1
|
Shah D, Sen J. Pituitary Macroadenoma: A Comprehensive Case Study of Surgical Intervention and Postoperative Management. Cureus 2024; 16:e59387. [PMID: 38817533 PMCID: PMC11139436 DOI: 10.7759/cureus.59387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
This case report presents a comprehensive analysis of a 48-year-old woman diagnosed with pituitary macroadenoma, detailing the clinical presentation, surgical intervention, and postoperative management. The patient exhibited a complex array of symptoms, including persistent headaches, insomnia, and anemia, with a history of trauma and blood transfusion. Magnetic Resonance Imaging (MRI) confirmed the presence of a large, lobulated pituitary macroadenoma, prompting a trans-nasal trans-sphenoidal endoscopic excision. The surgical procedure was successful, but postoperative complications, revealed by a CT scan, included hyperdense lesions and mixed-density collections. Incorporating antibiotics, analgesics, antacids, and anti-emetics, vigilant postoperative care addressed these complications. This case underscores the challenges and successes in managing pituitary macroadenomas, highlighting the importance of individualized care, multidisciplinary collaboration, and ongoing research for optimizing patient outcomes. The insights gained from this case contribute to the evolving understanding and refinement of strategies for addressing these complex tumors.
Collapse
Affiliation(s)
- Dhruv Shah
- Anaesthesia, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayshree Sen
- Anaesthesia, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Jamali E, Hashemnejad MA, Askari A, Shomali H, Eslami S, Akbari Dilmaghani N, Sharifi G, Bahranian A, Ghafouri-Fard S. A bioinformatics-based approach and expression assay for identification of dysregulated genes in pituitary adenoma. Pathol Res Pract 2024; 253:155006. [PMID: 38056134 DOI: 10.1016/j.prp.2023.155006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Non-functioning pituitary adenomas (NFPAs) are a group of pituitary neuroendocrine tumors that are associated with morbidity. The exact pathophysiological process leading to this pathology is not known. Nerve growth factor (NGF) is a neurotropic factor that might be involved in this process. We used bioinformatics tools to analyze expression of genes in NFPA samples. Our analyses led to identification of NGF-related genes, namely ARC, ID1, and SH3GL3 - as well as one long non-coding RNA (lncRNA) called myocardial infarction associated transcript (MIAT). Then, we assessed their expression in NFPAs and their adjacent non-cancerous samples. While expression levels of SH3GL3 and MIAT were different between NFPA samples and control samples, expressions of ARC and ID1 were not meaningfully different between these two groups of specimens. SH3GL3 was over-expressed in NFPA samples compared with control samples (expression ratio (95% CI)= 8.22 (1.51-44.6), P value= 0.03). Similarly, expression of MIAT was higher in NFPAs compared with controls (expression ratio (95% CI)= 7.7 (1.7-33.6), P value= 0.009). Taken together, we validated the bioinformatics results regarding the expression of SH3GL3 and MIAT. This study provides a deeper understanding of the involvement of these genes in the pituitary tumorigenesis.
Collapse
Affiliation(s)
- Elena Jamali
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Amin Hashemnejad
- Clinical Research Developmental Unit (CRDU) of Shahid Rajaei Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Shomali
- Department of Biomedical Engineering, Islamic Azad University Central Tehran Branch, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Guive Sharifi
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arefe Bahranian
- Skull Base Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Iran.
| |
Collapse
|
3
|
Taghavi SF, Ghorbani M, Panahi M, Nazem S, Karimi M, Salimi V, Tavakoli-Yaraki M. Differential expression levels of β-catenin are associated with invasive behavior of both functional and non-functional pituitary neuroendocrine tumor (PitNET). Mol Biol Rep 2023; 50:6425-6434. [PMID: 37326745 DOI: 10.1007/s11033-023-08523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although research continues to elucidate the molecular mechanism underlying pituitary tumor pathogenesis, limited information is available on the potential role and expression profile of β-catenin in functional and non-functional pituitary neuroendocrine tumors (PitNETs). METHODS AND RESULTS In the current study, 104 pituitary samples (tumors and cadaveric healthy pituitary tissues) were included and the gene and protein expression levels of β-catenin were assessed by Real-Time PCR and immunohistochemistry, respectively. The correlation between expression level of β-catenin and tumor invasive feature and size as well as patient age, gender, and hormonal level was measured. The data showed that PitNET samples expressed higher levels of the β-catenin gene and protein compared to healthy pituitary tissues. Although there was no difference in β-catenin expression level between non-functioning (NF-PitNETs) and growth hormone-producing tumors (GH-PitNETs), both tumor types showed significantly elevated β-catenin levels compared to healthy pituitary tissues. The high level of β-catenin in the invasive functional and non-functional tumors is indicative of the association of β-catenin with PitNETs invasion. The expression pattern of the β-catenin gene and protein was consistently and significantly associated with these tumor types. The correlation between β-catenin and insulin-like growth factor 1 (IGF-1) in GH-PitNETs indicates the potential relevance of β-catenin and IGF-1 for GH-PitNETs. CONCLUSIONS The simultaneous increase in the expression of β-catenin gene and protein level in PitNET tissues and their relationship to the tumor severity indicates the possible contributing role of β-catenin and its underlying signaling mediators in PitNET pathogenesis.
Collapse
Affiliation(s)
- S Fahimeh Taghavi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Mohammad Ghorbani
- Division of Vascular and Endovascular Neurosurgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Panahi
- Pathology Department, Firozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
4
|
Robertson IJ, Gregory TA, Waguespack SG, Penas-Prado M, Majd NK. Recent Therapeutic Advances in Pituitary Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2023; 6:74-83. [PMID: 37214211 PMCID: PMC10195013 DOI: 10.36401/jipo-22-25] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 05/24/2023]
Abstract
Pituitary carcinoma (PC) is a rare, aggressive malignancy that comprises 0.1-0.2% of all pituitary tumors. PC is defined anatomically as a pituitary tumor that metastasizes outside the primary intrasellar location as noncontiguous lesions in the central nervous system or as metastases to other organs. Similar to pituitary adenoma, PC originates from various cell types of the pituitary gland and can be functioning or nonfunctioning, with the former constituting the majority of the cases. Compression of intricate skull-based structures, excessive hormonal secretion, impaired pituitary function from therapy, and systemic metastases lead to debilitating symptoms and a poor survival outcome in most cases. PC frequently recurs despite multimodality treatments, including surgical resection, radiotherapy, and biochemical and cytotoxic treatments. There is an unmet need to better understand the pathogenesis and molecular characterization of PC to improve therapeutic strategies. As our understanding of the role of signaling pathways in the tumorigenesis of and malignant transformation of PC evolves, efforts have focused on targeted therapy. In addition, recent advances in the use of immune checkpoint inhibitors to treat various solid cancers have led to an interest in exploring the role of immunotherapy for the treatment of aggressive refractory pituitary tumors. Here, we review our current understanding of the pathogenesis, molecular characterization, and treatment of PC. Particular attention is given to emerging treatment options, including targeted therapy, immunotherapy, and peptide receptor radionuclide therapy.
Collapse
Affiliation(s)
- Ian J. Robertson
- Department of Internal Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Timothy A. Gregory
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven G. Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Gil J, Marques-Pamies M, Valassi E, Serra G, Salinas I, Xifra G, Casano-Sancho P, Carrato C, Biagetti B, Sesmilo G, Marcos-Ruiz J, Rodriguez-Lloveras H, Rueda-Pujol A, Aulinas A, Blanco A, Hostalot C, Simó-Servat A, Muñoz F, Rico M, Ibáñez-Domínguez J, Cordero E, Webb SM, Jordà M, Puig-Domingo M. Molecular characterization of epithelial-mesenchymal transition and medical treatment related-genes in non-functioning pituitary neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1129213. [PMID: 37033229 PMCID: PMC10074986 DOI: 10.3389/fendo.2023.1129213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Different medical therapies have been developed for pituitary adenomas. However, Non-Functioning Pituitary Neuroendocrine Tumors (NF-PitNET) have shown little response to them. Furthermore, epithelial-mesenchymal transition (EMT) has been linked to resistance to medical treatment in a significant number of tumors, including pituitary adenomas. Methods We aimed to evaluate the expression of EMT-related markers in 72 NF-PitNET and 16 non-tumoral pituitaries. To further explore the potential usefulness of medical treatment for NF-PitNET we assessed the expression of somatostatin receptors and dopamine-associated genes. Results We found that SNAI1, SNAI2, Vimentin, KLK10, PEBP1, Ki-67 and SSTR2 were associated with invasive NF-PitNET. Furthermore, we found that the EMT phenomenon was more common in NF-PitNET than in GH-secreting pituitary tumors. Interestingly, PEBP1 was overexpressed in recurrent NF-PitNET, and could predict growth recurrence with 100% sensitivity but only 43% specificity. In parallel with previously reported studies, SSTR3 is highly expressed in our NF-PitNET cohort. However, SSTR3 expression is highly heterogeneous among the different histological variants of NF-PitNET with very low levels in silent corticotroph adenomas. Conclusion NF-PitNET showed an enhanced EMT phenomenon. SSTR3 targeting could be a good therapeutic candidate in NF-PitNET except for silent corticotroph adenomas, which express very low levels of this receptor. In addition, PEBP1 could be an informative biomarker of tumor regrowth, useful for predictive medicine in NF-PitNET.
Collapse
Affiliation(s)
- Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Marques-Pamies
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| | - Elena Valassi
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo Serra
- Department of Endocrinology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Isabel Salinas
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Gemma Xifra
- Department of Endocrinology, Josep Trueta University Hospital, Girona, Spain
| | - Paula Casano-Sancho
- Centro de Investigación en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Pediatric Endocrinology Unit, Institut de Recerca SJS 39-57, Hospital Sant Joan de Déu, University of Barcelona, Esplugues, Spain
| | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Betina Biagetti
- Department of Endocrinology, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Gemma Sesmilo
- Department of Endocrinology, Dexeus University Hospital, Barcelona, Spain
| | - Jennifer Marcos-Ruiz
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | | | - Anna Rueda-Pujol
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Anna Aulinas
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Blanco
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Hostalot
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Andreu Simó-Servat
- Department of Endocrinology, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Fernando Muñoz
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marta Rico
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Esteban Cordero
- Department of Neurosurgery, University Hospital Vall d’Hebron, Barcelona, Spain
| | - Susan M. Webb
- Department of Endocrinology, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras, CIBERER, Unit 747, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Municipal de Badalona, Badalona, Catalonia, Spain
| |
Collapse
|
6
|
Lemdani MS, Choudhry HS, Tseng CC, Fang CH, Sukyte-Raube D, Patel P, Eloy JA. Impact of Facility Volume on Patient Safety Indicator Events After Transsphenoidal Pituitary Surgery. Otolaryngol Head Neck Surg 2023; 168:227-233. [PMID: 35380889 DOI: 10.1177/01945998221089826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate the impact of facility volume on Patient Safety Indicator (PSI) events following transsphenoidal pituitary surgery (TSPS). STUDY DESIGN Retrospective database review. SETTING National Inpatient Sample database (2003-2011). METHODS The National Inpatient Sample was queried for TSPS cases from 2003 to 2011. Facility volume was defined by tertile of average annual number of TSPS procedures performed. PSIs, based on in-hospital complications identified by the Agency of Healthcare Research and Quality, and poor outcomes, such as mortality and tracheostomy, were analyzed. RESULTS An overall 16,039 cases were included: 804 had ≥1 PSI and 15,235 had none. A greater proportion of male to female (5.8% vs 4.3%) and Black to White (7.0% vs 4.5%) patients experienced PSIs. There was an increased likelihood of poor outcome (odds ratio [OR], 3.1 [95% CI, 2.5-3.7]; P < .001) and mortality (OR, 30.1 [95% CI, 18.5-48.8]; P < .001) with a PSI. The incidence rates of PSIs at low-, intermediate-, and high-volume facilities were 5.7%, 5.1%, and 4.2%, respectively. Odds of poor outcome with PSIs were greater at low-volume facilities (OR, 3.3 [95% CI, 2.4-4.4]; P < .001) vs intermediate (OR, 3.1 [95% CI, 2.1-4.2]; P < .001) and high (OR, 2.5 [95% CI, 1.7-3.8]; P < .001). Odds of mortality with PSIs were greater at high-volume facilities (OR, 43.0 [95% CI, 14.3-129.4]; P < .001) vs intermediate (OR, 40.0 [95% CI, 18.5-86.4]; P < .001) and low (OR, 17.3 [95% CI, 8.0-37.7]; P < .001). CONCLUSION PSIs were associated with a higher likelihood of poor outcome and mortality following TSPS. Patients who experienced PSIs had a lower risk of poor outcome but increased mortality at higher-volume facilities.
Collapse
Affiliation(s)
- Mehdi S Lemdani
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Hannaan S Choudhry
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Christopher C Tseng
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Christina H Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, The University Hospital of Albert Einstein College of Medicine, Bronx, New York, USA
| | - Donata Sukyte-Raube
- Center of Ear, Nose, and Throat Diseases, Vilnius University Hospital Santaros Clinics, Vilnius University, Vilnius, Lithuania
| | - Prayag Patel
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA.,Department of Otolaryngology and Facial Plastic Surgery, Saint Barnabas Medical Center-RWJBarnabas Health, Livingston, New Jersey, USA
| |
Collapse
|
7
|
Xu Q, Yu ZX, Xie YL, Bai L, Liang SR, Ji QH, Zhou J. MicroRNA-137 inhibits pituitary prolactinoma proliferation by targeting AKT2. J Endocrinol Invest 2022; 46:1145-1154. [PMID: 36427136 DOI: 10.1007/s40618-022-01964-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Prolactinoma is the most common type of pituitary adenoma. Most prolactinoma need medical treatment, but some of them are aggressive and require surgery. In previous decades, some miRNAs have been manifested as oncogenes or tumor suppressors. Consequently, miRNAs' abnormal expression involves tumorigenesis, invasion, and metastasis of different types of tumors, including pituitary tumors. The current study aim to explore the aggressiveness-associated miRNAs in prolactinoma and underlying molecular mechanisms based on the bioinformatic analysis and fundamental experiment studies. METHODS GSE46294 miRNA expression profile from the Gene Expression Omnibus (GEO) database was downloaded. Differentially expressed miRNAs (DEMs) were filtered from this data. Subsequently, the target genes of downregulated miRNAs were analyzed by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. RT-qPCR, western blot, and CCK-8 assays were used to validate the effect of miR-137 on the proliferation of MMQ cells through AKT2. Finally, the binding site of rat miR-137 to AKT2 were predicted by Targetscan and Bibiserv database, and verified by double luciferase reporter assay. RESULTS Twenty-four changed DEMs (fourteen upregulated and ten downregulated) were identified. Target genes of downregulated DEMs were classified into three groups by GO terms. KEGG pathway enrichment analysis revealed these target genes enriched in the PI3K-Akt pathway. We also confirmed that miR-137 can target AKT2 and inhibit the proliferation of MMQ cells induced by AKT2. CONCLUSION MiR-137 suppressed prolactinomas' aggressive behavior by targeting AKT2.
Collapse
Affiliation(s)
- Q Xu
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Z X Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Y L Xie
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi'an, 710032, China
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - L Bai
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi'an, 710032, China
- School of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - S R Liang
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Endocrinology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Q H Ji
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - J Zhou
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Mamelak A. Surgery as a first-line option for prolactinomas. Expert Rev Endocrinol Metab 2022; 17:485-498. [PMID: 36200144 DOI: 10.1080/17446651.2022.2131531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/28/2022] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Treatment of prolactinomas with dopamine agonists has been the established first-line treatment option for many years, with surgery reserved for refractory cases or medication intolerance. This approach may not be the best option in many cases. AREAS COVERED Review of the epidemiology, biology, and treatment options available for prolactinomas, including best available data on outcomes, costs, and morbidities for each therapy. These data are then used to propose a 'surgery-first' treatment approach for a subset of prolactinomas as an alternative to primary medical management. EXPERT OPINION Based on the available data, there is a strong rationale that transsphenoidal surgery should be considered a first-line treatment option for both micro- and macro-prolactinomas that do not demonstrate high grade cavernous sinus invasion on MRI imaging, with dopamine agonists administered as a secondary therapy for tumors not in remission following surgery, and for giant tumors. This 'surgery-first' approach assumes the availability of skilled and experienced pituitary surgeons to ensure optimal outcomes. This approach should result in high cure rates and reduced DA requirements for patients not cured from initial surgery. Further, it will reduce medical costs over a patient's lifetime and the chronic morbidities associated with protracted dopamine agonist usage.
Collapse
Affiliation(s)
- Adam Mamelak
- Surgical Director, Pituitary Center & Center for Minimally Invasive Skull Base Surgery, Cedars-Sinai Medical Center, Los Angeles
| |
Collapse
|
9
|
Marques P, Silva AL, López-Presa D, Faria C, Bugalho MJ. The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 2022; 25:363-382. [PMID: 35194709 DOI: 10.1007/s11102-022-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
The microenvironment of pituitary adenomas (PAs) includes a range of non-tumoral cells, such as immune and stromal cells, as well as cell signaling molecules such as cytokines, chemokines and growth factors, which surround pituitary tumor cells and may modulate tumor initiation, progression, invasion, angiogenesis and other tumorigenic processes. The microenvironment of PAs has been actively investigated over the last years, with several immune and stromal cell populations, as well as different cytokines, chemokines and growth factors being recently characterized in PAs. Moreover, key microenvironment-related genes as well as immune-related molecules and pathways have been investigated, with immune check point regulators emerging as promising targets for immunotherapy. Understanding the microenvironment of PAs will contribute to a deeper knowledge of the complex biology of PAs, as well as will provide developments in terms of diagnosis, clinical management and ultimately treatment of patients with aggressive and/or refractory PAs.
Collapse
Affiliation(s)
- Pedro Marques
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal.
| | - Ana Luísa Silva
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Dolores López-Presa
- Pathology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Maria João Bugalho
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| |
Collapse
|
10
|
Marques P, Barry S, Carlsen E, Collier D, Ronaldson A, Grieve J, Dorward N, Mendoza N, Nair R, Muquit S, Grossman AB, Korbonits M. The expression of neural cell adhesion molecule and the microenvironment of pituitary neuroendocrine tumours. J Neuroendocrinol 2021; 33:e13052. [PMID: 34708902 DOI: 10.1111/jne.13052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022]
Abstract
The neural cell adhesion molecule (NCAM) has previously been studied in pituitary neuroendocrine tumours (PitNETs), but its role in tumour biology and aggressiveness remains controversial, and its relationship with the tumour microenvironment remains unknown. We aimed to characterise NCAM expression in PitNETs, to correlate this with clinico-pathological features, and to assess the role of various microenvironment components on NCAM expression. NCAM and immune cells were investigated by immunohistochemistry in 16 human non-functioning-PitNETs (NF-PitNETs) and eight somatotrophinomas, including macrophages (CD68, CD163, HLA-DR), cytotoxic (CD8) and T helper (CD4) lymphocytes, regulatory T cells (FOXP3), B cells (CD20), and neutrophils (neutrophil elastase). Five normal pituitaries were included for comparison. The cytokine secretome from these PitNETs and from PitNET-derived tumour-associated fibroblasts (TAFs) were assessed on culture supernatants using a multiplex immunoassay panel. There were no significant NCAM expression differences between PitNETs and normal pituitary, and no difference between types of pituitary tumours (NF-PitNETs vs. somatotrophinomas). There was no association between NCAM expression and different clinico-pathological features, including cavernous sinus invasion and Ki-67, nor with serum hormone levels. NCAM immunoreactivity correlated negatively with PitNET-derived CXCL10 (rho = -0.417; p = .042) and CX3CL1 (rho = -0.423; p = .040) levels. NCAM immunoreactivity was negatively correlated with TAF-derived fibroblast growth factor (FGF)-2 (rho = -0.632; p = .009), but not with other TAF-derived cytokines. Within the PitNET cohort, there were no correlations between NCAM immunoreactivity and immune infiltrates or ratios, although, within NF-PitNETs, NCAM expression was higher in tumours with more FOXP3+ cells. NCAM expression does not differ between PitNETs and normal pituitary, and does not appear to relate to tumour invasiveness or proliferation. However, our data suggest a possible role for cytokines in the modulation of NCAM expression in PitNETs, particularly CXCL10, CX3CL1 and FGF-2, but not for immune cell infiltrates.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Endocrinology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Sayka Barry
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - David Collier
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Neil Dorward
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Nigel Mendoza
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Ramesh Nair
- Department of Neurosurgery, Charing Cross Hospital, Imperial College, London, UK
| | - Samiul Muquit
- Department of Neurosurgery, Derriford Hospital, Plymouth, UK
| | - Ashley B Grossman
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
11
|
Guido CB, Sosa LDV, Perez PA, Zlocoswki N, Velazquez FN, Gutierrez S, Petiti JP, Mukdsi JH, Torres AI. Changes of stem cell niche during experimental pituitary tumor development. J Neuroendocrinol 2021; 33:e13051. [PMID: 34708474 DOI: 10.1111/jne.13051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
To investigate the putative stem cell/tumor stem cell (SC/TSC) niche contribution to hyperplasic/adenomatous pituitary lesions, we analyzed variation in the pituitary stem cell population during the development of experimental pituitary tumors. Pituitary tumors were induced in female F344 rats with estradiol benzoate for 5, 10, 20 and 30 days. Cells positive for GFRa2, Sox2, Sox9, Nestin, CD133 and CD44 were identified in the marginal zone and in the adenoparenchyma in both control and 30D groups, with predominant adenoparenchyma localization of GRFa2 and SOX9 found in tumoral pituitaries. GFRa2, Nestin, CD133 and CD44 were upregulated at the initial stages of tumor growth, whereas Sox9 significantly decreased at 5D, with Sox2 remaining invariable during the hyperplasic/adenomatous development. In addition, isolated pituispheres from normal and tumoral pituitary glands enriched in SC/TSC were characterized. Pituispheres from the 30D glands were positive for the above-mentioned markers and showed a significant increase in the proliferation. In conclusion, our data revealed pituitary SC pool fluctuations during hyperplastic/adenomatous development, with differential localization of the SC/TSC niche in this process. These findings may help to provide a better understanding of these cell populations, which is crucial for achieving advancements in the field of pituitary tumor biology.
Collapse
Affiliation(s)
- Carolina Beatriz Guido
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Liliana Del Valle Sosa
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Pablo Aníbal Perez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Natacha Zlocoswki
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Fabiola Noelia Velazquez
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutierrez
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Juan Pablo Petiti
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Jorge Humberto Mukdsi
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| | - Alicia Inés Torres
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencias de la Salud, Córdoba, Argentina
| |
Collapse
|
12
|
Brue T, Chanson P, Rodien P, Delemer B, Drui D, Marié L, Juban L, Salvi L, Henocque R, Raverot G. Cost-Utility of Acromegaly Pharmacological Treatments in a French Context. Front Endocrinol (Lausanne) 2021; 12:745843. [PMID: 34690933 PMCID: PMC8531881 DOI: 10.3389/fendo.2021.745843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Efficacy of pharmacological treatments for acromegaly has been assessed in many clinical or real-world studies but no study was interested in economics evaluation of these treatments in France. Therefore, the objective of this study was to estimate the cost-utility of second-line pharmacological treatments in acromegaly patients. Methods A Markov model was developed to follow a cohort of 1,000 patients for a lifetime horizon. First-generation somatostatin analogues (FGSA), pegvisomant, pasireotide and pegvisomant combined with FGSA (off label) were compared. Efficacy was defined as the normalization of insulin-like growth factor-1 (IGF-1) concentration and was obtained from pivotal trials and adjusted by a network meta-analysis. Costs data were obtained from French databases and literature. Utilities from the literature were used to estimate quality-adjusted life year (QALY). Results The incremental cost-utility ratios (ICUR) of treatments compared to FGSA were estimated to be 562,463 € per QALY gained for pasireotide, 171,332 € per QALY gained for pegvisomant, and 186,242 € per QALY gained for pegvisomant + FGSA. Pasireotide seems to be the least cost-efficient treatment. Sensitivity analyses showed the robustness of the results. Conclusion FGSA, pegvisomant and pegvisomant + FGSA were on the cost-effective frontier, therefore, depending on the willingness-to-pay for an additional QALY, they are the most cost-effective treatments. This medico-economic analysis highlighted the consistency of the efficiency results with the efficacy results assessed in the pivotal trials. However, most recent treatment guidelines recommend an individualized treatment strategy based on the patient and disease profile.
Collapse
Affiliation(s)
- Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Le Kremlin-Bicêtre, France
| | - Patrice Rodien
- Université d’Angers, CHU d’Angers, service d’Endocrinologie-Diabétologie-Nutrition, Centre de Référence des Maladies Rares de l’Hypophyse, Angers, France
| | - Brigitte Delemer
- CHU de Reims - Hôpital Robert Debré, Service d’Endocrinologie – Diabète – Nutrition, Reims Cedex, France
| | - Delphine Drui
- Endocrinology Department, L’institut du thorax, University Hospital of Nantes, Nantes Cedex, France
| | | | | | - Lara Salvi
- Rare Disease, Pfizer France, Paris Cedex, France
| | | | - Gérald Raverot
- Endocrinology Department, “Groupement Hospitalier Est” Hospices Civils de Lyon, Bron, France
| |
Collapse
|
13
|
Li W, Zeng L, Han D, Zhang S, Lei B, Zheng M, Deng Y, You L. Development of a preoperative index-based nomogram for the prediction of hypokalemia in patients with pituitary adenoma: a retrospective cohort study. PeerJ 2021; 9:e11650. [PMID: 34322317 PMCID: PMC8297473 DOI: 10.7717/peerj.11650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To develop and validate a preoperative index-based nomogram for the prediction of hypokalemia in patients with pituitary adenoma (PA). Methods This retrospective cohort study included 205 patients with PAs between January 2013 and April 2020 in the Sun Yat-sen Memorial Hospital, Guangzhou, China. The patients were randomly classified into either a training set (N = 143 patients) and a validation set (N = 62 patients) at a ratio of 7:3. Variables, which were identified by using the LASSO regression model were included for the construction of a nomogram, and a logistic regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) in the training set. The area under the curve (AUC) was used to evaluate the performance of the nomogram for predicting hypokalemia. Multivariate logistic regression analysis with a restricted cubic spline analysis was conducted to identify a potential nonlinear association between the preoperative index and hypokalemia. Results The incidence of hypokalemia was 38.05%. Seven preoperative indices were identified for the construction of the nomogram: age, type of PA, weight, activated partial thromboplastin time, urea, eosinophil percentage, and plateletocrit. The AUCs of the nomogram for predicting hypokalemia were 0.856 (95% CI [0.796–0.915]) and 0.652 (95% CI [0.514–0.790]) in the training and validation sets, respectively. Restricted cubic splines demonstrated that there was no nonlinear association between hypokalemia and the selected variables. Conclusion In this study, we constructed a preoperative indices-based nomogram that can assess the risk of hypokalemia after the surgical treatment of pituitary adenomas. This nomogram may also help to identify high risk patients who require close monitoring of serum potassium.
Collapse
Affiliation(s)
- Wenpeng Li
- Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lexiang Zeng
- Pediatric Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Deping Han
- Neurosurgery, JieXi People's Hospital, JieXi, China
| | - Shanyi Zhang
- Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingxi Lei
- Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiguang Zheng
- Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefei Deng
- Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lili You
- Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
ACTH-Cell Pituitary Adenoma With Signet Ring Cells: A Rare Case Report and Review of The Literature. Appl Immunohistochem Mol Morphol 2020; 28:e13-e16. [PMID: 32044887 DOI: 10.1097/pai.0000000000000639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we present a case of pituitary adenoma producing adrenocorticotropic hormone (ACTH) in a 19-year-old woman. The patient was admitted to neurosurgery clinic because of a headache and decreased visual acuity. Transsphenoidal resection was performed. Microscopic examination of the tumor revealed signet-ring-like cell areas intermixed with conventional pituitary adenoma cells. Both populations of tumor cells showed immunoreactivity for chromogranin, synaptophysin, and ACTH. To date, there have been 3 reports of pituitary adenoma with signet-ring-like changes. To our knowledge, this is the first case of ACTH-secreting pituitary adenoma with signet-ring-like cell changes. The clinical reflection of signet cells in pituitary adenoma is unclear. Accumulation of the similar cases and investigation of molecular background of them may lighten the importance of this morphologic variance.
Collapse
|
15
|
Lamback EB, Guterres A, Barbosa MA, Lima CHDA, Silva DA, Camacho AHDS, Chimelli L, Kasuki L, Gadelha MR. Cyclin A in nonfunctioning pituitary adenomas. Endocrine 2020; 70:380-387. [PMID: 32621052 DOI: 10.1007/s12020-020-02402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Assess cyclin A in nonfunctioning pituitary adenomas (NFPA) and compare its expression in non-invasive and non-proliferative tumors with invasive and proliferative tumors (12× higher risk of recurrence). METHODS Quantitative real time polymerase chain reaction to analyze cyclin A using normal pituitary gland as reference. Fold change (FC) > 1 was considered as increased. Tumor invasion was based on Knosp criteria (grades 3-4 considered invasive) and proliferation on the presence of at least two of three criteria: Ki-67 ≥ 3%; mitoses > 2/10; positive p53. Both groups were compared with Mann-Whitney test considering p value < 0.05 as statistically significant. RESULTS Thirty-one patients with NFPA were included. Tumors were mainly of gonadotrophic origin (74.2%), followed by corticotrophic (19.4%) and lactotrophic (3.2%) origins and null-cell adenomas (3.2%). Median tumor diameter was 3.5 cm (1.8-8.0) and Ki-67 was 3.0% (0.3-11%). Sixteen patients had tumors classified as non-invasive and non-proliferative and 15 as invasive and proliferative. Median FC was 0.31 in all tumors (0.13-1.94). Cyclin A was not related to invasion or proliferation (FC 0.41 in non-invasive and non-proliferative tumors and FC 0.30 in invasive and proliferative tumors; p = 0.968). Four (12.9%) patients had tumors that exhibited increased cyclin A [median FC of 1.04 (1.02-1.94)]-three of gonadotrophic origin and one null-cell adenoma, with two tumors classified as non-invasive and non-proliferative and two tumors classified as invasive and proliferative. Median tumor diameter in these samples was 3.4 cm (2.4-3.6) and Ki-67 was 5.1% (2-11%). CONCLUSIONS Cyclin A was increased in a minority of NFPA and does not seem to be related to invasion or proliferation.
Collapse
Affiliation(s)
- Elisa B Lamback
- Neuroendocrinology Research Center/ Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandro Guterres
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | | | | | - Debora Aparecida Silva
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Aline Helen da Silva Camacho
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Pathology Division, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Leila Chimelli
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/ Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
- Endocrinology Division, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Mônica R Gadelha
- Neuroendocrinology Research Center/ Endocrinology Division, Medical School and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
- Neuroendocrinology Division, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Integration of quantitative phosphoproteomics and transcriptomics revealed phosphorylation-mediated molecular events as useful tools for a potential patient stratification and personalized treatment of human nonfunctional pituitary adenomas. EPMA J 2020; 11:419-467. [PMID: 32849927 DOI: 10.1007/s13167-020-00215-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Invasiveness is a very challenging clinical problem in nonfunctional pituitary adenomas (NFPAs), and currently, there are no effective invasiveness-related molecular biomarkers. The post-neurosurgery treatment is much different as for invasive and noninvasive NFPAs. The aim of this study was to integrate phosphoproteomics and transcriptomics data to reveal phosphorylation-mediated molecular events for invasive characteristics of NFPAs to achieve a potential tool for patient stratification, and prognostic/predictive assessment to discriminate invasive from noninvasive NFPAs for personalized attitude. Methods The 6-plex tandem mass tag (TMT) labeling reagents coupled with TiO2 enrichment of phosphopeptides and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to identify and quantify each phosphoprotein and phosphosite in NFPAs and controls. Differentially expressed genes (DEGs) between invasive NFPA and control tissues were obtained from the Gene Expression Omnibus (GEO) database. The overlapping analysis was performed between phosphoprotiens and invasive DEGs. Gene Ontology (GO) enrichment, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and protein-protein interaction (PPI) analyses were used to analyze these overlapped molecules. Results In total, 1035 phosphoproteins with 2982 phosphorylation sites were identified in NFPAs vs. controls, and 2751 DEGs were identified in invasive NFPAs vs. controls. Overlapping analysis of these phosphoproteins and DEGs exposed 130 overlapped molecules (phosphoproteins; invasive DEGs). GO enrichment and KEGG pathway analyses of 130 overlapped molecules revealed multiple biological processes and signaling pathway network alterations, including cell-cell adhesion, platelet activation, GTPase signaling pathway, protein kinase signaling, calcium signaling pathway, estrogen signaling pathway, glucagon signaling pathway, cGMP-PKG signaling pathway, GnRH signaling pathway, inflammatory mediator regulation of TRP channels, vascular smooth muscle contraction, and Fc gamma R-mediated phagocytosis, which were obviously associated with tumor invasive characteristics. For 130 overlapped molecules, PPI network-based molecular complex detection (MCODE) identified 10 hub molecules, namely SLC2A4, TSC2, AKT1, SCG3, ALB, APOL1, ACACA, SPARCL1, CHGB, and IGFBP5. These hub molecules are involved in multiple signaling pathways and represent potential predictive/prognostic markers in NFPA patients as well as they represent potential therapeutic targets. Conclusions This study provided the first large-scale phosphoprotein profiling and phosphorylation-related signaling pathway network alterations in human NFPA tissues. Further, overlapping analysis of phosphoproteins and invasive DEGs revealed the phosphorylation-mediated signaling pathway network changes in invasive NFPAs. These findings are the precious resource for in-depth insight into the molecular mechanisms of NFPAs, as well as for the discovery of effective phosphoprotein biomarkers and therapeutic targets for invasive NFPAs.
Collapse
|
17
|
Recent Progress in Stem Cell Research of the Pituitary Gland and Pituitary Adenoma. ENDOCRINES 2020. [DOI: 10.3390/endocrines1010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine and anti-tumoral therapy have been developed through understanding tissue stem cells and cancer stem cells (CSCs). The concept of tissue stem cells has been applied to the pituitary gland (PG). Recently, PG stem cells (PGSCs) were successfully differentiated from human embryonic stem cells and induced pluripotent stem cells, showing an in vivo therapeutic effect in a hypopituitary model. Pituitary adenomas (PAs) are common intracranial neoplasms that are generally benign, but treatment resistance remains a major concern. The concept of CSCs applies to PA stem cells (PASCs). Genetic alterations in human PGSCs result in PASC development, leading to treatment-resistant PAs. To determine an efficient treatment against refractory PAs, it is of paramount importance to understand the relationship between PGSCs, PASCs and PAs. The goal of this review is to discuss several new findings about PGSCs and the roles of PASCs in PA tumorigenesis.
Collapse
|
18
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
19
|
Chandankhede VA, Singh SK, Roy R, Goyal S, Sridhar MS, Gill MS. Transnasal Transsphenoidal Approach for Pituitary Tumors: An ENT Perspective. Indian J Otolaryngol Head Neck Surg 2020; 72:239-246. [PMID: 32551284 PMCID: PMC7276463 DOI: 10.1007/s12070-020-01803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
Endoscopic transnasal transsphenoidal (ETNTS) approach was first described in 1992 and is standard approach for the resection of benign pituitary adenomas. This prospective study aims in incidence and preoperative assessment of extent of the pituitary adenoma, peroperative findings of transnasal transsphenoidal excision, techniques of skull base repair, complications and its management in a tertiary centre. A prospective analysis from Jan 2017 to May 2019, of patients undergoing ETNTS approach of pituitary adenomas was made in terms of incidence in various age-groups, type of adenoma, operative findings including CSF leak, repair of the skull base defect, complications encountered and its management was done in a tertiary care centre and compared with the present literature. A total of 141 patients underwent ETNTS, with highest number of cases found in 41-50 years age-group with mean age of 42.6 years. Male: Female ratio was 1.6. Macroadenoma was in 123 patients while 18 had microadenoma, of these 63.74% were functional adenoma, highest of GH secreting, while 36.26% were non-functional. Mean surgical time was 98.4 min ± 21.2 min. Peroperative CSF leak was in 30.5% cases in various grades. Closure techniques included use of fat, multilayer techniques, Hadad's flap and gasket technique as per the type of CSF leak. Neurological and rhinological complications were 6.38% each. This study is focused on the ENT perspective of the endoscopic transnasal trans-sphenoidal approach for pituitary adenomas. The reduced rate of morbidity and complications is encouraging. The endoscopic skull base defect closure is challenging and requires skill, meticulous approach and synchronised team work in order to achieve a favourable outcome. The incidence of CSF leak can be minimised and if encountered has to be dealt in an organised manner, thus contributing to a reduced rate of complications. The complications encountered must be foreseen and managed with a proficient approach.
Collapse
Affiliation(s)
| | - S. K. Singh
- Department of ENT-HNS, Army Hospital (Research & Referral), Delhi Cantt, 110010 India
| | - Ravi Roy
- Department of ENT-HNS, Army Hospital (Research & Referral), Delhi Cantt, 110010 India
| | - Sunil Goyal
- Department of ENT-HNS, Army Hospital (Research & Referral), Delhi Cantt, 110010 India
| | - M. S. Sridhar
- Department of Neurosurgery, Army Hospital (Research & Referral), Delhi Cantt, 110010 India
| | - M. S. Gill
- Department of Neurosurgery, Army Hospital (Research & Referral), Delhi Cantt, 110010 India
| |
Collapse
|
20
|
Antiprolactinoma Effect of Hordenine by Inhibiting MAPK Signaling Pathway Activation in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3107290. [PMID: 32382283 PMCID: PMC7195642 DOI: 10.1155/2020/3107290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
Prolactinomas are harmful to human health, and the clinical first-line treatment drug is bromocriptine. However, 20% prolactinomas patients did not respond to bromocriptine. Hordenine is an alkaloid separated from Fructus Hordei Germinatus, which showed significant antihyperprolactinemia activity in rats. The aim of this study was to explore the effect and mechanism of hordenine on prolactinomas in rats. The study used estradiol to induce prolactinomas, which caused the activation of the pituitary mitogen-activated protein kinase (MAPK) pathway in rats significantly. The treatment of hordenine restored estradiol, induced the overgrowth of pituitary gland, and reduced the prolactin (PRL) accumulation in the serum and pituitary gland of rats by blocking the MAPK (p38, ERK1/2, and JNK) activation and production of inflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The antiprolactinoma effect of hordenine was mediated by inhibiting the MAPK signaling pathway activation in rats.
Collapse
|
21
|
Dai W, Zhuang Z, Ling H, Yang Y, Hang C. Systematic review and network meta-analysis assess the comparative efficacy and safety of transsphenoidal surgery for pituitary tumor. Neurosurg Rev 2020; 44:515-527. [PMID: 32036504 DOI: 10.1007/s10143-020-01240-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
To quantitatively synthesize the comparative efficacy and safety of the most common surgical approaches including endonasal transsphenoidal endoscopic surgery (ETES), sublabial transsphenoidal microsurgery (STMS) and endonasal transsphenoidal microsurgery (ETMS) for all kinds of pituitary tumors. This systematic review and network meta-analysis was performed on randomized controlled trials (RCTs) and comparison studies from databases of Pubmed, EMBASE, and the Cochrane library. We selected the rate of gross complete resection as our primary outcome of efficacy. And the incidence of all complications, cerebrospinal fluid (CSF) leak, diabetes insipidus, nasal septal perforation, death, and bleeding were designed as our primary outcomes of safety. Twenty-seven studies with 2618 patients were included in this network meta-analysis. On efficacy, there was no statistical difference among the three methods including ETES, STMS, and ETMS. As for safety, results indicated that the incidence of total complications of STMS (OR = 4.74; 95% CI 1.03, 40.14) is significantly superior to ETES. And the incidence of diabetes insipidus of ETMS (OR = 2.21; 95% CI 1.31, 3.81) was significantly superior to that of ETES. Besides, there was no statistical difference in the other complications including CSF leak, nasal septal perforation, death, and bleeding. We clarified the overpraise of the efficacy of endoscopy especially the endonasal transsphenoidal approach, and verified that all the approaches owned similar efficacy. Moreover, we recommended the endoscopy to be the first choice for pituitary tumors, because it demonstrated the best safety.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210000, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210000, China
| | - Haiping Ling
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210000, China
| | - Yongbo Yang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210000, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, 210000, China.
| |
Collapse
|
22
|
Musha S, Yoshida S, Murakami S, Kojima R, Deai M, Saso N, Mogi C, Sato K, Okajima F, Tomura H. Involvement of GPR4 in increased growth hormone and prolactin expressions by extracellular acidification in MtT/S cells. J Reprod Dev 2020; 66:175-180. [PMID: 31956173 PMCID: PMC7175386 DOI: 10.1262/jrd.2019-159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone-secreting pituitary adenomas show unregulated hormonal hypersecretion and cause hyperpituitarism. However, the mechanism of the unregulated hormone production and secretion has not
yet been fully elucidated. Solid tumors show reduced extracellular pH, partly due to lactate secretion from anaerobic glycolysis. It is known that extracellular acidification affects hormone
secretion. However, whether and how the extracellular acidification influences the unregulated hormone production and secretion remain unknown. In the present study, we found that
GPR4, a proton-sensing G protein-coupled receptor, was highly expressed in MtT/S cells, a growth hormone-producing and prolactin-producing pituitary tumor cell line. When
we reduced the extracellular pH, growth hormone and prolactin mRNA expressions increased in the cells. Both increased expressions were partially suppressed
by a GPR4 antagonist. We also found that extracellular acidification enhanced growth hormone-releasing factor-induced growth hormone secretion from MtT/S cells. These results suggest that
GPR4 may play a role in hypersecretion of the hormone from hormone-producing pituitary tumors. A GPR4 antagonist will be a useful tool for preventing the hypersecretion.
Collapse
Affiliation(s)
- Shiori Musha
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Saishu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Syo Murakami
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Ryotaro Kojima
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Masahito Deai
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Naoshi Saso
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Chihiro Mogi
- Laboratory of Integrated Signaling Systems, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Koichi Sato
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Fumikazu Okajima
- Laboratory of Pathophysiology, Faculty of Pharmacy, Aomori University, Aomori 030-0943, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.,Institute of Endocrinology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
23
|
Zhan X, Desiderio DM. Editorial: Molecular Network Study of Pituitary Adenomas. Front Endocrinol (Lausanne) 2020; 11:26. [PMID: 32132975 PMCID: PMC7040224 DOI: 10.3389/fendo.2020.00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xianquan Zhan
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
24
|
Cheng T, Wang Y, Lu M, Zhan X, Zhou T, Li B, Zhan X. Quantitative Analysis of Proteome in Non-functional Pituitary Adenomas: Clinical Relevance and Potential Benefits for the Patients. Front Endocrinol (Lausanne) 2019; 10:854. [PMID: 31920968 PMCID: PMC6915109 DOI: 10.3389/fendo.2019.00854] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Non-functional pituitary adenoma (NFPA) is a common tumor that occurs in the pituitary gland, and generally without any symptoms at its early stage and without clinical elevation of hormones, which is commonly diagnosed when it grows up to compress its surrounding tissues and organs. Currently, the pathogenesis of NFPA has not been clarified yet. It is necessary to investigate molecular alterations in NFPA, and identify reliable biomarkers and drug therapeutic targets for effective treatments. Methods: Tandem mass tags (TMT)-based quantitative proteomics was used to identify and quantify proteins in NFPAs. GO and KEGG enrichment analyses were used to analyze the identified proteins. Differentially expressed genes (DEGs) between NFPA and control tissues were obtained from GEO datasets. These two sets of protein and gene data were analyzed to obtain overlapped molecules (genes; proteins), followed by further GO and KEGG pathway analyses of these overlapped molecules, and molecular network analysis to obtain the hub molecules with Cytoscape. Two hub molecules (SRC and AKT1) were verified with Western blotting. Results: Totally 6076 proteins in NFPA tissues were identified, and 3598 DEGs between NFPA and control tissues were identified from GEO database. Overlapping analysis of 6076 proteins and 3598 DEGs obtained 1088 overlapped molecules (DEGs; proteins). KEGG pathway analysis of 6076 proteins obtained 114 statistically significant pathways, including endocytosis, and spliceosome signaling pathways. KEGG pathway analysis of 1088 overlapped molecules obtained 52 statistically significant pathways, including focal adhesion, cGMP-PKG pathway, and platelet activation signaling pathways. These pathways play important roles in cell energy supply, adhesion, and maintenance of the tumor microenvironment. According to the association degree in Cytoscape, ten hub molecules (DEGs; proteins) were identified, including GAPDH, ALB, ACACA, SRC, ENO2, CALM1, POTEE, HSPA8, DECR1, and AKT1. Western-blotting analysis confirmed the upregulated expressions of SRC and PTMScan experiment confirmed the increased levels of pAKT1, in NFPAs compared to controls. Conclusions: This study established the large-scale quantitative protein profiling of NFPA tissue proteome. It offers a basis for subsequent in-depth proteomics analysis of NFPAs, and insight into the molecular mechanism of NFPAs. It also provided the basic data to discover reliable biomarkers and therapeutic targets for NFPA patients.
Collapse
Affiliation(s)
- Tingting Cheng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Utility of 13N-Ammonia PET/CT to Detect Pituitary Tissue in Patients with Pituitary Adenomas. Acad Radiol 2019; 26:1222-1228. [PMID: 30318288 DOI: 10.1016/j.acra.2018.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES It is clinically essential, but sometimes challenging, to distinguish pituitary tissue from pituitary adenomas (PAs). It is helpful to avoid damage of pituitary tissue during management. We evaluated the ability of 13N-ammonia positron emission tomography (PET)/computed tomography (CT) to locate and distinguish pituitary tissue from PAs. MATERIALS AND METHODS Forty-eight patients (four with prolactinoma, 10 with Cushing's disease, 12 with acromegaly, and 22 with nonfunctional PAs) prospectively underwent magnetic resonance imaging (MRI), 13N-ammonia PET/CT, 18F-FDG PET/CT, prior to surgery. RESULTS Pituitary position could be determined in 31 (64.5%) patients by 13N-ammonia PET/CT, and by MRI in 26 (54.2%) patients. It was detected by 13N-ammonia PET/CT and MRI in eight of eight patients (100%) with pituitary microadenoma, tumor maximum diameter (TMD) <1 cm, and in nine of 10 patients (90%) with PAs with TMD ≥1 cm, but <2 cm. In 16 patients with PAs with TMD ≥2 cm, but <3 cm, pituitary tissue position was detected by 13N-ammonia PET/CT in nine (56%), and by MRI in 8 (50.0%) patients by MRI. In 14 patients with PAs with TMD ≥3 cm, pituitary tissue position was detected by 13N-ammonia PET/CT in five (35.7%) patient, and by MRI in 1 (7.1%). In seven patients, the pituitary tissue could be detected by 13N-ammonia PET, but not by MRI, and in two patients by MRI, but not by 13N-ammonia PET. CONCLUSION 13N-ammonia PET/CT imaging is a sensitive means for locating and distinguishing pituitary tissue from PAs, particularly those with TMD <2 cm. It is potentially valuable in detection of pituitary tissue in patients with PAs.
Collapse
|
26
|
He Z, Chen L, Hu X, Tang J, He L, Hu J, Fei F, Wang Q. Next-generation sequencing of microRNAs reveals a unique expression pattern in different types of pituitary adenomas. Endocr J 2019; 66:709-722. [PMID: 31061247 DOI: 10.1507/endocrj.ej18-0487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pituitary adenomas (PAs) are considered the most common intracranial tumor to cause serious morbidity because of dysregulated pituitary hormone secretions. Aberrant expression of microRNAs (miRNAs) is correlated with the development and function of the pituitary gland as well as the tumorigenesis of hypothalamic-pituitary axis-related pituitary tumors. In this study, we showed the differential expression patterns of miRNAs in NFPAs (nonfunctioning pituitary adenomas), GHPAs (growth hormone-secreting pituitary adenomas) and PRLPAs (prolactin-secreting pituitary adenomas) compared to those in three normal pituitary glands using the HiSeq 2000 sequencing system (Illumina). We validated miRNA expression using real-time quantitative polymerase chain reaction (RT-qPCR) analyses of samples from 73 patients (13 GHPAs, 42 NFPAs, and 18 PRLPAs) and 6 normal pituitary gland. We observed that miR-34c-3p was significantly downregulated in our PRLPA samples (p < 0.01), along with miR-34b-5p, miR-378 and miR-338-5p (all p < 0.05). In NFPAs, miR-493-5p was downregulated, and miR-181b-5p was significantly upregulated (p < 0.01). In GHPAs, miR-184 was significantly upregulated (p < 0.05). We observed that the tumor suppressive miR-124-3p was downregulated in both NFPAs and GHPAs. Taken together, we showed distinctive miRNA expression patterns in these three PAs, and these miRNA signatures in PA may have therapeutic potential as novel biomarkers for each type of PA.
Collapse
Affiliation(s)
- Zongze He
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Hu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jian Tang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Linfu He
- Institute of Bioengineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Junting Hu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| |
Collapse
|
27
|
Portovedo S, Gaido N, de Almeida Nunes B, Nascimento AG, Rocha A, Magalhães M, Nascimento GC, Pires de Carvalho D, Soares P, Takiya C, Faria MDS, Miranda-Alves L. Differential Expression of HMGA1 and HMGA2 in pituitary neuroendocrine tumors. Mol Cell Endocrinol 2019; 490:80-87. [PMID: 30999005 DOI: 10.1016/j.mce.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Defining biomarkers for invasive pituitary neuroendocrine tumors (PitNETs) is highly desirable. The high mobility group A (HMGA) proteins are among the most widely expressed cancer-associated proteins. Indeed, their overexpression is a frequent feature of human malignancies, including PitNETs. We show that nonfunctioning PitNETs (NF-PitNETs) express significantly higher levels of HMGA1 than somatotropinomas (GHs) and corticotropinomas (ACTHs). Furthermore, HMGA2 expression was detected only in NF-PitNETs and was significantly higher in larger tumors than in smaller tumors. HMGA expression analysis generally focuses on nuclear staining. Here, cytoplasmic HMGA staining was also found. PitNETs displayed strong nuclear HMGA1 and strong cytoplasmic HMGA2 immunoreactivity. Interestingly, the HMGA1 and HMGA2 nuclear expression levels were significantly higher in invasive adenomas than in noninvasive adenomas. The highest levels of nuclear HMGA2 were found in GHs. In conclusion, we show that overexpression of nuclear HMGA proteins could be a potential biomarker of invasive PitNETs, particularly HMGA2 for GHs. HMGA2 might be a reliable biomarker for NF-PitNETs.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Nadja Gaido
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Bruno de Almeida Nunes
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil
| | - Ana Giselia Nascimento
- Service of Pathology, President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Allysson Rocha
- Department of Radiology and Diagnostic Imaging, President Dutra Hospital, Federal University of Maranhão, Brazil
| | - Marcelo Magalhães
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Gilvan Cortes Nascimento
- Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Denise Pires de Carvalho
- Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Paula Soares
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Institute for Research and Innovation in Health (I3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signaling & Metabolism, Portugal; Department of Pathology, Faculty of Medicine, University of Porto, Portugal
| | - Christina Takiya
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - Manuel Dos Santos Faria
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Service of Endocrinology, President Dutra Hospital of the Federal University of Maranhão and Clinical Research Center of the President Dutra Hospital of the Federal University of Maranhão, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology - LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil; Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil; Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| |
Collapse
|
28
|
Zunino V, Catalano MG, Zenga F, Penner F, Maletta F, Valerio F, Rinella L, Arvat E, Fortunati N. Benzene affects the response to octreotide treatment of growth hormone secreting pituitary adenoma cells. ENVIRONMENTAL RESEARCH 2019; 173:489-496. [PMID: 30986651 DOI: 10.1016/j.envres.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Growth hormone (GH) secreting pituitary adenomas are the main cause of acromegaly. Somatostatin analogs are the gold standard of medical therapy; however, resistance represents a big drawback in acromegaly management. We recently demonstrated that benzene (BZ) modifies the aggressiveness of GH-secreting rat pituitary adenoma cells (GH3), increasing GH secretion and altering the synthesis of molecules involved in the somatostatin signaling pathway. Based on these pieces of evidence, this study aimed to evaluate the effects of BZ on octreotide (OCT) efficacy in GH-secreting adenoma cells. In GH3 cells, BZ counteracted the anti-proliferative action of OCT. GH gene expression, unmodified by OCT, remained high in BZ-treated cells as well as after treatment with the association of both. GH secretion, reduced by OCT, was increased after treatment with BZ alone or when the pollutant was used with OCT. The combination of BZ and OCT greatly reduced the gene expression of ZAC1 and SSTR2; and this reduction was also present at a protein level. BZ caused an increase in the protein level of the transcription factor STAT3 and in its phosphorylated form. In the presence of BZ, OCT lost the ability to reduce the phosphorylated protein levels. Finally, in primary cultures of human pituitary adenoma cells, BZ caused an increase in GH secretion. OCT decreased GH secretion, but the addition of BZ reversed the OCT effect. In conclusion, our results suggest that BZ may have an important role in the resistance of pituitary adenomas to the pharmacological treatment with somatostatin analogs.
Collapse
Affiliation(s)
- Valentina Zunino
- Department of Medical Sciences, University of Turin, I-10126, Turin, Italy
| | | | - Francesco Zenga
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126, Turin, Italy
| | - Federica Penner
- Division of Neurosurgery, Città della Salute e della Scienza University Hospital, I-10126, Turin, Italy
| | - Francesca Maletta
- Division of Pathology, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Francesco Valerio
- Department of Medical Sciences, University of Turin, I-10126, Turin, Italy
| | - Letizia Rinella
- Department of Medical Sciences, University of Turin, I-10126, Turin, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, University of Turin, I-10126, Turin, Italy; Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126, Turin, Italy
| | - Nicoletta Fortunati
- Division of Oncological Endocrinology, Città della Salute e della Scienza University Hospital, I-10126, Turin, Italy.
| |
Collapse
|
29
|
Camilletti MA, Abeledo-Machado A, Perez PA, Faraoni EY, De Fino F, Rulli SB, Ferraris J, Pisera D, Gutierrez S, Thomas P, Díaz-Torga G. mPRs represent a novel target for PRL inhibition in experimental prolactinomas. Endocr Relat Cancer 2019; 26:497-510. [PMID: 30856609 DOI: 10.1530/erc-18-0409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRβ was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/β, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.
Collapse
Affiliation(s)
| | | | - Pablo A Perez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina, UBA-CONICET, Buenos Aires, Argentina
| | - Silvina Gutierrez
- Centro de Microscopia Electrónica, Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Peter Thomas
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
30
|
Clinical usefulness of 99mTc-HYNIC-TOC, 99mTc(V)-DMSA, and 99mTc-MIBI SPECT in the evaluation of pituitary adenomas. Nucl Med Commun 2018; 40:41-51. [PMID: 30334858 PMCID: PMC6282662 DOI: 10.1097/mnm.0000000000000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The aim of this study was to evaluate the behavioral uptake and ability to diagnose pituitary adenoma (PA) using tumor-seeking radiopharmaceuticals, and to provide a semiquantitative analysis of tracer uptake in the pituitary region. Patients and methods The study included 33 (13 hormonally active and 20 nonfunctioning) patients with PA and 45 control participants without pituitary involvement. All patients (n=78) underwent single photon emission computed tomography (SPECT) imaging with technetium-99m-labeled hydrazinonicotinyl-tyr3-octreotide (99mTc-HYNIC-TOC), dimercaptosuccinic acid (99mTc(V)-DMSA) and hexakis-2-methoxyisobutylisonitrile (99mTc-MIBI). A semiquantitative analysis of abnormal uptake was carried out by drawing identical regions of interest over the pituitary area and the normal brain on one transverse section that shows the lesion most clearly. The pituitary uptake to normal brain uptake (P/B) ratio was calculated in all cases. Results The result of this study confirms that the SPECT semiquantitative method, with all three tracers, showed statistically significant differences between the PA group and the controls. However, 99mTc-HYNIC-TOC scintigraphy could have the highest diagnostic yield because of the smallest overlap between the P/B ratios between adenoma versus nonadenoma participants (the receiver operating characteristic curve P/B ratio cut-off value was 13.08). In addition, only 99mTc-MIBI SPECT have the diagnostic potential to detect secreting PAs, with statistically significant differences between groups (P<0.001), with an receiver operating characteristic curve P/B ratio cut-off value of 16.72. Conclusion A semiquantitative analysis of increased focal tracer uptake in the sellar area showed that 99mTc-HYNIC-TOC is a highly sensitive and reliable tumor-seeking agent for detecting PA, whereas 99mTc-MIBI SPECT is a highly sensitive and specific method in differentiating hormone-secreting pituitary tumor.
Collapse
|
31
|
Carril-Ajuria L, Jiménez-Aguilar E, Gómez-Martín C, Díaz-Pedroche C. An unsuspected complication with immune checkpoint blockade: a case report. J Med Case Rep 2018; 12:246. [PMID: 30176934 PMCID: PMC6122676 DOI: 10.1186/s13256-018-1782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Immunotherapy treatment with immune-checkpoint blockade has become a new paradigm in cancer treatment. Despite its efficacy, it has also given rise to a new class of adverse events, immune-related adverse events, which may affect any organ, including the thyroid and the pituitary. Case presentation We present a case of a 77-year-old Caucasian man with metastatic renal cell carcinoma on immunotherapy treatment who was admitted to our hospital with a severe persistent headache of sudden onset. He had been on corticosteroid therapy for 10 days for suspected immune-related thyroiditis. The patient had tachycardia and mild diarrhea, and his thyroid function tests were compatible with subclinical hyperthyroidism with a suppressed thyroid-stimulating hormone level of 0.01 μIU/ml (0.4–4.5), a raised free T4 level of 2.17 ng/dl (0.7–1.9), and a free T3 level of 4.66 pg/ml (2.27–5). Computed tomography and magnetic resonance imaging revealed an enlargement of the pituitary gland compatible with macroadenoma. In the face of a probable immune-related hypophysitis, high-dose corticosteroid treatment was started. A posterior hormonal evaluation revealed secondary hypothyroidism with a suppressed thyroid-stimulating hormone level of 0.11 μIU/ml (0.4–4.5) and low thyroid hormones, a normal free T4 level of 1.02 ng/dl (0.7–1.9), and a low free T3 level of 1.53 pg/ml (2.27–5). These new findings suggested central hypothyroidism possibly due to pituitary apoplexy as a complication of the macroadenoma. Therefore, levothyroxine substitution was started along with the previously started corticosteroid therapy. The patient’s headache and asthenia gradually resolved, and after a few days, he was released from the hospital with levothyroxine substitution and corticosteroid tapering. Conclusions This case emphasizes the importance of the differential diagnosis when dealing with patients on immune checkpoint inhibitors because other non-immune-related events may present. Our patient was finally diagnosed with immune-related hyperthyroidism and a concurrent pituitary macroadenoma. This case also highlights the importance of a prompt start of corticosteroid therapy once immune-related adverse events such as hypophysitis are suspected, because otherwise the outcome would be fatal.
Collapse
Affiliation(s)
- Lucia Carril-Ajuria
- Medical Oncology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación i+12, Madrid, Spain.
| | - Elisabeth Jiménez-Aguilar
- Medical Oncology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación i+12, Madrid, Spain
| | - Carlos Gómez-Martín
- Medical Oncology Department, Hospital Universitario 12 de Octubre and Instituto de Investigación i+12, Madrid, Spain
| | - Carmen Díaz-Pedroche
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
32
|
Chen J, Jian X, Deng S, Ma Z, Shou X, Shen Y, Zhang Q, Song Z, Li Z, Peng H, Peng C, Chen M, Luo C, Zhao D, Ye Z, Shen M, Zhang Y, Zhou J, Fahira A, Wang Y, Li S, Zhang Z, Ye H, Li Y, Shen J, Chen H, Tang F, Yao Z, Shi Z, Chen C, Xie L, Wang Y, Fu C, Mao Y, Zhou L, Gao D, Yan H, Zhao Y, Huang C, Shi Y. Identification of recurrent USP48 and BRAF mutations in Cushing's disease. Nat Commun 2018; 9:3171. [PMID: 30093687 PMCID: PMC6085354 DOI: 10.1038/s41467-018-05275-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cushing's disease results from corticotroph adenomas of the pituitary that hypersecrete adrenocorticotropin (ACTH), leading to excess glucocorticoid and hypercortisolism. Mutations of the deubiquitinase gene USP8 occur in 35-62% of corticotroph adenomas. However, the major driver mutations in USP8 wild-type tumors remain elusive. Here, we report recurrent mutations in the deubiquitinase gene USP48 (predominantly encoding p.M415I or p.M415V; 21/91 subjects) and BRAF (encoding p.V600E; 15/91 subjects) in corticotroph adenomas with wild-type USP8. Similar to USP8 mutants, both USP48 and BRAF mutants enhance the promoter activity and transcription of the gene encoding proopiomelanocortin (POMC), which is the precursor of ACTH, providing a potential mechanism for ACTH overproduction in corticotroph adenomas. Moreover, primary corticotroph tumor cells harboring BRAF V600E are sensitive to the BRAF inhibitor vemurafenib. Our study thus contributes to the understanding of the molecular mechanism of the pathogenesis of corticotroph adenoma and informs therapeutic targets for this disease.
Collapse
Affiliation(s)
- Jianhua Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuemin Jian
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Siyu Deng
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Xuefei Shou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Yue Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Zhijian Song
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zhiqiang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hong Peng
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Peng
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Chen
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dan Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Ming Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Juan Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Aamir Fahira
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Shiqi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Zhaoyun Zhang
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Hongying Ye
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yiming Li
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Endocrinology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Jiawei Shen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hong Chen
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Feng Tang
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhenwei Yao
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Chunjui Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Lu Xie
- Shanghai Center for Bioinformation Technology (SCBIT), Shanghai Academy of Science and Technology, Shanghai, 201203, China
| | - Ye Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Chaowei Fu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, Institute of Neurosurgery, Shanghai Medical College, Fudan University, 200040, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China
| | - Daming Gao
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hai Yan
- Department of Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- Shanghai Pituitary Tumor Center, Shanghai, 200040, China.
- Institute of Neurosurgery, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, Institute of Neurosurgery, Shanghai Medical College, Fudan University, 200040, Shanghai, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yongyong Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|
33
|
Recouvreux MV, Faraoni EY, Camilletti MA, Ratner L, Abeledo-Machado A, Rulli SB, Díaz-Torga G. Sex differences in the pituitary TGFβ1 system: The role of TGFβ1 in prolactinoma development. Front Neuroendocrinol 2018; 50:118-122. [PMID: 29074127 DOI: 10.1016/j.yfrne.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Prolactinomas are the most frequent functioning pituitary adenomas, and sex differences in tumor size, behavior and incidence have been described. These differences have been associated with earlier diagnosis in woman, as well as with serum estradiol levels. Experimental models of prolactinomas in rodents also show a higher incidence in females, and recent findings suggest that gender differences in the transforming growth factor beta 1 (TGFβ1) system might be involved in the sex-specific development of prolactinomas in these models. The aim of this review is to summarize the literature supporting the important role of TGFβ1 as a local modulator of pituitary lactotroph function and to provide recent evidence for TGFβ1 involvement in the sex differences found in prolactinoma development in animal models.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina; Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - M Andrea Camilletti
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Laura Ratner
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
34
|
Abstract
Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.
Collapse
|
35
|
Marques P, Barry S, Ronaldson A, Ogilvie A, Storr HL, Goadsby PJ, Powell M, Dang MN, Chahal HS, Evanson J, Kumar AV, Grieve J, Korbonits M. Emergence of Pituitary Adenoma in a Child during Surveillance: Clinical Challenges and the Family Members' View in an AIP Mutation-Positive Family. Int J Endocrinol 2018; 2018:8581626. [PMID: 29849625 PMCID: PMC5904812 DOI: 10.1155/2018/8581626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Germline aryl hydrocarbon receptor-interacting protein (AIP) mutations are responsible for 15-30% of familial isolated pituitary adenomas (FIPAs). We report a FIPA kindred with a heterozygous deletion in AIP, aiming to highlight the indications and benefits of genetic screening, variability in clinical presentations, and management challenges in this setting. PATIENTS An 18-year-old male was diagnosed with a clinically nonfunctioning pituitary adenoma (NFPA). Two years later, his brother was diagnosed with a somatolactotrophinoma, and a small Rathke's cleft cyst and a microadenoma were detected on screening in their 17-year-old sister. Following amenorrhoea, their maternal cousin was diagnosed with hyperprolactinaemia and two distinct pituitary microadenomas. A 12-year-old niece developed headache and her MRI showed a microadenoma, not seen on a pituitary MRI scan 3 years earlier. DISCUSSION Out of the 14 members harbouring germline AIP mutations in this kindred, 5 have pituitary adenoma. Affected members had different features and courses of disease. Bulky pituitary and not fully suppressed GH on OGTT can be challenging in the evaluation of females in teenage years. Multiple pituitary adenomas with different secretory profiles may arise in the pituitary of these patients. Small, stable NFPAs can be present in mutation carriers, similar to incidentalomas in the general population. Genetic screening and baseline review, with follow-up of younger subjects, are recommended in AIP mutation-positive families.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amy Ronaldson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arla Ogilvie
- West Hertfordshire Hospitals NHS Trust, Watford, UK
| | - Helen L. Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter J. Goadsby
- Basic & Clinical Neuroscience and NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - Michael Powell
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Mary N. Dang
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harvinder S. Chahal
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Jane Evanson
- Department of Radiology, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ajith V. Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Joan Grieve
- The National Hospital for Neurology and Neurosurgery, UCLH, NHS Trust, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Zhang J, Ma D, Liu H, Wang J, Fan J, Li X. MicroRNA-143 shows tumor suppressive effects through inhibition of oncogenic K-Ras in pituitary tumor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10969-10978. [PMID: 31966441 PMCID: PMC6965829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/17/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, about 21-25 nucleotides in length. Accumulating evidence demonstrated that dysregulation or dysfunction of miRNAs are involved in various diseases, including cancer. MiR-143, recently has been reported to function as an important tumor suppressor in prostate cancer, pancreatic ductal adenocarcinoma and other kinds of cancers, but rarely systematically studied in pituitary tumor. In the present study, we firstly found that miR-143 was significantly down-regulated in pituitary tumor tissues and cell lines (GH3 and MMQ). Then, subsequent studies revealed that miR-143 inhibits cell proliferation and promotes apoptosis in both GH3 and MMQ cells. In addition, K-Ras, one of the most important oncogenes involved in many kinds of cancers, was found to be suppressed by miR-143 in pituitary tumor. Furthermore, overexpression of K-Ras greatly reversed the suppressive effect of miR-143 on pituitary tumor cells. In summary, our study demonstrated that miR-143 functions as a tumor suppressor and directly targets K-Ras in human pituitary tumor.
Collapse
Affiliation(s)
- Jimin Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| | - Dongzhou Ma
- Department of Neurosurgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| | - Hui Liu
- Department of Neurosurgery, Jizhong Energy Fengfeng Group HospitalHandan 056200, Hebei Province, China
| | - Jingtao Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| | - Jinbiao Fan
- Department of Neurosurgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| | - Xiushan Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of EngineeringHandan 056002, Hebei Province, China
| |
Collapse
|
37
|
Zhao P, Zhang P, Hu W, Wang H, Yu G, Wang Z, Li C, Bai J, Zhang Y. Upregulation of cyclin B1 plays potential roles in the invasiveness of pituitary adenomas. J Clin Neurosci 2017; 43:267-273. [PMID: 28601573 DOI: 10.1016/j.jocn.2017.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/07/2017] [Accepted: 05/21/2017] [Indexed: 11/26/2022]
Abstract
Predicting aggressive or malignant behavior of pituitary adenomas (PAs) remains challenging. Aberrant expression of cyclin B1 (CCNB1) occurred in various tumors including PAs. Our study was aimed to explore its roles in the development of PAs aggressiveness. According to the integrated analysis, the expression of CCNB1 was evaluated. Following bioinformatics analysis was performed to uncover the pathways CCNB1 involved in and the upstream transcriptional regulation factors. The mRNA expression of CCNB1 was verified by qRT-PCR. Immunohistochemistry analysis was conducted to examine the expression of CCNB1 protein in three groups of PAs (non-invasive, invasive and aggressive-invasive). In this study, CCNB1 was up-regulated in PAs versus normal pituitary. Functional annotation revealed CCNB1 was mainly involved in p53 signaling pathway and cell cycle, which affected proliferation and contributed to tumorigenesis. The constructed transcriptional regulatory network contained 22 upstream transcriptional factors for CCNB1. Moreover, the network also suggested the interactions between CCNB1 and other genes implicated in proliferation (BUB1, CDC25C and TTK). Immunohistochemistry showed staining of CCNB1 was positive in PAs, and its expression was gradually enhanced with the increased invasiveness. In conclusion, up-regulation of CCNB1, together with other regulatory molecules in cell cycle, may play roles in the PAs pathology and could be an indicator for invasiveness of PAs.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.
| | - Pengfei Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Wei Hu
- Department of Cardiology, Beijing Chuiyangliu Hospital, Beijing, China
| | - Hongyun Wang
- Beijing Neurosurgical Institute, Center of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Guoqiang Yu
- Medical Center, Tsinghua University, Beijing, China
| | - Zhuang Wang
- Beijing Neurosurgical Institute, Center of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Chuzhong Li
- Beijing Neurosurgical Institute, Center of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiwei Bai
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Center of Brain Tumor, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
39
|
You L, Li W, Chen T, Tang D, You J, Zhang X. A retrospective analysis of postoperative hypokalemia in pituitary adenomas after transsphenoidal surgery. PeerJ 2017; 5:e3337. [PMID: 28560099 PMCID: PMC5444367 DOI: 10.7717/peerj.3337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/20/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pituitary adenoma is one of the most common intracranial neoplasms, and its primary treatment is endoscopic endonasal transsphenoidal tumorectomy. Postoperative hypokalemia in these patients is a common complication, and is associated with morbidity and mortality. This study aimed to analyze the etiopathology of postoperative hypokalemia in pituitary adenomas after endoscopic transsphenoidal surgery. METHODS AND MATERIALS This retrospective study included 181 pituitary adenomas confirmed by histopathology. Unconditional logistic regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Repeated measures ANOVA was used to analyze change in serum potassium levels at different time points. RESULTS Multiple Logistic regression analysis revealed that only ACTH-pituitary adenoma (OR = 4.92, 95% CI [1.18-20.48], P = 0.029) had a significant association with postoperative hypokalemia. Moreover, the overall mean serum potassium concentration was significantly lower in the ACTH versus the non-ACTH group (3.34 mmol/L vs. 3.79 mmol/L, P = 0.001). Postoperative hypokalemia was predominantly found in patients with ACTH-pituitary adenoma (P = 0.033). CONCLUSIONS ACTH-pituitary adenomas may be an independent factor related postoperative hypokalemia in patients despite conventional potassium supplementation in the immediate postoperative period.
Collapse
Affiliation(s)
- Lili You
- Department of Clinical Epidemiology, First Hospital of Jilin University, Changchun, China
| | - Wenpeng Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Tang Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Dongfang Tang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Jinliang You
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xianfeng Zhang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Sapochnik M, Fuertes M, Arzt E. Programmed cell senescence: role of IL-6 in the pituitary. J Mol Endocrinol 2017; 58:R241-R253. [PMID: 28381401 DOI: 10.1530/jme-17-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.
Collapse
Affiliation(s)
- Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
41
|
Gottardo MF, Moreno Ayala M, Ferraris J, Zárate S, Pisera D, Candolfi M, Jaita G, Seilicovich A. Humanin inhibits apoptosis in pituitary tumor cells through several signaling pathways including NF-κB activation. J Cell Commun Signal 2017; 11:329-340. [PMID: 28378125 DOI: 10.1007/s12079-017-0388-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Humanin (HN) and Rattin (HNr), its homologous in the rat, are peptides with cytoprotective action in several cell types such as neurons, lymphocytes and testicular germ cells. Previously, we have shown that HNr is expressed in pituitary cells and that HN inhibited the apoptotic effect of TNF-α in both normal and tumor pituitary cells. The aim of the present study was to identify signaling pathways that mediate the antiapoptotic effect of HN in anterior pituitary cells from ovariectomized rats and in GH3 cells, a somatolactotrope cell line. We assessed the role of STAT3, JNK, Akt and MAPKs as well as proteins of the Bcl-2 family, previously implicated in the antiapoptotic effect of HN. We also evaluated the participation of NF-κB in the antiapoptotic action of HN. STAT3 inhibition reversed the inhibitory effect of HN on TNF-α-induced apoptosis in normal and pituitary tumor cells, indicating that STAT3 signaling pathway mediates the antiapoptotic effect of HN on pituitary cells. Inhibition of NF-κB pathway did not affect action of HN on normal anterior pituitary cells but blocked the cytoprotective effect of HN on TNF-α-induced apoptosis of GH3 cells, suggesting that the NF-κB pathway is involved in HN action in tumor pituitary cells. HN also induced NF-κB-p65 nuclear translocation in these cells. In pituitary tumor cells, JNK and MEK inhibitors also impaired HN cytoprotective action. In addition, HN increased Bcl-2 expression and decreased Bax mitochondrial translocation. Since HN expression in GH3 cells is higher than in normal pituitary cells, we may suggest that through multiple pathways HN could be involved in pituitary tumorigenesis.
Collapse
Affiliation(s)
- María Florencia Gottardo
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Mariela Moreno Ayala
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Jimena Ferraris
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Sandra Zárate
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Daniel Pisera
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Marianela Candolfi
- CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Gabriela Jaita
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Facultad de Medicina, Departamento de Biología Celular e Histología, Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina. .,CONICET, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
42
|
Safety and efficacy of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas: A systematic review and meta-analysis. J Neurol Sci 2016; 372:110-116. [PMID: 28017195 DOI: 10.1016/j.jns.2016.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/11/2023]
Abstract
Accumulated studies have not provided conclusive evidence in regards to the comparative efficacy and safety of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas. To address this issue, we performed a meta-analysis with eight studies identified from Medline, PubMed, Cochrane, Google Scholar, and published up to September 17, 2015. Eligible studies reported the disease control rate, endocrine cure rate (for functional adenomas), the rate of occurrence of new-onset hypopituitarism, and visual disturbance rate in patients treated with either stereotactic radiosurgery or fractionated stereotactic radiotherapy. Eight studies enrolled a total of 634 patients with pituitary adenoma, 273 patients underwent a stereotactic radiosurgery and 361 patients underwent fractionated stereotactic radiotherapy. No significant differences were found in efficacy measures, such as disease control rate and endocrine cure rate, between stereotactic radiosurgery and fractionated stereotactic radiotherapy (OR=1.156, p=0.666; OR=0.659, p=0.153, respectively). Additionally, meta-analysis of safety measures, such as the rate of new-onset hypopituitarism and visual disturbance rate, did not show significant differences between different treatments (OR=1.365, p=0.469; OR=0.872, p=0.845 respectively). In conclusion, both stereotactic radiosurgery and fractionated stereotactic radiotherapy have comparable efficacy and safety in the management of pituitary adenoma patients.
Collapse
|
43
|
Extensive miRNA expression analysis in craniopharyngiomas. Childs Nerv Syst 2016; 32:1617-24. [PMID: 27272948 DOI: 10.1007/s00381-016-3131-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE Craniopharyngiomas are benign tumors of the sellar or parasellar regions. They arise from the remnants of Rathke's pouch and are considered a "developmental disease." microRNAs are short non-coding RNAs that play a key regulatory role in the control of expression of entire gene networks. We performed an extensive analysis of miRNAs in craniopharyngiomas aiming to identify a miRNA expression signature that might aid in the prognosis of disease progression and outcome. METHODS Thirty-seven craniopharyngioma samples from twenty-three patients, ten age-matched controls from autopsy, and ten infant controls from the developing pituitary from autopsy were evaluated for the expression of 754 miRNAs using TaqMan® Low Density Arrays (TLDAs) v2.0 (Applied Biosystems, Foster City, CA). RESULTS Among the most differentially expressed miRNAs, downregulation of miR-132 appears to be a marker of aggressiveness and also plays a role in epithelial-mesenchymal transition. CONCLUSIONS This is the first time that an extensive study of miRNA expression has been performed in craniopharyngiomas. Further research needs to be performed to investigate the potential role of miR-132 in the development and progression of craniopharyngiomas, and its value as a prognostic marker of aggressiveness.
Collapse
|
44
|
MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol 2016; 37:13469-13477. [PMID: 27465551 DOI: 10.1007/s13277-016-5155-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-106b (miR-106b) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in pituitary tumor and to confirm whether miR-106b promotes proliferation and invasion of pituitary tumor cells through the PI3K/AKT signaling pathway by targeted regulation of PTEN expression, and thereby to find new targets for the treatment of pituitary tumor. Fifty-five cases of pituitary tumor tissue samples were collected, including 29 cases of invasive pituitary tumor, non-invasive 26 cases, and 8 normal pituitaries. The expression level of miR-106b in pituitary tumor tissue was detected by quantitative real-time PCR, and the expression of PTEN protein was detected by immunohistochemistry. PTEN 3'-untranslated region (UTR) luciferase vector was constructed, and dual-luciferase reporter gene assay was employed to examine the effect of miR-106b on PTEN 3'-UTR luciferase activity. AtT-20 cells were transfected with miR-106b mimics, miR-106b inhibitor, PTEN expression plasmid, and miR-106b mimics + PTEN expression plasmid respectively, and the changes in cellular proliferation and invasion were observed via MTT method and transwell assay respectively. PTEN messenger RNA (mRNA) expression was determined by quantitative real-time PCR, and western blotting was performed to detect the expression of PTEN, PI3K, AKT, and pAKT. miR-106b showed up-regulation in invasive pituitary tumor tissue: the expression level was significantly up-regulated compared with normal tissues and the non-invasive pituitary tumor tissue (P < 0.05). The positive rate of PTEN protein expression in invasive pituitary tumor tissues was significantly lower than in normal and non-invasive tissues (P < 0.01). Dual-luciferase reporter gene assay showed that miR-106b could bind to the 3'-UTR of PTEN specifically and significantly inhibited the luciferase activity, cutting the 46 % (P < 0.01). Down-regulation of miR-106b or up-regulation of PTEN could suppress cell proliferation and invasion of AtT-20 cells, and PTEN expression plasmid could partially simulate the function of miR-106b. Expression of PTEN mRNA and protein decreased significantly in AtT-20 cells overexpressing miR-106b. The expression levels of PI3K and p-AKT were significantly inhibited by miR-106b inhibitor and increased by miR-106b mimics. The expression of miR-106b showed up-regulation in pituitary tumor tissues, while the protein expression of PTEN presented opposite results. The findings of this study further demonstrated that miR-106b as an oncogene regulated the pituitary tumor cell proliferation and invasion in vitro by directly targeting PTEN through the PI3K/AKT signaling pathway. Our study suggests that miR-106b and PTEN are likely to serve as potential diagnostic biomarkers or therapeutic targets for pituitary tumor treatment in the future.
Collapse
|
45
|
Recouvreux MV, Camilletti MA, Rifkin DB, Díaz-Torga G. The pituitary TGFβ1 system as a novel target for the treatment of resistant prolactinomas. J Endocrinol 2016; 228:R73-83. [PMID: 26698564 PMCID: PMC4760866 DOI: 10.1530/joe-15-0451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 02/03/2023]
Abstract
Prolactinomas are the most frequently observed pituitary adenomas and most of them respond well to conventional treatment with dopamine agonists (DAs). However, a subset of prolactinomas fails to respond to such therapies and is considered as DA-resistant prolactinomas (DARPs). New therapeutic approaches are necessary for these tumors. Transforming growth factor β1 (TGFβ1) is a known inhibitor of lactotroph cell proliferation and prolactin secretion, and it partly mediates dopamine inhibitory action. TGFβ1 is secreted to the extracellular matrix as an inactive latent complex, and its bioavailability is tightly regulated by different components of the TGFβ1 system including latent binding proteins, local activators (thrombospondin-1, matrix metalloproteases, integrins, among others), and TGFβ receptors. Pituitary TGFβ1 activity and the expression of different components of the TGFβ1 system are regulated by dopamine and estradiol. Prolactinomas (animal models and humans) present reduced TGFβ1 activity as well as reduced expression of several components of the TGFβ1 system. Therefore, restoration of TGFβ1 inhibitory activity represents a novel therapeutic approach to bypass dopamine action in DARPs. The aim of this review is to summarize the large literature supporting TGFβ1 important role as a local modulator of pituitary lactotroph function and to provide recent evidence of the restoration of TGFβ1 activity as an effective treatment in experimental prolactinomas.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - M Andrea Camilletti
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - Daniel B Rifkin
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
46
|
Qiao N, Ye Z, Shen M, Shou X, Wang Y, Li S, Wang M, Zhao Y. Retinal nerve fiber layer changes after transsphenoidal and transcranial pituitary adenoma resection. Pituitary 2016; 19:75-81. [PMID: 26494043 DOI: 10.1007/s11102-015-0689-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Retinal nerve fiber layer (RNFL) will show retrograde degeneration following damage to the optic nerve or the optic tract in patients with pituitary adenoma. RNFL changes after surgery have not been studied thoroughly in patients with the transsphenoidal surgery and patients with the transcranial surgery. METHODS Thirty-seven patients with pituitary adenoma were recruited from Huashan hospital between September 2010 and July 2014. Patients were divided into two groups: the transsphenoidal group and the transcranial group. Before surgery, 3 and 9 months after surgery, follow-up optic coherence tomography were conducted. RESULTS Twenty-one patients underwent transsphenoidal surgery and 16 patients underwent transcranial surgery. No obvious difference were observed between these two groups before surgery. The mean RNFL thickness did not change significantly in patients who underwent transsphenoidal surgery: 91.1 before surgery, 92.7 at 3 months after surgery (p = 0.392) and 92.8 at 9 months after surgery( p = 0.395). The mean RNFL thickness decreased inpatients who underwent transcranial surgery: 93.6 before surgery, 86.1 at 3 months after surgery (p = 0.000) and 88.1 at 9 months after surgery (p = 0.005). CONCLUSIONS In the short time follow-up, there was no change of RNFL thickness in pituitary adenoma patients underwent transsphenoidal surgery, but a decrease inpatients underwent transcranial surgery.
Collapse
|
47
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
48
|
Zhan X, Desiderio DM. Editorial: Systems Biological Aspects of Pituitary Tumors. Front Endocrinol (Lausanne) 2016; 7:86. [PMID: 27445988 PMCID: PMC4928041 DOI: 10.3389/fendo.2016.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China; The State Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center , Memphis, Tennessee , USA
| |
Collapse
|
49
|
Grizzi F, Borroni EM, Vacchini A, Qehajaj D, Liguori M, Stifter S, Chiriva-Internati M, Di Ieva A. Pituitary Adenoma and the Chemokine Network: A Systemic View. Front Endocrinol (Lausanne) 2015; 6:141. [PMID: 26441831 PMCID: PMC4566033 DOI: 10.3389/fendo.2015.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fabio Grizzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
- *Correspondence: Fabio Grizzi,
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Dorina Qehajaj
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Manuela Liguori
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, University of Rijeka, Rijeka, Croatia
| | | | - Antonio Di Ieva
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|