1
|
Sun C, Li C, Mu W, Ma L, Xie H, Xu J. The photosynthetic physiological response and purification effect of Salix babylonica to 2, 4-dinitrophenol wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:675-683. [PMID: 34455875 DOI: 10.1080/15226514.2021.1962799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytoremediation technology based on living green plants would clean up water pollution. Through hydroponic experiment, the effects of different concentration of 2, 4-dinitrophenol (2, 4-DNP) on the photosynthetic and chlorophyll fluorescence parameters of Salix babylonica, and the absorption and purification effect of S. babylonica on 2, 4-DNP were measured to explore the tolerance of S. babylonica to 2, 4-DNP and the feasibility to purify dinitrophenol waste water by it. The biomass, actual photochemical efficiency (PSII), net photosynthetic rate (Pn), photochemical quenching coefficient (qP), stomatal conductance (Gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm) and chlorophyll content of the S. babylonica showed downward trend with the increasing exposure concentrations of 2,4-DNP, but the intercellular CO2 concentration (Ci) appeared upward trend. Non-photochemical quenching coefficient (NPQ) increased at 5 mg L-1, then declined with the increase concentrations of 2, 4-DNP. In addition, the percent removal of 2, 4-DNP in 20 mg L-1 waste water was 91.4%. In conclusion, 2, 4-DNP significantly inhibits Pn of S. babylonica and the reduction of Pn was caused by decreasing Gs, carboxylation efficiency and chlorophyll content. When the concentration of 2, 4-DNP is not more than 20 mg L-1, S. babylonica can remove 2, 4-DNP efficiently.
Collapse
Affiliation(s)
- Chaofan Sun
- Forestry College of Shandong Agricultural University, Taian, China
| | - Chuanrong Li
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Wenxiu Mu
- Forestry College of Shandong Agricultural University, Taian, China
| | - Luyao Ma
- Forestry College of Shandong Agricultural University, Taian, China
| | - Huicheng Xie
- Forestry College of Shandong Agricultural University, Taian, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, China
| | - Jingwei Xu
- Shandong Provincial Academy of Forestry, Jinnan, China
| |
Collapse
|
2
|
Dimitrova T, Repmann F, Freese D. Detoxification of ferrocyanide in asoil-plant system. J Environ Sci (China) 2019; 77:54-64. [PMID: 30573106 DOI: 10.1016/j.jes.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/09/2023]
Abstract
The detoxification of iron cyanide in a soil-plant system was investigated to assess the total cyanide extracted from contaminated soil and allocated in the leaf tissue of willow trees (Salix caprea). They were grown in soil containing up to 1000 mg/kg dry weight (dw) of cyanide (CN), added as 15N-labeled potassium ferrocyanide and prepared with a new method for synthesis of labeled iron cyanides. CN content and 15N enrichment were monitored weekly over the exposure in leaf tissue of different age. The 15N enrichment in the young and old leaf tissue reached up to 15.197‰ and 9063‰, respectively; it increased significantly over the exposure and with increasing exposure concentrations (p < 0.05). Although the CN accumulation in the old leaf tissue was higher, compared to the young leaf tissue (p < 0.05), the 15N enrichment in the two tissue types did not differ statistically. This indicates a non-uniform CN accumulation but a uniform 15N allocation throughout the leaf mass. Significant differences were detected between the measured CN content and the C15N content, calculated from the 15N enrichment (p < 0.05), revealing a significant CN fraction within the leaf tissue, which could not be detected as ionic CN. The application of labeled iron CN clearly shows that CN is detoxified during uptake by the willows. However, these results do not exclude other detoxification pathways, not related to the trees. Still, they are strongly indicative of the central role the trees played in CN removal and detoxification under the experimental conditions.
Collapse
Affiliation(s)
- Tsvetelina Dimitrova
- Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany.
| | - Frank Repmann
- Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
| | - Dirk Freese
- Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, D-03046 Cottbus, Germany
| |
Collapse
|
3
|
Lou Y, Zhao P, Wang D, Amombo E, Sun X, Wang H, Zhuge Y. Germination, Physiological Responses and Gene Expression of Tall Fescue (Festuca arundinacea Schreb.) Growing under Pb and Cd. PLoS One 2017; 12:e0169495. [PMID: 28046098 PMCID: PMC5207687 DOI: 10.1371/journal.pone.0169495] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022] Open
Abstract
Cadmium (Cd) and lead (Pb) are recognized as the most toxic metal ions due to their detrimental effects not only to plants, but also to humans. The objective of this study was to investigate the effects of Cd and Pb treatments on seed germination, plant growth, and physiological response in tall fescue (Festuca arundinacea Schreb.). We employed six treatments: CK (nutrient solution as control), T1 (1000 mg L-1 Pb), T2 (50 mg L-1 Cd), T3 (150 mg L-1 Cd), T4 (1000 mg L-1 Pb+50 mg L-1 Cd), T5 (1000 mg L-1 Pb+150 mg L-1 Cd). Antagonistic and synergistic actions were observed in tall fescue under Pb and Cd combined treatments. Under low Cd, plants exhibited higher relative germination rate, germ length, VSGR, catalase (CAT) and peroxidase (POD) activities. Additionally, in the shoots, the gene expression level of Cu/Zn SOD, FeSOD, POD, GPX, translocation factors, MDA, EL, and soluble protein contents were reduced under Pb stress. Conversely, under high Cd level, there was a decline in NRT, Pb content in shoots, Pb translocation factors, CAT activity; and an increase in VSGR, Pb content in roots, gene expression level of Cu/ZnSOD and POD in tall fescue exposed to Pb2+ regimes. On the other hand, tall fescue plants treated with low Cd exhibited lower relative germination rate, germination index, germ length, NRT, Cd content in roots. On the other hand there was higher Cd content, Cd translocation factor, CAT and POD activities, and gene expression level of Cu/Zn SOD, FeSOD, POD, GPX under Pb treatment compared with single Cd2+ treatment in the shoots. However, after high Cd exposure, plants displayed lower NRT, Cd content, CAT activity, and exhibited higher Cd contents, Cd translocation factor, MDA content, gene expression level of Cu/ZnSOD and GPX with the presence of Pb2+ relative to single Cd2+ treatment. These findings lead to a conclusion that the presence of low Cd level impacted positively towards tall fescue growth under Pb stress, while high level of Cd impacted negatively. In summary, antioxidant enzymes responded to Cd and Pb interaction at an early stage of exposure, and their gene expression profiles provided more details of the activation of those systems.
Collapse
Affiliation(s)
- Yanhong Lou
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Peng Zhao
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Deling Wang
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Erick Amombo
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Xin Sun
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Hui Wang
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| | - Yuping Zhuge
- College of Resources and Environment, Shandong Agricultural University, Tai’an City, Shandong, P. R. China
| |
Collapse
|
4
|
Kuang X, Gu JD, Tie B, Yao B, Shao J. Interactive effects of cadmium and Microcystis aeruginosa (cyanobacterium) on the growth, antioxidative responses and accumulation of cadmium and microcystins in rice seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1588-1599. [PMID: 27604787 DOI: 10.1007/s10646-016-1714-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Cadmium pollution and harmful cyanobacterial blooms are two prominent environmental problems. The interactive effects of cadmium(II) and harmful cyanobacteria on rice seedlings remain unknown. In order to elucidate this issue, the interactive effects of cadmium(II) and Microcystis aeruginosa FACHB905 on the growth and antioxidant responses of rice seedling were investigated in this study, as well as the accumulation of cadmium(II) and microcystins. The results showed that the growth of rice seedlings was inhibited by cadmium(II) stress but promoted by inoculation of M. aeruginosa FACHB905. cadmium(II) stress induced oxidative damage on rice seedlings. Inoculation of M. aeruginosa FACHB905 alleviated the toxicity of cadmium(II) on rice seedlings. The accumulation of cadmium(II) in rice seedlings was decreased by M. aeruginosa FACHB905, but the translocation of cadmium(II) from root to shoot was increased by this cyanobacterium. The accumulation of microcystins in rice seedlings was decreased by cadmium(II). Results presented in this study indicated that cadmium(II) and M. aeruginosa had antagonistic toxicity on rice seedlings. The findings of this study throw new light on evaluation of ecological- and public health-risks for the co-contamination of cadmium(II) and harmful cyanobacteria.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Ji-Dong Gu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - BaiQing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Bangsong Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jihai Shao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China.
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China.
| |
Collapse
|
5
|
Dimitrova T, Repmann F, Raab T, Freese D. Uptake of ferrocyanide in willow and poplar trees in a long term greenhouse experiment. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:497-510. [PMID: 25477029 DOI: 10.1007/s10646-014-1398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
Phytoremediation of sites contaminated with iron cyanides can be performed using poplar and willow trees. Poplar and willow trees were grown in potting substrate spiked with ferrocyanide concentrations of up to 2,000 mg kg(-1) for 4 and 8 weeks respectively. Soil solution and leaf tissue of different age were sampled for total cyanide analysis every week. Chlorophyll content in the leaves was determined to quantify cyanide toxicity. Results showed that cyanide in the soil solution of spiked soils differed between treatments and on weekly basis and ranged from 0.5 to 1,200 mg l(-1). The maximum cyanide content in willow and poplar leaves was 518 mg kg(-1) fresh weight (FW) and 148 mg kg(-1) FW respectively. Cyanide accumulated in the leaves increased linearly with increasing cyanide concentration in the soil solution. On the long term, significantly more cyanide was accumulated in old leaf tissue than in young tissue. Chlorophyll content in poplar decreased linearly with increasing cyanide in the soil solution and in leaf tissue, and over time. The inhibitory concentration (IC50) value for poplars after 4 weeks of exposure was 173 mg l(-1) and for willow after 8 weeks of exposure-768 mg l(-1). Results show that willows tolerate much more cyanide and over a longer period than poplars, making them very appropriate for remediating sites highly contaminated with iron cyanides.
Collapse
Affiliation(s)
- Tsvetelina Dimitrova
- Central Analytical Laboratory, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 6, 03046, Cottbus, Germany,
| | | | | | | |
Collapse
|
6
|
Hu T, Hu L, Zhang X, Zhang P, Zhao Z, Fu J. Differential responses of CO2 assimilation, carbohydrate allocation and gene expression to NaCl stress in perennial ryegrass with different salt tolerance. PLoS One 2013; 8:e66090. [PMID: 23799072 PMCID: PMC3682948 DOI: 10.1371/journal.pone.0066090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 11/19/2022] Open
Abstract
Little is known about the effects of NaCl stress on perennial ryegrass (Lolium perenne L.) photosynthesis and carbohydrate flux. The objective of this study was to understand the carbohydrate metabolism and identify the gene expression affected by salinity stress. Seventy-four days old seedlings of two perennial ryegrass accessions (salt-sensitive 'PI 538976' and salt-tolerant 'Overdrive') were subjected to three levels of salinity stress for 5 days. Turf quality in all tissues (leaves, stems and roots) of both grass accessions negatively and significantly correlated with GFS (Glu+Fru+Suc) content, except for 'Overdrive' stems. Relative growth rate (RGR) in leaves negatively and significantly correlated with GFS content in 'Overdrive' (P<0.01) and 'PI 538976' (P<0.05) under salt stress. 'Overdrive' had higher CO2 assimilation and Fv/Fm than 'PI 538976'. Intercellular CO2 concentration, however, was higher in 'PI 538976' treated with 400 mM NaCl relative to that with 200 mM NaCl. GFS content negatively and significantly correlated with RGR in 'Overdrive' and 'PI 538976' leaves and in 'PI 538976' stems and roots under salt stress. In leaves, carbohydrate allocation negatively and significantly correlated with RGR (r(2) = 0.83, P<0.01) and turf quality (r(2) = 0.88, P<0.01) in salt-tolerant 'Overdrive', however, the opposite trend for salt-sensitive 'PI 538976' (r(2) = 0.71, P<0.05 for RGR; r(2) = 0.62, P>0.05 for turf quality). A greater up-regulation in the expression of SPS, SS, SI, 6-SFT gene was observed in 'Overdrive' than 'PI 538976'. A higher level of SPS and SS expression in leaves was found in 'PI 538976' relative to 'Overdrive'. Accumulation of hexoses in roots, stems and leaves can induce a feedback repression to photosynthesis in salt-stressed perennial ryegrass and the salt tolerance may be changed with the carbohydrate allocation in leaves and stems.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Xunzhong Zhang
- Virginia Polytechnic Institute and State University, Blacksburg, United States of America
| | - Pingping Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Zhuangjun Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan, China
| |
Collapse
|
7
|
Hu T, Li HY, Zhang XZ, Luo HJ, Fu JM. Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2050-6. [PMID: 21813179 DOI: 10.1016/j.ecoenv.2011.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/04/2023]
Abstract
Two-month old seedlings of perennial ryegrass (Lolium perenne L.) were subjected to four different levels of salinity for 7 days. The NaCl treatments reduced turf quality and normalized transpiration rates. Both chlorophyll (Chl) a and Chl b contents decreased in the grass exposed to 255 mM relative to the control. An increase in the lipid peroxidationin was observed. The activity of leaf superoxide dismutase increased while, peroxidase and catalase activities decreased in response to NaCl treatments. The expression of Chl Cu/ZnSOD, Cyt Cu/ZnSOD, FeSOD, CAT, POD, GPX and GR was up-regulated for NaCl-treated grass. Salt stress increased accumulation of Na(+) and decreased K(+)/Na(+) ratio, Mg(2+) and P content in both shoots and roots of perennial ryegrass. The findings of this study suggest that salt stress may cause toxicity to perennial ryegrass through oxidative injury and damage to Chl and cell membrane integrity.
Collapse
Affiliation(s)
- Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
8
|
Yu XZ, Gu JD. Effect of temperature on removal of iron cyanides from solution by maize plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:106-114. [PMID: 19466473 DOI: 10.1007/s11356-009-0173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
GOAL, SCOPE, AND BACKGROUND Cyanide is commonly found in soils and groundwater complexed with iron as ferro- and ferri-cyanide. It is evident that plants are capable of tolerating, transporting, and assimilating iron cyanides. The objectives of this study were to investigate the influence of temperatures on the removal and bioaccumulation of two chemical forms of iron cyanides by maize seedlings. MATERIALS AND METHODS Maize (Zea mays L. var. ZN 304) seedlings were grown hydroponically and treated with ferro- or ferri-cyanide in solution for 5 days. Six different temperatures were tested ranging from 12 to 27 degrees C. Total cyanide in solution phase and plant tissues was analyzed spectrophotometrically. The temperature coefficient (Q (10)) was also determined for maize exposed to both iron cyanides. RESULTS The dissociation of both iron cyanides to free cyanide in solution was below the detection limit. Maize seedlings showed a significantly higher removal potential for ferro-cyanide than ferri-cyanide at all treatment temperatures. Analysis of mass balance revealed that the majority of these iron cyanides taken up from the hydroponic solutions was assimilated by maize, and roots were the major sink for cyanide accumulation. The Q (10) values were determined for ferro- and ferri-cyanide to be 2.31 and 2.75, respectively. DISCUSSION Due to the significant difference in the removal rate between the two species of iron cyanides by plant, the conversion of ferri- to ferro-cyanide in aqueous solution prior to uptake is unlikely. Compared to the treatments amended with ferro-cyanide, more cyanide was recovered in plant materials of maize when exposed to ferri-cyanide, implying that ferri-cyanide is less sensitive to degradation than ferro-cyanide. Although the velocity of botanical assimilation of ferro-cyanide was faster than that of ferri-cyanide at any of the treatment temperatures, the removal of ferri-cyanide by maize was more sensitive to changes in temperature than that of ferro-cyanide. CONCLUSIONS Removal of both iron cyanides by maize seedlings was observed to be positive in response to temperatures. Changes in temperatures have a substantial influence on not only the uptake and assimilation of ferro- and ferri-cyanide by maize but also cyanide accumulation in plant tissues. RECOMMENDATIONS As one of the crucial abiotic factors involved in phytoremediation, temperature shows a positive influence on the removal of iron cyanides by plants. Further investigation on the fate of ferro- and ferri-cyanide in plant tissues would have helped distinguish the differences in the botanical assimilation pathways between the two iron cyanides. PERSPECTIVES The ability of maize to remove iron cyanides has important implications on the vegetation management of environmental contamination.
Collapse
Affiliation(s)
- Xiao-Zhang Yu
- Department of Environmental Science & Engineering, Hunan Agricultural University, Rurong District, Changsha, 410128, Hunan, China
| | | |
Collapse
|