1
|
Sandel DA, Rutishauser RL, Peluso MJ. Post-intervention control in HIV immunotherapy trials. Curr Opin HIV AIDS 2024:01222929-990000000-00115. [PMID: 39494630 DOI: 10.1097/coh.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW While post-treatment control following interruption of standard-of-care antiretroviral therapy (ART) is well described, post-intervention control following immunotherapy in HIV cure-related clinical trials is less well understood. We provide an overview of recent studies that have identified post-intervention controllers and review the mechanisms that may drive this biologically important phenotype. RECENT FINDINGS Post-intervention controllers have been identified in recent immunotherapy trials testing broadly neutralizing antibodies, immune modulators, modified T cells, checkpoint inhibitors, and gene therapy administered individually or in combination. Currently, there is substantial variability in how each trial defines post-intervention control, as well as in how the mechanisms underlying such control are evaluated. Such mechanisms include ongoing activity of both exogenous and autologous antibodies, as well as changes in HIV-specific T cell function. SUMMARY While no therapeutic strategy to date has succeeded in definitively inducing HIV control, many studies have identified at least a small number of post-intervention controllers. The field would benefit from a standardized approach to defining and reporting this phenotype, as well as standardization in the approach to assessment of how it is achieved. Such efforts would allow for comparisons across clinical trials and could help accelerate efforts toward an HIV cure.
Collapse
Affiliation(s)
| | | | - Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
White E, Papagno L, Samri A, Sugata K, Hejblum B, Henry AR, Rogan DC, Darko S, Recordon-Pinson P, Dudoit Y, Llewellyn-Lacey S, Chakrabarti LA, Buseyne F, Migueles SA, Price DA, Andreola MA, Satou Y, Thiebaut R, Katlama C, Autran B, Douek DC, Appay V. Clonal succession after prolonged antiretroviral therapy rejuvenates CD8 + T cell responses against HIV-1. Nat Immunol 2024; 25:1555-1564. [PMID: 39179934 DOI: 10.1038/s41590-024-01931-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/15/2024] [Indexed: 08/26/2024]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is characterized by a dynamic and persistent state of viral replication that overwhelms the host immune system in the absence of antiretroviral therapy (ART). The impact of prolonged treatment on the antiviral efficacy of HIV-1-specific CD8+ T cells has nonetheless remained unknown. Here, we used single-cell technologies to address this issue in a cohort of aging individuals infected early during the pandemic and subsequently treated with continuous ART. Our data showed that long-term ART was associated with a process of clonal succession, which effectively rejuvenated HIV-1-specific CD8+ T cell populations in the face of immune senescence. Tracking individual transcriptomes further revealed that initially dominant CD8+ T cell clonotypes displayed signatures of exhaustion and terminal differentiation, whereas newly dominant CD8+ T cell clonotypes displayed signatures of early differentiation and stemness associated with natural control of viral replication. These findings reveal a degree of immune resilience that could inform adjunctive treatments for HIV-1.
Collapse
Affiliation(s)
- Eoghann White
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Laura Papagno
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France
| | - Assia Samri
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Boris Hejblum
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel C Rogan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Recordon-Pinson
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yasmine Dudoit
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Lisa A Chakrabarti
- CIVIC Group, Virus and Immunity Unit, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Florence Buseyne
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
| | - Stephen A Migueles
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Marie-Aline Andreola
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, CNRS, Bordeaux, France
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Rodolphe Thiebaut
- Bordeaux Population Health Research Centre, U1219, Université de Bordeaux, INSERM, Inria SISTM, Bordeaux, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Christine Katlama
- Institut Pierre Louis d'Epidémiologie et de Sante Publique, AP-HP, Pitié-Salpêtrière Hospital, Department of Infectious Diseases, Sorbonne Université, INSERM, Paris, France
| | - Brigitte Autran
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM, Paris, France
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Appay
- ImmunoConcEpT, UMR 5164, Université de Bordeaux, CNRS, INSERM, Bordeaux, France.
| |
Collapse
|
3
|
Barbehenn A, Shi L, Shao J, Hoh R, Hartig HM, Pae V, Sarvadhavabhatla S, Donaire S, Sheikhzadeh C, Milush J, Laird GM, Mathias M, Ritter K, Peluso MJ, Martin J, Hecht F, Pilcher C, Cohen SE, Buchbinder S, Havlir D, Gandhi M, Henrich TJ, Hatano H, Wang J, Deeks SG, Lee SA. Rapid Biphasic Decay of Intact and Defective HIV DNA Reservoir During Acute Treated HIV Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.27.24304867. [PMID: 38585951 PMCID: PMC10996734 DOI: 10.1101/2024.03.27.24304867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Despite antiretroviral therapy (ART), HIV persists in latently-infected cells ("the reservoir") which decay slowly over time. Here, leveraging >500 longitudinal samples from 67 people with HIV (PWH) treated during acute infection, we developed a novel mathematical model to predict reservoir decay from peripheral CD4+ T cells. Nonlinear generalized additive models demonstrated rapid biphasic decay of intact DNA (week 0-5: t1/2~2.83 weeks; week 5-24: t1/2~15.4 weeks) that extended out to 1 year. These estimates were ~5-fold faster than prior decay estimates among chronic treated PWH. Defective DNA had a similar biphasic pattern, but data were more variable. Predicted intact and defective decay rates were faster for PWH with earlier timing of ART initiation, higher initial CD4+ T cell count, and lower pre-ART viral load. These data add to our limited understanding of HIV reservoir decay at the time of ART initiation, informing future curative strategies targeting this critical time.
Collapse
Affiliation(s)
- Alton Barbehenn
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Lei Shi
- Department of Biostatistics, University of California Berkeley, Berkeley, CA 94110, USA
| | - Junzhe Shao
- Department of Biostatistics, University of California Berkeley, Berkeley, CA 94110, USA
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Heather M. Hartig
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Vivian Pae
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sannidhi Sarvadhavabhatla
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sophia Donaire
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Caroline Sheikhzadeh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jeffrey Milush
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | | | | | | | - Michael J. Peluso
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jeffrey Martin
- Department of Biostatistics & Epidemiology, University of California San Francisco, CA 94158, USA
| | - Frederick Hecht
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Christopher Pilcher
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Stephanie E. Cohen
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- San Francisco Department of Public Health, San Francisco, CA 94102, USA
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA 94102, USA
| | - Diane Havlir
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Monica Gandhi
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Timothy J. Henrich
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Hiroyu Hatano
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Jingshen Wang
- Department of Biostatistics, University of California Berkeley, Berkeley, CA 94110, USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
4
|
Julg B, Stephenson KE, Tomaka F, Walsh SR, Sabrina Tan C, Lavreys L, Sarnecki M, Ansel JL, Kanjilal DG, Jaegle K, Speidel T, Nkolola JP, Borducchi EN, Braams E, Pattacini L, Burgess E, Ilan S, Bartsch Y, Yanosick KE, Seaman MS, Stieh DJ, van Duijn J, Willems W, Robb ML, Michael NL, Walker BD, Pau MG, Schuitemaker H, Barouch DH. Immunogenicity of 2 therapeutic mosaic HIV-1 vaccine strategies in individuals with HIV-1 on antiretroviral therapy. NPJ Vaccines 2024; 9:89. [PMID: 38782902 PMCID: PMC11116546 DOI: 10.1038/s41541-024-00876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Mosaic HIV-1 vaccines have been shown to elicit robust humoral and cellular immune responses in people living with HIV-1 (PLWH), that had started antiretroviral therapy (ART) during acute infection. We evaluated the safety and immunogenicity of 2 mosaic vaccine regimens in virologically suppressed individuals that had initiated ART during the chronic phase of infection, exemplifying the majority of PLWH. In this double-blind, placebo-controlled phase 1 trial (IPCAVD013/HTX1002) 25 ART-suppressed PLWH were randomized to receive Ad26.Mos4.HIV/MVA-Mosaic (Ad26/MVA) (n = 10) or Ad26.Mos4.HIV/Ad26.Mos4.HIV plus adjuvanted gp140 protein (Ad26/Ad26+gp140) (n = 9) or placebo (n = 6). Primary endpoints included safety and tolerability and secondary endpoints included HIV-specific binding and neutralizing antibody titers and HIV-specific T cell responses. Both vaccine regimens were well tolerated with pain/tenderness at the injection site and fatigue, myalgia/chills and headache as the most commonly reported solicited local and grade 3 systemic adverse events, respectively. In the Ad26/Ad26+gp140 group, Env-specific IFN-γ T cell responses showed a median 12-fold increase while responses to Gag and Pol increased 1.8 and 2.4-fold, respectively. The breadth of T cell responses to individual peptide subpools increased from 11.0 pre-vaccination to 26.0 in the Ad26/Ad26+gp140 group and from 10.0 to 14.5 in the Ad26/MVA group. Ad26/Ad26+gp140 vaccination increased binding antibody titers against vaccine-matched clade C Env 5.5-fold as well as augmented neutralizing antibody titers against Clade C pseudovirus by 7.2-fold. Both vaccine regimens were immunogenic, while the addition of the protein boost resulted in additional T cell and augmented binding and neutralizing antibody titers. These data suggest that the Ad26/Ad26+gp140 regimen should be tested further.
Collapse
Affiliation(s)
- Boris Julg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Kathryn E Stephenson
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Frank Tomaka
- Janssen Research & Development, Titusville, NJ, USA
| | | | - C Sabrina Tan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- University of Iowa, Iowa City, IA, USA
| | | | | | | | | | - Kate Jaegle
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tessa Speidel
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Esmee Braams
- Janssen Vaccines & Prevention B.V., Leiden, Netherlands
| | | | - Eleanor Burgess
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Shlomi Ilan
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | - Yannic Bartsch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | | | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Bruce D Walker
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Dan H Barouch
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA, USA.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
5
|
Opsteen S, Fram T, Files JK, Levitan EB, Goepfert P, Erdmann N. Impact of Chronic HIV Infection on Acute Immune Responses to SARS-CoV-2. J Acquir Immune Defic Syndr 2024; 96:92-100. [PMID: 38408318 PMCID: PMC11009054 DOI: 10.1097/qai.0000000000003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Abstract
ABSTRACT There is mounting evidence that HIV infection is a risk factor for severe presentations of COVID-19. We hypothesized that the persistent immune activation associated with chronic HIV infection contributes to worsened outcomes during acute COVID-19. The goals of this study were to provide an in-depth analysis of immune response to acute COVID-19 and investigate relationships between immune responses and clinical outcomes in an unvaccinated, sex- and race-matched cohort of people with HIV (PWH, n = 20) and people without HIV (PWOH, n = 41). We performed flow cytometric analyses on peripheral blood mononuclear cells from PWH and PWOH experiencing acute COVID-19 (≤21-day postsymptom onset). PWH were younger (median 52 vs 65 years) and had milder COVID-19 (40% vs 88% hospitalized) compared with PWOH. Flow cytometry panels included surface markers for immune cell populations, activation and exhaustion surface markers (with and without SARS-CoV-2-specific antigen stimulation), and intracellular cytokine staining. We observed that PWH had increased expression of activation (eg, CD137 and OX40) and exhaustion (eg, PD1 and TIGIT) markers as compared to PWOH during acute COVID-19. When analyzing the impact of COVID-19 severity, we found that hospitalized PWH had lower nonclassical (CD16 + ) monocyte frequencies, decreased expression of TIM3 on CD4 + T cells, and increased expression of PDL1 and CD69 on CD8 + T cells. Our findings demonstrate that PWH have increased immune activation and exhaustion as compared to a cohort of predominately older, hospitalized PWOH and raises questions on how chronic immune activation affects acute disease and the development of postacute sequelae.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Tim Fram
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Jacob K. Files
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Emily B. Levitan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Paul Goepfert
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| | - Nathaniel Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; and
| |
Collapse
|
6
|
Thitipatarakorn S, Teeratakulpisarn N, Nonenoy S, Klinsukontakul A, Suriwong S, Makphol J, Hongchookiat P, Chaya‐ananchot T, Chinlaertworasiri N, Mingkwanrungruang P, Sacdalan C, Poltavee K, Pankam T, Kerr SJ, Ramautarsing R, Colby D, Phanuphak N. Prevalence and incidence of anal high-grade squamous intraepithelial lesions in a cohort of cisgender men and transgender women who have sex with men diagnosed and treated during acute HIV acquisition in Bangkok, Thailand. J Int AIDS Soc 2024; 27:e26242. [PMID: 38695517 PMCID: PMC11064653 DOI: 10.1002/jia2.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION Men who have sex with men (MSM), especially those living with HIV, are at an increased risk of anal cancer. The prevalence and incidence of its precursor, anal high-grade squamous intraepithelial lesions (HSILs), among MSM who started antiretroviral therapy during acute HIV acquisition are yet to be explored. METHODS Participants in an acute HIV acquisition cohort in Bangkok, Thailand, who agreed to take part in this study, were enrolled. All participants were diagnosed and started antiretroviral therapy during acute HIV acquisition. Human papillomavirus (HPV) genotyping and high-resolution anoscopy, followed by anal biopsy as indicated, were done at baseline and 6-monthly visits. RESULTS A total of 89 MSM and four transgender women were included in the analyses. Median age at enrolment was 26 years. Baseline prevalence of histologic anal HSIL was 11.8%. With a total of 147.0 person-years of follow-up, the incidence of initial histologic anal HSIL was 19.7 per 100 person-years. Factors associated with incident anal HSIL were anal HPV 16 (adjusted hazards ratio [aHR] 4.33, 95% CI 1.03-18.18), anal HPV 18/45 (aHR 6.82, 95% CI 1.57-29.51), other anal high-risk HPV (aHR 4.23, 95% CI 1.27-14.14), syphilis infection (aHR 4.67, 95% CI 1.10-19.90) and CD4 count <350 cells/mm3 (aHR 3.09, 95% CI 1.28-7.48). CONCLUSIONS With antiretroviral therapy initiation during acute HIV acquisition, we found the prevalence of anal HSIL among cisgender men and transgender women who have sex with men to be similar to those without HIV. Subsequent anal HSIL incidence, although lower than that of those with chronic HIV acquisition, was still higher than that of those without HIV. Screening for and management of anal HSIL should be a crucial part of long-term HIV care for all MSM.
Collapse
Affiliation(s)
| | | | | | | | | | - Jirat Makphol
- Institute of HIV Research and InnovationBangkokThailand
| | | | | | | | | | - Carlo Sacdalan
- SEARCH Research FoundationBangkokThailand
- Research AffairsFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | | | | | - Stephen J. Kerr
- HIV‐NATThai Red Cross AIDS Research CenterBangkokThailand
- Biostatistics Excellence CenterFaculty of MedicineChulalongkorn UniversityBangkokThailand
- The Kirby InstituteUniversity of New South WalesSydneyNew South WalesAustralia
| | | | - Donn Colby
- Institute of HIV Research and InnovationBangkokThailand
| | - Nittaya Phanuphak
- Institute of HIV Research and InnovationBangkokThailand
- Center of Excellence in Transgender HealthChulalongkorn UniversityBangkokThailand
| |
Collapse
|
7
|
Whitehill GD, Joy J, Marino FE, Krause R, Mallick S, Courtney H, Park K, Carey J, Hoh R, Hartig H, Pae V, Sarvadhavabhatla S, Donaire S, Deeks SG, Lynch RM, Lee SA, Bar KJ. Autologous neutralizing antibody responses after antiretroviral therapy in acute and early HIV-1. J Clin Invest 2024; 134:e176673. [PMID: 38652564 PMCID: PMC11142743 DOI: 10.1172/jci176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUNDEarly antiretroviral therapy initiation (ARTi) in HIV-1 restricts reservoir size and diversity while preserving immune function, potentially improving opportunities for immunotherapeutic cure strategies. For antibody-based cure approaches, the development of autologous neutralizing antibodies (anAbs) after acute/early ARTi is relevant but is poorly understood.METHODSWe characterized antibody responses in a cohort of 23 participants following ARTi in acute HIV (<60 days after acquisition) and early HIV (60-128 days after acquisition).RESULTSPlasma virus sequences at the time of ARTi revealed evidence of escape from anAbs after early, but not acute, ARTi. HIV-1 envelopes representing the transmitted/founder virus(es) (acute ARTi) or escape variants (early ARTi) were tested for sensitivity to longitudinal plasma IgG. After acute ARTi, no anAb responses developed over months to years of suppressive ART. In 2 of the 3 acute ARTi participants who experienced viremia after ARTi, however, anAbs arose shortly thereafter. After early ARTi, anAbs targeting those early variants developed between 12 and 42 weeks of ART and continued to increase in breadth and potency thereafter.CONCLUSIONResults indicate a threshold of virus replication (~60 days) required to induce anAbs, after which they continue to expand on suppressive ART to better target the range of reservoir variants.TRIAL REGISTRATIONClinicalTrials.gov NCT02656511.FUNDINGNIH grants U01AI169767, R01AI162646, UM1AI164570, UM1AI164560, U19AI096109, K23GM112526, T32AI118684, P30AI045008, P30AI027763, R24AI067039; Gilead Sciences grant INUS2361354; Viiv Healthcare grant A126326.
Collapse
Affiliation(s)
| | - Jaimy Joy
- Department of Medicine, Division of Infectious Disease, and
| | | | - Ryan Krause
- Department of Medicine, Division of Infectious Disease, and
| | | | | | - Kyewon Park
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Carey
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Hoh
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Heather Hartig
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Vivian Pae
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sannidhi Sarvadhavabhatla
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Sophia Donaire
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Rebecca M. Lynch
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | - Sulggi A. Lee
- Department of Medicine, Division of HIV, Infectious Diseases & Global Medicine, UCSF, San Francisco, California, USA
| | - Katharine J. Bar
- Department of Medicine, Division of Infectious Disease, and
- Center for AIDS Research, Virus and Reservoirs Technology Core, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Mudd JC. Quantitative and Qualitative Distinctions between HIV-1 and SIV Reservoirs: Implications for HIV-1 Cure-Related Studies. Viruses 2024; 16:514. [PMID: 38675857 PMCID: PMC11054464 DOI: 10.3390/v16040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
The persistence of the latent viral reservoir is the main hurdle to curing HIV-1 infection. SIV infection of non-human primates (NHPs), namely Indian-origin rhesus macaques, is the most relevant and widely used animal model to evaluate therapies that seek to eradicate HIV-1. The utility of a model ultimately rests on how accurately it can recapitulate human disease, and while reservoirs in the NHP model behave quantitatively very similar to those of long-term suppressed persons with HIV-1 (PWH) in the most salient aspects, recent studies have uncovered key nuances at the clonotypic level that differentiate the two in qualitative terms. In this review, we will highlight differences relating to proviral intactness, clonotypic structure, and decay rate during ART between HIV-1 and SIV reservoirs and discuss the relevance of these distinctions in the interpretation of HIV-1 cure strategies. While these, to some degree, may reflect a unique biology of the virus or host, distinctions among the proviral landscape in SIV are likely to be shaped significantly by the condensed timeframe of NHP studies. ART is generally initiated earlier in the disease course, and animals are virologically suppressed for shorter periods before receiving interventions. Because these are experimental variables dictated by the investigator, we offer guidance on study design for cure-related studies performed in the NHP model. Finally, we highlight the case of GS-9620 (Vesatolimod), an antiviral TLR7 agonist tested in multiple independent pre-clinical studies in which virological outcomes may have been influenced by study-related variables.
Collapse
Affiliation(s)
- Joseph C. Mudd
- Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
9
|
Sun L, Ma Z, Zhao X, Tan X, Tu Y, Wang J, Chen L, Chen Z, Chen G, Lan P. LRP11 promotes stem-like T cells via MAPK13-mediated TCF1 phosphorylation, enhancing anti-PD1 immunotherapy. J Immunother Cancer 2024; 12:e008367. [PMID: 38272565 PMCID: PMC10824019 DOI: 10.1136/jitc-2023-008367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Tumor-infiltrating T cells enter an exhausted or dysfunctional state, which limits antitumor immunity. Among exhausted T cells, a subset of cells with features of progenitor or stem-like cells has been identified as TCF1+ CD8+ T cells that respond to immunotherapy. In contrast to the finding that TCF1 controls epigenetic and transcriptional reprogramming in tumor-infiltrating stem-like T cells, little is known about the regulation of TCF1. Emerging data show that elevated body mass index is associated with outcomes of immunotherapy. However, the mechanism has not been clarified. METHODS We investigated the proliferation of splenic lymphocytes or CD8+ T cells induced by CD3/CD28 stimulation in vitro. We evaluated the effects of low-density lipoprotein (LDL) and LRP11 inhibitors, as well as MAPK13 inhibitors. Additionally, we used shRNA technology to validate the roles of LRP11 and MAPK13. In an in vivo setting, we employed male C57BL/6J injected with B16 cells or MC38 cells to build a tumor model to assess the effects of LDL and LRP11 inhibitors, LRP11 activators, MAPK13 inhibitors on tumor growth. Flow cytometry was used to measure cell proportions and activation status. Molecular interactions and TCF1 status were examined using Western blotting. Moreover, we employed RNA sequencing to investigate the effects of LDL stimulation and MAPK13 inhibition in CD8+ T cells. RESULTS By using a tumor-bearing mouse model, we found that LDL-induced tumor-infiltrating TCF1+PD1+CD8+ T cells. Using a cell-based chimeric receptor screening system, we showed that LRP11 interacted with LDL and activated TCF1. LRP11 activation enhanced TCF1+PD1+CD8+ T-cell-mediated antitumor immunity, consistent with LRP11 blocking impaired T-cell function. Mechanistically, LRP11 activation induces MAPK13 activation. Then, MAPK13 phosphorylates TCF1, leading to increase of stem-like T cells. CONCLUSIONS LRP11-MAPK13-TCF1 enhanced antitumor immunity and induced tumor-infiltrating stem-like T cells.
Collapse
Affiliation(s)
- Lingjuan Sun
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibo Ma
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangli Zhao
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaosheng Tan
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Tu
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Jingzeng Wang
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishui Chen
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| | - Peixiang Lan
- Institute of Organ Transplantation,Tongji Hospital, Tongji Medical College; Key Laboratory of Organ Transplantation; Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Science, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Passaes C, Desjardins D, Chapel A, Monceaux V, Lemaitre J, Mélard A, Perdomo-Celis F, Planchais C, Gourvès M, Dimant N, David A, Dereuddre-Bosquet N, Barrail-Tran A, Gouget H, Guillaume C, Relouzat F, Lambotte O, Guedj J, Müller-Trutwin M, Mouquet H, Rouzioux C, Avettand-Fenoël V, Le Grand R, Sáez-Cirión A. Early antiretroviral therapy favors post-treatment SIV control associated with the expansion of enhanced memory CD8 + T-cells. Nat Commun 2024; 15:178. [PMID: 38212337 PMCID: PMC10784587 DOI: 10.1038/s41467-023-44389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs. late (week 24 post-infection) treatment initiation in SIVmac251-infected male cynomolgus macaques receiving 2 years of therapy before analytical treatment interruption. We show that early treatment strongly promotes post-treatment control, which is not related to a lower frequency of infected cells at treatment interruption. Rather, early treatment favors the development of long-term memory CD8+ T cells with enhanced proliferative and SIV suppressive capacity that are able to mediate a robust secondary-like response upon viral rebound. Our model allows us to formally demonstrate a link between treatment initiation during primary infection and the promotion of post-treatment control and provides results that may guide the development of new immunotherapies for HIV remission.
Collapse
Affiliation(s)
- Caroline Passaes
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France.
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France.
| | - Delphine Desjardins
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Anaïs Chapel
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Julien Lemaitre
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Adeline Mélard
- Université Paris Cité; INSERM, U1016; CNRS, UMR8104, Paris, France
| | - Federico Perdomo-Celis
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Maël Gourvès
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
| | - Nastasia Dimant
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Annie David
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Aurélie Barrail-Tran
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, Service de Pharmacie, Le Kremlin Bicêtre, France
| | - Hélène Gouget
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Céline Guillaume
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Francis Relouzat
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
- Université Paris-Saclay, AP-HP. Hôpital Bicêtre, Clinical Immunology Department, 94270, Le Kremlin Bicêtre, France
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Christine Rouzioux
- Université Paris Cité/APHP Hôpital Necker - Enfants Malades, Paris, France
| | - Véronique Avettand-Fenoël
- Université Paris Cité; INSERM, U1016; CNRS, UMR8104, Paris, France
- APHP Hôpital Cochin, Service de Virologie, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, CEA, INSERM, UMR1184, Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT Department), Fontenay-aux-Roses/Le Kremlin-Bicêtre, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France.
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France.
| |
Collapse
|
11
|
Rajsic S, Breitkopf R, Kojic D, Bukumiric Z, Treml B. Extracorporeal Life Support for Patients With Newly Diagnosed HIV and Acute Respiratory Distress Syndrome: A Systematic Review and Analysis of Individual Patient Data. ASAIO J 2023; 69:e513-e519. [PMID: 37738393 DOI: 10.1097/mat.0000000000002047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) may improve survival in patients with severe acute respiratory distress syndrome (ARDS). However, presence of immunosuppression is a relative contraindication for ECMO, which is withheld in HIV patients. We performed a systematic review to investigate the outcome of newly diagnosed HIV patients with ARDS receiving ECMO support. Our search yielded 288 publications, with 22 studies finally included. Initial presentation included fever, respiratory distress, and cough. Severe immunodeficiency was confirmed in most patients. Deceased patients had a higher viral load, a lower Horovitz index, and antiretroviral therapy utilized before ECMO. Moreover, ECMO duration was longer ( p = 0.0134), and all deceased suffered from sepsis ( p = 0.0191). Finally, despite the development of therapeutic options for HIV patients, ECMO remains a relative contraindication. We found that ECMO may successfully bridge the time for pulmonary recovery in 93% of patients, with a very good outcome. Using ECMO, the time for antimicrobial therapy, lung-protective ventilation, and immune system restitution may be gained. Further studies clarifying the role of ECMO in HIV are crucial and until these data are available, ECMO might be appropriate in immunocompromised patients. This holds especially true in newly diagnosed HIV patients, who are usually young, without comorbidities, with a good rehabilitation potential.
Collapse
Affiliation(s)
- Sasa Rajsic
- From the Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Robert Breitkopf
- From the Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Dejan Kojic
- Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Zoran Bukumiric
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Benedikt Treml
- From the Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Kuse N, Gatanaga H, Zhang Y, Chikata T, Oka S, Takiguchi M. Epitope-dependent effect of long-term cART on maintenance and recovery of HIV-1-specific CD8 + T cells. J Virol 2023; 97:e0102423. [PMID: 37877716 PMCID: PMC10688310 DOI: 10.1128/jvi.01024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE HIV-1-specific CD8+ T cells are anticipated to become effector cells for curative treatment using the "shock and kill" approach in people living with HIV-1 (PLWH) under combined antiretroviral therapy (cART). Previous studies demonstrated that the frequency of HIV-1-specific CD8+ T cells is reduced under cART and their functional ability remains impaired. These studies analyzed T-cell responses to a small number of HIV-1 epitopes or overlapping HIV-1 peptides. Therefore, the features of CD8+ T cells specific for HIV-1 epitopes under cART remain only partially clarified. Here, we analyzed CD8+ T cells specific for 63 well-characterized epitopes in 90 PLWH. We demonstrated that CD8+ T cells specific for large numbers of HIV-1 epitopes were maintained in an epitope-dependent fashion under long-term cART and that long-term cART enhanced or restored the ability of HIV-1-specific T cells to proliferate in vitro. This study implies that some HIV-1-specific T cells would be useful as effector cells for curative treatment.
Collapse
Affiliation(s)
- Nozomi Kuse
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yu Zhang
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Division of International Collaboration Research and Tokyo Joint Laboratory, Department of Frontier Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Suanzes P, Navarro J, Rando-Segura A, Álvarez-López P, García J, Descalzo V, Monforte A, Arando M, Rodríguez L, Planas B, Burgos J, Curran A, Buzón MJ, Falcó V. Impact of very early antiretroviral therapy during acute HIV infection on long-term immunovirological outcomes. Int J Infect Dis 2023; 136:100-106. [PMID: 37726066 DOI: 10.1016/j.ijid.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVES We aimed to determine if starting antiretroviral therapy (ART) in the first 30 days after acquiring HIV infection has an impact on immunovirological response. METHODS Observational, ambispective study including 147 patients with confirmed acute HIV infection (January/1995-August/2022). ART was defined as very early (≤30 days after the estimated date of infection), early (31-180 days), and late (>180 days). We compared time to viral suppression (viral load [VL] <50 copies/ml) and immune recovery (IR) (CD4+/CD8+ ratio ≥1) according to the timing and type of ART using survival analysis. RESULTS ART was started in 140 (95.2%) patients. ART was very early in 24 (17.1%), early in 77 (55.0%), and late in 39 (27.9%) cases. Integrase strand transfer inhibitor (INSTI)-based regimens were the most used in both the overall population (65%) and the very early ART group (23/24, 95.8%). Median HIV VL and CD4+/CD8+ ratio pre-ART were higher in the very early ART group (P <0.05). Patients in the very early and early ART groups and treated with INSTI-based regimens achieved IR earlier (P <0.05). Factors associated with faster IR were the CD4+/CD8+ ratio pre-ART (hazard ratio: 9.3, 95% CI: 3.1-27.8, P <0.001) and INSTI-based regimens (hazard ratio: 2.4, 95% CI: 1.3-4.2, P = 0.003). CONCLUSIONS The strongest predictors of IR in patients who start ART during AHI are the CD4+/CD8+ ratio pre-ART and INSTI-based ART regimens.
Collapse
Affiliation(s)
- Paula Suanzes
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Ariadna Rando-Segura
- Microbiology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Patricia Álvarez-López
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Jorge García
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicente Descalzo
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Arnau Monforte
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maider Arando
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lucía Rodríguez
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bibiana Planas
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Joaquín Burgos
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Adrian Curran
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María José Buzón
- Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Infectious Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Takata H, Mitchell JL, Pacheco J, Pagliuzza A, Pinyakorn S, Buranapraditkun S, Sacdalan C, Leyre L, Nathanson S, Kakazu JC, Intasan J, Prueksakaew P, Chomchey N, Phanuphak N, de Souza M, Haddad EK, Rolland M, Tovanabutra S, Vasan S, Hsu DC, Chomont N, Trautmann L. An active HIV reservoir during ART is associated with maintenance of HIV-specific CD8 + T cell magnitude and short-lived differentiation status. Cell Host Microbe 2023; 31:1494-1506.e4. [PMID: 37708852 PMCID: PMC10564289 DOI: 10.1016/j.chom.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Before initiation of antiretroviral therapy (ART), HIV-specific CD8+ T cells are dysfunctional and short lived. To better understand the relationship between the HIV reservoir in CD4+ T cells and the magnitude and differentiation status of HIV-specific CD8+ T cells, we investigated these cells from acute and chronic HIV-infected individuals after 2 years of ART. Although both the HIV reservoir and the CD8+ T cell responses declined significantly after 2 years of ART, sustained HIV-specific CD8+ T cell responses correlated with a greater reduction of integrated HIV provirus. However, the magnitude of CD8+ T cells specific for HIV Gag, Pol, Nef, and Vif proteins positively associated with the active reservoir size during ART, measured as cell-associated RNA. Importantly, high HIV DNA levels strongly associate with maintenance of short-lived HIV-specific CD8+ T cells, regardless of ART initiation time. Our data suggest that the active reservoir maintains HIV-specific CD8+ T cell magnitude but prevents their differentiation into functional cells.
Collapse
Affiliation(s)
- Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Julie L Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Julian Pacheco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | | | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Louise Leyre
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Sam Nathanson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Juyeon C Kakazu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | | | | | | | | | | | - Elias K Haddad
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Denise C Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA.
| |
Collapse
|
15
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|