1
|
Pinheiro PF, Martins GS, Gonçalves PM, Vasconcelos LC, Dos Santos Bergamin A, Scotá MB, de Resende Santo IS, Pereira UA, Praça-Fontes MM. Synthesis and evaluation of esters obtained from phenols and phenoxyacetic acid with significant phytotoxic and cytogenotoxic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60023-60040. [PMID: 39365538 DOI: 10.1007/s11356-024-35222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
There is a growing demand for herbicides that are more effective than conventional ones yet less harmful to ecosystems. In light of this, this study aimed to synthesize esters from phenols and phenoxyacetic acid, using compounds with known phytotoxic potential as starting materials. Phenoxyacetic acid was first synthesized and then utilized in the synthesis of seven esters through Steglich esterification, employing N,N'-dicyclohexylcarboimide and N,N-dimethylpyridin-4-amine in the presence of phenols (thymol, vanillin, eugenol, carvacrol, guaiacol, p-cresol, and β-naphthol), yielding esters 1-7. All synthesized compounds were characterized using mass spectrometry, 1H, and 13C NMR. These compounds were tested for phytotoxicity to evaluate their effects on the germination and root development of Sorghum bicolor and Lactuca sativa seeds, and for the induction of alterations in the mitotic cycle of meristematic cells of L. sativa roots. Esters 1, 3, 4, and 5 exhibited the most significant phytotoxic activity in both L. sativa and S. bicolor. Alterations in the mitotic index and frequency of chromosomal alterations in L. sativa roots revealed the cytotoxic, genotoxic effects, and the aneugenic mode of action of the tested molecules. These findings suggest that these compounds could serve as inspiration for the synthesis of new semi-synthetic herbicides.
Collapse
Affiliation(s)
- Patrícia Fontes Pinheiro
- Department of Chemistry, Federal University of Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Geisiele Silva Martins
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Patrícia Martins Gonçalves
- Department of Chemistry and Physics, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Loren Cristina Vasconcelos
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Aline Dos Santos Bergamin
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Mayla Bessa Scotá
- Departament of Biology, Federal University of the Espírito Santo, Avenida Fernando Ferraria 514, Goiabeiras, Vitória, ES, 29075-910, Brazil
| | | | - Ulisses Alves Pereira
- Montes Claros Regional Campus, Institute of Agricultural Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, Bairro Universitário, Montes Claros, MG, 39404-547, Brazil
| | - Milene Miranda Praça-Fontes
- Departament of Biology, Federal University of the Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
2
|
Silveira GL, Dos Santos FE, Alvarenga IFS, de Lima MGF, Bicalho EM, Andrade-Vieira L. Toxicity of paclobutrazol-based pesticide on Lactuca sativa L.: germination, seedling development, and DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59977-59989. [PMID: 39365534 DOI: 10.1007/s11356-024-35221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Paclobutrazol, a fungicide of the triazole class, is widely used as an inducer of early flowering and fruiting by inhibiting gibberellin formation. However, biological assays using model organisms to evaluate their cytogenotoxic and mutagenic potential are still scarce. Therefore, this study aimed to investigate the effects of the commercial product Cultar® 250 SC (CP) and the pure substance (PBZ) on the germination and initial seedling development of Lactuca sativa L. (lettuce), in addition to evaluating the effects of CP on the mitotic activity and DNA, as we believe that PBZ has a greater toxic potential than CP on seed germination, and that the latter has cytogenotoxic and mutagenic effects on L. sativa. Lettuce seeds treated with CP and with PBZ in the doses of 0.25, 0.50, 1, 1.5, and 2 g L-1 showed significant reductions in germination rate, as well the CP reduced the root and initial development seedling development. PBZ showed greater inhibition of germination compared to CP. In direct exposure to PBZ, there was not sufficient seedling development for analysis, while in discontinuous treatment, there was inhibition of root growth (except for doses of 0.25 and 0.50 g L-1) and in the development of the aerial part. While no mitodepressive effect was observed in meristematic cells treated with CP, increased frequencies of chromosomal alterations, including condensed nuclei and micronuclei, were evident in both meristematic cells and the F1 region. The Comet assay further demonstrated higher levels of DNA damage at higher paclobutrazol doses, supporting the findings of increased micronucleus frequencies. Consequently, it can be concluded that the CP exhibits greater toxicity towards seed germination compared to lettuce seedlings, and PBZ has a greater toxic potential than CP in relation to these parameters. However, the impact of CP on seedlings was relatively minimal, as evidenced by their limited effects on development, cell proliferation, and DNA, suggesting a slight toxicity of this agent. Therefore, we infer that Cultar® 250 SC should be used with caution. Thus, this study emphasizes the importance of employing joint analyses to better elucidate and correlate the mechanisms of action of potentially toxic substances. Furthermore, it provides a basis for discussing the application of Cultar® 250 SC and seeking more sustainable alternatives in food production.
Collapse
Affiliation(s)
- Graciele Lurdes Silveira
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil.
| | - Fabio Eduardo Dos Santos
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil
| | - Ingrid Fernanda Santana Alvarenga
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil
| | - Maria Gabriela Franco de Lima
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil
| | - Elisa Monteze Bicalho
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil
| | - Larissa Andrade-Vieira
- Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Campus Universitário, Trevo Rotatório Professor Edmir Sá Santos, CEP: 37203-202, Lavras, MG, Brasil
| |
Collapse
|
3
|
Laosinwattana C, Manichart N, Thongbang M, Wichittrakarn P, Somala N, Teerarak M. The effect of natural herbicide from Fusarium equiseti crude extract on the aquatic weed water hyacinth (Eichornia crassipes (Mart.) Solms). Sci Rep 2024; 14:19542. [PMID: 39174667 PMCID: PMC11341813 DOI: 10.1038/s41598-024-70694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
In this study, Fusarium equiseti was isolated from the weed plant Tridax procumbens in an agricultural field and a crude extract produced with 75% ethanol for use as active ingredient material in natural herbicides. The herbicidal effect of F. equiseti extract was tested on water hyacinth (Eichornia crassipes), an invasive aquatic weed, by leaf disk assay at concentrations of 0.05%, 0.1%, and 0.2% w/v crude extract. Dose-dependent visual toxicity symptoms were evident after three days, namely chlorosis, yellow leaves surrounded by dark brown edges. Photosynthetic pigments (chlorophyll a, b, and carotenoids) and membrane integrity (as electrolyte leakage and malondialdehyde content) were evaluated following the leaf disk test. 3 days after treatment, photosynthetic pigment contents showed dose-dependent decreases, while both measures of membrane integrity showed dose-dependent increases with increasing extract concentration. In addition, a cytogenetic assay was conducted on Allium cepa L. root, in which mitotic index reduction and depigmentation were evident as early as 24 h after herbicide application. Finally, anatomical analysis of treated E. crassipes leaves revealed degradation or damage of the ground tissue. All told, our results support the F. equiseti crude-based natural herbicide cloud as a sustainable alternative in agriculture.
Collapse
Affiliation(s)
- Chamroon Laosinwattana
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nutcha Manichart
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Muanfan Thongbang
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pattharin Wichittrakarn
- King Monngkut Chaokhunthahan Hospital, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphat Somala
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Montinee Teerarak
- School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
4
|
Alves TA, Spadeto MS, Vasconcelos LC, Souza JRCL, Menini L, Ferreira MFS, Praça-Fontes MM. Phytotoxicity and cytogenetic action mechanism of leaf extracts of Psidium cattleyanum Sabine in plant bioassays. BRAZ J BIOL 2024; 84:e260985. [DOI: 10.1590/1519-6984.260985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract The search for more environmental friendly herbicides, aiming at the control of agricultural pests, combinated with less harmfulness to human health and the environment has grown. An alternative used by researchers is the application of products of secondary plant metabolism, which are investigated due to their potential bioactivities. Thus, species belonging to the Myrtaceae family are potential in these studies, since this family is recognized for having high biological activity. A species belonging to this genus is Psidium cattleyanum, which has a medicinal effect and its fruits are used in human food. Thus, the objective of this research was to evaluate and compare the phyto-cyto-genotoxicity of aqueous and ethanolic leaf extracts of the specie P. cattleyanum, from plant bioassays, as well as to identify the main classes of compounds present in the extracts. For this, the extracts were prepared, characterized and biological tests were carried out by evaluating, in seeds and seedlings of lettuce and sorghum, the variables: percentage of germination, germination speed index, root growth and aerial growth; and in meristematic lettuce cells the variables: mitotic phases, mitotic index, nuclear alterations and chromosomal alterations. Flavones, flavonones, flavonols, flavononols, flavonoids, alkaloids, resins, xanthones and anthraquinone glycoside were characterized in the ethanolic extract. Both evaluated extracts, in the highest concentration, inhibited the initial plant development. All treatments caused alterations in the mitotic phases and inhibited mitotic index. In addition, the treatments promoted an increase in nuclear and chromosomal alterations. The mechanism of action presented was aneugenic, clastogenic and determined in epigenetic alterations. The ethanolic extract was more cytotoxic, since it had a more expressive effect at a lower concentration. Despite the cytotoxicity of the extracts under study, they promoted alterations at lower levels than the glyphosate positive control.
Collapse
Affiliation(s)
- T. A. Alves
- Universidade Federal do Espírito Santo, Brasil
| | | | | | - J. R. C. L. Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Brasil
| | - L. Menini
- Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Brasil
| | | | | |
Collapse
|
5
|
Manichart N, Laosinwattana C, Somala N, Teerarak M, Chotsaeng N. Physiological mechanism of action and partial separation of herbicide-active compounds from the Diaporthe sp. extract on Amaranthus tricolor L. Sci Rep 2023; 13:18693. [PMID: 37907593 PMCID: PMC10618292 DOI: 10.1038/s41598-023-46201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
Thirteen fungi that produce compounds with herbicidal activities were isolated, identified, and extracted under the assumption that the mechanism of action occurs during seed exposure to the extract. The extracts from all the fungal strains considerably decreased the growth parameters of Amaranthus tricolor L. The EC010 strain extracts showed the greatest effect. Through ITS region gene sequencing methods, the isolated EC010 was identified as a genus of Diaporthe. The results showed a significant (p < 0.05) inhibitory effect of 91.25% on germination and a decrease in shoot and root length by 91.28% and 95.30%, respectively. The mycelium of Diaporthe sp. was extracted using sequential extraction techniques for the partial separation of the herbicidal fraction. According to the bioassay activities, the EtOAc fraction showed the highest inhibitory activity. The osmotic stress of the A. tricolor seeds was studied. Although the extract increased the accumulation of proline and soluble protein, the treated seeds showed lower imbibition. While the activity of α-amylase was dramatically decreased after treatment. A cytogenetic assay in the treated Allium cepa L. root revealed a decrease in the mitotic index, an altered mitotic phase index, and a promotion of mitotic abnormalities. Accordingly, the Diaporthe sp. may serve as a potential herbicidal compound resource.
Collapse
Affiliation(s)
- Nutcha Manichart
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chamroon Laosinwattana
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Naphat Somala
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Montinee Teerarak
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nawasit Chotsaeng
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
6
|
Li X, Liu Y, Zhang TA. A comprehensive review of aluminium electrolysis and the waste generated by it. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1498-1511. [PMID: 37052310 DOI: 10.1177/0734242x231164321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aluminium is produced by electrolysis using alumina (Al2O3) as raw material and cryolite (Na3AlF6) as electrolyte. In this Hall-Héroult process, the energy consumption is relatively large, and solid wastes such as spent anodes and spent pot liner, flue gas and waste heat are generated. Therefore, this article discusses from the perspective of high energy consumption and high pollution and summarizes the methods to reduce energy consumption and solve pollution problems. The functions of carbon anode, carbon cathode, refractory material and sidewall in aluminium electrolysis cells are discussed in detail. The process of aluminium electrolysis and the ways to improve the current efficiency of aluminium electrolysis cells and reduce their energy consumption are outlined. The causes and treatment methods of spent anodes, spent cathodes, spent refractories and spent spot liner are reviewed. The research progress of waste heat recovery and aluminium electrolysis flue gas purification are analysed. And the future research directions of aluminium electrolysis flue gas are provided.
Collapse
Affiliation(s)
- Xueke Li
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, Liaoning, China
| | - Yan Liu
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, Liaoning, China
| | - Ting-An Zhang
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Mendes LA, Vasconcelos LC, Fontes MMP, Martins GS, Bergamin ADS, Silva MA, Silva RRA, de Oliveira TV, Souza VGL, Ferreira MFDS, Teixeira RR, Lopes RP. Herbicide and Cytogenotoxic Activity of Inclusion Complexes of Psidium gaudichaudianum Leaf Essential Oil and β-Caryophyllene on 2-Hydroxypropyl- β-cyclodextrin. Molecules 2023; 28:5909. [PMID: 37570879 PMCID: PMC10420928 DOI: 10.3390/molecules28155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound β-caryophyllene (β-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-β-cyclodextrin (HPβCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and β-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and β-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the β-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and β-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and β-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.
Collapse
Affiliation(s)
- Luiza Alves Mendes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Loren Cristina Vasconcelos
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Milene Miranda Praça Fontes
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Geisiele Silva Martins
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Aline dos Santos Bergamin
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Matheus Alves Silva
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Rafael Resende Assis Silva
- Departament of Food Materials Science and Engineering, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil;
| | | | - Victor Gomes Lauriano Souza
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- MEtRICs, CubicB, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), University Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Róbson Ricardo Teixeira
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Renata Pereira Lopes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| |
Collapse
|
8
|
Dhali S, Acharya S, Pradhan M, Patra DK, Pradhan C. Synergistic effect of Bacillus and Rhizobium on cytological and photosynthetic performance of Macrotyloma uniflorum (Lam.) Verdc. Grown in Cr (VI) contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:62-69. [PMID: 36099809 DOI: 10.1016/j.plaphy.2022.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Macrotyloma uniflorum (horse gram) is considered an under-utilized legume crop despite its nutritional and medicinal values. In India, it has wide acceptance among farming communities. This investigation emphasized on the possible application of two endosymbionts (Bacillus sp. AS03 and Rhizobium sp. AS05) of horse gram cultivated on Cr (VI)-contaminated soil. The photosynthetic performance (PIφ) of Cr treated plants co-inoculated with AS03 and AS05 was significantly improved compared with non-inoculated Cr treated plants based on photosynthetic yield, which was evidenced from the rise in the fluorescence at I-P transient and rate of photosynthesis (pN), indicating synergistic action between plant and bacteria (AS03 and AS05). The smooth electron transport from PS II to PS I was achieved in the Cr stressed plants inoculated with both the bacterial strains. The detrimental effects of Cr toxicity on the root tips were also minimized with bioinoculation as revealed from mitotic index. Plants with dual inoculation of AS03 and AS05 had significantly lesser chromosomal aberration in the roots. Dual inoculation biochar or seed inoculation have beneficial impact on the plant photosynthetic performance along with improved growth of roots in plants treated with Cr (VI). The results of the current work suggest the possitive effect of dual inoculation of Cr tolerant endosymbionts, Bacillus sp. (AS03) and nodulating Rhizobium sp. (AS05), in reducing cytological as well as physiological stress of plants in Cr (VI) contaminated soil.
Collapse
Affiliation(s)
- Shilpee Dhali
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Srinivas Acharya
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India
| | - Madhusmita Pradhan
- MITS Institute of Professional Studies, Berhampur University, Rayagada, 765017, Odisha, India
| | - Deepak Kumar Patra
- Department of Botany, Nimapara Autonomous College, Nimapara, Puri, 752106, Odisha, India
| | - Chinmay Pradhan
- Department of Botany, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, India.
| |
Collapse
|
9
|
Valente PM, Valente VMM, Silva MC, dos Reis LB, Silva FD, Praça-Fontes MM. Phytotoxicity and cytogenotoxicity of Dionaea muscipula Ellis extracts and its major compound against Lactuca sativa and Allium cepa. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Alves TA, Pinheiro PF, Praça-Fontes MM, Andrade-Vieira LF, Lourenço MP, Lage MR, Alves TA, Cruz FA, Carneiro JWM, Ferreira A, Soares TCB. Bioactivity and molecular properties of Phenoxyacetic Acids Derived from Eugenol and Guaiacol compared to the herbicide 2,4-D. AN ACAD BRAS CIENC 2021; 93:e20191368. [PMID: 34705933 DOI: 10.1590/0001-3765202120191368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/16/2020] [Indexed: 11/22/2022] Open
Abstract
Herbicides are agrochemicals applied in the control of weeds. With the frequent and repetitive use of these substances, serious problems have been reported. Compounds of natural origin and their derivatives are attractive options to obtain new compounds with herbicidal properties. By aiming to develop compounds with potentiated herbicidal activity, phenoxyacetic acids were synthesized from eugenol and guaiacol. The synthesized compounds were characterized and the herbicidal potential of phenoxyacetic acids and precursors was evaluated through bioassays regarding the germination and initial development of Lactuca sativa and Sorghum bicolor seedlings, with the induction of DNA damage. The induction of changes in the mitotic cycle of meristematic cells of roots of L. sativa was also analyzed. At the concentration of 3 mmol L-1, phenols and their respective phenoxyacetic acids presented phytotoxic and cytotoxic activities in L. sativa and S. bicolor. Eugenol and guaiacol also presented genotoxic action in L. sativa. The toxic effect of eugenoxyacetic acid was more pronounced in L. sativa than in S. bicolor, similar to the commercial 2,4-D herbicide. Molecular properties of the phenols and their derivatives phenoxyacetic acids were compared with the ones obtained for the herbicide 2,4-D, where it was found a correlation between their molecular properties and bioactivity.
Collapse
Affiliation(s)
- Thammyres A Alves
- Programa de Pós-Graduação em Genética e Melhoramento da Universidade Federal do Espírito Santo, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| | - Patrícia F Pinheiro
- Universidade Federal de Viçosa, Departamento de Química, Avenida Peter Henry Rolfs, Campus Universitário, s/n, 36570-900 Viçosa, MG, Brazil
| | - Milene M Praça-Fontes
- Programa de Pós-Graduação em Genética e Melhoramento da Universidade Federal do Espírito Santo, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil.,Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| | - Larissa F Andrade-Vieira
- Universidade Federal de Lavras, Departamento de Biologia, Aquenta Sol, s/n, 37200-000 Lavras, MG, Brazil
| | - Maicon P Lourenço
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Química e Física, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| | - Mateus R Lage
- Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal do Maranhão, Centro de Ciências Sociais, Saúde e Tecnologia, Rua Urbano Santos, 1734, 65900-410 Imperatriz, MA, Brazil.,Universidade Federal do Maranhão, Campus Balsas, MA-140, Km 04, Centro, 65800-000 Balsas, MA, Brazil
| | - Thayllon A Alves
- Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| | - Franceli A Cruz
- Universidade Federal de Lavras, Departamento de Biologia, Aquenta Sol, s/n, 37200-000 Lavras, MG, Brazil
| | - José W M Carneiro
- Universidade Federal Fluminense, Departamento de Química Inorgânica, Outeiro São João Batista, s/n, 24020-141 Niterói, RJ, Brazil
| | - Adésio Ferreira
- Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| | - Taís C B Soares
- Programa de Pós-Graduação em Genética e Melhoramento da Universidade Federal do Espírito Santo, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil.,Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Farmácia e Nutrição, Alto Universitário, s/n, 29500-000 Alegre, ES, Brazil
| |
Collapse
|
11
|
Aragão FB, Duarte ID, Fantinato DE, Galter IN, Silveira GL, Dos Reis GB, Andrade-Vieira LF, Matsumoto ST. Toxicogenetic of tebuconazole based fungicide through Lactuca sativa bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:111985. [PMID: 33578099 DOI: 10.1016/j.ecoenv.2021.111985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The rampant use of pesticides can cause serious environmental problems. They can be contaminating surface water and groundwater, affecting the surrounding micro and macro biota. In this sense, this work aimed to evaluate the effects of a tebuconazole-based fungicide through endpoints accessed in Lactuca sativa bioassays. Germinated-seeds with roots upon 2 mm were treated with a fungicide containing Tebuconazole (TBZ) as active compound. The final concentration of TBZ in the tested solutions were 0.025 (C1); 0.05 (C2); 0.1 (C3); 0.2 (C4) and 0.4 g/L (C5). L. sativa roots were exposed for 24 h to these solutions and Petri dishes containing the treated seeds were kept in incubation chamber at 24 °C. Two positive controls (PC,) the herbicide trifluralin (0.84 mg/L) and Methanesulfonate (4 ×10-4 mol/L), were applied. Distilled water was negative control (NC). The following endpoints were analyzed: root growth (RG), cytogenotoxic potential by cell cycle analysis, induction of DNA damage through TUNEL and comet assays. The obtained data were submitted to one-way variance analysis (ANOVA) and then to Tukey or Kruskal Wallis (P < 0.05) tests. The concentrations (C1, C2, C4 and C5) affected negatively the RG of L. sativa, in comparison with the NC. The mitotic index was reduced by 25% from NC to C1 and in the rest of treatments it did not present significant modifications. However, from C3 to C5 great amount of chromosome alterations were observed, in comparison with the NC. TBZ-based fungicide also induced DNA fragmentation as measured by TUNEL and comet assays. Thus, TBZ-based fungicide in some concentrations can have phytotoxic, cytotoxic and genotoxic effects in roots and meristematic cells of L. sativa.
Collapse
Affiliation(s)
- Francielen Barroso Aragão
- Departamento of Biological Sciences, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, ES 29075-910, Brasil.
| | - Ian Drumond Duarte
- Departamento of Biological Sciences, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, ES 29075-910, Brasil.
| | - Dayana Effgen Fantinato
- Departamento of Biological Sciences, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, ES 29075-910, Brasil.
| | - Iasmini Nicoli Galter
- Departamento of Biological Sciences, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, ES 29075-910, Brasil.
| | | | | | | | - Silvia Tamie Matsumoto
- Departamento of Biological Sciences, Center of Human and Natural Sciences, Federal University of Espírito Santo, Vitória, ES 29075-910, Brasil.
| |
Collapse
|
12
|
Alves TA, Roberto CEO, Pinheiro PF, Alves TA, Henrique MKC, Ferreira A, Clarindo WR, Praça-Fontes MM. Searching an auxinic herbicide to use as positive control in toxicity assays. AN ACAD BRAS CIENC 2021; 93:e20181262. [PMID: 33787683 DOI: 10.1590/0001-3765202120181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/21/2019] [Indexed: 01/13/2023] Open
Abstract
Due to rising concerns for environmental and human health, many toxic compounds, such as auxin-based herbicides, have been tested in relation their toxicity effect. Especially cyto- and phytotoxic assays have been performed on a number monocot and eudicot plant species. In these approaches the toxicity level of the auxin is compared to a positive control - usually a commercial compound with known effects and chemical similarity to the target compound. However, many target compounds still lack an indication of an adequate positive control. Here, we evaluate the phytotoxic and cytotoxic effect of the auxins 2,4-dichlorophenoxyacetic acid, dicamba, and picloram in order test their potential use as positive controls. All tested auxinic herbicides showed clastogenic and aneugenic effect mechanisms. The results indicate 2,4-dichlorophenoxyacetic acid as the most phyto- and cytotoxic in the discontinuous method in Lactuca sativa L. and Allium cepa L., and also in the continuous method in A. cepa. Thus, we suggest 2,4-dichlorophenoxyacetic acid as a positive control for future mutagenesis studies involving new auxins. For studies with L. sativa in continuous method, we recommend the auxin picloram as positive control as this one was the only one which allowed the development of roots.
Collapse
Affiliation(s)
- Thammyres A Alves
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Laboratório de Citogenética e Cultura de Tecidos, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Carlos Eduardo O Roberto
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Farmácia e Nutrição, Laboratório de Bioquímica e Biologia Molecular, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Patrícia F Pinheiro
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Física e Química, Laboratório de Química, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Thayllon A Alves
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Laboratório de Citogenética e Cultura de Tecidos, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Maikon K C Henrique
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Laboratório de Citogenética e Cultura de Tecidos, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Adésio Ferreira
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Física e Química, Laboratório de Biometria, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Wellington R Clarindo
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Laboratório de Citogenética e Cultura de Tecidos, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| | - Milene M Praça-Fontes
- Universidade Federal do Espírito Santo, Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Laboratório de Citogenética e Cultura de Tecidos, Alto Universitário, s/n, Caixa Postal 16, 29500-000 Alegre, ES, Brazil
| |
Collapse
|
13
|
Alvarenga IFS, Dos Santos FE, Silveira GL, Andrade-Vieira LF, Martins GC, Guilherme LRG. Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134272. [PMID: 31783468 DOI: 10.1016/j.scitotenv.2019.134272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/21/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a metalloid and a toxicant that is found naturally in many environmental compartments, soils included. Soils with high levels of As occur worldwide and might pose a threat not only to humans, but also to many ecosystems. Considering the scarcity of studies regarding cytogenotoxic effects of model plants in As-contaminated soil, mainly in tropical areas, this study proposes the use of Allium cepa root tip bioassays for a fast-track assessment of As toxicity in tropical soils. For this end, root tip cells of A. cepa were exposed to an Oxisol, an Inceptisol and a Tropical Artificial Soil (TAS) contaminated with increasing doses of As (0, 8, 14.5, 26, 46.5, 84, 150, and 270 mg kg-1). The effects of As on cell cycle, micronucleus formation, and DNA fragmentation were evaluated. In general, root tip cells exposure to As increases the frequency of chromosome abnormalities and micronucleus, in turn, decreasing the frequency of mitotic index. As-treated cells also presented an increase in the percentage of DNA damage observed in comet assay. Overall, the effects of As in TAS were more pronounced, than in the Oxisol, being the Inceptisol the less toxic. A discussion of each As effect in cells and the link with the soil type is presented and reveals that clastogenic effects of As in A. cepa cells seemed to be the mode of action of this soil contaminant.
Collapse
|
14
|
Andrade-Vieira LF, Trento MVC, César PHS, Marcussi S. Spent pot liner from aluminum industry: genotoxic and mutagenic action on human leukocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27640-27646. [PMID: 30875070 DOI: 10.1007/s11356-019-04782-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Spent pot liner (SPL) is a toxic solid waste generated in the aluminum mining and processing industry. SPL is considered as an environmental pollution agent when is dumped on environment. Thus, it is important to access its toxicological risk for the exposed organisms. The comet assay and micronucleus test are efficient tests to detect genotoxic/mutagenic compounds by DNA damage observation. Therefore, in the present study, the genotoxic potential of SPL was evaluated through the micronucleus and comet assay on human leukocytes. After ethics committee approval (COEP-UFLA n°. CAAE 11355312.8.0000.5060), blood aliquots collected from healthy volunteers were exposed to increasing concentrations of SPL (from 0.1 to 80 g L-1). All SPL treatments, including the lowest concentration applied (0.1 g L-1), significantly increased the micronucleus frequency. The frequency of DNA damage was determined by visual scores (from 0 to 4) and the results were expressed on percentage of damage and arbitrary units (AU). CaCl2 (0.01 M) was applied as negative control (NC) and doxorubicin (10 μg mL-1) as positive control (PC). It was observed a dose-dependency between SPL treatments: as SPL concentration for cell incubation increases, the frequency of damage on DNA also increases. Cells incubated on the NC presented nucleoids class 0 to 2, while those exposed to SPL presents nucleoids class 0 to 4. SPL-incubated cells increasing significantly the frequency of nucleoids class 4. For the PC, the UA of damage was 267.74, which is lower than the one observed for the treatments with high doses of SPL (40-287.40 g L-1 and 80-315.30 g L-1). Thus, it was demonstrated that the SPL is a genotoxic agent that induces DNA damage on exposed organisms.
Collapse
Affiliation(s)
| | | | | | - Silvana Marcussi
- Chemistry Department, Biochemistry Laboratory, Federal University of Lavras - UFLA, Lavras, MG, Brazil
| |
Collapse
|
15
|
José Palmieri M, Ribeiro Barroso A, Fonseca Andrade-Vieira L, Monteiro MC, Martins Soares A, Souza Cesar PH, Aparecida Braga M, Cardoso Trento MV, Marcussi S, Chamma Davide L. Polybia occidentalis and Polybia fastidiosa venom: a cytogenotoxic approach of effects on human and vegetal cells. Drug Chem Toxicol 2019; 44:566-574. [PMID: 31259620 DOI: 10.1080/01480545.2019.1631339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The venoms of wasps are a complex mixture of biologically active compounds, such as low molecular mass compounds, peptides, and proteins. The aim of the study was to evaluate the action of wasp venoms, Polybia occidentalis and Polybia fastidiosa, on the DNA of human leukocytes and on the cell cycle and genetic material of the plant model Lactuca sativa L. (lettuce). The cultured leukocytes were treated with the venoms and then evaluated by the comet assay. On another assay, seeds were exposed to a venom solution; the emitted roots were collected and the occurrence of cell cycle alterations (CCAs) and DNA fragmentation were evaluated by agarose gel electrophoresis and TUNEL assay. The results demonstrated that the venom of both wasps induces several CCAs and reduces the mitotic index (MI) on treated cells. They induced damage on human leukocytes DNA. High frequencies of fragments were observed in cells exposed to P. occidentalis venom, while those exposed to P. fastidiosa showed a high frequency of non-oriented chromosome. Both venoms induced the occurrence of various condensed nuclei (CN). This alteration is an excellent cytological mark to cell death (CD). Additionally, CD was evidenced by positive signals in TUNEL assay, by DNA fragmentation in agarose gel electrophoresis with vegetal cells, and by DNA fragmentation of the human leukocytes evaluated. Furthermore, human leukocytes exposed to the venom of P. fastidiosa had high rate of damage. The data demonstrate that both vegetal and human cells are adequate to evaluate the genotoxicity induced by venoms.
Collapse
Affiliation(s)
| | | | | | | | - Andreimar Martins Soares
- Fiocruz Rondônia e Departamento de Medicina, Fundação Oswaldo Cruz, Centro de Estudos de Biomoléculas Aplicadas à Saúde, CEBio, Universidade Federal de Rondônia (UNIR), Porto Velho, Brazil
| | | | - Mariana Aparecida Braga
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Brazil
| | | | - Silvana Marcussi
- Department of Chemistry, Biochemistry Laboratory, Federal University of Lavras (UFLA), Lavras, Brazil
| | | |
Collapse
|
16
|
Bernardes PM, Andrade-Vieira LF, Aragão FB, Ferreira A, da Silva Ferreira MF. Toxicological effects of comercial formulations of fungicides based on procymidone and iprodione in seedlings and root tip cells of Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21013-21021. [PMID: 31119539 DOI: 10.1007/s11356-019-04636-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
In this study the phytotoxic, cytotoxic, genotoxic and mutagenic effects of two commercial fungicide-active compounds, procymidone (PR) and iprodione (IP), were determined. The parameters evaluated were germination and root growth, mitotic index, chromosomal and nuclear aberrations, and molecular analyses were also performed in the model plant Allium cepa L. The results demonstrated that the active compounds PR and IP were phytotoxic, delaying germination and slowing the development of A. cepa seedlings. Moreover, PR and IP showed cytogenotoxicity towards A. cepa meristematic cells, inducing chromosomal changes and cell death. The mutagenic activity of the active compounds was demonstrated by the detection of DNA changes in simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) markers in the treated cells compared to the negative control. Together, these results contribute to a better understanding of the damage caused by these substances in living organisms and reveal a promising strategy for prospective studies of the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Paula Mauri Bernardes
- Department of Agronomy, Center for Agricultural and Engineering Sciences (Centro de Ciências Agrárias e Engenharias, CCAE), Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29500-000, Brazil.
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Espírito Santo, (CCAE/UFES), Alegre, ES, 29500-000, Brazil.
| | | | - Francielen Barroso Aragão
- Department of Agronomy, Center for Agricultural and Engineering Sciences (Centro de Ciências Agrárias e Engenharias, CCAE), Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Department of Agronomy, Center for Agricultural and Engineering Sciences (Centro de Ciências Agrárias e Engenharias, CCAE), Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Center for Agricultural and Engineering Sciences (Centro de Ciências Agrárias e Engenharias, CCAE), Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29500-000, Brazil
| |
Collapse
|
17
|
Lima MGF, Rocha LC, Silveira GL, Alvarenga IFS, Andrade-Vieria LF. Nucleolar alterations are reliable parameters to determine the cytogenotoxicity of environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:630-636. [PMID: 30875556 DOI: 10.1016/j.ecoenv.2019.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Pollution generated by deposition of industrial activity waste in the environment without due care can lead to serious environmental consequences. Bioassays in higher plants are means of understanding the cytogenotoxic effects of these substances. In the present work, Allium cepa L. was used as a model species to assess nucleolar changes induced by environmental pollutants. The substances used were Methyl Methane Sulfonate (MMS), cadmium (Cd), Spent Potliner (SPL) and the herbicide Atrazine. Water was used as a negative control. The silver-stained nucleolar organizer region (AgNOR) assay was used making it possible to evaluate how nucleolar parameters (number of nucleoli per nucleus and nucleoli area) behave when facing stress caused by such pollutants. The results obtained showed a variation in the observed parameters: an increase in the number of nucleoli in the treated cells and tendency to a reduction in nucleolar area, indicating that the tested pollutants may have impaired nucleolar activity. In addition, it was possible to establish a relationship between the behavior of the nucleolus with other changes as plantlet growth, cell proliferation, and DNA damage.
Collapse
Affiliation(s)
| | - Laiane Corsini Rocha
- Biology Department, Federal University of Lavras (UFLA), ZIP: 37.200-000 Lavras, MG, Brazil
| | | | | | | |
Collapse
|
18
|
Andrade-Vieira LF, Bernardes PM, Ferreira MFDS. Mutagenic effects of spent potliner and derivatives on Allium cepa L. and Lactuca sativa L.: A molecular approach. CHEMOSPHERE 2018; 208:257-262. [PMID: 29879559 DOI: 10.1016/j.chemosphere.2018.05.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Spent potliner (SPL) is a solid residue generated by the aluminum industry. Its composition is variable and complex, containing fluoride and cyanide salts as well as aluminum, which contributes to its toxicity. SPL is sometimes released directly into the soil, where it is prone to leaching and has the potential to cause alterations and damage to DNA. Considering that polymorphism analysis of simple sequence repeat (SSR) and inter-simple sequence repeat (ISSR) DNA markers is an interesting tool to determine the mutagenicity of an environmental pollutant, the present study adopted this approach to verify the mutagenic potential of SPL and its main toxic components (aluminum, fluoride, and cyanide) on root tip cells of Lactuca sativa and Allium cepa. Alterations in ISSR and SSR regions were identified by DNA fingerprinting (gain and loss of bands and changes in band intensity). The estimated dissimilarities indicated differences between treatments and the negative control. Furthermore, the relationship between the amplification profile of the markers and alterations in cell mitosis was discussed.
Collapse
Affiliation(s)
| | - Paula Mauri Bernardes
- Department of Agronomy, Center of Exact Sciences and Engineering, Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29.500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Center of Exact Sciences and Engineering, Federal University of Espírito Santo (Universidade Federal do Espírito Santo), Alegre, ES, 29.500-000, Brazil
| |
Collapse
|
19
|
Castro TFD, Paiva IM, Carvalho AFS, Assis IL, Palmieri MJ, Andrade-Vieira LF, Marcussi S, Solis-Murgas LD. Genotoxicity of spent pot liner as determined with the zebrafish (Danio rerio) experimental model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11527-11535. [PMID: 29427274 DOI: 10.1007/s11356-018-1404-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 01/26/2018] [Indexed: 06/08/2023]
Abstract
Spent pot liner (SPL) is a solid waste generated during the primary smelting of aluminum, and its toxicity is attributed to the presence of fluoride, cyanide, and aluminum salts, which can be leached into aquatic ecosystems. Since the effects of this waste on aquatic life forms have not yet been investigated, the objective of our study was to evaluate the toxicity of simulated leachates of SPL on zebrafish (Danio rerio). Animals were exposed to 0 (control), 0.32, 0.64, or 0.95 g L-1 of SPL for 24, 72, and 96 h, and genotoxicity was accessed through micronucleus and comet assays. All of the tested treatments induced DNA fragmentation, and the observed frequency of micronuclei and damaged nucleoids generally increased with increasing SPL concentration. The highest frequency of micronuclei (3.3 per 3000 erythrocytes) was detected after 96 h of exposure with 0.95 g L-1 SPL. In the comet assay, nucleoids classified with highest level of damage in relation to the control were observed principally after 24 and 96 h of exposure. The data obtained in this study confirm the genotoxicaction and mutagenic potential of SPL and indicate that open-air deposits of the waste material could represent a health risk to humans and ecosystems alike.
Collapse
Affiliation(s)
- Tássia F D Castro
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Isadora M Paiva
- Departamento de Ciências Biológicas, Setor de Genética, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aline F S Carvalho
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Isadora L Assis
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Marcel J Palmieri
- Departamento de Ciências Biológicas, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Larissa F Andrade-Vieira
- Departamento de Ciências Biológicas, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Luis D Solis-Murgas
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil.
| |
Collapse
|
20
|
Costa AV, Oliveira MVLD, Pinto RT, Moreira LC, Gomes EMC, Alves TDA, Pinheiro PF, Queiroz VTD, Vieira LFA, Teixeira RR, Júnior WCDJ. Synthesis of Novel Glycerol-Derived 1,2,3-Triazoles and Evaluation of Their Fungicide, Phytotoxic and Cytotoxic Activities. Molecules 2017; 22:E1666. [PMID: 28991165 PMCID: PMC6151794 DOI: 10.3390/molecules22101666] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022] Open
Abstract
The synthesis of a series of 1,2,3-triazoles using glycerol as starting material is described. The key step in the preparation of these triazolic derivatives is the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), also known as click reaction, between 4-(azidomethyl)-2,2-dimethyl-1,3-dioxolane (3) and different terminal alkynes. The eight prepared derivatives were evaluated with regard to their fungicide, phytotoxic and cytotoxic activities. The fungicidal activity was assessed in vitro against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. It was found that the compounds 1-(1-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-1H-1,2,3-triazol-4-yl)-cyclo-hexanol (4g) and 2-(1-((2,2-dimethyl-1,3-dioxolan-4-yl)methyl)-1H-1,2,3-triazol-4-yl)propan-2-ol (4h) demonstrated high efficiency in controlling C. gloeosporioides when compared to the commercial fungicide tebuconazole. The triazoles did not present any phytotoxic effect when evaluated against Lactuca sativa. However, five derivatives were mitodepressive, inducing cell death detected by the presence of condensed nuclei and acted as aneugenic agents in the cell cycle of L. sativa. It is believed that glycerol derivatives bearing 1,2,3-triazole functionalities may represent a promising scaffold to be explored for the development of new agents to control C. gloeosporioides.
Collapse
Affiliation(s)
- Adilson Vidal Costa
- Graduate Program in Agrochemistry, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | | | - Roberta Tristão Pinto
- Graduate Program in Agrochemistry, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | - Luiza Carvalheira Moreira
- Graduate Program in Agrochemistry, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | - Ediellen Mayara Corrêa Gomes
- Graduate Program in Plant Production, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | - Thammyres de Assis Alves
- Graduate Program in Biotechnology, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | - Patrícia Fontes Pinheiro
- Graduate Program in Agrochemistry, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | - Vagner Tebaldi de Queiroz
- Graduate Program in Agrochemistry, Universidade Federal do Espírito Santo, Alto Universitário, S/N, Guararema, Alegre ES 29500-000, Brazil.
| | | | - Robson Ricardo Teixeira
- Departament of Chemistry, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa MG 36570-900, Brazil.
| | | |
Collapse
|
21
|
Andrade-Vieira LF, Palmieri MJ, Davide LC. Effects of long exposure to spent potliner on seeds, root tips, and meristematic cells of Allium cepa L. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:489. [PMID: 28884393 DOI: 10.1007/s10661-017-6208-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
Spent potliner (SPL) is a solid waste generated in the aluminum mining and processing industry. It is sometimes dumped into the environment and leach in contact with water, thereupon affecting living beings, which are likely to be exposed to the waste for long periods. Considering this, we aimed to evaluate the effects of extended exposure to SPL through bioassays using Allium cepa as plant model system. Seeds of A. cepa were either directly exposed to SPL (continuous exposure) or first germinated in water and then exposed to SPL (discontinuous exposure). The germination rate was determined from 24 to 192 h of exposure. The maximum effects of SPL on germination were observed after 96 h in both exposure approaches. For the parameter root elongation, the discontinuous treatment was more efficient in demonstrating differences among the applied SPL concentrations (60% of reduction). Microscopic analysis was carried out in root tip cells discontinuously exposed to SPL for 96 h. A mitodepressive effect was observed (above 50%), as well as increased rate of chromosome abnormalities (up to 100-fold) and induction of cell death. The consequences of exposure to SPL for longer periods are discussed.
Collapse
Affiliation(s)
- Larissa Fonseca Andrade-Vieira
- Department of Biology, Federal University of Lavras, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil.
| | - Marcel José Palmieri
- Department of Biology, Federal University of Lavras, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| | - Lisete Chamma Davide
- Department of Biology, Federal University of Lavras, Universidade Federal de Lavras (UFLA), Lavras, MG, 37200-000, Brazil
| |
Collapse
|
22
|
He H, Huang W, Oo TL, Gu M, He LF. Nitric oxide inhibits aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:285-292. [PMID: 28371714 DOI: 10.1016/j.jhazmat.2017.03.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 05/20/2023]
Abstract
It had been reported that Aluminum (Al) stress altered nitric oxide (NO) concentration and induced programmed cell death (PCD) in plants. However, the relationship between NO and PCD occurrence under Al stress is unclear. The results showed that cell death induced by Al was significant negative correlation with the inhibition of Al on root elongation growth in peanut. AlCl3 at 100μmolL-1 induced DNA ladder, chromatin condensation, typical apoptotic chromatin condensation staining with DAPI, apoptosis related gene Hrs203j expression and caspase3-like protease activation in peanut root tip cells, and showed that Al-induced cell death in peanut root tip cells was a typical PCD. Exogenous NO donor sodium nitroprusside (SNP) at 200μmolL-1 inhibited Al-induced PCD occurrence, but NO specific scavenger cPTIO aggravated PCD production. It suggests that NO is a negative regulator of Al-induced PCD in peanut root tips.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi University, Nanning 530004, PR China; Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Wenjing Huang
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Thet Lwin Oo
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Minghua Gu
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, PR China.
| |
Collapse
|
23
|
Silveira GL, Lima MGF, Reis GBD, Palmieri MJ, Andrade-Vieria LF. Toxic effects of environmental pollutants: Comparative investigation using Allium cepa L. and Lactuca sativa L. CHEMOSPHERE 2017; 178:359-367. [PMID: 28340458 DOI: 10.1016/j.chemosphere.2017.03.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/13/2017] [Accepted: 03/11/2017] [Indexed: 06/06/2023]
Abstract
Studies that help understand the mechanisms of action of environmental pollutants are extremely important in environmental toxicology. In this context, assays using plants as models stand out for their simplicity and low performance cost. Among the plants used for this purpose, Allium cepa L. is the model most commonly applied for cytogenotoxic tests, while Lactuca sativa L., already widely used in phytotoxic investigations, has been gaining prominence in cytotoxic analyses. The present study aimed to compare the responses of A. cepa and L. sativa via macroscopic (root growth) and microscopic analyses (cell cycle and DNA fragmentation via TdT-mediated deoxy-uracil nick and labeling (TUNEL) and comet assays) after exposure of their roots to environmental pollutants with known cytogenotoxic mechanisms. Both species presented sensitive and efficient response to the applied tests after exposure to the DNA-alkylating agent Methyl Methanesulfonate (MMS), the heavy metal Cadmium, the aluminum industry waste Spent Potliner (SPL) and the herbicide Atrazine. However, they differed regarding the responses to the evaluated endpoints. Overall, A. cepa was more efficient in detecting clastogenic changes, arising from DNA breakage, while L. sativa rather detected aneugenic alterations, related to chromosome segregation in mitosis. In the tests applied to verify DNA fragmentation (comet and TUNEL assays), A. cepa presented higher sensitivity. In conclusion, both models are efficient to evaluate toxicological risks of environmental pollutants.
Collapse
Affiliation(s)
| | | | - Gabriela Barreto Dos Reis
- Doctor in Genetics and Plant Breeding at Federal University of Lavras (UFLA), 37.200-000, Lavras, MG, Brazil
| | - Marcel José Palmieri
- Doctor in Genetics and Plant Breeding at Federal University of Lavras (UFLA), 37.200-000, Lavras, MG, Brazil
| | | |
Collapse
|
24
|
Palmieri MJ, Andrade-Vieira LF, Campos JMS, Dos Santos Gedraite L, Davide LC. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 133:442-447. [PMID: 27517141 DOI: 10.1016/j.ecoenv.2016.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Spent Pot Liner (SPL) is a waste generated during the production of aluminum. It is comprised of a mixture of substances most of which, like cyanide, aluminum and fluoride, are toxic. Previous studies indicate the highly toxic nature of SPL. However studies using cells of the differentiation/elongation zone of the root meristem (referred as M2 cells in this study) after a proper recovery period in water were never considered. Using these cells could be useful to further understanding the toxicity mechanisms of SPL. A comparative approach between the effects on M2 cells and meristematic cells of the proximal meristem zone (referred as M1 cells in this study) could lead to understanding how DNA damage caused by SPL behaves on successive generations of cells. Allium cepa cells were exposed to 4 different concentrations of SPL (2.5, 5, 7.5 and 10gL(-1)) mixed with soil and diluted in a CaCl2 0.01M to simulate the ionic forces naturally encountered on the environment. A solution containing only soil diluted on CaCl2 0.01M was used as control. M1 and M2 cells were evaluated separately, taking into account four different parameters: (1) mitotic alterations (MA); (2) presence of condensed nuclei (CN); (3) mitotic index (MI); (4) presence of micronucleus (MCN). Significant differences were observed between M1 and M2 roots tip cells for these four parameters accessed. M1 cells was more prompt to reveal citogenotoxicity through the higher frequency of MA observed. Meanwhile, for M2 cells higher frequencies of MCN and CN was noticed, followed by a reduction of MI. Also, it was possible to detect significant differences between the tested treatments and the control on every case. These results indicate SPL toxic effects carries on to future cells generations. This emphasizes the need to properly manage this waste. Joint evaluation of cells from both M1 and M2 regions was proven valuable for the evaluation of a series of parameters on all toxicity tests.
Collapse
Affiliation(s)
- Marcel José Palmieri
- Departament of Biology, Universidade Federal de Lavras (UFLA), Campus Universitário, Zip Code 37200-000, Lavras, Minas Gerais State, Brazil
| | - Larissa Fonseca Andrade-Vieira
- Departament of Biology, Universidade Federal de Lavras (UFLA), Campus Universitário, Zip Code 37200-000, Lavras, Minas Gerais State, Brazil
| | - José Marcello Salabert Campos
- Biological Sciences Institute, Universidade Federal de Juiz de Fora (UFJF), Campus Martelos, Zip Code 36036-900, Juiz de Fora, Minas Gerais State, Brazil
| | - Leonardo Dos Santos Gedraite
- Departament of Biology, Universidade Federal de Lavras (UFLA), Campus Universitário, Zip Code 37200-000, Lavras, Minas Gerais State, Brazil
| | - Lisete Chamma Davide
- Departament of Biology, Universidade Federal de Lavras (UFLA), Campus Universitário, Zip Code 37200-000, Lavras, Minas Gerais State, Brazil.
| |
Collapse
|
25
|
Freitas AS, Fontes Cunha IM, Andrade-Vieira LF, Techio VH. Effect of SPL (Spent Pot Liner) and its main components on root growth, mitotic activity and phosphorylation of Histone H3 in Lactuca sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:426-434. [PMID: 26615478 DOI: 10.1016/j.ecoenv.2015.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/02/2015] [Accepted: 11/10/2015] [Indexed: 06/05/2023]
Abstract
Spent Pot Liner (SPL) is a solid waste from the aluminum industry frequently disposed of in industrial landfills; it can be leached and contaminate the soil, sources of drinking water and plantations, and thus may pose a risk to human health and to ecosystems. Its composition is high variable, including cyanide, fluoride and aluminum salts, which are highly toxic and environmental pollutants. This study evaluated the effect of SPL and its main components on root growth and the mitosis of Lactuca sativa, by investigating the mechanisms of cellular and chromosomal alterations with the aid of immunolocalization. To this end, newly emerged roots of L. sativa were exposed to SPL and its main components (solutions of cyanide, fluoride and aluminum) and to calcium chloride (control) for 48h. After this, root length was measured and cell cycle was examined by means of conventional cytogenetics and immunolocalization. Root growth was inhibited in the treatments with SPL and aluminum; chromosomal and nuclear alterations were observed in all treatments. The immunolocalization evidenced normal dividing cells with regular temporal and spatial distribution of histone H3 phosphorylation at serine 10 (H3S10ph). However, SPL and its main components inhibited the phosphorylation of histone H3 at serine 10, inactivated pericentromeric regions and affected the cohesion of sister chromatids, thus affecting the arrangement of chromosomes in the metaphase plate and separation of chromatids in anaphase. In addition, these substances induced breaks in pericentromeric regions, characterized as fragile sites.
Collapse
Affiliation(s)
- Aline Silva Freitas
- Department of Biology, Federal University of Lavras, P.O. Box 3037, 37.200-000 Lavras, Minas Gerais, Brasil
| | | | | | - Vânia Helena Techio
- Department of Biology, Federal University of Lavras, P.O. Box 3037, 37.200-000 Lavras, Minas Gerais, Brasil.
| |
Collapse
|
26
|
Palmieri MJ, Luber J, Andrade-Vieira LF, Davide LC. Cytotoxic and phytotoxic effects of the main chemical components of spent pot-liner: a comparative approach. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 763:30-5. [PMID: 24561381 DOI: 10.1016/j.mrgentox.2013.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/14/2013] [Accepted: 12/28/2013] [Indexed: 01/14/2023]
Abstract
Spent pot-liner (SPL) is a hazardous solid waste produced by the aluminum industry. Although its composition may vary, fluoride and cyanide salts as well as aluminum are predominant components. A seed-germination and root-elongation test was performed with Lactuca sativa seeds as a test system. SPL induced decrease of seed germination rate and root elongation. The concentration of 26.5g/L SPL was established from a regression curve as the IC50 (inhibition concentration 50%). Through chemical analyses, the concentrations of fluoride, cyanide and aluminum in SPL solutions of 26.5g/L (IC50), 39.75g/L (1.5IC50) and 13.25g/L (0.5IC50) were determined. Further, a cell-cycle test was conducted with root tips of L. sativa exposed to these same SPL solutions. All test chemicals presented toxic effects on meristematic cells of L. sativa. Aluminum was identified as the SPL component mainly responsible for reduction of the mitotic index. Chromosomal alterations resulted from the interactions among the three main chemical components of SPL, without a clear predominantly responsible agent. Induction of condensed nuclei was mainly due to effects of aluminum and fluoride, and may serve as an indicator of induced cell death.
Collapse
Affiliation(s)
- Marcel José Palmieri
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), ZIP Code: 37200-000 Lavras, MG, Brazil
| | - Jaquelini Luber
- Departamento de Biologia, Centro de Ciências Agrárias, Universidade Federal do Espírito Santo, 29500-000 Alegre, ES, Brazil
| | | | - Lisete Chamma Davide
- Departamento de Biologia, Universidade Federal de Lavras (UFLA), ZIP Code: 37200-000 Lavras, MG, Brazil.
| |
Collapse
|
27
|
Andrade-Vieira LF, Botelho CM, Laviola BG, Palmieri MJ, Praça-Fontes MM. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays. AN ACAD BRAS CIENC 2014; 86:373-82. [PMID: 24676174 DOI: 10.1590/0001-3765201420130041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 07/05/2013] [Indexed: 11/21/2022] Open
Abstract
Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.
Collapse
Affiliation(s)
- Larissa F Andrade-Vieira
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Carolina M Botelho
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| | - Bruno G Laviola
- Empresa Brasileira de Pesquisa Agropecuaria/EMBRAPA Agroenergia, Parque Estacao Biologica/PqEB, Brasilia, DF, Brasil
| | - Marcel J Palmieri
- Departamento de Biologia, Universidade Federal de Lavras, Campus Universitario, Lavras, MG, Brasil
| | - Milene M Praça-Fontes
- Departamento de Biologia, Centro de Ciencias Agrarias, Universidade Federal do Espirito Santo, Alto Universitario, Alegre, ES, Brasil
| |
Collapse
|
28
|
Zhan J, He HY, Wang TJ, Wang AQ, Li CZ, He LF. Aluminum-induced programmed cell death promoted by AhSAG, a senescence-associated gene in Arachis hypoganea L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:108-17. [PMID: 23849118 DOI: 10.1016/j.plantsci.2013.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 05/11/2023]
Abstract
Programmed cell death (PCD) is a foundational cellular process in plant development and elimination of damaged cells under environmental stresses. In this study, Al induced PCD in two peanut (Arachis hypoganea L.) cultivars Zhonghua 2 (Al-sensitive) and 99-1507 (Al-tolerant) using DNA ladder, TUNEL detection and electron microscopy. The concentration of Al-induced PCD was lower in Zhonghua 2 than in 99-1507. AhSAG, a senescence-associated gene was isolated from cDNA library of Al-stressed peanut with PCD. Open reading frame (ORF) of AhSAG was 474bp, encoding a SAG protein composed of 157 amino acids. Compared to the control and the antisense transgenic tobacco plants, the fast development and blossom of the sense transgenic plants happened to promote senescence. The ability of Al tolerance in sense transgenic tobacco was lower than in antisense transgenic tobacco according to root elongation and Al content analysis. The expression of AhSAG-GFP was higher in sense transgenic tobacco than in antisense transgenic tobacco. Altogether, these results indicated that there was a negative relationship between Al-induced PCD and Al-resistance in peanut, and the AhSAG could induce or promote the occurrence of PCD in plants.
Collapse
Affiliation(s)
- Jie Zhan
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Andrade-Vieira LF, Davide LC, Gedraite LS, Campos JMS, Azevedo H. Genotoxicity of SPL (spent pot lining) as measured by Tradescantia bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:2065-2069. [PMID: 21802142 DOI: 10.1016/j.ecoenv.2011.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 05/25/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Spent Pot Liner (SPL) is a solid waste product generated in the process of aluminum production. Tradescantia micronuclei (Trad-MN) and stamen hair mutation (Trad-SHM) bioassays are very useful tests to assess genotoxicity of environmental pollutants. In the present study, we intended to investigate the genotoxicity of this waste with Tradescantia bioassays using leachates of SPL simulating the natural leachability of SPL in soil. The formation of micronuclei (MN) was found to be concentration dependent. MN frequency enhanced significantly with SPL treatment. In addition, SPL also appeared to increase the percentage of dyads and triads. Trad-SHM assay showed that SPL increases pink mutation events as SPL concentration increases. These results demonstrated that SPL is a cytogenotoxic agent that affects different genetic end-points (induction of micronuclei and point mutations) even at low concentration (2% and 3%).
Collapse
Affiliation(s)
- L F Andrade-Vieira
- Department of Biology, Federal University of Lavras, Box 3730, 37200-000, Lavras-MG, Brazil.
| | | | | | | | | |
Collapse
|