1
|
Park J, Yang JH, Jung J, Kwak IS, Choe JK, An J. Comparative analysis of the capability of the extended biotic ligand model and machine learning approaches to predict arsenate toxicity. CHEMOSPHERE 2023; 344:140350. [PMID: 37793548 DOI: 10.1016/j.chemosphere.2023.140350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Assessment of inorganic arsenate (As(V)) is critical for ensuring a sustainable environment because of its adverse effects on humans and ecosystems. This study is the first to attempt to predict As(V) toxicity to the bioluminescent bacterium Aliivibrio fischeri exposed to varying As(V) dosages and environmental factors (pH and phosphate concentration) using six machine learning (ML)-guided models. The predicted toxicity values were compared with those predicted using the extended biotic ligand model (BLM) we previously developed to evaluate the toxic effect of oxyanion (i.e., As(V)). The relationship between the variables (input features) and toxicity (output) was found to play an important role in the prediction accuracy of each ML-guided model. The results indicated that the extended BLM had the highest prediction accuracy, with a root mean square error (RMSE) of 12.997. However, with an RMSE of 14.361, the multilayer perceptron (MLP) model exhibited quasi-accurate prediction, despite having been trained with a relatively small dataset (n = 256). In view of simplicity, an MLP model is compatible with an extended BLM and does not require expert knowledge for the derivation of specific parameters, such as binding fraction and binding constant values. Furthermore, with the development and employment of reliable in-situ sensing techniques, monitoring data are expected to be augmented faster to provide sufficient training data for the improvement of prediction accuracy which may, thus, allow it to outperform the extended BLM after obtaining sufficient data.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jae Hwan Yang
- Division of Urban Planning and Transportation, Seoul Institute, Seoul, 06756, South Korea
| | - Jihyeun Jung
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jinsung An
- Department of Civil & Environmental Engineering, Hanyang University, Ansan, 15588, South Korea.
| |
Collapse
|
2
|
Huang CW, Lin C, Nguyen MK, Hussain A, Bui XT, Ngo HH. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023; 14:58-80. [PMID: 37377408 DOI: 10.1080/21655979.2022.2095089] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/29/2023] Open
Abstract
Human health/socioeconomic development is closely correlated to environmental pollution, highlighting the need to monitor contaminants in the real environment with reliable devices such as biosensors. Recently, variety of biosensors gained high attention and employed as in-situ application, in real-time, and cost-effective analytical tools for healthy environment. For continuous environmental monitoring, it is necessary for portable, cost-effective, quick, and flexible biosensing devices. These benefits of the biosensor strategy are related to the Sustainable Development Goals (SDGs) established by the United Nations (UN), especially with reference to clean water and sources of energy. However, the relationship between SDGs and biosensor application for environmental monitoring is not well understood. In addition, some limitations and challenges might hinder the biosensor application on environmental monitoring. Herein, we reviewed the different types of biosensors, principle and applications, and their correlation with SDG 6, 12, 13, 14, and 15 as a reference for related authorities and administrators to consider. In this review, biosensors for different pollutants such as heavy metals and organics were documented. The present study highlights the application of biosensor for achieving SDGs. Current advantages and future research aspects are summarized in this paper.Abbreviations: ATP: Adenosine triphosphate; BOD: Biological oxygen demand; COD: Chemical oxygen demand; Cu-TCPP: Cu-porphyrin; DNA: Deoxyribonucleic acid; EDCs: Endocrine disrupting chemicals; EPA: U.S. Environmental Protection Agency; Fc-HPNs: Ferrocene (Fc)-based hollow polymeric nanospheres; Fe3O4@3D-GO: Fe3O4@three-dimensional graphene oxide; GC: Gas chromatography; GCE: Glassy carbon electrode; GFP: Green fluorescent protein; GHGs: Greenhouse gases; HPLC: High performance liquid chromatography; ICP-MS: Inductively coupled plasma mass spectrometry; ITO: Indium tin oxide; LAS: Linear alkylbenzene sulfonate; LIG: Laser-induced graphene; LOD: Limit of detection; ME: Magnetoelastic; MFC: Microbial fuel cell; MIP: Molecular imprinting polymers; MWCNT: Multi-walled carbon nanotube; MXC: Microbial electrochemical cell-based; NA: Nucleic acid; OBP: Odorant binding protein; OPs: Organophosphorus; PAHs: Polycyclic aromatic hydrocarbons; PBBs: Polybrominated biphenyls; PBDEs: Polybrominated diphenyl ethers; PCBs: Polychlorinated biphenyls; PGE: Polycrystalline gold electrode; photoMFC: photosynthetic MFC; POPs: Persistent organic pollutants; rGO: Reduced graphene oxide; RNA: Ribonucleic acid; SDGs: Sustainable Development Goals; SERS: Surface enhancement Raman spectrum; SPGE: Screen-printed gold electrode; SPR: Surface plasmon resonance; SWCNTs: single-walled carbon nanotubes; TCPP: Tetrakis (4-carboxyphenyl) porphyrin; TIRF: Total internal reflection fluorescence; TIRF: Total internal reflection fluorescence; TOL: Toluene-catabolic; TPHs: Total petroleum hydrocarbons; UN: United Nations; VOCs: Volatile organic compounds.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Adnan Hussain
- Ph. D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Xuan-Thanh Bui
- Department Water Science & Technology, Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam
- Department Water Science & Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Department Water Science & Technology, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
3
|
C. G AM, Agnihotri AS, Varghese A, M N. Ion-imprinted chitosan-stabilized biogenic silver nanoparticles for the electrochemical detection of arsenic ( iii) in water samples. NEW J CHEM 2023. [DOI: 10.1039/d2nj04804c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A schematic representation showing the modified glassy carbon electrode for the detection of arsenic (iii) in water samples.
Collapse
Affiliation(s)
- Ann Maria. C. G
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Ananya S Agnihotri
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| | - Nidhin M
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India
| |
Collapse
|
4
|
Ravula R, Bhabak KP, Mandal TK. User‐friendly point of care test device for detection of arsenic in potable water: Prototype, design, and artifact. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajasekhar Ravula
- Centre for the Environment Indian Institute of Technology Guwahati Guwahati India
| | - Krishna Pada Bhabak
- Centre for the Environment Indian Institute of Technology Guwahati Guwahati India
- Department of Chemistry Indian Institute of Technology Guwahati Guwahati India
| | - Tapas K. Mandal
- Centre for the Environment Indian Institute of Technology Guwahati Guwahati India
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| |
Collapse
|
5
|
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.
Collapse
Affiliation(s)
- Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Banik D, Manna SK, Mahapatra AK. Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119047. [PMID: 33070013 DOI: 10.1016/j.saa.2020.119047] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Due to biological and environmental significance of highly toxic arsenic species, the design, synthesis and development of chemosensors for arsenic species has been a very active research field in recent times. In this review, we summarize recent works on the sensing mechanisms employed by fluorometric/colorimetric chemosensors and their applications in arsenic detection. Various types of sensing strategies can be categorized into six types including (i) chemosensors based on hydrogen bonding interactions; (ii) aggregation induced emission (AIE) based chemosensors; (iii) chemodosimetric approach (reaction-based chemosensors); (iv) metal coordination-based sensing strategy; (v) chemosensors based on metal complex displacement approach and (vi) metal complex as chemosensor. All these sensing strategies are very much simple and sensitive for use in the design of arsenic selective chromogenic and fluorogenic probes.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, Haldia 721657, West Bengal, India.
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
7
|
Pourbeyram S, Asadi S. Time Resolved Direct Determination of Arsenate in the Presence of Arsenite on Pencil Graphite Electrode Modified by Graphene Oxide and Zirconium. ELECTROANAL 2017. [DOI: 10.1002/elan.201700316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sima Pourbeyram
- Department of Chemistry; Payame Noor University, PO Box; 19395-3697 Tehran IRAN
| | - Shahin Asadi
- Department of Chemistry; Payame Noor University, PO Box; 19395-3697 Tehran IRAN
| |
Collapse
|
8
|
Hughes G, Westmacott K, Honeychurch KC, Crew A, Pemberton RM, Hart JP. Recent Advances in the Fabrication and Application of Screen-Printed Electrochemical (Bio)Sensors Based on Carbon Materials for Biomedical, Agri-Food and Environmental Analyses. BIOSENSORS 2016; 6:E50. [PMID: 27690118 PMCID: PMC5192370 DOI: 10.3390/bios6040050] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/07/2016] [Accepted: 09/19/2016] [Indexed: 01/16/2023]
Abstract
This review describes recent advances in the fabrication of electrochemical (bio)sensors based on screen-printing technology involving carbon materials and their application in biomedical, agri-food and environmental analyses. It will focus on the various strategies employed in the fabrication of screen-printed (bio)sensors, together with their performance characteristics; the application of these devices for the measurement of selected naturally occurring biomolecules, environmental pollutants and toxins will be discussed.
Collapse
Affiliation(s)
- Gareth Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kelly Westmacott
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Kevin C Honeychurch
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Adrian Crew
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Roy M Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - John P Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
9
|
Antonova S, Zakharova E. Inorganic arsenic speciation by electroanalysis. From laboratory to field conditions: A mini-review. Electrochem commun 2016. [DOI: 10.1016/j.elecom.2016.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
10
|
Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-Fe(OH)3 modified glassy carbon electrode: A new approach towards speciation of arsenic. Talanta 2016; 158:235-245. [DOI: 10.1016/j.talanta.2016.05.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
|
11
|
Chen B, Liu Q, Popowich A, Shen S, Yan X, Zhang Q, Li XF, Weinfeld M, Cullen WR, Le XC. Therapeutic and analytical applications of arsenic binding to proteins. Metallomics 2015; 7:39-55. [DOI: 10.1039/c4mt00222a] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of arsenic binding to proteins advances the development of bioanalytical techniques and therapeutic drugs.
Collapse
Affiliation(s)
- Beibei Chen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qingqing Liu
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - Shengwen Shen
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xiaowen Yan
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Qi Zhang
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
| | | | - William R. Cullen
- Department of Chemistry
- University of British Columbia
- Vancouver, Canada
| | - X. Chris Le
- Division of Analytical and Environmental Toxicology
- Department of Laboratory Medicine and Pathology
- University of Alberta
- Edmonton, Canada
- Department of Chemistry
| |
Collapse
|
12
|
Biosensors for inorganic and organic arsenicals. BIOSENSORS-BASEL 2014; 4:494-512. [PMID: 25587436 PMCID: PMC4287715 DOI: 10.3390/bios4040494] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/11/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.
Collapse
|
13
|
Kaur H, Kumar R, Babu JN, Mittal S. Advances in arsenic biosensor development--a comprehensive review. Biosens Bioelectron 2014; 63:533-545. [PMID: 25150780 DOI: 10.1016/j.bios.2014.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/21/2014] [Accepted: 08/04/2014] [Indexed: 01/23/2023]
Abstract
Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.
Collapse
Affiliation(s)
- Hardeep Kaur
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Rabindra Kumar
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - J Nagendra Babu
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| | - Sunil Mittal
- Centre for Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab 151001, India.
| |
Collapse
|
14
|
Das J, Sarkar P, Panda J, Pal P. Low-cost field test kits for arsenic detection in water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:108-115. [PMID: 24117090 DOI: 10.1080/10934529.2013.824764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arsenic, a common contaminant of groundwater, affects human health adversely. According to the World Health Organization (WHO), the maximum recommended contamination level of arsenic in drinking water is 10 μg/L. The purpose of this research was to develop user-friendly kits for detection of arsenic to measure at least up to 10 μg/L in drinking water, so that a preventive measure could be taken. Two different kits for detection of total arsenic in water are reported here. First, the arsenic in drinking water was converted to arsine gas by a strong reducing agent. The arsine produced was then detected by paper strips via generation of color due to reaction with either mercuric bromide (KIT-1) or silver nitrate (KIT-2). These were previously immobilized on the detector strip. The first one gave a yellow color and the second one grey. Both of these kits could detect arsenic contamination within a range of 10 μg/L-250 μg/L. The detection time for both the kits was only 7 min. The kits exhibited excellent performance compared to other kits available in the market with respect to detection time, ease of operation, cost and could be easily handled by a layman. The field trials with these kits gave very satisfactory results. A study on interference revealed that these kits could be used in the presence of 24 common ions present in the arsenic contaminated water. Though the kits were meant for qualitative assay, the results with unknown concentrations of real samples, when compared with atomic absorption spectrophotometer (AAS) were in good agreement as revealed by the t-test.
Collapse
Affiliation(s)
- Joyati Das
- a Biosensor Laboratory, Department of Polymer Science and Technology , University of Calcutta , Kolkata , India
| | | | | | | |
Collapse
|
15
|
Banerjee S, Sarkar P, Turner AP. Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate. Anal Biochem 2013; 439:194-200. [DOI: 10.1016/j.ab.2013.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 11/29/2022]
|
16
|
Das AP, Kumar PS, Swain S. Recent advances in biosensor based endotoxin detection. Biosens Bioelectron 2013; 51:62-75. [PMID: 23934306 DOI: 10.1016/j.bios.2013.07.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022]
Abstract
Endotoxins also referred to as pyrogens are chemically lipopolysaccharides habitually found in food, environment and clinical products of bacterial origin and are unavoidable ubiquitous microbiological contaminants. Pernicious issues of its contamination result in high mortality and severe morbidities. Standard traditional techniques are slow and cumbersome, highlighting the pressing need for evoking agile endotoxin detection system. The early and prompt detection of endotoxin assumes prime importance in health care, pharmacological and biomedical sectors. The unparalleled recognition abilities of LAL biosensors perched with remarkable sensitivity, high stability and reproducibility have bestowed it with persistent reliability and their possible fabrication for commercial applicability. This review paper entails an overview of various trends in current techniques available and other possible alternatives in biosensor based endotoxin detection together with its classification, epidemiological aspects, thrust areas demanding endotoxin control, commercially available detection sensors and a revolutionary unprecedented approach narrating the influence of omics for endotoxin detection.
Collapse
Affiliation(s)
- A P Das
- Bioengineering Laboratory, Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, India.
| | | | | |
Collapse
|
17
|
Hosseini MS, Nazemi S. Preconcentration determination of arsenic species by sorption of As(v) on Amberlite IRA-410 coupled with fluorescence quenching of l-cysteine capped CdS nanoparticles. Analyst 2013; 138:5769-76. [DOI: 10.1039/c3an00869j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem 2011; 400:1031-9. [PMID: 21442371 DOI: 10.1007/s00216-011-4815-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/13/2011] [Accepted: 02/16/2011] [Indexed: 11/26/2022]
Abstract
Arsenic contaminated groundwater is estimated to affect over 100 million people worldwide, with Bangladesh and West Bengal being among the worst affected regions. A simple, cheap, accurate and disposable device is required for arsenic field testing. We have previously described a novel biosensor for arsenic in which the output is a change in pH, which can be detected visually as a colour change by the use of a pH indicator. Here, we present an improved formulation allowing sensitive and accurate detection of less than 10 ppb arsenate with static overnight incubation. Furthermore, we describe a cheap and simple high-throughput system for simultaneous monitoring of pH in multiple assays over time. Up to 50 samples can be monitored continuously over the desired time period. Cells can be stored and distributed in either air-dried or freeze-dried form. This system was successfully tested on arsenic-contaminated groundwater samples from the South East region of Hungary. We hope to continue to develop this sensor to produce a device suitable for field trials.
Collapse
|
19
|
Chen L, Zhou N, Li J, Chen Z, Liao C, Chen J. Synergy of glutathione, dithiothreitol and N-acetyl-l-cysteine self-assembled monolayers for electrochemical assay: sensitive determination of arsenic(iii) in environmental and drinking water. Analyst 2011; 136:4526-32. [DOI: 10.1039/c1an15454k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|