1
|
Lin Y, Li R, Li T, Zhao W, Ye Q, Dong C, Gao Y. A prognostic model for hepatocellular carcinoma patients based on polyunsaturated fatty acid-related genes. ENVIRONMENTAL TOXICOLOGY 2024; 39:4649-4668. [PMID: 38682322 DOI: 10.1002/tox.24273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Polyunsaturated fatty acids (PUFAs) have attracted increasing attention for their role in liver cancer development. The objective of this study is to develop a prognosis prediction model for patients with liver cancer based on PUFA-related metabolic gene characteristics. METHOD Transcriptome data and clinical data were obtained from public databases, while gene sets related to PUFAs were acquired from the gene set enrichment analysis (GSEA) database. Univariate Cox analysis was conducted on the training set, followed by LASSO logistic regression and multivariate Cox analysis on genes with p < .05. Subsequently, the stepwise Akaike information criterion method was employed to construct the model. The high- and low-risk groups were divided based on the median score, and the model's survival prediction ability, diagnostic efficiency, and risk score distribution of clinical features were validated. The above procedures were also validated in the validation set. Immune infiltration levels were evaluated using four algorithms, and the immunotherapeutic potential of different groups was explored. Significant enrichment pathways among different groups were selected based on the GSEA algorithm, and mutation analyses were conducted. Nomogram prognostic models were constructed by incorporating clinical factors and risk scores using univariate and multivariate Cox regression analysis, validated through calibration curves and clinical decision curves. Additionally, sensitivity analysis of drugs was performed to screen potential targeted drugs. RESULTS We constructed a prognostic model comprising eight genes (PLA2G12A, CYP2C8, ABCCI, CD74, CCR7, P2RY4, P2RY6, and YY1). Validation across multiple datasets indicated the model's favorable prognostic prediction ability and diagnostic efficiency, with poorer grading and staging observed in the high-risk group. Variations in mutation status and pathway enrichment were noted among different groups. Incorporating Stage, Grade, T.Stage, and RiskScore into the nomogram prognostic model demonstrated good accuracy and clinical decision benefits. Multiple immune analyses suggested greater benefits from immunotherapy in the low-risk group. We predicted multiple targeted drugs, providing a basis for drug development. CONCLUSION Our study's multifactorial prognostic model across multiple datasets demonstrates good applicability, offering a reliable tool for personalized therapy. Immunological and mutation-related analyses provide theoretical foundations for further research. Drug predictions offer important insights for future drug development and treatment strategies. Overall, this study provides comprehensive insights into tumor prognosis assessment and personalized treatment planning.
Collapse
Affiliation(s)
- Yun Lin
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Ruihao Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Tong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenrong Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Qianling Ye
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Harris WS, Westra J, Tintle NL, Sala-Vila A, Wu JH, Marklund M. Plasma n6 polyunsaturated fatty acid levels and risk for total and cause-specific mortality: A prospective observational study from the UK Biobank. Am J Clin Nutr 2024; 120:936-942. [PMID: 39181205 DOI: 10.1016/j.ajcnut.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The potential role of n-6 PUFAs in major health outcomes remains controversial. OBJECTIVES To examine the relationship between the major plasma n6 PUFA, linoleic acid (LA), as well as the non-LA n6 PUFAs, and total and cause-specific mortality. METHODS This was a prospective, observational, biomarker-based study in the UK Biobank. Individuals with complete information on baseline demographic, covariate and plasma PUFA levels (percent ot total fatty acids) and mortality outcomes were included (n=257,925). Multivariable-adjusted, Cox-proportional hazards models were used to predict risk of death from all-causes, and from cardiovascular disease (CVD), cancer, and other causes as a function of plasma LA and non-LA n6 levels, both continuously and by PUFA quintile (Q). RESULTS Comparing LA Q5 to Q1, the hazard ratio (HR, 95% CI) for total mortality was 0.80 (0.76, 0.84; p<0.001), and this was similar for all three cause-specific death categories. On the other hand, mortality HR for non-LA n6 was 1.12 (1.08,1.17; p<0.001), and this was primarily due to increased risk for non-CVD, noncancer deaths [HR 1.29 (1.19,1.40; p<0.001)]. Exploratory analyses among the eight next most common other causes of death suggested that both the decreased risk associated with higher LA and the increased risk associated with non-LA n6 were confined to deaths from respiratory and digestive diseases. CONCLUSIONS These findings highlight the profound differences in mortality risk related to LA and non-LA n6 PUFA levels and underscore the inappropriateness of treating n-6 PUFAs as a homogenous class with respect to health outcomes. They also support recommendations to maintain (if not increase) current LA intakes.
Collapse
Affiliation(s)
- William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, United States; Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, United States.
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, United States
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, United States; Department of Population Health Nursing Science, College of Nursing, University of Illinois-Chicago, Chicago, IL, United States
| | - Aleix Sala-Vila
- Fatty Acid Research Institute, Sioux Falls, SD, United States; Hospital del Mar Research Institute, Barcelona, Spain
| | - Jason Hy Wu
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Australia; The School of Population Health, UNSW Sydney, Sydney, Australia
| | - Matti Marklund
- The George Institute for Global Health, Faculty of Medicine and Health, University of New South Wales, Australia; The School of Population Health, UNSW Sydney, Sydney, Australia; Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden; The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
3
|
Li C, Wang H, Fan Y, Zhou Z, Li Y, Liang S, Ma Y, Zhang S. The Characteristics of Milk Fatty Acid Profile Predicted by Fourier-Transform Mid-Infrared Spectroscopy (FT-MIRS) in Chinese Holstein Cows. Animals (Basel) 2024; 14:2785. [PMID: 39409734 PMCID: PMC11475611 DOI: 10.3390/ani14192785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Fatty acid is an important factor affecting the nutritional quality of milk. In this study, we collected and assessed 78,086 milk samples from 12,065 Chinese Holstein cows from 11 farms in Northern China from November 2019 to September 2022. The contents of eight fatty acid groups were predicted using FT-MIRS-based models. The contents of TFAs, SFAs, UFAs, MUFAs, PUFAs, and LCFAs in milk reached the highest at 96-125 DIM, and SCFA and MCFA contents reached the highest at 276-305 DIM. With the increase in somatic cell score, the contents of various fatty acid groups in milk gradually decreased, and the nutritional value of milk and flavor of dairy products gradually deteriorated. The contents of high-quality fatty acids in milk, particularly UFAs and MUFAs, were significantly higher in the non-pregnant state than in the pregnant state. However, SCFA and MCFA contents exhibited the opposite pattern. Our findings provided valuable information on the content and distribution range of fatty acid groups in milk from Chinese Holstein cows. Further analysis is warranted to explore the breeding of Chinese Holstein cows providing milk with abundant beneficial fatty acids.
Collapse
Affiliation(s)
- Chunfang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.L.); (H.W.); (Y.F.)
- Hebei Livestock Breeding Station, Shijiazhuang 050060, China; (Z.Z.); (Y.L.); (S.L.)
| | - Haitong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.L.); (H.W.); (Y.F.)
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Zengpo Zhou
- Hebei Livestock Breeding Station, Shijiazhuang 050060, China; (Z.Z.); (Y.L.); (S.L.)
| | - Yuanbao Li
- Hebei Livestock Breeding Station, Shijiazhuang 050060, China; (Z.Z.); (Y.L.); (S.L.)
| | - Shengchao Liang
- Hebei Livestock Breeding Station, Shijiazhuang 050060, China; (Z.Z.); (Y.L.); (S.L.)
| | - Yabin Ma
- Hebei Livestock Breeding Station, Shijiazhuang 050060, China; (Z.Z.); (Y.L.); (S.L.)
- The Technology Innovation Center of Cattle Germplasm Resources in Hebei Province, Shijiazhuang 050060, China
| | - Shujun Zhang
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Shao Y, Wang S, Xu X, Sun C, Cai F, Guo Q, Wu M, Yang M, Wu X. Non-Specific Elevated Serum Free Fatty Acids in Lung Cancer Patients: Nutritional or Pathological? Nutrients 2024; 16:2884. [PMID: 39275200 PMCID: PMC11396813 DOI: 10.3390/nu16172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
IMPORTANCE The reprogramming of lipid metabolism is a significant feature of tumors, yet the circulating levels of fatty acids in lung cancer patients remain to be explored. Moreover, the association between fatty acid levels and related factors, including nutritional intake, tumor metabolism, and tumor immunity, has been rarely discussed. OBJECTIVES To explore the differences in serum free fatty acids between lung cancer patients and healthy controls, and investigate the factors associated with this phenomenon. DESIGN AND PARTICIPANTS A case-control study enrolled 430 primary lung cancer patients and 430 healthy controls. The whole population had a medium [Q1, Q3] age of 48.0 [37.0, 58.9] years, with females comprising 56% of the participants. The absolute quantification of 27 serum free fatty acids (FFAs) was measured using a liquid chromatography-mass spectrometry (LC-MS/MS) detection. Data, including dietary intake, blood indicators, and gene expression of lung tissues, were obtained from questionnaires, blood tests, and RNA-sequencing. Statistical differences in FFA levels between lung cancer patients and healthy controls were investigated, and related contributing factors were explored. RESULTS Levels of 22 FFAs were significantly higher in lung cancer patients compared to those in healthy controls, with fold changes ranging from 1.14 to 1.69. Lung cancer diagnosis models built with clinical and FFA features yielded an area under the receiver operating characteristic curve (AUROC) of 0.830 (0.780-0.880). Total fatty acids (TFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs) showed no significant dietary-serum associations, indicating that the elevations might not be attributed to an excessive intake of relevant fatty acids from the diet. For RNA-sequencing of lung tissues, among the 68 lipid metabolism genes, 26 genes showed significant upregulation (FDR < 0.05), while 33 genes exhibited significant downregulation, indicating the involvement of the fatty acids in the tumor metabolism. Through joint analysis with immune cells and inflammatory factors in the blood, fatty acids might exert suppressing effects on tumor immunity. CONCLUSIONS Lung cancer patients had elevated levels of serum free fatty acids compared to healthy individuals. The elevations might not be attributed to an excessive intake of relevant fatty acids from the diet but related to pathological factors of tumor metabolism and immunity. These findings will complement research on fatty acid metabolism of lung cancer and provide insights into potential intervention targets.
Collapse
Affiliation(s)
- Yelin Shao
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sicong Wang
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaohang Xu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ce Sun
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Cai
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qian Guo
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Min Yang
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, China
| | - Xifeng Wu
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou 310058, China
- School of Medicine and Health Science, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
5
|
Sun G, Li YN, Davies JR, Block RC, Kothapalli KS, Brenna JT, Hull MA. Fatty acid desaturase insertion-deletion polymorphism rs66698963 predicts colorectal polyp prevention by the n-3 fatty acid eicosapentaenoic acid: a secondary analysis of the seAFOod polyp prevention trial. Am J Clin Nutr 2024; 120:360-368. [PMID: 38879016 PMCID: PMC11347814 DOI: 10.1016/j.ajcnut.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND A fatty acid desaturase (FADS) insertion-deletion (Indel) polymorphism (rs66698963) influences the expression of FADS1, which controls the synthesis of n-6 highly unsaturated fatty acid (HUFA) arachidonic acid (AA). The anti-inflammatory activity of the n-3 HUFA eicosapentaenoic acid (EPA) may be explained by competition with AA for proinflammatory lipid mediator synthesis. A precision medicine approach based on stratification by FADS Indel genotype could identify individuals, who benefit from greatest disease risk reduction by n-3 HUFAs. OBJECTIVES We tested the hypothesis that the FADS insertion (I) allele predicts colorectal polyp risk reduction in a secondary analysis of the randomized, placebo-controlled, 2×2 factorial seAFOod polyp prevention trial of EPA 2000 mg daily and aspirin 300 mg daily for 12 mo (ISRCTN05926847). METHODS Participant Indel genotype was determined by polymerase chain reaction (PCR) blind to trial outcomes. Colorectal polyp outcomes were included in negative binomial (polyp number) and logistic (polyp detection rate [PDR; percentage with one or more polyps]) regression models comparing each active intervention with its placebo. Presence of ≥1 Indel I allele and an interaction term (I allele × active intervention) were covariates. RESULTS In 528 participants with colonoscopy and FADS Indel data, EPA use irrespective of Indel genotype, was not associated with reduced colorectal polyp number (incidence rate ratio [IRR]: 0.92; 95% confidence interval: 0.74, 1.16), mirroring original seAFOod trial analysis. However, the presence of ≥1 I allele identified EPA users with a significant reduction in colorectal polyp number (IRR: 0.50 [0.28, 0.90]), unlike aspirin, for which there was no interaction. Similar findings were obtained for the PDR. CONCLUSIONS The FADS Indel I allele identified individuals, who displayed colorectal polyp prevention by EPA with a similar effect size to aspirin. Assessment of rs66698963 as a biomarker of therapeutic response to n-3 HUFAs in other populations and healthcare settings is warranted. The seAFOod polyp prevention trial and STOP-ADENOMA study were registered at International Standard Randomised Controlled Trial Number registry as ISRCTN05926847.
Collapse
Affiliation(s)
- Ge Sun
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Yan Ning Li
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, TX, United States; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
| | - John R Davies
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester, Rochester, NY, United States; Cardiovascular Division of the Department of Medicine, University of Rochester, Rochester, NY, United States; Center for Community Health and Prevention, University of Rochester, Rochester, NY, United States
| | - Kumar Sd Kothapalli
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, TX, United States; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
| | - J Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, TX, United States; Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Mark A Hull
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
6
|
Wu B, Pan F, Wang Q, Liang Q, Qiu H, Zhou S, Zhou X. Association between blood metabolites and basal cell carcinoma risk: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1413777. [PMID: 39045268 PMCID: PMC11263015 DOI: 10.3389/fendo.2024.1413777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Background Circulating metabolites, which play a crucial role in our health, have been reported to be disordered in basal cell carcinoma (BCC). Despite these findings, evidence is still lacking to determine whether these metabolites directly promote or prevent BCC's progression. Therefore, our study aims to examine the potential effects of circulating metabolites on BCC progression. Material and methods We conducted a two-sample Mendelian randomization (MR) analysis using data from two separate genome-wide association studies (GWAS). The primary study included data for 123 blood metabolites from a GWAS with 25,000 Finnish individuals, while the secondary study had data for 249 blood metabolites from a GWAS with 114,000 UK Biobank participants.GWAS data for BCC were obtained from the UK Biobank for the primary analysis and the FinnGen consortium for the secondary analysis. Sensitivity analyses were performed to assess heterogeneity and pleiotropy. Results In the primary analysis, significant causal relationships were found between six metabolic traits and BCC with the inverse variance weighted (IVW) method after multiple testing [P < 4 × 10-4 (0.05/123)]. Four metabolic traits were discovered to be significantly linked with BCC in the secondary analysis, with a significance level of P < 2 × 10-4 (0.05/249). We found that all the significant traits are linked to Polyunsaturated Fatty Acids (PUFAs) and their degree of unsaturation. Conclusion Our research has revealed a direct link between the susceptibility of BCC and Polyunsaturated Fatty Acids and their degree of unsaturation. This discovery implies screening and prevention of BCC.
Collapse
Affiliation(s)
- Bingliang Wu
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - FuQiang Pan
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - QiaoQi Wang
- Department of Health Examination Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qian Liang
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - HouHuang Qiu
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - SiYuan Zhou
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Zhou
- Department of Medical Cosmetology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Xu X, Xu X, Zakeri MA, Wang SY, Yan M, Wang YH, Li L, Sun ZL, Wang RY, Miao LZ. Assessment of causal relationships between omega-3 and omega-6 polyunsaturated fatty acids in autoimmune rheumatic diseases: a brief research report from a Mendelian randomization study. Front Nutr 2024; 11:1356207. [PMID: 38863588 PMCID: PMC11165037 DOI: 10.3389/fnut.2024.1356207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Background Currently, the association between the consumption of polyunsaturated fatty acids (PUFAs) and the susceptibility to autoimmune rheumatic diseases (ARDs) remains conflict and lacks substantial evidence in various clinical studies. To address this issue, we employed Mendelian randomization (MR) to establish causal links between six types of PUFAs and their connection to the risk of ARDs. Methods We retrieved summary-level data on six types of PUFAs, and five different types of ARDs from publicly accessible GWAS statistics. Causal relationships were determined using a two-sample MR analysis, with the IVW approach serving as the primary analysis method. To ensure the reliability of our research findings, we used four complementary approaches and conducted multivariable MR analysis (MVMR). Additionally, we investigated reverse causality through a reverse MR analysis. Results Our results indicate that a heightened genetic predisposition for elevated levels of EPA (ORIVW: 0.924, 95% CI: 0.666-1.283, P IVW = 0.025) was linked to a decreased susceptibility to psoriatic arthritis (PsA). Importantly, the genetically predicted higher levels of EPA remain significantly associated with an reduced risk of PsA, even after adjusting for multiple testing using the FDR method (P IVW-FDR-corrected = 0.033) and multivariable MR analysis (P MV-IVW < 0.05), indicating that EPA may be considered as the risk-protecting PUFAs for PsA. Additionally, high levels of LA showed a positive causal relationship with a higher risk of PsA (ORIVW: 1.248, 95% CI: 1.013-1.538, P IVW = 0.037). It is interesting to note, however, that the effects of these associations were weakened in our MVMR analyses, which incorporated adjustment for lipid profiles (P MV-IVW > 0.05) and multiple testing using the FDR method (P IVW-FDR-corrected = 0.062). Moreover, effects of total omega-3 PUFAs, DHA, EPA, and LA on PsA, were massively driven by SNP effects in the FADS gene region. Furthermore, no causal association was identified between the concentrations of other circulating PUFAs and the risk of other ARDs. Further analysis revealed no significant horizontal pleiotropy and heterogeneity or reverse causality. Conclusion Our comprehensive MR analysis indicated that EPA is a key omega-3 PUFA that may protect against PsA but not other ARDs. The FADS2 gene appears to play a central role in mediating the effects of omega-3 PUFAs on PsA risk. These findings suggest that EPA supplementation may be a promising strategy for preventing PsA onset. Further well-powered epidemiological studies and clinical trials are warranted to explore the potential mechanisms underlying the protective effects of EPA in PsA.
Collapse
Affiliation(s)
- Xiao Xu
- School of Nursing, Nantong Health College of Jiangsu Province, Nantong, China
| | - Xu Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mohammad Ali Zakeri
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shu-Yun Wang
- Department of Postgraduate, St. Paul University Philippines, Tuggegarau, Philippines
| | - Min Yan
- Department of Epidemiology, School of Public Health, Changzhou University, Changzhou, China
- Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Yuan-Hong Wang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Li
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-ling Sun
- Department of Epidemiology, School of Public Health, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong-Yun Wang
- Department of Rheumatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin-Zhong Miao
- Department of Nursing, Children’s Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Ping P, Li J, Xu X. The value of plasma omega-3 polyunsaturated fatty acids in predicting the response and prognosis of cervical squamous cell carcinoma patients to concurrent chemoradiotherapy. Front Pharmacol 2024; 15:1379508. [PMID: 38860167 PMCID: PMC11163051 DOI: 10.3389/fphar.2024.1379508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Background: In recent years, abnormalities in plasma omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been proven to be related to the risk of cancer, but their prognostic value for cancer is unclear. The purpose of this study was to retrospectively evaluate the response and prognostic significance of plasma omega-3 PUFAs in patients with cervical squamous cell carcinoma (CSCC) treated with concurrent chemoradiotherapy (CCRT). Spearman rank correlation analysis was used to analyze the correlation between omega-3 PUFAs and squamous cell carcinoma antigen (SCC-Ag) levels. Methods: A total of 89 patients with CSCC who underwent CCRT were evaluated retrospectively. Binary logistic regression analysis was used to analyze the independent predictors related to complete response (CR) after CCRT. A Cox proportional hazard model and Kaplan-Meier analysis were utilized to perform survival analysis. Results: According to multivariate logistic regression analyses, a high level of plasma EPA was independently correlated with an increased incidence of CR after CCRT (odds ratio (OR), 0.980; 95% confidence interval (CI), 0.962-0.999, p = 0.038). With a median follow-up of 41.3 months, the CSCC patients in the high EPA (≥46.0 nmol/mL) group exhibited longer OS and PFS. According to our multivariate analysis, pretreatment plasma EPA level was an independent prognostic factor for PFS in patients with CSCC who underwent CCRT (hazard ratio (HR), 0.263; 95% CI, 0.089-0.782, p = 0.016). However, it was not an independent prognostic factor of OS. Spearman rank correlation analysis revealed was a negative correlation between pretreatment SCC-Ag (pre SCC-Ag) levels and EPA levels (r = -0.305, p = 0.004), and a weak negative correlation between posttreatment SCC-Ag (post SCC-Ag) levels and EPA levels (r = -0.251, p = 0.018). Conclusion: Plasma omega-3 PUFAs are related to the response and survival outcome of patients with CSCC who underwent CCRT. Pretreatment plasma EPA levels may be a promising biomarker for predicting the response and prognosis of patients with CSCC who undergo CCRT. In addition, the pretreatment plasma EPA levels presented a negative correlation with the SCC-Ag levels.
Collapse
Affiliation(s)
| | - Juan Li
- *Correspondence: Juan Li, ; Xiaoying Xu,
| | | |
Collapse
|
9
|
Wang S, Li Z, Zhou Z, Kang M. Causal analysis of gastroesophageal reflux disease and esophageal cancer. Medicine (Baltimore) 2024; 103:e37433. [PMID: 38489737 PMCID: PMC10939529 DOI: 10.1097/md.0000000000037433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Patients with gastroesophageal reflux disease (GERD) are more likely to develop esophageal cancer (EC). However, a causal relationship between the 2 has been difficult to determine. Therefore, this study aimed to evaluate the impact of GERD on EC using the Mendelian randomization (MR) method. The causal association between GERD and EC was analyzed based on 2 publicly available genetic summary datasets for the GERD cohort (129,080 cases vs 473,524 controls) and the EC cohort (740 cases vs 372,016 controls). The causal inference was mainly evaluated by the inverse variance weighted MR. The MR-Egger regression, MR Pleiotropy Residual Sum and Outlier test, and leave-one-out test were used to confirm the sensitivity of the MR results. Possible interfering factors were excluded by multivariate MR (MVMR) analysis. We used 73 single nucleotide polymorphisms as instrumental variables. GERD was associated with increasing EC risk (odds ratio [OR], 1.001; 95% confidence interval, 1.001-1.002; P < .001), which was identified using the inverse variance weighted method. The sensitivity analysis also demonstrated similar results with the causal explanation, and major bias in genetic pleiotropy was not identified (intercept, 0.001; standard error, 0.001; P = .418). The multivariate MR analysis demonstrated the effect of GERD on EC even after excluding possible mediating factors (OR, 1.003; 95% confidence interval, 1.001-1.005; P = .012). This study confirmed that GERD has a causal effect on EC. Therefore, interventional measures are recommended to prevent EC.
Collapse
Affiliation(s)
- Shuangyue Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Zhiru Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ziyan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Tumor Radiation Therapy Clinical Medical Research Center, Nanning, Guangxi, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| |
Collapse
|
10
|
Suda A, Umaru BA, Yamamoto Y, Shima H, Saiki Y, Pan Y, Jin L, Sun J, Low YLC, Suzuki C, Abe T, Igarashi K, Furukawa T, Owada Y, Kagawa Y. Polyunsaturated fatty acids-induced ferroptosis suppresses pancreatic cancer growth. Sci Rep 2024; 14:4409. [PMID: 38388563 PMCID: PMC10884029 DOI: 10.1038/s41598-024-55050-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/20/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Akane Suda
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Banlanjo Abdulaziz Umaru
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Center for Childhood Cancer Research, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Yui Yamamoto
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yijun Pan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jiaqi Sun
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yi Ling Clare Low
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Chitose Suzuki
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
11
|
Hagihara M, Kato H, Yamashita M, Shibata Y, Umemura T, Mori T, Hirai J, Asai N, Mori N, Mikamo H. Lung cancer progression alters lung and gut microbiomes and lipid metabolism. Heliyon 2024; 10:e23509. [PMID: 38169741 PMCID: PMC10758782 DOI: 10.1016/j.heliyon.2023.e23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Despite advances in medical technology, lung cancer still has one of the highest mortality rates among all malignancies. Therefore, efforts must be made to understand the precise mechanisms underlying lung cancer development. In this study, we conducted lung and gut microbiome analyses and a comprehensive lipid metabolome analysis of host tissues to assess their correlation. Alternations in the lung microbiome due to lung cancer, such as a significantly decreased abundance of Firmicutes and Deferribacterota, were observed compared to a mock group. However, mice with lung cancer had significantly lower relative abundances of Actinobacteria and Proteobacteria and higher relative abundances of Cyanobacteria and Patescibacteria in the gut microbiome. The activations of retinol, fatty acid metabolism, and linoleic acid metabolism metabolic pathways in the lung and gut microbiomes was inversely correlated. Additionally, changes occurred in lipid metabolites not only in the lungs but also in the blood, small intestine, and colon. Compared to the mock group, mice with lung cancer showed that the levels of adrenic, palmitic, stearic, and oleic (a ω-9 polyunsaturated fatty acid) acids increased in the lungs. Conversely, these metabolites consistently decreased in the blood (serum) and colon. Leukotriene B4 and prostaglandin E2 exacerbate lung cancer, and were upregulated in the lungs of the mice with lung cancer. However, isohumulone, a peroxisome proliferator-activated receptor gamma activator, and resolvin (an ω-3 polyunsaturated fatty acid) both have anti-cancer effects, and were upregulated in the small intestine and colon. Our multi-omics data revealed that shifts in the microbiome and metabolome occur during the development of lung cancer and are of possible clinical importance. These results reveal one of the gut-lung axis mechanisms related to lung cancer and provide insights into potential new targets for lung cancer treatment and prophylaxis.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, 480-1195, Japan
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hideo Kato
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Makoto Yamashita
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Yuichi Shibata
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Takumi Umemura
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Jun Hirai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Nobuhiro Asai
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Nobuaki Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Nagakute, 480-1195, Japan
| |
Collapse
|
12
|
Astore C, Gibson G. Integrative polygenic analysis of the protective effects of fatty acid metabolism on disease as modified by obesity. Front Nutr 2024; 10:1308622. [PMID: 38303904 PMCID: PMC10832455 DOI: 10.3389/fnut.2023.1308622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Dysregulation of fatty acid metabolites can play a crucial role in the progression of complex diseases, such as cardiovascular disease, digestive diseases, and metabolic diseases. Metabolites can have either protective or risk effects on a disease; however, the details of such associations remain contentious. In this study, we demonstrate an integrative PheWAS approach to establish high confidence, causally suggestive of metabolite-disease associations for three fatty acid metabolites, namely, omega-3 fatty acids, omega-6 fatty acids, and docosahexaenoic acid, for 1,254 disease endpoints. Metabolite-disease associations were established if there was a concordant direction of effect and significance for metabolite level and genetic risk score for the metabolite. There was enrichment for metabolite associations with diseases of the respiratory system for omega-3 fatty acids, diseases of the circulatory system and endocrine system for omega-6 fatty acids, and diseases of the digestive system for docosahexaenoic acid. Upon performing Mendelian randomization on a subset of the outcomes, we identified 3, 6, and 15 significant diseases associated with omega-3 fatty acids, omega-6 fatty acids, and docosahexaenoic acid, respectively. We then demonstrate a class of prevalence-risk relationships indicative of (de)canalization of disease under high and low fatty acid metabolite levels. Finally, we show that the interaction between the metabolites and obesity demonstrates that the degree of protection afforded by fatty acid metabolites is strongly modulated by underlying metabolic health. This study evaluated the disease architectures of three polyunsaturated fatty acids (PUFAs), which were validated by several PheWAS modes of support. Our results not only highlight specific diseases associated with each metabolite but also disease group enrichments. In addition, we demonstrate an integrative PheWAS methodology that can be applied to other components of the human metabolome or other traits of interest. The results of this study can be used as an atlas to cross-compare genetic with non-genetic disease associations for the three PUFAs investigated. The findings can be explored through our R shiny app at https://pufa.biosci.gatech.edu.
Collapse
Affiliation(s)
| | - Greg Gibson
- Center for Integrative Genomics and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
13
|
Azrita A, Syandri H, Zakeri H, Damanhuri H, Aryani N. Analysis of Fatty Acids and Amino Acids of Three Local Freshwater Bagridae Fish Species in the Kampar Kanan River, Indonesia, for Food Security. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6639837. [PMID: 38223909 PMCID: PMC10783984 DOI: 10.1155/2024/6639837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Fish have become an irreplaceable dietary source of animal protein, especially among households with low socioeconomic status in rural and urban areas of Indonesia. This study is aimed at analysing the proximate composition, minerals, fatty acids, and amino acids of three local Bagridae fish species in the Kampar Kanan river, Indonesia. The standard AOAC method was employed to examine the proximate composition of the carcass, and the analysis of amino acids and fatty acids was conducted through HPLC and GC-MS, respectively. The mineral content was determined using AAS. The nutrient composition results of Hemibagrus nemurus, Hemibagrus wyckii, and Mystus nigriceps revealed that the protein content was 24.26%, 22.57%, and 21.39% (% dry weight), whereas the total lipid content was 6.64%, 7.47%, and 7.75%, respectively. Regarding mineral contents, the calcium levels ranged from 1.49 to 1.66 mg/g, iron levels from 28.35 to 40.36 μg/g, and zinc levels from 24.03 to 54.46 μg/g. Among the fatty acids, palmitic acid was the most abundant in all three species, accounting for 25.59-30.70% of the total fatty acids. Additionally, significant amounts of C18:1 (oleic acid), C18:0 (stearic acid), and C20:4 (arachidonic acid) were also detected as primary fatty acids. The calculated atherogenic index values in the three species of Bagridae fish ranged from 0.73 to 0.99, while the thrombogenic index values varied between 0.54 and 0.75. The predominant amino acids found in the three species of Bagridae fish were glutamic acid with their concentrations ranging from 9.10 to 24.34%. These results indicate that consuming the meat of these three freshwater Bagridae fish species caught in the wild does not pose any health risks to consumers. They can be considered a safe and suitable food source with good nutritional quality.
Collapse
Affiliation(s)
- Azrita Azrita
- Faculty of Fisheries and Marine Science, Bung Hatta University, 25131 Padang, West Sumatra Province, Indonesia
| | - Hafrijal Syandri
- Faculty of Fisheries and Marine Science, Bung Hatta University, 25131 Padang, West Sumatra Province, Indonesia
| | - HazlinaAhamad Zakeri
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Malaysia
| | - Harfiandri Damanhuri
- Faculty of Fisheries and Marine Science, Bung Hatta University, 25131 Padang, West Sumatra Province, Indonesia
| | - Netti Aryani
- Faculty of Fisheries and Marine Science, Riau University, 28293 Pekanbaru, Riau Province, Indonesia
| |
Collapse
|
14
|
Kancha MM, Mehrabi M, Bitaraf FS, Vahedi H, Alizadeh M, Bernkop-Schnürch A. Preparation, Characterization, and Anticancer Activity Assessment of Chitosan/TPP Nanoparticles Loaded with Echis carinatus Venom. Anticancer Agents Med Chem 2024; 24:533-543. [PMID: 38243949 DOI: 10.2174/0118715206279731231129105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 11/07/2023] [Indexed: 01/22/2024]
Abstract
AIMS AND BACKGROUND Echis carinatus venom is a toxic substance naturally produced by special glands in this snake species. Alongside various toxic properties, this venom has been used for its therapeutic effects, which are applicable in treating various cancers (liver, breast, etc.). OBJECTIVE Nanotechnology-based drug delivery systems are suitable for protecting Echis carinatus venom against destruction and unwanted absorption. They can manage its controlled transfer and absorption, significantly reducing side effects. METHODS In the present study, chitosan nanoparticles were prepared using the ionotropic gelation method with emulsion cross-linking. The venom's encapsulation efficiency, loading capacity, and release rate were calculated at certain time points. Moreover, the nanoparticles' optimal formulation and cytotoxic effects were determined using the MTT assay. RESULTS The optimized nanoparticle formulation increases cell death induction in various cancerous cell lines. Moreover, chitosan nanoparticles loaded with Echis carinatus venom had a significant rate of cytotoxicity against cancer cells. CONCLUSION It is proposed that this formulation may act as a suitable candidate for more extensive assessments of cancer treatment using nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Bull C, Hazelwood E, Bell JA, Tan V, Constantinescu AE, Borges C, Legge D, Burrows K, Huyghe JR, Brenner H, Castellvi-Bel S, Chan AT, Kweon SS, Le Marchand L, Li L, Cheng I, Pai RK, Figueiredo JC, Murphy N, Gunter MJ, Timpson NJ, Vincent EE. Identifying metabolic features of colorectal cancer liability using Mendelian randomization. eLife 2023; 12:RP87894. [PMID: 38127078 PMCID: PMC10735227 DOI: 10.7554/elife.87894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Recognizing the early signs of cancer risk is vital for informing prevention, early detection, and survival. Methods To investigate whether changes in circulating metabolites characterize the early stages of colorectal cancer (CRC) development, we examined the associations between a genetic risk score (GRS) associated with CRC liability (72 single-nucleotide polymorphisms) and 231 circulating metabolites measured by nuclear magnetic resonance spectroscopy in the Avon Longitudinal Study of Parents and Children (N = 6221). Linear regression models were applied to examine the associations between genetic liability to CRC and circulating metabolites measured in the same individuals at age 8 y, 16 y, 18 y, and 25 y. Results The GRS for CRC was associated with up to 28% of the circulating metabolites at FDR-P < 0.05 across all time points, particularly with higher fatty acids and very-low- and low-density lipoprotein subclass lipids. Two-sample reverse Mendelian randomization (MR) analyses investigating CRC liability (52,775 cases, 45,940 controls) and metabolites measured in a random subset of UK Biobank participants (N = 118,466, median age 58 y) revealed broadly consistent effect estimates with the GRS analysis. In conventional (forward) MR analyses, genetically predicted polyunsaturated fatty acid concentrations were most strongly associated with higher CRC risk. Conclusions These analyses suggest that higher genetic liability to CRC can cause early alterations in systemic metabolism and suggest that fatty acids may play an important role in CRC development. Funding This work was supported by the Elizabeth Blackwell Institute for Health Research, University of Bristol, the Wellcome Trust, the Medical Research Council, Diabetes UK, the University of Bristol NIHR Biomedical Research Centre, and Cancer Research UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol - http://www.bristol.ac.uk/acrc/.
Collapse
Affiliation(s)
- Caroline Bull
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Emma Hazelwood
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Joshua A Bell
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Vanessa Tan
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Andrei-Emil Constantinescu
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Carolina Borges
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Danny Legge
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sergi Castellvi-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of BarcelonaBarcelonaSpain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard UniversityBostonUnited States
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard UniversityBostonUnited States
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical SchoolGwangjuRepublic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun HospitalHwasunRepublic of Korea
| | | | - Li Li
- Department of Family Medicine, University of VirginiaCharlottesvilleUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San FranciscoSan FranciscoUnited States
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San FranciscoSan FranciscoUnited States
| | - Rish K Pai
- Department of Pathology and Laboratory Medicine, Mayo ClinicScottsdaleUnited States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on CancerLyonFrance
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College LondonLondonUnited Kingdom
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| | - Emma E Vincent
- MRC Integrative Epidemiology Unit at the University of BristolBristolUnited Kingdom
- Population Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
- Translational Health Sciences, Bristol Medical School, University of BristolBristolUnited Kingdom
| |
Collapse
|
16
|
Hoang T, Cho S, Choi JY, Kang D, Shin A. Assessments of dietary intake and polygenic risk score in associations with colorectal cancer risk: evidence from the UK Biobank. BMC Cancer 2023; 23:993. [PMID: 37853340 PMCID: PMC10583398 DOI: 10.1186/s12885-023-11482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND This study aimed to explore the potential interaction between dietary intake and genetics on incident colorectal cancer (CRC) and whether adherence to healthy dietary habits could attenuate CRC risk in individuals at high genetic risk. METHODS We analyzed prospective cohort data of 374,004 participants who were free of any cancers at enrollment in UK Biobank. Dietary scores were created based on three dietary recommendations of the World Cancer Research Fund (WCRF) and the overall effects of 11 foods on CRC risks using the inverse-variance (IV) method. Genetic risk was assessed using a polygenic risk score (PRS) capturing overall CRC risk. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% CIs (confidence intervals) of associations. Interactions between dietary factors and the PRS were examined using a likelihood ratio test to compare models with and without the interaction term. RESULTS During a median follow-up of 12.4 years, 4,686 CRC cases were newly diagnosed. Both low adherence to the WCRF recommendations (HR = 1.12, 95% CI = 1.05-1.19) and high IV-weighted dietary scores (HR = 1.27, 95% CI = 1.18-1.37) were associated with CRC risks. The PRS of 98 genetic variants was associated with an increased CRC risk (HRT3vsT1 = 2.12, 95% CI = 1.97-2.29). Participants with both unfavorable dietary habits and a high PRS had a more than twofold increased risk of developing CRC; however, the interaction was not significant. Adherence to an overall healthy diet might attenuate CRC risks in those with high genetic risks (HR = 1.21, 95% CI = 1.08-1.35 for high vs. low IV-weighted dietary scores), while adherence to WCRF dietary recommendations showed marginal effects only (HR = 1.09, 95% CI = 1.00-1.19 for low vs. high WCRF dietary scores). CONCLUSION Dietary habits and the PRS were independently associated with CRC risks. Adherence to healthy dietary habits may exert beneficial effects on CRC risk reduction in individuals at high genetic risk.
Collapse
Affiliation(s)
- Tung Hoang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea
| | - Sooyoung Cho
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- BK21plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Health Policy and Management, Medical Research Center, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Institute of Environmental Medicine, Medical Research Center, Seoul National University, Seoul, Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YDI, Westra J, Steffen LM, Brown CD, Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant SFA, Chilton FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American cohorts. Commun Biol 2023; 6:852. [PMID: 37587153 PMCID: PMC10432561 DOI: 10.1038/s42003-023-05219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 and n-6 PUFAs in European Americans from the CHARGE Consortium have documented strong genetic signals in/near the FADS locus on chromosome 11. We performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) and African American (n = 2278) participants from three CHARGE cohorts. Applying a genome-wide significance threshold of P < 5 × 10-8, we confirmed association of the FADS signal and found evidence of two additional signals (in DAGLA and BEST1) within 200 kb of the originally reported FADS signal. Outside of the FADS region, we identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb). Among these novel signals, we found associations unique to Hispanic Americans, including rs28364240, a POLD4 missense variant for AA that is common in CHARGE Hispanic Americans but absent in other race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of investigating complex trait genetics across diverse ancestry populations.
Collapse
Affiliation(s)
- Chaojie Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Jenna Veenstra
- Departments of Biology and Statistics, Dordt University, Sioux Center, IA, USA
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian Hallmark
- Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, AZ, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Timothy D O'Connor
- Institute for Genome Sciences; Program in Personalized and Genomic Medicine; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science & Policy, Tufts University, Tufts School of Medicine and Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Floyd H Chilton
- School of Nutritional Sciences and Wellness and the BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA
- University of Illinois, Chicago, Chicago, IL, USA
| | - Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|