 15 cell types in TBM model mice, in which microglia and endothelial cells accounted for the majority. Target mRNAs of each cell type were predicted for verification or network construction. The immune and inflammation-related miRNA-mRNA networks of macrophages and microglia, oxidative phosphorylation-related miRNA-mRNA networks of neurons, ion and protein transport-related networks of epididymal cells, and angiogenesis-related miRNA-mRNA networks of VSMCs were constructed. The miRNA activity analysis revealed that miR-21a-3p activity was increased in microglia, macrophages, neurons and epididymal cells. The result of qRT-PCR and RNA scope indicate that miR-21a-3p was significantly higher-expressed in TBM brain tissue compared with normal brain tissue. CONCLUSION In our study, an in-depth exploration of the mRNA expression and miRNA activity of macrophages, microglia, epididymal cells, neurons and vascular smooth muscle cells during TBM progression was conducted using scRNA-Seq, which provided novel insights into the immune cell engagement in TBM patients.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Huang
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Liu
- Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Department of Tuberculosis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Center of Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Shi Y, Zhang C, Pan S, Chen Y, Miao X, He G, Wu Y, Ye H, Weng C, Zhang H, Zhou W, Yang X, Liang C, Chen D, Hong L, Su F. The diagnosis of tuberculous meningitis: advancements in new technologies and machine learning algorithms. Front Microbiol 2023; 14:1290746. [PMID: 37942080 PMCID: PMC10628659 DOI: 10.3389/fmicb.2023.1290746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Tuberculous meningitis (TBM) poses a diagnostic challenge, particularly impacting vulnerable populations such as infants and those with untreated HIV. Given the diagnostic intricacies of TBM, there's a pressing need for rapid and reliable diagnostic tools. This review scrutinizes the efficacy of up-and-coming technologies like machine learning in transforming TBM diagnostics and management. Advanced diagnostic technologies like targeted gene sequencing, real-time polymerase chain reaction (RT-PCR), miRNA assays, and metagenomic next-generation sequencing (mNGS) offer promising avenues for early TBM detection. The capabilities of these technologies are further augmented when paired with mass spectrometry, metabolomics, and proteomics, enriching the pool of disease-specific biomarkers. Machine learning algorithms, adept at sifting through voluminous datasets like medical imaging, genomic profiles, and patient histories, are increasingly revealing nuanced disease pathways, thereby elevating diagnostic accuracy and guiding treatment strategies. While these burgeoning technologies offer hope for more precise TBM diagnosis, hurdles remain in terms of their clinical implementation. Future endeavors should zero in on the validation of these tools through prospective studies, critically evaluating their limitations, and outlining protocols for seamless incorporation into established healthcare frameworks. Through this review, we aim to present an exhaustive snapshot of emerging diagnostic modalities in TBM, the current standing of machine learning in meningitis diagnostics, and the challenges and future prospects of converging these domains.
Collapse
Affiliation(s)
- Yi Shi
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Chengxi Zhang
- School of Materials Science and Engineering, Shandong Jianzhu University, Jinan, China
| | - Shuo Pan
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xingguo Miao
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| | - Guoqiang He
- Postgraduate Training Base Alliance of Wenzhou Medical University, Wenzhou, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanchan Wu
- School of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Hui Ye
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| | - Chujun Weng
- The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| | - Huanhuan Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wenya Zhou
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Yang
- Wenzhou Medical University Renji College, Wenzhou, China
| | - Chenglong Liang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dong Chen
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
- Wenzhou Central Blood Station, Wenzhou, China
| | - Liang Hong
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Su
- Department of Infectious Diseases, Wenzhou Central Hospital, Wenzhou, China
- Department of Infectious Diseases, Wenzhou Sixth People’s Hospital, Wenzhou, China
- Wenzhou Key Laboratory of Diagnosis and Treatment of Emerging and Recurrent Infectious Diseases, Wenzhou, China
| |
Collapse
|
11
|
de Gonzalo-Calvo D, Martinez-Camblor P, Belmonte T, Barbé F, Duarte K, Cowie MR, Angermann CE, Korte A, Riedel I, Labus J, Koenig W, Zannad F, Thum T, Bär C. Circulating miR-133a-3p defines a low-risk subphenotype in patients with heart failure and central sleep apnea: a decision tree machine learning approach. J Transl Med 2023; 21:742. [PMID: 37864227 PMCID: PMC10588036 DOI: 10.1186/s12967-023-04558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Patients with heart failure with reduced ejection fraction (HFrEF) and central sleep apnea (CSA) are at a very high risk of fatal outcomes. OBJECTIVE To test whether the circulating miRNome provides additional information for risk stratification on top of clinical predictors in patients with HFrEF and CSA. METHODS The study included patients with HFrEF and CSA from the SERVE-HF trial. A three-step protocol was applied: microRNA (miRNA) screening (n = 20), technical validation (n = 60), and biological validation (n = 587). The primary outcome was either death from any cause, lifesaving cardiovascular intervention, or unplanned hospitalization for worsening of heart failure, whatever occurred first. MiRNA quantification was performed in plasma samples using miRNA sequencing and RT-qPCR. RESULTS Circulating miR-133a-3p levels were inversely associated with the primary study outcome. Nonetheless, miR-133a-3p did not improve a previously established clinical prognostic model in terms of discrimination or reclassification. A customized regression tree model constructed using the Classification and Regression Tree (CART) algorithm identified eight patient subphenotypes with specific risk patterns based on clinical and molecular characteristics. MiR-133a-3p entered the regression tree defining the group at the lowest risk; patients with log(NT-proBNP) ≤ 6 pg/mL (miR-133a-3p levels above 1.5 arbitrary units). The overall predictive capacity of suffering the event was highly stable over the follow-up (from 0.735 to 0.767). CONCLUSIONS The combination of clinical information, circulating miRNAs, and decision tree learning allows the identification of specific risk subphenotypes in patients with HFrEF and CSA.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, IRBLleida, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Pablo Martinez-Camblor
- Anesthesiology Department, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Faculty of Health Sciences, Universidad Autonoma de Chile, Providencia, Chile
| | - Thalia Belmonte
- Translational Research in Respiratory Medicine, IRBLleida, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, IRBLleida, University Hospital Arnau de Vilanova and Santa Maria, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Kevin Duarte
- INSERM 1433, CHRU de Nancy, Centre d'Investigations Cliniques Plurithématique, Institut Lorrain du Cœur et des Vaisseaux, Université de Lorraine, Nancy, France
| | - Martin R Cowie
- Department of Cardiology, Royal Brompton Hospital (Guy's & St Thomas's NHS Foundation Trust), London, UK
| | - Christiane E Angermann
- Comprehensive Heart Failure Center, University and University Hospital Würzburg, Würzburg, Germany
- Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Andrea Korte
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Isabelle Riedel
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Josephine Labus
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d'Investigations Cliniques-Plurithématique 1433, Inserm U1116, CHRU Nancy, F-CRIN INI-CRCT Network, Nancy, France
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
13
|
Alipoor SD. Editorial: Exosomes and exosomal miRNAs as biomarkers in infection with Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 13:1239739. [PMID: 37565065 PMCID: PMC10411351 DOI: 10.3389/fcimb.2023.1239739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Affiliation(s)
- Shamila D. Alipoor
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
14
|
Qin Y, Chen J, Xu K, Lu Y, Xu F, Shi J. Triad3A involved in the regulation of endotoxin tolerance and mycobactericidal activity through the NFκB-nitric oxide pathway. Immun Inflamm Dis 2023; 11:e925. [PMID: 37506157 PMCID: PMC10363814 DOI: 10.1002/iid3.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/18/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Sepsis is characterized by an endotoxin tolerance phenotype that occurs in the stage of infection. Persistent bacterial infection can lead to immune cell exhaustion. Triad3A, an E3 ubiquitin ligase, negatively regulates its activation by TLR4. However, the effect of Triad3A on endotoxin tolerance and bactericidal ability in the state of endotoxin tolerance remains unclear. METHODS Using single dose LPS and repeated LPS stimulated macrophage cell lines at indicated times, we investigated miR-191, Tirad3A, TRAF3, TLR4, p-P65, TNF-α, IL-1β, and iNOS expression, the effect of miR-191 on Triad3A and TRAF3, gene loss-of-function analyses, the effect of Triad3A on TLR4, p-P65, cytokine, and mycobactericidal activity in endotoxin tolerant cells infected with Mycobacterium marinum. RESULTS Here we found that Triad3A is involved in regulating endotoxin tolerance. Our result also displayed that miR-191 expression is downregulated in macrophages in the state of endotoxin tolerance. miR-191 can directly bind to Triad3A and TRAF3. Additionally, knockdown of Triad3A can reverse the effect of decreasing TNF-α and IL-1β in endotoxin tolerant macrophages. Furthermore, we demonstrated that the TLR4-NF-κB-NO pathway was associated with Triad3A and responsible for the killing of intracellular mycobacteria in a tuberculosis sepsis model. CONCLUSIONS These results provide new insight into the mechanisms of Triad3A induced tolerogenic phenotype in macrophages, which can help the better comprehension of the pathogenesis involved in septic shock with infection of Mycobacterium tuberculosis, and suggest that Triad3A may be a potential drug target for the treatment of severe septic tuberculosis.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Nantong University, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Kuang Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yang Lu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Naidu A, Nayak SS, Lulu S S, Sundararajan V. Advances in computational frameworks in the fight against TB: The way forward. Front Pharmacol 2023; 14:1152915. [PMID: 37077815 PMCID: PMC10106641 DOI: 10.3389/fphar.2023.1152915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Around 1.6 million people lost their life to Tuberculosis in 2021 according to WHO estimates. Although an intensive treatment plan exists against the causal agent, Mycobacterium Tuberculosis, evolution of multi-drug resistant strains of the pathogen puts a large number of global populations at risk. Vaccine which can induce long-term protection is still in the making with many candidates currently in different phases of clinical trials. The COVID-19 pandemic has further aggravated the adversities by affecting early TB diagnosis and treatment. Yet, WHO remains adamant on its "End TB" strategy and aims to substantially reduce TB incidence and deaths by the year 2035. Such an ambitious goal would require a multi-sectoral approach which would greatly benefit from the latest computational advancements. To highlight the progress of these tools against TB, through this review, we summarize recent studies which have used advanced computational tools and algorithms for-early TB diagnosis, anti-mycobacterium drug discovery and in the designing of the next-generation of TB vaccines. At the end, we give an insight on other computational tools and Machine Learning approaches which have successfully been applied in biomedical research and discuss their prospects and applications against TB.
Collapse
Affiliation(s)
| | | | | | - Vino Sundararajan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, India
| |
Collapse
|
16
|
Zhang X, Zhao Z, Wu Q, Wang L, Li L, Wang M, Ren Y, Pan L, Tang H, Li F. Single-cell analysis reveals changes in BCG vaccine-injected mice modeling tuberculous meningitis brain infection. Cell Rep 2023; 42:112177. [PMID: 36862557 DOI: 10.1016/j.celrep.2023.112177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/28/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and deadly manifestation of tuberculosis. Neurological complications are observed in up to 50% of patients affected. Here, attenuated Mycobacterium bovis are injected into the cerebellum of mice, and histopathological images and cultured colonies confirm successful brain infection. Then, whole-brain tissue is dissected for 10X Genomics single-cell sequencing, and we acquire 15 cell types. Transcriptional changes of inflammation processes are found in multiple cell types. Specifically, Stat1 and IRF1 are shown to mediate inflammation in macrophages and microglia. For neurons, decreased oxidative phosphorylation activity in neurons is observed, which corresponds to TBM clinical symptoms of neurodegeneration. Finally, ependymal cells present prominent transcriptional changes, and decreased FERM domain containing 4A (Frmd4a) may contribute to TBM clinical symptoms of hydrocephalus and neurodegeneration. This study shows a single-cell transcriptome of M. bovis infection in mice and improves the understanding of brain infection and neurological complications in TBM.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhangyan Zhao
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Liqun Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Mei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lei Pan
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Haicheng Tang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Dabitao D, Bishai WR. Sex and Gender Differences in Tuberculosis Pathogenesis and Treatment Outcomes. Curr Top Microbiol Immunol 2023; 441:139-183. [PMID: 37695428 DOI: 10.1007/978-3-031-35139-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Tuberculosis remains a daunting public health concern in many countries of the world. A consistent observation in the global epidemiology of tuberculosis is an excess of cases of active pulmonary tuberculosis among males compared with females. Data from both humans and animals also suggest that males are more susceptible than females to develop active pulmonary disease. Similarly, male sex has been associated with poor treatment outcomes. Despite this growing body of evidence, little is known about the mechanisms driving sex bias in tuberculosis disease. Two dominant hypotheses have been proposed to explain the predominance of active pulmonary tuberculosis among males. The first is based on the contribution of biological factors, such as sex hormones and genetic factors, on host immunity during tuberculosis. The second is focused on non-biological factors such as smoking, professional exposure, and health-seeking behaviors, known to be influenced by gender. In this chapter, we review the literature regarding these two prevailing hypotheses by presenting human but also experimental animal studies. In addition, we presented studies aiming at examining the impact of sex and gender on other clinical forms of tuberculosis such as latent tuberculosis infection and extrapulmonary tuberculosis, which both appear to have their own specificities in relation to sex. We also highlighted potential intersections between sex and gender in the context of tuberculosis and shared future directions that could guide in elucidating mechanisms of sex-based differences in tuberculosis pathogenesis and treatment outcomes.
Collapse
Affiliation(s)
- Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - William R Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
18
|
Wang J, Li Y, Wang N, Wu J, Ye X, Jiang Y, Tang L. Functions of exosomal non-coding RNAs to the infection with Mycobacterium tuberculosis. Front Immunol 2023; 14:1127214. [PMID: 37033928 PMCID: PMC10073540 DOI: 10.3389/fimmu.2023.1127214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Tuberculosis (TB) is a major infectious disease induced by Mycobacterium tuberculosis (M. tb) which causes the world's dominant fatal bacterial contagious disease. Increasing studies have indicated that exosomes may be a novel option for the diagnosis and treatment of TB. Exosomes are nanovesicles (30-150 nm) containing lipids, proteins and non-coding RNAs (ncRNAs) released from various cells, and can transfer their cargos and communicate between cells. Furthermore, exosomal ncRNAs exhibit diagnosis potential in bacterial infections, including TB. Additionally, differential exosomal ncRNAs regulate the physiological and pathological functions of M. tb-infected cells and act as diagnostic markers for TB. This current review explored the potential biological roles and the diagnostic application prospects of exosomal ncRNAs, and included recent information on their pathogenic and therapeutic functions in TB.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| | - Yujie Li
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Nan Wang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Jianhong Wu
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Xiaojian Ye
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Yibiao Jiang
- Department of Clinical Laboratory, The First People’s Hospital of Kunshan, Suzhou, China
| | - Lijun Tang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Lijun Tang, ; Jianjun Wang,
| |
Collapse
|
19
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Kameni C, Mezajou CF, Ngongang NN, Ngum JA, Simo USF, Tatang FJ, Nguengo SN, Nouthio APC, Pajiep MAW, Toumeni MH, Madjoumo EST, Tchinda MF, Ngangue RJEM, Koro Koro F, Wade A, Akami M, Ngono ARN, Tamgue O. p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) as potential biomarkers for monitoring tuberculosis treatment. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.969347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gaps in early and accurate diagnosis, effective drug control, and treatment monitoring are hindering the global eradication effort of tuberculosis. This infectious disease has become the deadliest worldwide before the outbreak of Covid-19. The search for new molecular biomarkers of tuberculosis will help to reverse this trend. Long non-coding RNAs (lncRNAs) have emerged as important regulators of the host immune response to infection, hence their link with the etiology and diagnosis of tuberculosis has attracted some attention from the research community. However, very little is known about their potential for the monitoring of tuberculosis treatment. This study aimed at assessing the potential of two lncRNAs: p50-associated Cyclooxygenase-2 Extragenic RNA (PACER) and Long Non-coding RNA 13 (LNC13) in the monitoring of tuberculosis treatment. This was a cross-sectional study carried out in Douala, Cameroon from December 2020 to August 2021. A quantitative real-time polymerase chain reaction followed by Cq analysis using the Livak method were performed to measure the relative expression levels of PACER and LNC13 in whole blood of healthy controls, patients with active pulmonary tuberculosis at the initiation of treatment, after two, five, and six months into treatment. Receiver Operating Characteristic curves analysis was used to assess the ability of targeted lncRNAs to discriminate among those groups. The study showed that the lncRNAs PACER and LNC13 were significantly upregulated in patients with active pulmonary tuberculosis at the initiation of treatment than in healthy controls. The expression levels of the two lncRNAs were significantly downregulated in patients during the treatment as compared to the active pulmonary tuberculosis patients. However, the expression levels of the lncRNAs PACER and LNC13 in whole blood of patients after six months of treatment were similar to those in healthy controls. Similarly, lncRNAs PACER and LNC13 showed very good performance in distinguishing between active tuberculosis patients and healthy controls as well as in differentiating between newly diagnosed active tuberculosis patients and those under treatment. Interestingly, those lncRNAs could not discriminate healthy controls from patients after six months of treatment. The lncRNAs PACER and LNC13 are therefore potential biomarkers for the monitoring of tuberculosis treatment.
Collapse
|
21
|
Fan Y, Chen Z, Zhang M. Role of exosomes in the pathogenesis, diagnosis, and treatment of central nervous system diseases. Lab Invest 2022; 20:291. [PMID: 35761337 PMCID: PMC9235237 DOI: 10.1186/s12967-022-03493-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/20/2022] [Indexed: 12/11/2022]
Abstract
Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson’s disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.
Collapse
Affiliation(s)
- Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
22
|
Lai JJ, Chau ZL, Chen S, Hill JJ, Korpany KV, Liang N, Lin L, Lin Y, Liu JK, Liu Y, Lunde R, Shen W. Exosome Processing and Characterization Approaches for Research and Technology Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103222. [PMID: 35332686 PMCID: PMC9130923 DOI: 10.1002/advs.202103222] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/28/2022] [Indexed: 05/05/2023]
Abstract
Exosomes are extracellular vesicles that share components of their parent cells and are attractive in biotechnology and biomedical research as potential disease biomarkers as well as therapeutic agents. Crucial to realizing this potential is the ability to manufacture high-quality exosomes; however, unlike biologics such as proteins, exosomes lack standardized Good Manufacturing Practices for their processing and characterization. Furthermore, there is a lack of well-characterized reference exosome materials to aid in selection of methods for exosome isolation, purification, and analysis. This review informs exosome research and technology development by comparing exosome processing and characterization methods and recommending exosome workflows. This review also provides a detailed introduction to exosomes, including their physical and chemical properties, roles in normal biological processes and in disease progression, and summarizes some of the on-going clinical trials.
Collapse
Affiliation(s)
- James J. Lai
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Zoe L. Chau
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Sheng‐You Chen
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWA98195USA
| | - John J. Hill
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | | | - Nai‐Wen Liang
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Li‐Han Lin
- Department of Mechanical EngineeringNational Taiwan UniversityTaipei City10617Taiwan
| | - Yi‐Hsuan Lin
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Joanne K. Liu
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Yu‐Chung Liu
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Ruby Lunde
- Department of BioengineeringUniversity of WashingtonSeattleWA98195USA
| | - Wei‐Ting Shen
- Department of Biomedical Engineering and Environmental SciencesNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|
23
|
Huang Y, Chen L, Chen D, Fan P, Yu H. Exosomal microRNA-140-3p from human umbilical cord mesenchymal stem cells attenuates joint injury of rats with rheumatoid arthritis by silencing SGK1. Mol Med 2022; 28:36. [PMID: 35303795 PMCID: PMC8932126 DOI: 10.1186/s10020-022-00451-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/04/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Over the years, microRNAs (miRNAs) have been involved in the pathogenesis of rheumatoid arthritis (RA). We aim to investigate the role of human umbilical cord mesenchymal stem cells (HUCMSCs)-derived exosomal miR-140-3p in RA development. METHODS Exosomes(exo) were isolated from human umbilical cord-derived mesenchymal stem cells (HUCMSCs), and this isolation was followed by the transfer of miR-140-3p. RA rat models were constructed by collagen II adjuvant and respectively treated with HUCMSCs-exo or HUCMSCs-exo carrying miR-140-3p mimic/inhibitor, and expression of miR-140-3p and serum- and glucocorticoid-inducible kinase 1 (SGK1) was assessed. Then, RA score and inflammation scoring, fibrosis degree and apoptosis, serum inflammatory response and oxidative stress in joint tissues were determined. The RA synovial fibroblasts (RASFs) were extracted from rats and identified. Conducted with relative treatment, the migration, proliferation and apoptosis in RASFs were determined. RESULTS MiR-140-3p was decreased while SGK1 was increased in RA rats. HUCMSCs-exo or upregulated exosomal miR-140-3p improved pathological changes and suppressed inflammation, oxidative stress and fibrosis in RA rats, and also constrained and RASF growth. Overexpression of SGK1 reversed the inhibition of RASF growth caused by overexpression of miR-140-3p. CONCLUSION Upregulated exosomal miR-140-3p attenuated joint injury of RA rats by silencing SGK1. This research provided further understanding of the role of exosomal miR-140-3p in RA development.
Collapse
Affiliation(s)
- Yijiang Huang
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Liang Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Daosen Chen
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Pei Fan
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China
| | - Huachen Yu
- Department of Orthopaedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 West College Road, Wenzhou, 325000, China. .,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
24
|
Pattnaik B, Patnaik N, Mittal S, Mohan A, Agrawal A, Guleria R, Madan K. Micro RNAs as potential biomarkers in tuberculosis: A systematic review. Noncoding RNA Res 2022; 7:16-26. [PMID: 35128217 PMCID: PMC8792429 DOI: 10.1016/j.ncrna.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) remains a major infectious disease across the globe. With increasing TB infections and a rise in multi-drug resistance, rapid diagnostic modalities are required to achieve TB control. Radiological investigations and microbiological tests (microscopic examination, cartridge-based nucleic acid amplification tests, and cultures) are most commonly used to diagnose TB. Histopathological/cytopathological examinations are also required for an accurate diagnosis in many patients. The causative agent, Mycobacterium tuberculosis (Mtb), is known to circumvent the host's immune system. Circulating microRNAs (miRNAs) play a crucial role in biological pathways and can be used as a potential biomarker to detect tuberculosis. miRNAs are small non-coding RNAs and negatively regulate gene expression during post-transcriptional regulation. The differential expression of miRNAs in multiple clinical samples in tuberculosis patients may be helpful as potential disease biomarkers. This review summarizes the literature on miRNAs in various clinical samples as biomarkers for TB diagnosis.
Collapse
Affiliation(s)
- Bijay Pattnaik
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Niharika Patnaik
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Anurag Agrawal
- Centre of Excellence in Asthma & Lung Disease, Molecular Immunogenetics Lab, CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Karan Madan
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
25
|
Biadglegne F, Rademacher P, De Sulbaran YGJ, König B, Rodloff AC, Zedler U, Dorhoi A, Sack U. Exosomes in serum‑free cultures of THP‑1 macrophages infected with Mycobacterium tuberculosis. Mol Med Rep 2021; 24:815. [PMID: 34558650 PMCID: PMC8477185 DOI: 10.3892/mmr.2021.12455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
It has been shown from the isolation and characterization of exosomes from cell culture media supplemented with fetal bovine serum that both their quality and purity are affected. The high abundance of serum proteins, including bovine cell derived exosomes, is also a potential source of contaminants, which may result in appreciable yields of impure exosomes, thereby leading to artifacts. Isolation and characterization of exosomes from cells maintained under serum-free conditions should therefore ensure the high quality necessary for medical applications. To meet this end, the present study aimed to characterize exosomes released from THP-1 macrophages cultured in serum-free, ultra-centrifuged medium upon infection with the human pathogen Mycobacterium tuberculosis (Mtb). Macrophages differentiated from the human cell line THP-1 were infected at a multiplicity of infection (MOI) of 5. Macrophages were cultivated in CellGenix® GMP DC serum-free ultra-centrifuged medium for 4, 24 and 48 h at 37°C in a humidified atmosphere with 5% CO2. Total exosome isolation reagent was used to extract the exosomes from the cell culture supernatants of naïve and Mtb-infected THP-1 macrophages. The size and purity of the exosomes isolated were subsequently assessed by various methods, including nanoparticle tracking analysis, flow cytometry, MACSPlex exosome analysis, and western blotting. The serum-free, ultra-centrifuged medium was found to support the proliferation of the THP-1 cells successfully. The nanoparticle tracking analysis data revealed that the majority of the isolated particles were within the size range of exosomes (i.e., 30–150 nM). The MACSPlex exosome analysis confirmed the expression of the exosomal markers, CD9, CD63 and CD81. Furthermore, western blot analysis of the isolated exosomes indicated the presence of CD9, CD63, CD81 and lysosomal associated membrane protein-1 (LAMP-1), and also confirmed the absence of Mtb proteins. Taken together, these data provide evidence that serum-free, ultra-centrifuged CellGenix® GMP DC medium is suitable for application in exosome research, and may significantly advance such studies. Therefore, the use of serum-free medium for exosome isolation purposes could offer considerable advantages, and constitute a significant improvement in the growing field of extracellular vesicle research. The use of more sensitive methods represents an advance that will enable researchers to rule out the presence of Mtb pathogenic proteins in exosomes isolated from infected serum-free cell cultures.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
| | - Phil Rademacher
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| | | | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Arne C Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Ulrike Zedler
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| |
Collapse
|
26
|
Kundu M, Basu J. The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front Immunol 2021; 12:687962. [PMID: 34248974 PMCID: PMC8264550 DOI: 10.3389/fimmu.2021.687962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
27
|
Gao SH, Chen CG, Zhuang CB, Zeng YL, Zeng ZZ, Wen PH, Yu YM, Ming L, Zhao JW. Integrating serum microRNAs and electronic health records improved the diagnosis of tuberculosis. J Clin Lab Anal 2021; 35:e23871. [PMID: 34106501 PMCID: PMC8373357 DOI: 10.1002/jcla.23871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background To verify the differential expression of miR‐30c and miR‐142‐3p between tuberculosis patients and healthy controls and to investigate the performance of microRNA (miRNA) and subsequently models for the diagnosis of tuberculosis (TB). Methods We followed up 460 subjects suspected of TB, and finally enrolled 132 patients, including 60 TB patients, 24 non‐TB disease controls (TB‐DCs), and 48 healthy controls (HCs). The differential expression of miR‐30c and miR‐142‐3p in serum samples of the TB patients, TB‐DCs, and HCs were identified by reverse transcription–quantitative real‐time PCR. Diagnostic models were developed by analyzing the characteristics of miRNA and electronic health records (EHRs). These models evaluated by the area under the curves (AUC) and calibration curves were presented as nomograms. Results There were differential expression of miR‐30c and miR‐142‐3p between TB patients and HCs (p < 0.05). Individual miRNA has a limited diagnostic value for TB. However, diagnostic performance has been both significantly improved when we integrated miR‐142‐3p and ordinary EHRs to develop two models for the diagnosis of tuberculosis. The AUC of the model for distinguishing tuberculosis patients from healthy controls has increased from 0.75 (95% CI: 0.66–0.84) to 0.96 (95% CI: 0.92–0.99) and the model for distinguishing tuberculosis patients from non‐TB disease controls has increased from 0.67 (95% CI: 0.55–0.79) to 0.94 (95% CI: 0.89–0.99). Conclusions Integrating serum miR‐142‐3p and EHRs is a good strategy for improving TB diagnosis.
Collapse
Affiliation(s)
- Shu-Hui Gao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chun-Guang Chen
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou, 450000, China
| | - Chun-Bo Zhuang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu-Ling Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhen-Zhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yong-Min Yu
- Department of Clinical Laboratory, Henan Provincial Infectious Disease Hospital, Zhengzhou, 450000, China
| | - Liang Ming
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun-Wei Zhao
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
28
|
Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol 2021; 12:628973. [PMID: 33868247 PMCID: PMC8047325 DOI: 10.3389/fimmu.2021.628973] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Exosomes are cell-derived nanovesicles carrying protein, lipid, and nucleic acid for secreting cells, and act as significant signal transport vectors for cell-cell communication and immune modulation. Immune-cell-derived exosomes have been found to contain molecules involved in immunological pathways, such as MHCII, cytokines, and pathogenic antigens. Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains one of the most fatal infectious diseases. The pathogen for tuberculosis escapes the immune defense and continues to replicate despite rigorous and complicate host cell mechanisms. The infected-cell-derived exosomes under this circumstance are found to trigger different immune responses, such as inflammation, antigen presentation, and activate subsequent pathways, highlighting the critical role of exosomes in anti-MTB immune response. Additionally, as a novel kind of delivery system, exosomes show potential in developing new vaccination and treatment of tuberculosis. We here summarize recent research progress regarding exosomes in the immune environment during MTB infection, and further discuss the potential of exosomes as delivery system for novel anti-MTB vaccines and therapies.
Collapse
Affiliation(s)
- Yin-Fu Sun
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
29
|
Mirzaei R, Babakhani S, Ajorloo P, Ahmadi RH, Hosseini-Fard SR, Keyvani H, Ahmadyousefi Y, Teimoori A, Zamani F, Karampoor S, Yousefimashouf R. The emerging role of exosomal miRNAs as a diagnostic and therapeutic biomarker in Mycobacterium tuberculosis infection. Mol Med 2021; 27:34. [PMID: 33794771 PMCID: PMC8017856 DOI: 10.1186/s10020-021-00296-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been the world's driving fatal bacterial contagious disease globally. It continues a public health emergency, and around one-third of the global community has been affected by latent TB infection (LTBI). This is mostly due to the difficulty in diagnosing and treating patients with TB and LTBI. Exosomes are nanovesicles (40-100 nm) released from different cell types, containing proteins, lipids, mRNA, and miRNA, and they allow the transfer of one's cargo to other cells. The functional and diagnostic potential of exosomal miRNAs has been demonstrated in bacterial infections, including TB. Besides, it has been recognized that cells infected by intracellular pathogens such as Mtb can be secreting an exosome, which is implicated in the infection's fate. Exosomes, therefore, open a unique viewpoint on the investigative process of TB pathogenicity. This study explores the possible function of exosomal miRNAs as a diagnostic biomarker. Moreover, we include the latest data on the pathogenic and therapeutic role of exosomal miRNAs in TB.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Razieh Heidari Ahmadi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Teimoori
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. .,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
30
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
31
|
Tuberculous Meningitis: Pathogenesis, Immune Responses, Diagnostic Challenges, and the Potential of Biomarker-Based Approaches. J Clin Microbiol 2021; 59:JCM.01771-20. [PMID: 33087432 PMCID: PMC8106718 DOI: 10.1128/jcm.01771-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most devastating form of tuberculosis (TB), causing high mortality or disability. Clinical management of the disease is challenging due to limitations of the existing diagnostic approaches. Our knowledge on the immunology and pathogenesis of the disease is currently limited. More research is urgently needed to enhance our understanding of the immunopathogenesis of the disease and guide us toward the identification of targets that may be useful for vaccines or host-directed therapeutics. Tuberculous meningitis (TBM) is the most devastating form of tuberculosis (TB), causing high mortality or disability. Clinical management of the disease is challenging due to limitations of the existing diagnostic approaches. Our knowledge on the immunology and pathogenesis of the disease is currently limited. More research is urgently needed to enhance our understanding of the immunopathogenesis of the disease and guide us toward the identification of targets that may be useful for vaccines or host-directed therapeutics. In this review, we summarize the current knowledge about the immunology and pathogenesis of TBM and summarize the literature on existing and new, especially biomarker-based, approaches that may be useful in the management of TBM. We identify research gaps and provide directions for research which may lead to the development of new tools for the control of the disease in the near future.
Collapse
|
32
|
Singh AK, Ghosh M, Kumar V, Aggarwal S, Patil SA. Interplay between miRNAs and Mycobacterium tuberculosis: diagnostic and therapeutic implications. Drug Discov Today 2021; 26:1245-1255. [PMID: 33497829 DOI: 10.1016/j.drudis.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that mycobacteria change the host miRNA profile to their advantage. The active participation of miRNAs in controlling immune responses in TB has raised the possibility of utilizing miRNA-based therapy itself or canonically with a standard drug regimen for shortening the duration of treatment. The development of delivery systems for optimal delivery of oligonucleotides, including small interfering (si)RNA/miRNAs-based therapeutics has shown potential as a new therapeutic intervention. However, studies related to the exploitation of miRNAs as both biomarkers and as therapeutics in TB are scarce; thus, more in vitro and in vivo studies are required to fully determine the role of miRNAs as potential diagnostic biomarkers and to improve the pharmacological profile of this class of therapeutics.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India.
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar-751024
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sumit Aggarwal
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Shripad A Patil
- Immunology Division, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| |
Collapse
|
33
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
34
|
Lyu M, Cheng Y, Zhou J, Chong W, Wang Y, Xu W, Ying B. Systematic evaluation, verification and comparison of tuberculosis-related non-coding RNA diagnostic panels. J Cell Mol Med 2020; 25:184-202. [PMID: 33314695 PMCID: PMC7810967 DOI: 10.1111/jcmm.15903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
We systematically summarized tuberculosis (TB)‐related non‐coding RNA (ncRNA) diagnostic panels, validated and compared panel performance. We searched TB‐related ncRNA panels in PubMed, OVID and Web of Science up to 28 February 2020, and available datasets in GEO, SRA and EBI ArrayExpress up to 1 March 2020. We rebuilt models and synthesized the results of each model in validation sets by bivariate mixed models. Specificity at 90% sensitivity, area under curve (AUC) and inconsistence index (I2) were calculated. NcRNA biofunctions were analysed. Nineteen models based on 18 ncRNA panels (miRNA, lncRNA, circRNA and snoRNA panels) and 18 datasets were included. Limited available datasets only allowed to evaluate miRNA panels further. Cui 2017 and Latorre 2015 exhibited specificity >70% at 90% sensitivity and AUC >80% in all validation sets. Cui 2017 showed higher specificity at 90% sensitivity (92%) and AUC (95%) and lower heterogeneity (I2 = 0%) in ethological‐confirmation validation sets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that most ncRNAs in panels involved in immune cell activation, oxidative stress, and Wnt and MAPK signalling pathway. Cui 2017 outperformed other models in both all available and aetiological‐confirmed validation sets, meeting the criteria of target product profile of WHO. This work provided a basis for clinical choice of TB‐related ncRNA diagnostic panels to a certain extent.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuhui Cheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weelic Chong
- Sidney Kimmel School of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-Omics Data Integration in Extracellular Vesicle Biology-Utopia or Future Reality? Int J Mol Sci 2020; 21:ijms21228550. [PMID: 33202771 PMCID: PMC7697477 DOI: 10.3390/ijms21228550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures derived from the endosomal system or generated by plasma membrane shedding. Due to their composition of DNA, RNA, proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell communication, with various implications in physiological and pathological processes. EVs are not only a highly heterogeneous population by means of size and biogenesis, but they are also a source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of biological samples have facilitated the development of databases comprised of characteristic genomic, transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative methods have been applied to analyze the molecular interplay in these targeted delivery systems. New perspectives arise from the field of systems biology, where accounting for heterogeneity may lead to finding patterns in an apparently random pool of data. In this review, we map the biological and methodological causes of heterogeneity in EV multi-omics data and present current applications or possible statistical methods for integrating such data while keeping track of the current bottlenecks in the field.
Collapse
Affiliation(s)
- Leona Chitoiu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
- Department of Cellular, Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
36
|
Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers. Cells 2020; 9:cells9102160. [PMID: 32987746 PMCID: PMC7598604 DOI: 10.3390/cells9102160] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the most lethal infectious diseases with estimates of approximately 1.4 million human deaths in 2018. M. tuberculosis has a well-established ability to circumvent the host immune system to ensure its intracellular survival and persistence in the host. Mechanisms include subversion of expression of key microRNAs (miRNAs) involved in the regulation of host innate and adaptive immune response against M. tuberculosis. Several studies have reported differential expression of miRNAs during active TB and latent tuberculosis infection (LTBI), suggesting their potential use as biomarkers of disease progression and response to anti-TB therapy. This review focused on the miRNAs involved in TB pathogenesis and on the mechanism through which miRNAs induced during TB modulate cell antimicrobial responses. An attentive study of the recent literature identifies a group of miRNAs, which are differentially expressed in active TB vs. LTBI or vs. treated TB and can be proposed as candidate biomarkers.
Collapse
|
37
|
Long Noncoding RNA and Predictive Model To Improve Diagnosis of Clinically Diagnosed Pulmonary Tuberculosis. J Clin Microbiol 2020; 58:JCM.01973-19. [PMID: 32295893 PMCID: PMC7315016 DOI: 10.1128/jcm.01973-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Clinically diagnosed pulmonary tuberculosis (PTB) patients lack microbiological evidence of Mycobacterium tuberculosis, and misdiagnosis or delayed diagnosis often occurs as a consequence. We investigated the potential of long noncoding RNAs (lncRNAs) and corresponding predictive models to diagnose these patients. We enrolled 1,764 subjects, including clinically diagnosed PTB patients, microbiologically confirmed PTB cases, non-TB disease controls, and healthy controls, in three cohorts (screening, selection, and validation). Clinically diagnosed pulmonary tuberculosis (PTB) patients lack microbiological evidence of Mycobacterium tuberculosis, and misdiagnosis or delayed diagnosis often occurs as a consequence. We investigated the potential of long noncoding RNAs (lncRNAs) and corresponding predictive models to diagnose these patients. We enrolled 1,764 subjects, including clinically diagnosed PTB patients, microbiologically confirmed PTB cases, non-TB disease controls, and healthy controls, in three cohorts (screening, selection, and validation). Candidate lncRNAs differentially expressed in blood samples of the PTB and healthy control groups were identified by microarray and reverse transcription-quantitative PCR (qRT-PCR) in the screening cohort. Logistic regression models were developed using lncRNAs and/or electronic health records (EHRs) from clinically diagnosed PTB patients and non-TB disease controls in the selection cohort. These models were evaluated by area under the concentration-time curve (AUC) and decision curve analyses, and the optimal model was presented as a Web-based nomogram, which was evaluated in the validation cohort. Three differentially expressed lncRNAs (ENST00000497872, n333737, and n335265) were identified. The optimal model (i.e., nomogram) incorporated these three lncRNAs and six EHRs (age, hemoglobin, weight loss, low-grade fever, calcification detected by computed tomography [CT calcification], and interferon gamma release assay for tuberculosis [TB-IGRA]). The nomogram showed an AUC of 0.89, a sensitivity of 0.86, and a specificity of 0.82 in differentiating clinically diagnosed PTB cases from non-TB disease controls of the validation cohort, which demonstrated better discrimination and clinical net benefit than the EHR model. The nomogram also had a discriminative power (AUC, 0.90; sensitivity, 0.85; specificity, 0.81) in identifying microbiologically confirmed PTB patients. lncRNAs and the user-friendly nomogram could facilitate the early identification of PTB cases among suspected patients with negative M. tuberculosis microbiological evidence.
Collapse
|
38
|
Tuberculosis: A granulomatous disease mediated by epigenetic factors. Tuberculosis (Edinb) 2020; 123:101943. [PMID: 32741528 DOI: 10.1016/j.tube.2020.101943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/02/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis, which is transmitted via aerosol. TB is a secular fatal disease which still represents a health problem worldwide. TB has long incubation period and usually at first, affects the lungs. However, the infection could also attack other organs including lymph nodes, abdomen, genitourinary tract, skin, joints, bones and nervous system, what are known as extrapulmonary TB (EPTB). The granulomatous lesions are characterized by necrosis and liquefaction, which causes several lungs damages. Granulomas have traditionally been known to be protective host structures, but mycobacteria can use granuloma as vehicle for expansion by intercellular spread, and it might facilitate M. tuberculosis dissemination to other body areas. Hypoxia, which occurs in granuloma areas contribute to disease progression, as the bacilli adapt to lack of oxygen and low nutrient concentration leading to modulation of angiogenesis genes expression. Induction of angiogenesis has controversial actions, while it could benefit the host by providing a direct source for the arrival of immune system cells against a pathogen, this conditions can also promote bacterial growth and spread to other tissues. This occurs due a greater supply of oxygen and nutrients. Epigenetic processes, such as miRNAs fluctuations, modulate angiogenesis resulting in pathogen mediated interference in angiogenic processes. M. tuberculosis infection affects microRNA expression profile in host tissues. Several miRNAs are involved in cell development, proliferation, differentiation, apoptosis, and even anti-inflammatory and pro-inflammatory stimuli. MicroRNAs promote dual role on M. tuberculosis infection, persistence, and host immune system modulation. These molecules might represent great potential as biomarkers of disease progression, spread, activity, and latency. The purpose of this review is to discuss how epigenetic mechanisms can influence the spread of Mycobacterium tuberculosis, affecting the expression of mediators of angiogenesis, the formation of granuloma, and the installation of the disease.
Collapse
|
39
|
Larabi A, Barnich N, Nguyen HTT. Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells 2020; 9:cells9051111. [PMID: 32365813 PMCID: PMC7290936 DOI: 10.3390/cells9051111] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
To communicate with each other, cells release exosomes that transfer their composition, including lipids, proteins and nucleic acids, to neighboring cells, thus playing a role in various pathophysiological processes. During an infection with pathogenic bacteria, such as adherent-invasive E. coli (AIEC) associated with Crohn disease, exosomes secreted by infected cells can have an impact on the innate immune responses of surrounding cells to infection. Furthermore, inflammation can be amplified via the exosomal shuttle during infection with pathogenic bacteria, which could contribute to the development of the associated disease. Since these vesicles can be released in various biological fluids, changes in exosomal content may provide a means for the identification of non-invasive biomarkers for infectious and inflammatory bowel diseases. Moreover, evidence suggests that exosomes could be used as vaccines to prime the immune system to recognize and kill invading pathogens, and as therapeutic components relieving intestinal inflammation. Here, we summarize the current knowledge on the role of exosomes in bacterial infections and highlight their potential use as biomarkers, vaccines and conveyers of therapeutic molecules in inflammatory bowel diseases.
Collapse
|
40
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB, Chen G. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res 2020; 21:60. [PMID: 32102656 PMCID: PMC7045575 DOI: 10.1186/s12931-020-1274-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Background Pulmonary malignant neoplasms have a high worldwide morbidity and mortality, so the study of these malignancies using microRNAs (miRNAs) has attracted great interest and enthusiasm. The aim of this study was to determine the clinical effect of hsa-microRNA-204-5p (miR-204-5p) and its underlying molecular mechanisms in non-small cell lung cancer (NSCLC). Methods Expression of miR-204-5p was investigated by real-time quantitative PCR (RT-qPCR). After data mining from public online repositories, several integrative assessment methods, including receiver operating characteristic (ROC) curves, hazard ratios (HR) with 95% confidence intervals (95% CI), and comprehensive meta-analyses, were conducted to explore the expression and clinical utility of miR-204-5p. The potential objects regulated and controlled by miR-204-5p in the course of NSCLC were identified by estimated target prediction and analysis. The regulatory network of miR-204-5p, with its target genes and transcription factors (TFs), was structured from database evidence and literature references. Results The expression of miR-204-5p was downregulated in NSCLC, and the downtrend was related to gender, histological type, vascular invasion, tumor size, clinicopathologic grade and lymph node metastasis (P<0.05). MiR-204-5p was useful in prognosis, but was deemed unsuitable at present as an auxiliary diagnostic or prognostic risk factor for NSCLC due to the lack of statistical significance in meta-analyses and absence of large-scale investigations. Gene enrichment and annotation analyses identified miR-204-5p candidate targets that took part in various genetic activities and biological functions. The predicted TFs, like MAX, MYC, and RUNX1, interfered in regulatory networks involving miR-204-5p and its predicted hub genes, though a modulatory loop or axis of the miRNA-TF-gene that was out of range with shortage in database prediction, experimental proof and literature confirmation. Conclusions The frequently observed decrease in miR-204-5p was helpful for NSCLC diagnosis. The estimated target genes and TFs contributed to the anti-oncogene effects of miR-204-5p.
Collapse
Affiliation(s)
- Chang-Yu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ye-Ying Fang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wen-Jie Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ke Shi
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
41
|
Lee Y, Raviglione MC, Flahault A. Use of Digital Technology to Enhance Tuberculosis Control: Scoping Review. J Med Internet Res 2020; 22:e15727. [PMID: 32053111 PMCID: PMC7055857 DOI: 10.2196/15727] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tuberculosis (TB) is the leading cause of death from a single infectious agent, with around 1.5 million deaths reported in 2018, and is a major contributor to suffering worldwide, with an estimated 10 million new cases every year. In the context of the World Health Organization’s End TB strategy and the quest for digital innovations, there is a need to understand what is happening around the world regarding research into the use of digital technology for better TB care and control. Objective The purpose of this scoping review was to summarize the state of research on the use of digital technology to enhance TB care and control. This study provides an overview of publications covering this subject and answers 3 main questions: (1) to what extent has the issue been addressed in the scientific literature between January 2016 and March 2019, (2) which countries have been investing in research in this field, and (3) what digital technologies were used? Methods A Web-based search was conducted on PubMed and Web of Science. Studies that describe the use of digital technology with specific reference to keywords such as TB, digital health, eHealth, and mHealth were included. Data from selected studies were synthesized into 4 functions using narrative and graphical methods. Such digital health interventions were categorized based on 2 classifications, one by function and the other by targeted user. Results A total of 145 relevant studies were identified out of the 1005 published between January 2016 and March 2019. Overall, 72.4% (105/145) of the research focused on patient care and 20.7% (30/145) on surveillance and monitoring. Other programmatic functions 4.8% (7/145) and electronic learning 2.1% (3/145) were less frequently studied. Most digital health technologies used for patient care included primarily diagnostic 59.4% (63/106) and treatment adherence tools 40.6% (43/106). On the basis of the second type of classification, 107 studies targeted health care providers (107/145, 73.8%), 20 studies targeted clients (20/145, 13.8%), 17 dealt with data services (17/145, 11.7%), and 1 study was on the health system or resource management. The first authors’ affiliations were mainly from 3 countries: the United States (30/145 studies, 20.7%), China (20/145 studies, 13.8%), and India (17/145 studies, 11.7%). The researchers from the United States conducted their research both domestically and abroad, whereas researchers from China and India conducted all studies domestically. Conclusions The majority of research conducted between January 2016 and March 2019 on digital interventions for TB focused on diagnostic tools and treatment adherence technologies, such as video-observed therapy and SMS. Only a few studies addressed interventions for data services and health system or resource management.
Collapse
Affiliation(s)
- Yejin Lee
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Mario C Raviglione
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Global Studies Institute, University of Geneva, Geneva, Switzerland.,Centre for Multidisciplinary Research in Health Science (MACH), Università di Milano, Milan, Italy
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Global Studies Institute, University of Geneva, Geneva, Switzerland
| |
Collapse
|
42
|
Qiu Y, Cheng R, Liang C, Yao Y, Zhang W, Zhang J, Zhang M, Li B, Xu C, Zhang R. MicroRNA-20b Promotes Cardiac Hypertrophy by the Inhibition of Mitofusin 2-Mediated Inter-organelle Ca 2+ Cross-Talk. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1343-1356. [PMID: 32160705 PMCID: PMC7036712 DOI: 10.1016/j.omtn.2020.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) and mitofusin-2 (Mfn2) are important in the development of cardiac hypertrophy, but the target relationship and mechanism associated with Ca2+ handling between SR and mitochondria under hypertrophic condition is not established. Mfn2 expression, Mfn2-mediated interorganelle Ca2+ cross-talk, and target regulation by miRNA-20b (miR-20b) were evaluated using animal/cellular hypertrophic models with state-of-the-art techniques. The results demonstrated that Mfn2 was downregulated and miR-20b was upregulated upon the target binding profile under hypertrophic condition. Our data showed that miR-20b induced cardiac hypertrophy that was reversed by recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-20b or miR-20b antisense inhibitor (AMO-20b). The deleterious action of miR-20b on Mfn2 expression/function and mitochondrial ATP synthesis was observed and reversed by rAAV9-anti-miR-20b or AMO-20b. The targeted regulation of miR-20b on Mfn2 was confirmed by luciferase reporter and miRNA-masking. Importantly, the facts that mitochondrial calcium uniporter (MCU) activation by Spermine increased the cytosolic Ca2+ into mitochondria, manifested as enhanced histamine-mediated Ca2+ release from mitochondrial, suggesting that Ca2+ reuptake/buffering capability of mitochondria to cytosolic Ca2+ is injured by miR-20b-mediated Mfn2 signaling, by which leads cytosolic Ca2+ overload and cardiac hypertrophy through Ca2+ signaling pathway. In conclusion, pro-hypertonic miR-20b plays crucial roles in cardiac hypertrophy through downregulation of Mfn2 and cytosolic Ca2+ overload by weakening the buffering capability of mitochondria.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rongchao Cheng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Chaoqi Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuan Yao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wenhao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Baiyan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Department of Pharmacology, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
43
|
Li Y, Yin Z, Fan J, Zhang S, Yang W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct Target Ther 2019; 4:47. [PMID: 31728212 PMCID: PMC6851157 DOI: 10.1038/s41392-019-0080-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
An increasing number of studies have reported that exosomes released from various cells can serve as mediators of information exchange between different cells. With further exploration of exosome content, a more accurate molecular mechanism involved in the process of cell-to-cell communication has been revealed; specifically, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are shuttled by exosomes. In addition, exosomal miRNAs and lncRNAs may play vital roles in the pathogenesis of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, and asthma. Consequently, exosomal miRNAs and lncRNAs show promise as diagnostic biomarkers and therapeutic targets in several lung diseases. This review will summarize recent knowledge about the roles of exosomal miRNAs and lncRNAs in lung diseases, which has shed light on the discovery of novel diagnostic methods and treatments for these disorders. Because there is almost no published literature about exosomal lncRNAs in COPD, asthma, interstitial lung disease, or tuberculosis, we summarize the roles of exosomal lncRNAs only in lung cancer in the second section. This may inspire some new ideas for researchers who are interested in whether lncRNAs shuttled by exosomes may play roles in other lung diseases.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Zhengrong Yin
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Jinshuo Fan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Siyu Zhang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| | - Weibing Yang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022 Wuhan, China
| |
Collapse
|
44
|
Pan L, Liu F, Zhang J, Li J, Jia H, Huang M, Liu X, Chen W, Ding Z, Wang Y, Du B, Wei R, Sun Q, Xing A, Zhang Z. Genome-Wide miRNA Analysis Identifies Potential Biomarkers in Distinguishing Tuberculous and Viral Meningitis. Front Cell Infect Microbiol 2019; 9:323. [PMID: 31572691 PMCID: PMC6749153 DOI: 10.3389/fcimb.2019.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most common and severe form of central nervous system tuberculosis. Due to the non-specific clinical presentation and lack of efficient diagnosis methods, it is difficult to discriminate TBM from other frequent types of meningitis, especially viral meningitis (VM). In order to identify the potential biomarkers for discriminating TBM and VM and to reveal the different pathophysiological processes between TBM and VM, a genome-wide miRNA screening of PBMCs from TBM, VM, and healthy controls (HCs) using microarray assay was performed (12 samples). Twenty-eight differentially expressed miRNAs were identified between TBM and VM, and 11 differentially expressed miRNAs were identified between TBM and HCs. The 6 overlapping miRNAs detected in both TBM vs. VM and TBM vs. HCs were verified by qPCR analysis and showed a 100% consistent expression patterns with that in microarray test. Statistically significant differences of 4 miRNAs (miR-126-3p, miR-130a-3p, miR-151a-3p, and miR-199a-5p) were further confirmed in TBM compared with VM and HCs in independent PBMCs sample set (n = 96, P < 0.01). Three of which were also showed significantly different between TBM and VM in CSF samples (n = 70, P < 0.05). The receiver operating characteristic curve (ROC) analysis showed that the area under the ROC curve (AUC) of these 4 miRNAs in PBMCs were more than 0.70 in discriminating TBM from VM. Combination of these 4 miRNAs could achieve better discriminative capacity [AUC = 0.893 (0.788-0.957)], with a sensitivity of 90.6% (75.0-98.0%), and a specificity of 86.7% (69.3-96.2%). Additional validation was performed to evaluate the diagnostic panel in another independent sample set (n = 49), which yielded a sensitivity of 81.8% (9/11), and specificity of 90.0% (9/10) in distinguishing TBM and VM, and a sensitivity of 81.8% (9/11), and a specificity of 84.6% (11/13) in discriminating TBM from other non-TBM patients. This study uncovered the miRNA profiles of TBM and VM patients, which can facilitate better understanding of the pathogenesis involved in these two diseases and identified 4 novel miRNAs in distinguishing TBM and VM.
Collapse
Affiliation(s)
- Liping Pan
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Fei Liu
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jinli Zhang
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Jing Li
- Neurology Department, Chinese People's Liberation Army 263 Hospital, Beijing, China
| | - Hongyan Jia
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Mailing Huang
- Tuberculosis Department, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuehua Liu
- Hyperbaric Oxygen Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weibi Chen
- Neurology Department, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeyu Ding
- Neurology Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Laboratory Medical Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Boping Du
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Rongrong Wei
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qi Sun
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Aiying Xing
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zongde Zhang
- Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
45
|
Pedersen JL, Bokil NJ, Saunders BM. Developing new TB biomarkers, are miRNA the answer? Tuberculosis (Edinb) 2019; 118:101860. [PMID: 31472444 DOI: 10.1016/j.tube.2019.101860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
Efforts to reduce the global TB burden are hindered by the lack of simple, reliable non-sputum based diagnostics. To date studies investigating the biomarker potential of circulating host proteins and mRNA have not shown sufficient diagnostic utility. Recently, there has been increasing interest in circulating miRNA as a biomarker of TB disease. This review examined all published miRNA-TB biomarker studies to determine if a reproducible miRNA signature of TB disease could be elucidated. From 15 miRNA profiling studies, 894 miRNA differentially expressed between TB patients and healthy controls were identified in at least one study. Of these, 143 miRNA were validated by qPCR with 53 differentially expressed between TB patients and controls. Interestingly, only 8 of these miRNA were identified in 2 or more studies, and no consensus on a reproducible miRNA signature for identification of TB disease could be identified. TB disease is clearly associated with a wide breadth of differentially expressed miRNA. This review highlights our recent progress and the multiple factors, including environment, source of tissue, ethnicity and extent of TB disease that may influence miRNA expression. Coordinated efforts are required to validate identified targets in multiple populations to progress miRNA biomarker development.
Collapse
Affiliation(s)
- Jessica L Pedersen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Nilesh J Bokil
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| | - Bernadette M Saunders
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, 2007, Australia.
| |
Collapse
|