1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Xi C, Ma Y, Amrofell MB, Moon TS. Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102211. [PMID: 39513040 PMCID: PMC11542736 DOI: 10.1016/j.xcrp.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Tryptophan and its metabolites, produced by the gut microbiota, are pivotal for human physiological and mental health. Yet, quantifying these structurally similar compounds with high specificity remains a challenge, hindering point-of-care diagnostics and targeted therapeutic interventions. Leveraging the innate specificity and adaptability of biological systems, we present a biosensing approach capable of identifying specific metabolites in complex contexts with minimal cross-activity. This study introduces a generalizable strategy that combines evolutionary analysis, key ligand-binding residue identification, and mutagenesis scanning to pinpoint ligand-specific transcription factor variants. Furthermore, we uncover regulatory mechanisms within uncharacterized ligand-binding domains, whether in homodimer interfaces or monomers, through structural prediction and ligand docking. Notably, our "plug-and-play" strategy broadens the detection spectrum, enabling the exclusive biosensing of indole-3-acetic acid (an auxin), tryptamine, indole-3-pyruvic acid, and other tryptophan derivatives in engineered probiotics. This groundwork paves the way to create highly specific transcriptional biosensors for potential clinical, agricultural, and industrial use.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- These authors contributed equally
| | - Yuefeng Ma
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- These authors contributed equally
| | - Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA
- X (formerly Twitter): @Moon_Synth_Bio
- Lead contact
| |
Collapse
|
3
|
Nie Y, Lin T, Yang Y, Liu W, Hu Q, Chen G, Huang L, Wu H, Kong C, Lei Z, Guo J. The downregulation of tight junction proteins and pIgR in the colonic epithelium causes the susceptibility of EpCAM +/- mice to colitis and gut microbiota dysbiosis. Front Mol Biosci 2024; 11:1442611. [PMID: 39188786 PMCID: PMC11345229 DOI: 10.3389/fmolb.2024.1442611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background The genetic factors play important roles on the pathogenesis of inflammatory bowel disease (IBD). EpCAM is highly expressed in the intestinal epithelium. It is still unclear if the decrease or somatic mutation of EpCAM could cause IBD. Methods The WT and EpCAM+/- mice were administrated with DSS intermittently for nearly 8 weeks. The colon, liver and feces were harvested to check the morphological and histological changes, the expression of inflammatory genes and the gut microbiota via H&E staining, immunofluorescence, qPCR, western blot and 16S rDNA sequence assays. Results The DSS administration induced more serious inflammation in the colon of EpCAM+/- mice than WT mice. Compared to DSS-induced WT mice, the transcriptional levels of IL-6, F4/80, Ly6g, Ly6d and Igha were significantly higher in the colon of DSS-induced EpCAM+/- mice. The protein levels of MMP7 and MMP8 and the activation of JNK, ERK1/2 and p38 were significantly increased in the colon of DSS-induced EpCAM+/- mice. The protein levels of CLDN1, CLDN2, CLDN3, CLDN7, OCLD, ZO-1 and pIgR were significantly decreased in the colon of DSS-induced EpCAM+/- mice. The serum concentration of LPS was significantly higher in the DSS-induced EpCAM+/- mice which caused the acute inflammation in the liver of them. The expression of Pigr was significantly reduced in the liver of DSS-induced EpCAM+/- mice. The ratio of Firmicutes/Bacteroidetes at the phylum level was higher in the gut microbiota of EpCAM+/- mice than WT mice. Conclusion In conclusion, the heterozygous mutation of EpCAM increased the susceptibility to colitis, gut microbiota dysbiosis and liver injury.
Collapse
Affiliation(s)
- Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Cunjie Kong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Liu X, Liang XQ, Lu TC, Feng Z, Zhang M, Liao NQ, Zhang FL, Wang B, Wang LS. Leech Poecilobdella manillensis protein extract ameliorated hyperuricemia by restoring gut microbiota dysregulation and affecting serum metabolites. World J Gastroenterol 2024; 30:3488-3510. [PMID: 39156502 PMCID: PMC11326090 DOI: 10.3748/wjg.v30.i29.3488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/20/2024] [Accepted: 07/19/2024] [Indexed: 07/29/2024] Open
Abstract
BACKGROUND Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.
Collapse
Affiliation(s)
- Xia Liu
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
- Department of Traditional Chinese Medicine, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People’s Hospital of Nanning, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Xing-Qiu Liang
- Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Tian-Cai Lu
- General Manager’s Office, Guangxi Fuxinyi Biological Technology Co. Ltd., Pingnan 537300, Guangxi Zhuang Autonomous Region, China
| | - Zhe Feng
- Department of Joint and Sports Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi Zhuang Autonomous Region, China
| | - Min Zhang
- Department of Gerontology, Nanning Social Welfare Hospital, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Nan-Qing Liao
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Feng-Lian Zhang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Bo Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Li-Sheng Wang
- Medical College, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
6
|
Fernandes KA, Lim AI. Maternal-driven immune education in offspring. Immunol Rev 2024; 323:288-302. [PMID: 38445769 DOI: 10.1111/imr.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.
Collapse
Affiliation(s)
| | - Ai Ing Lim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
7
|
Facchin S, Bertin L, Bonazzi E, Lorenzon G, De Barba C, Barberio B, Zingone F, Maniero D, Scarpa M, Ruffolo C, Angriman I, Savarino EV. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life (Basel) 2024; 14:559. [PMID: 38792581 PMCID: PMC11122327 DOI: 10.3390/life14050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The gastrointestinal tract is home to trillions of diverse microorganisms collectively known as the gut microbiota, which play a pivotal role in breaking down undigested foods, such as dietary fibers. Through the fermentation of these food components, short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are produced, offering numerous health benefits to the host. The production and absorption of these SCFAs occur through various mechanisms within the human intestine, contingent upon the types of dietary fibers reaching the gut and the specific microorganisms engaged in fermentation. Medical literature extensively documents the supplementation of SCFAs, particularly butyrate, in the treatment of gastrointestinal, metabolic, cardiovascular, and gut-brain-related disorders. This review seeks to provide an overview of the dynamics involved in the production and absorption of acetate, propionate, and butyrate within the human gut. Additionally, it will focus on the pivotal roles these SCFAs play in promoting gastrointestinal and metabolic health, as well as their current therapeutic implications.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Erica Bonazzi
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Caterina De Barba
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Brigida Barberio
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| | - Marco Scarpa
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Cesare Ruffolo
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Imerio Angriman
- General Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35138 Padua, Italy (C.R.); (I.A.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University Hospital of Padua, 35128 Padua, Italy (L.B.); (B.B.)
| |
Collapse
|
8
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
9
|
Cao Q, Tian Y, Deng Z, Yang F, Chen E. Epigenetic Alteration in Colorectal Cancer: Potential Diagnostic and Prognostic Implications. Int J Mol Sci 2024; 25:3358. [PMID: 38542332 PMCID: PMC10969857 DOI: 10.3390/ijms25063358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 01/03/2025] Open
Abstract
Colorectal cancer (CRC), a prevalent malignant tumor of the digestive system, ranks as the third and second in global incidence and mortality, respectively, in 2020, with 1.93 million new cases (≈10% of all cancers). There are 940,000 deaths (≈9.4% of all cancers), and the incidence of CRC in younger patients (under 50 years of age) has become a new trend. The pathogenesis of CRC is primarily attributed to a series of genetic and epigenetic abnormalities within normal colonic epithelial cells, coupled with the reshaping of the tumor microenvironment in the surrounding stroma. This process leads to the transformation of colorectal adenomas into invasive adenocarcinomas. Although genetic changes are known to be the primary driving force in the occurrence and progression of CRC, recent research indicates that epigenetic regulation serves as a crucial molecular marker in cancer, playing a significant role in the pathological and physiological control of interactions between genetics and the environment. This review discusses the current global epidemiology of CRC, its risk factors, and preventive treatment strategies. The current study explores the latest advancements in the epigenetic regulation of CRC, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). These developments hold potential as screening tools, prognostic biomarkers, and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Qing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Zhiyi Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Fangfang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
| | - Erfei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an 710069, China; (Q.C.); (Y.T.); (Z.D.); (F.Y.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an 710069, China
- School of Medicine, Northwest University, Xi’an 710069, China
| |
Collapse
|
10
|
Kim HE, Lee JY, Yoo DH, Park HH, Choi EJ, Nam KH, Park J, Choi JK. Imidazole propionate ameliorates atopic dermatitis-like skin lesions by inhibiting mitochondrial ROS and mTORC2. Front Immunol 2024; 15:1324026. [PMID: 38533495 PMCID: PMC10964488 DOI: 10.3389/fimmu.2024.1324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
Background Imidazole propionate (IMP) is a histidine metabolite produced by some gut microorganisms in the human colon. Increased levels of IMP are associated with intestinal inflammation and the development and progression of cardiovascular disease and diabetes. However, the anti-inflammatory activity of IMP has not been investigated. This study aimed to elucidate the role of IMP in treating atopic dermatitis (AD). Methods To understand how IMP mediates immunosuppression in AD, IMP was intraperitoneally injected into a Dermatophagoides farinae extract (DFE)/1-chloro-2,4 dinitrochlorobenzene (DNCB)-induced AD-like skin lesions mouse model. We also characterized the anti-inflammatory mechanism of IMP by inducing an AD response in keratinocytes through TNF-α/IFN-γ or IL-4 stimulation. Results Contrary to the prevailing view that IMP is an unhealthy microbial metabolite, we found that IMP-treated AD-like skin lesions mice showed significant improvement in their clinical symptoms, including ear thickness, epidermal and dermal thickness, and IgE levels. Furthermore, IMP antagonized the expansion of myeloid (neutrophils, macrophages, eosinophils, and mast cells) and Th cells (Th1, Th2, and Th17) in mouse skin and prevented mitochondrial reactive oxygen species production by inhibiting mitochondrial energy production. Interestingly, we found that IMP inhibited AD by reducing glucose uptake in cells to suppress proinflammatory cytokines and chemokines in an AD-like in vitro model, sequentially downregulating the PI3K and mTORC2 signaling pathways centered on Akt, and upregulating DDIT4 and AMPK. Discussion Our results suggest that IMP exerts anti-inflammatory effects through the metabolic reprogramming of skin inflammation, making it a promising therapeutic candidate for AD and related skin diseases.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jong Yeong Lee
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dong-Hoon Yoo
- Department of Sports Rehabilitation and Exercise Management, University of Gyeongnam Geochang, Geochang-gun, Republic of Korea
| | - Hyo-Hyun Park
- Department of Clinical Pathology, Daegu Health College, Daegu, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, College of Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Kyung-Hwa Nam
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Park
- Department of Dermatology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
11
|
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 2024; 8:1-13. [PMID: 36945843 PMCID: PMC10903459 DOI: 10.1042/etls20220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
12
|
Lyu Q, Chen RA, Chuang HL, Zou HB, Liu L, Sung LK, Liu PY, Wu HY, Chang HY, Cheng WJ, Wu WK, Wu MS, Hsu CC. Bifidobacterium alleviate metabolic disorders via converting methionine to 5'-methylthioadenosine. Gut Microbes 2024; 16:2300847. [PMID: 38439565 PMCID: PMC10936671 DOI: 10.1080/19490976.2023.2300847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/27/2023] [Indexed: 03/06/2024] Open
Abstract
Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Rou-An Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories Research Institute, Taipei, Taiwan
| | - Hsin-Bai Zou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Lihong Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Kang Sung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yuan Chang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wan-Ju Cheng
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| |
Collapse
|
13
|
Ermakov VS, Granados JC, Nigam SK. Remote effects of kidney drug transporter OAT1 on gut microbiome composition and urate homeostasis. JCI Insight 2023; 8:e172341. [PMID: 37937647 PMCID: PMC10721261 DOI: 10.1172/jci.insight.172341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The organic anion transporter OAT1 (SLC22A6, originally identified as NKT) is a multispecific transporter responsible for the elimination by the kidney of small organic anions that derive from the gut microbiome. Many are uremic toxins associated with chronic kidney disease (CKD). OAT1 is among a group of "drug" transporters that act as hubs in a large homeostatic network regulating interorgan and interorganismal communication via small molecules. The Remote Sensing and Signaling Theory predicts that genetic deletion of such a key hub in the network results in compensatory interorganismal communication (e.g., host-gut microbe dynamics). Recent metabolomics data from Oat1-KO mice indicate that some of the most highly affected metabolites derive from bacterial tyrosine, tryptophan, purine, and fatty acid metabolism. Functional metagenomic analysis of fecal 16S amplicon and whole-genome sequencing revealed that loss of OAT1 was impressively associated with microbial pathways regulating production of urate, gut-derived p-cresol, tryptophan derivatives, and fatty acids. Certain changes, such as alterations in gut microbiome urate metabolism, appear compensatory. Thus, Oat1 in the kidney appears to mediate remote interorganismal communication by regulating the gut microbiome composition and metabolic capability. Since OAT1 function in the proximal tubule is substantially affected in CKD, our results may shed light on the associated alterations in gut-microbiome dynamics.
Collapse
Affiliation(s)
| | | | - Sanjay K. Nigam
- Department of Pediatrics, and
- Department of Medicine, Division of Nephrology, University of California, San Diego (UCSD), La Jolla, California, USA
| |
Collapse
|
14
|
Pacheco-Yanes J, Reynolds E, Li J, Mariño E. Microbiome-targeted interventions for the control of oral-gut dysbiosis and chronic systemic inflammation. Trends Mol Med 2023; 29:912-925. [PMID: 37730461 DOI: 10.1016/j.molmed.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023]
Abstract
Recent research has confirmed the strong connection between imbalances in the oral and gut microbiome (oral-gut dysbiosis), periodontitis, and inflammatory conditions such as diabetes, Alzheimer's disease, and cardiovascular diseases. Microbiome modulation is crucial for preventing and treating several autoimmune and inflammatory diseases, including periodontitis. However, the causal relationships between the microbiome and its derived metabolites that mediate periodontitis and chronic inflammation constitute a notable knowledge gap. Here we review the mechanisms involved in the microbiome-host crosstalk, and describe novel precision medicine for the control of systemic inflammation. As microbiome-targeted therapies begin to enter clinical trials, the success of these approaches relies upon understanding these reciprocal microbiome-host interactions, and it may provide new therapeutic avenues to reduce the risk of periodontitis-associated diseases.
Collapse
Affiliation(s)
- Juan Pacheco-Yanes
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eric Reynolds
- Oral Health Collaborative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; ImmunoBiota Therapeutics Pty Ltd, Melbourne, Australia.
| |
Collapse
|
15
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
16
|
Liu J, Liu J, Zhang J, Liu C, Qu C, Na L. Vitamin D deficiency in early life regulates gut microbiome composition and leads to impaired glucose tolerance in adult and offspring rats. Food Funct 2023. [PMID: 37285306 DOI: 10.1039/d3fo00503h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamin D has been found to be involved in glucose metabolism in recent years. Its deficiency is very common, especially in children. Whether vitamin D deficiency in early life affects adult diabetes risk is unknown. In this study, a rat model of early life vitamin D deficiency (F1 Early-VDD) was established by depriving it of vitamin D from the 0 to the 8th week. Further, some rats were switched to normal feeding conditions and sacrificed at the 18th week. Other rats were mated randomly to generate offspring rats (F2 Early-VDD), and F2 rats were fed under normal conditions and sacrificed at the 8th week. Serum 25(OH)D3 level decreased in F1 Early-VDD at the 8th week and returned to normal at the 18th week. Serum 25(OH)D3 level in F2 Early-VDD at the 8th week was also lower than that in control rats. Impaired glucose tolerance was observed in F1 Early-VDD at the 8th week and 18th week and also in F2 Early-VDD at the 8th week. The gut microbiota composition in F1 Early-VDD at the 8th week significantly changed. Among the top ten genera with a rich difference, Desulfovibrio, Roseburia, Ruminiclostridium, Lachnoclostridium, A2, GCA-900066575, Peptococcus, Lachnospiraceae_FCS020_ group, and Bilophila increased owing to vitamin D deficiency, whereas Blautia decreased. There were 108 significantly changed metabolites in F1 Early-VDD at the 8th week, of which 63 were enriched in known metabolic pathways. Correlations between gut microbiota and metabolites were analyzed. Blautia was positively related to 2-picolinic acid, whereas Bilophila was negatively related to indoleacetic acid. Moreover, some of the changes in microbiota, metabolites, and enriched metabolic pathways still existed in F1 Early-VDD rats at the 18th week and F2 Early-VDD rats at the 8th week. In conclusion, vitamin D deficiency in early life leads to impaired glucose tolerance in adult and offspring rats. This effect may be partly achieved by regulating gut microbiota and their co-metabolites.
Collapse
Affiliation(s)
- Jing Liu
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Junyi Liu
- Department of Clinical Nutrition, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jingyi Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunyan Liu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunbo Qu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Lixin Na
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Collaborative Innovation Center of Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Mowat C, Dhatt J, Bhatti I, Hamie A, Baker K. Short chain fatty acids prime colorectal cancer cells to activate antitumor immunity. Front Immunol 2023; 14:1190810. [PMID: 37304266 PMCID: PMC10248408 DOI: 10.3389/fimmu.2023.1190810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a leading cause of death worldwide and its growth can either be promoted or inhibited by the metabolic activities of intestinal microbiota. Short chain fatty acids (SCFAs) are microbial metabolites with potent immunoregulatory properties yet there is a poor understanding of how they directly regulate immune modulating pathways within the CRC cells. Methods We used engineered CRC cell lines, primary organoid cultures, orthotopic in vivo models, and patient CRC samples to investigate how SCFA treatment of CRC cells regulates their ability to activate CD8+ T cells. Results CRC cells treated with SCFAs induced much greater activation of CD8+ T cells than untreated CRC cells. CRCs exhibiting microsatellite instability (MSI) due to inactivation of DNA mismatch repair were much more sensitive to SCFAs and induced much greater CD8+ T cell activation than chromosomally instable (CIN) CRCs with intact DNA repair, indicating a subtype-dependent response to SCFAs. This was due to SCFA-induced DNA damage that triggered upregulation of chemokine, MHCI, and antigen processing or presenting genes. This response was further potentiated by a positive feedback loop between the stimulated CRC cells and activated CD8+ T cells in the tumor microenvironment. The initiating mechanism in the CRCs was inhibition of histone deacetylation by the SCFAs that triggered genetic instability and led to an overall upregulation of genes associated with SCFA signaling and chromatin regulation. Similar gene expression patterns were found in human MSI CRC samples and in orthotopically grown MSI CRCs independent of the amount of SCFA producing bacteria in the intestine. Discussion MSI CRCs are widely known to be more immunogenic than CIN CRCs and have a much better prognosis. Our findings indicate that a greater sensitivity to microbially produced SCFAs contributes to the successful activation of CD8+ T cells by MSI CRCs, thereby identifying a mechanism that could be therapeutically targeted to improve antitumor immunity in CIN CRCs.
Collapse
Affiliation(s)
- Courtney Mowat
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jasmine Dhatt
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ilsa Bhatti
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Angela Hamie
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Lu J, Drobyshevsky A, Lu L, Yu Y, Caplan MS, Claud EC. Microbiota from Preterm Infants Who Develop Necrotizing Enterocolitis Drives the Neurodevelopment Impairment in a Humanized Mouse Model. Microorganisms 2023; 11:1131. [PMID: 37317106 PMCID: PMC10224461 DOI: 10.3390/microorganisms11051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading basis for gastrointestinal morbidity and poses a significant risk for neurodevelopmental impairment (NDI) in preterm infants. Aberrant bacterial colonization preceding NEC contributes to the pathogenesis of NEC, and we have demonstrated that immature microbiota in preterm infants negatively impacts neurodevelopment and neurological outcomes. In this study, we tested the hypothesis that microbial communities before the onset of NEC drive NDI. Using our humanized gnotobiotic model in which human infant microbial samples were gavaged to pregnant germ-free C57BL/6J dams, we compared the effects of the microbiota from preterm infants who went on to develop NEC (MNEC) to the microbiota from healthy term infants (MTERM) on brain development and neurological outcomes in offspring mice. Immunohistochemical studies demonstrated that MNEC mice had significantly decreased occludin and ZO-1 expression compared to MTERM mice and increased ileal inflammation marked by the increased nuclear phospho-p65 of NFκB expression, revealing that microbial communities from patients who developed NEC had a negative effect on ileal barrier development and homeostasis. In open field and elevated plus maze tests, MNEC mice had worse mobility and were more anxious than MTERM mice. In cued fear conditioning tests, MNEC mice had worse contextual memory than MTERM mice. MRI revealed that MNEC mice had decreased myelination in major white and grey matter structures and lower fractional anisotropy values in white matter areas, demonstrating delayed brain maturation and organization. MNEC also altered the metabolic profiles, especially carnitine, phosphocholine, and bile acid analogs in the brain. Our data demonstrated numerous significant differences in gut maturity, brain metabolic profiles, brain maturation and organization, and behaviors between MTERM and MNEC mice. Our study suggests that the microbiome before the onset of NEC has negative impacts on brain development and neurological outcomes and can be a prospective target to improve long-term developmental outcomes.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | - Lei Lu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Yueyue Yu
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Michael S. Caplan
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60202, USA
| | - Erika C. Claud
- Department of Pediatrics, Division of Biological Sciences, Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Chancharoenthana W, Kamolratanakul S, Visitchanakun P, Sontidejkul S, Cheibchalard T, Somboonna N, Settachaimongkon S, Leelahavanichkul A. Lacticaseibacilli attenuated fecal dysbiosis and metabolome changes in Candida-administered bilateral nephrectomy mice. Front Immunol 2023; 14:1131447. [PMID: 36969207 PMCID: PMC10034098 DOI: 10.3389/fimmu.2023.1131447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
The impacts of metabolomic changes (reduced short-chain-fatty acids; SCFAs) in uremic condition is not fully understood. Once daily Candida gavage with or without probiotics (different times of administration) for 1 week prior to bilateral nephrectomy (Bil Nep) in 8-week-old C57BL6 mice as the possible models more resemble human conditions were performed. Candida-administered Bil Nep mice demonstrated more severe conditions than Bil Nep alone as indicated by mortality (n = 10/group) and other 48 h parameters (n = 6-8/group), including serum cytokines, leaky gut (FITC-dextran assay, endotoxemia, serum beta-glucan, and loss of Zona-occludens-1), and dysbiosis (increased Enterobacteriaceae with decreased diversity in microbiome analysis) (n = 3/group for fecal microbiome) without the difference in uremia (serum creatinine). With nuclear magnetic resonance metabolome analysis (n = 3-5/group), Bil Nep reduced fecal butyric (and propionic) acid and blood 3-hydroxy butyrate compared with sham and Candida-Bil Nep altered metabolomic patterns compared with Bil Nep alone. Then, Lacticaseibacillus rhamnosus dfa1 (SCFA-producing Lacticaseibacilli) (n = 8/group) attenuated the model severity (mortality, leaky gut, serum cytokines, and increased fecal butyrate) of Bil Nep mice (n = 6/group) (regardless of Candida). In enterocytes (Caco-2 cells), butyrate attenuated injury induced by indoxyl sulfate (a gut-derived uremic toxin) as indicated by transepithelial electrical resistance, supernatant IL-8, NFκB expression, and cell energy status (mitochondria and glycolysis activities by extracellular flux analysis). In conclusion, the reduced butyrate by uremia was not enhanced by Candida administration; however, the presence of Candida in the gut induced a leaky gut that was attenuated by SCFA-producing probiotics. Our data support the use of probiotics in uremia.
Collapse
Affiliation(s)
- Wiwat Chancharoenthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Tropical Immunology and Translational Research Unit (TITRU), Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Supistha Sontidejkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Thanya Cheibchalard
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammatory and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Wiwat Chancharoenthana, ; Asada Leelahavanichkul,
| |
Collapse
|
20
|
Wang W, Lu G, Wu X, Wen Q, Zhang F. Colonic Transendoscopic Enteral Tubing Is a New Pathway to Microbial Therapy, Colonic Drainage, and Host-Microbiota Interaction Research. J Clin Med 2023; 12:780. [PMID: 36769429 PMCID: PMC9918197 DOI: 10.3390/jcm12030780] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The limitation of traditional delivery methods for fecal microbiota transplantation (FMT) gave birth to colonic transendoscopic enteral tubing (TET) to address the requirement of frequent FMTs. Colonic TET as a novel endoscopic intervention has received increasing attention in practice since 2015 in China. Emerging studies from multiple centers indicate that colonic TET is a promising, safe, and practical delivery method for microbial therapy and administering medication with high patient satisfaction. Intriguingly, colonic TET has been used to rescue endoscopy-related perforations by draining colonic air and fluid through the TET tube. Recent research based on collecting ileocecal samples through a TET tube has contributed to demonstrating community dynamics in the intestine, and it is expected to be a novel delivery of proof-of-concept in host-microbiota interactions and pharmacological research. The present article aims to review the concept and techniques of TET and to explore microbial therapy, colonic drainage, and microbial research based on colonic TET.
Collapse
Affiliation(s)
- Weihong Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Gaochen Lu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Xia Wu
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Quan Wen
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
| | - Faming Zhang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Key Lab of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
21
|
Looi D, Moorthy M, Chaiyakunapruk N, Devi Palanisamy U. Impact of ellagitannin-rich fruit consumption on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Gage M, Vinithakumari AA, Mooyottu S, Thippeswamy T. Gut dysbiosis following organophosphate, diisopropylfluorophosphate (DFP), intoxication and saracatinib oral administration. FRONTIERS IN MICROBIOMES 2022; 1:1006078. [PMID: 37304619 PMCID: PMC10256240 DOI: 10.3389/frmbi.2022.1006078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphate nerve agents (OPNAs) act as irreversible inhibitors of acetylcholinesterase and can lead to cholinergic crisis including salivation, lacrimation, urination, defecation, gastrointestinal distress, respiratory distress, and seizures. Although the OPNAs have been studied in the past few decades, little is known about the impact on the gut microbiome which has become of increasing interest across fields. In this study, we challenged animals with the OPNA, diisopropylfluorophosphate (DFP, 4mg/kg, s.c.) followed immediately by 2mg/kg atropine sulfate (i.m.) and 25mg/kg 2-pralidoxime (i.m.) and 30 minutes later by 3mg/kg midazolam (i.m.). One hour after midazolam, animals were treated with a dosing regimen of saracatinib (SAR, 20mg/kg, oral), a src family kinase inhibitor, to mitigate DFP-induced neurotoxicity. We collected fecal samples 48 hours, 7 days, and 5 weeks post DFP intoxication. 16S rRNA genes (V4) were amplified to identify the bacterial composition. At 48 hours, a significant increase in the abundance of Proteobacteria and decrease in the abundance of Firmicutes were observed in DFP treated animals. At 7 days there was a significant reduction in Firmicutes and Actinobacteria, but a significant increase in Bacteroidetes in the DFP groups compared to controls. The taxonomic changes at 5 weeks were negligible. There was no impact of SAR administration on microbial composition. There was a significant DFP-induced reduction in alpha diversity at 48 hours but not at 7 days and 5 weeks. There appeared to be an impact of DFP on beta diversity at 48 hours and 7 days but not at 5 weeks. In conclusion, acute doses of DFP lead to short-term gut dysbiosis and SAR had no effect. Understanding the role of gut dysbiosis in long-term toxicity may reveal therapeutic targets.
Collapse
Affiliation(s)
- Meghan Gage
- Interdepartmental Neuroscience, The Departments of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Akhil A. Vinithakumari
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shankumar Mooyottu
- Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Thimmasettappa Thippeswamy
- Interdepartmental Neuroscience, The Departments of Biomedical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Hernández-Flores TDJ, Pedraza-Brindis EJ, Cárdenas-Bedoya J, Ruíz-Carrillo JD, Méndez-Clemente AS, Martínez-Guzmán MA, Iñiguez-Gutiérrez L. Role of Micronutrients and Gut Microbiota-Derived Metabolites in COVID-19 Recovery. Int J Mol Sci 2022; 23:12324. [PMID: 36293182 PMCID: PMC9604189 DOI: 10.3390/ijms232012324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 01/08/2023] Open
Abstract
A balanced and varied diet provides diverse beneficial effects on health, such as adequate micronutrient availability and a gut microbiome in homeostasis. Besides their participation in biochemical processes as cofactors and coenzymes, vitamins and minerals have an immunoregulatory function; meanwhile, gut microbiota and its metabolites coordinate directly and indirectly the cell response through the interaction with the host receptors. Malnourishment is a crucial risk factor for several pathologies, and its involvement during the Coronavirus Disease 2019 pandemic has been reported. This pandemic has caused a significant decline in the worldwide population, especially those with chronic diseases, reduced physical activity, and elder age. Diet and gut microbiota composition are probable causes for this susceptibility, and its supplementation can play a role in reestablishing microbial homeostasis and improving immunity response against Coronavirus Disease 2019 infection and recovery. This study reviews the role of micronutrients and microbiomes in the risk of infection, the severity of disease, and the Coronavirus Disease 2019 sequelae.
Collapse
Affiliation(s)
- Teresita de Jesús Hernández-Flores
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Eliza Julia Pedraza-Brindis
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Jhonathan Cárdenas-Bedoya
- Departamento de Disciplinas Filosófico, Metodológicas e Instrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Laboratorio de Inmunodeficiencias y Retrovirus Humanos, Centro de Investigación Biomédica de Occidente, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
| | - José Daniel Ruíz-Carrillo
- Clínica Medicina Familiar 1 del ISSSTE “Dr. Arturo González Guzmán”, Guadalajara 44340, Jalisco, Mexico
| | - Anibal Samael Méndez-Clemente
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
| | - Marco Alonso Martínez-Guzmán
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| | - Liliana Iñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara 44280, Jalisco, Mexico
- Departamento de Aparatos y Sistemas I, Facultad de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Jalisco, Mexico
| |
Collapse
|
24
|
Kotla NK, Dutta P, Parimi S, Das NK. The Role of Ferritin in Health and Disease: Recent Advances and Understandings. Metabolites 2022; 12:metabo12070609. [PMID: 35888733 PMCID: PMC9320524 DOI: 10.3390/metabo12070609] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic iron homeostasis needs to be tightly controlled, as both deficiency and excess iron cause major global health concerns, such as iron deficiency anemia, hemochromatosis, etc. In mammals, sufficient dietary acquisition is critical for fulfilling the systemic iron requirement. New questions are emerging about whether and how cellular iron transport pathways integrate with the iron storage mechanism. Ferritin is the intracellular iron storage protein that stores surplus iron after all the cellular needs are fulfilled and releases it in the face of an acute demand. Currently, there is a surge in interest in ferritin research after the discovery of novel pathways like ferritinophagy and ferroptosis. This review emphasizes the most recent ferritin-related discoveries and their impact on systemic iron regulation.
Collapse
|