1
|
da Silva LF, Nobre CR, Moreno BB, Pereira CDS, Gonçalves ARN, do Nascimento NSS, Marinsek GP, de Britto Mari R, Simões FR, Carnaúba JH, Choueri RB, Gusso-Choueri PK, Cesar A. Exposure to microplastics contaminated with pharmaceuticals and personal care products: Histological effects on Ucides cordatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177042. [PMID: 39437916 DOI: 10.1016/j.scitotenv.2024.177042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are known to interact with microplastics (MPs) in aquatic environments, with substances such as the antimicrobial triclosan (TCS) and the synthetic hormone 17α-ethinylestradiol (EE2) being prevalent. These persistent contaminants are linked to toxic effects in aquatic organisms. This study aimed to investigate histological and morphometric changes in the gills of Ucides cordatus exposed to microplastics alone and microplastics contaminated with PPCPs. The experimental design included four treatment groups: 1) control (C), 2) virgin microplastics (MP), 3) microplastics fortified with triclosan (MPT), and 4) microplastics fortified with 17α-ethinylestradiol (MPE), with exposure durations of 3 or 7 days. Significant differences were observed in the histopathological indices for treatments with PPCP-fortified microplastics at 3 days (MPT and MPE) and 7 days (MPT). Notable pathologies included necrosis, fibrosis, and circulatory disorders. Exposure duration was significantly associated with morphometric changes, including secondary lamellar width in MPT and secondary lamellar length in MPE. These findings indicate that exposure to microplastics contaminated with PPCPs may impair the osmoregulatory and respiratory functions of Ucides cordatus.
Collapse
Affiliation(s)
- Letícia Fernanda da Silva
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil; Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil; Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907 Santos, São Paulo, Brazil
| | | | - Nathalia Sales Soares do Nascimento
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil
| | - Gabriela Pustiglione Marinsek
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil
| | - Renata de Britto Mari
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil
| | - Fábio Ruiz Simões
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - José Hérelis Carnaúba
- Graduate Program in Chemistry - Science and Technology of Sustainability, Federal University of Sao Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907 Santos, São Paulo, Brazil
| | - Augusto Cesar
- Department of Marine Sciences, Marine Institute, Federal University of São Paulo (CBS-Unifesp), Rua Maria Máximo, 168, 11030-100, Santos, São Paulo, Brazil
| |
Collapse
|
2
|
Patel SS, Trangadia BJ, Patel UD, Delvadiya RS, Makwana AA, Raval SH, Fefar DT. Toxic effects of dibutyl phthalate on testes of adult zebrafish: evaluation of oxidative stress parameters and histopathology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55610-55623. [PMID: 39237826 DOI: 10.1007/s11356-024-34868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Dibutyl phthalate (DBP) is a phthalic compound and is most commonly used as a plasticizer in the polymer industry. It affects the hypothalamus-pituitary-gonadal axis and produces infertility in exposed animals. A total of 366 adult male zebrafish were used to evaluate the toxicological effects of DBP in testes following continuous exposure for 28 days. To evaluate histological changes during phase I of the study, 30 zebrafish were equally divided into five groups viz., control (RO water), vehicle control (0.01% DMSO), T0 (250 µg/L of water), T1 (500 µg/L of water), and T2 group (1000 µg/L of water). The protocol for phase II of the study was decided based on the results of phase I of the study. During phase II, for evaluation of oxidative stress parameters and gene expression profile, a total of 336 fish were equally divided into four groups viz., control, vehicle control, T1 (500 µg/L of water), and T2 (1000 µg/L of water). The activity of SOD, CAT, and TAC was significantly lower in zebrafish from the T2 group; however, a significantly increased level of MDA in the T2 group was recorded as compared to control groups. mRNA expression profile of sod, cat, and nrf2 genes was significantly downregulated in the T2 group as compared to the control group. Histopathology and proliferating cell nuclear antigen immunostaining revealed a reduction in spermatozoa with increased spermatocytes and spermatogonia in testes from T1 and T2 groups. The result indicated that DBP can induce oxidative stress and affect spermatogenesis in zebrafish testes.
Collapse
Affiliation(s)
- Swati S Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India.
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Rajkumar S Delvadiya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Abdulkadir A Makwana
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| | - Samir H Raval
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Sardarkrushinagar, 385506, Gujarat, India
| | - Dhaval T Fefar
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, 362001, Gujarat, India
| |
Collapse
|
3
|
Paravani EV, Bianchi M, Querubín Pereyra PL, Acosta MG, Odetti L, Simoniello MF, Poletta G. DNA damage, alterations in the expression of antioxidant enzyme genes and in the histoarchitecture of gill cells of zebrafish exposed to 17-α-ethinylestradiol. Drug Chem Toxicol 2024; 47:60-66. [PMID: 36912201 DOI: 10.1080/01480545.2023.2188441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Endocrine disruptors, such as estrogen, are chemical substances with the potential to alter the hormonal balance of organisms. Their origin can be natural or artificial, and they can act at very low doses. The estrogen 17α-ethinylestradiol (EE2) is used worldwide as an oral contraceptive and is a potential contaminant in aquatic ecosystems. It is well documented that these environmental pollutants can act directly or indirectly on the reproductive system, impairing development and fertility. However, little is known about the alteration of the cell oxidative status induced by EE2. The main objective of this study was to evaluate the effect on the gill cells of adult zebrafish exposed in vivo to EE2, analyzing cell histology, DNA damage and the expression levels of genes encoding the main enzymes involved in oxidative stress pathways. The histological study showed that EE2 produces moderate to high damage to the gill tissue, an increase in gill cell DNA damage and the mRNA levels of the genes corresponding to the manganese superoxide dismutase (Mn-sod) and catalase (cat) after exposure to 5 ng/L EE2. The results indicate that EE2 causes tissue alterations, DNA damage and oxidative stress. EE2 produced important alterations in the gills, a fundamental organ for the survival of fish. There is a clear need for further research on the ecological consequences of EDCs on non-target organisms.
Collapse
Affiliation(s)
- E V Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
- Cátedra de Biología Celular y Molecular, Universidad Autónoma de Entre Ríos, Oro Verde, Argentina
| | - M Bianchi
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - P L Querubín Pereyra
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - M G Acosta
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Universidad Nacional de Entre Ríos, Oro Verde, Argentina
| | - L Odetti
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| | - M F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
| | - G Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|
4
|
Rodrigues K, Batista-Silva H, de Moura KRS, Van Der Kraak G, Silva FRMB. Dibutyl phthalate disrupts energy metabolism and morphology in the gills and induces hepatotoxicity in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:883-893. [PMID: 37537493 DOI: 10.1007/s10695-023-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
This study investigated the acute effects of dibutyl phthalate (DBP) exposure on energy metabolism and gill histology in zebrafish (Danio rerio). The in vitro incubation of gill tissue with 10 μM DBP for 60 min altered tissue energy supply, as shown by decreased lactate content and lactate dehydrogenase (LDH) activity. Higher concentrations of DBP (100 μM and 1 mM) increased lactate content and LDH activity; however, they blocked glucose uptake, depleted the glycogen content in cellular stores, and induced injury to the gills, as measured by LDH release to the extracellular medium. In addition, in vivo exposure of fish to 1 pM DBP for 12 h induced liver damage by increasing alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) activities. Gill histology indicated hyperemia, lamellar fusion, lamellar telangiectasis, and necrosis. Data indicate that acute exposure of zebrafish gills to the higher DBP concentrations studied induces anaerobic cellular activity and high lactate production, causing gill damage, diminishing cell viability, and incurring liver dysfunction.
Collapse
Affiliation(s)
- Keyla Rodrigues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Hemily Batista-Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Kieiv Resende Sousa de Moura
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Córrego Grande, CEP, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
5
|
Tan H, Gao P, Luo Y, Gou X, Xia P, Wang P, Yan L, Zhang S, Guo J, Zhang X, Yu H, Shi W. Are New Phthalate Ester Substitutes Safer than Traditional DBP and DiBP? Comparative Endocrine-Disrupting Analyses on Zebrafish Using In Vivo, Transcriptome, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13744-13756. [PMID: 37677100 DOI: 10.1021/acs.est.3c03282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Although previous studies have confirmed the association between phthalate esters (PAEs) exposure and endocrine disorders in humans, few studies to date have systematically assessed the threats of new PAE alternatives to endocrine disruptions. Herein, zebrafish embryos were continuously exposed to two PAEs [di-n-butyl phthalate (DBP) and diisobutyl phthalate (DiBP)], two structurally related alternatives [diiononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH)], and two non-PAE substitutes [dipropylene glycol dibenzoate (DGD) and glyceryl triacetate (GTA)], and the endocrine-disrupting effects were investigated during the early stages (8-48 hpf). For five endogenous hormones, including progesterone, testosterone, 17β-estradiol, triiodothyronine (T3), and cortisol, the tested chemicals disturbed the contents of at least one hormone at environmentally relevant concentrations (≤3.9 μM), except DINCH and GTA. Then, the concentration-dependent reduced zebrafish transcriptome analysis was performed. Thyroid hormone (TH)- and androgen/estrogen-regulated adverse outcome pathways (AOPs) were the two types of biological pathways most sensitive to PAE exposure. Notably, six compounds disrupted four TH-mediated AOPs, from the inhibition of deiodinases (molecular initiating event, MIE), a decrease in T3 levels (key event, KE), to mortality (adverse outcome, AO) with the quantitatively linear relationships between MIE-KE (|r| = 0.96, p = 0.002), KE-AO (|r| = 0.88, p = 0.02), and MIE-AO (|r| = 0.89, p = 0.02). Multiple structural analyses showed that benzoic acid is the critical toxicogenic fragment. Our data will facilitate the screening and development of green alternatives.
Collapse
Affiliation(s)
- Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Pan Gao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yiwen Luo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiao Gou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pu Xia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lu Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, Jiangsu, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| |
Collapse
|
6
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. A comparative study on endocrine disrupting effects of leachates from virgin and aged plastics under simulated media in marine medaka larvae (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130700. [PMID: 36592560 DOI: 10.1016/j.jhazmat.2022.130700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
7
|
El-Garawani IM, Khallaf EA, Alne-na-ei AA, Elgendy RG, Sobhy HM, Khairallah A, Hathout HMR, Malhat F, Nofal AE. The Effect of Neonicotinoids Exposure on Oreochromis niloticus Histopathological Alterations and Genotoxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1001-1009. [PMID: 36117203 PMCID: PMC9684291 DOI: 10.1007/s00128-022-03611-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/08/2022] [Indexed: 06/03/2023]
Abstract
This study aimed to examine the side effects of selected neonicotinoids (Acetamiprid, Aceta, and Imidacloprid, Imid) on Oreochromis niloticus juveniles. The acute toxicity, Probit method, revealed an LC50 of 195.81 and 150.76 ppm for Aceta/96 h and Imid/72 h respectively. The fish were divided into three groups that were exposed, for 21 days (n = 5/replicate), to 1/10 of the LC50 of either neonicotinoids, however, the third was an unexposed control group. Results of erythrocytic micronucleus (MN), and nuclear abnormalities (NA) showed that Aceta and Imid exposure caused a significant (p < 0.05) increase in MN by ~ 2.2 and ~ 10 folds, respectively relative to control. NAs occurred at the order of kidney-shaped > budding > binucleated in Aceta, however, budding > binucleated > kidney-shaped was noticed in the Imid group. Histopathological changes in gills, liver, and muscles were observed significantly in both exposed groups with more severity in the Imid group. Collectively, Aceta and Imid have potential genotoxicity and histopathological alterations in O. niloticus.
Collapse
Affiliation(s)
- Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Elsayed A. Khallaf
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Alaa A. Alne-na-ei
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Rehab G. Elgendy
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Hassan M. Sobhy
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, 12613 Egypt
| | - Adel Khairallah
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| | - Heba M. R. Hathout
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, 12613 Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agriculture Research Center, Dokki, Giza, 12618 Egypt
| | - Amany E. Nofal
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Menoufia Egypt
| |
Collapse
|
8
|
Paquette E, Mumper N, Rodrigues A, Voulo M, Rich S, Roy NM. Hindbrain defects induced by Di-butyl phthalate (DBP) in developing zebrafish embryos. Neurotoxicol Teratol 2022; 92:107093. [PMID: 35477034 DOI: 10.1016/j.ntt.2022.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Di-butyl phthalate (DBP) is a globally used plasticizer found in alarmingly high concentrations in soil and water ecosystems. As phthalates are non-covalently bound to plastic polymers, phthalates easily leach into the aquatic environment. The effects of DBP on aquatic organisms is concerning, most notably, studies have focused on the endocrine-disrupting effects. However, reports on the developmental neurotoxicity of DBP are rare. Using the zebrafish vertebrate model system, we treated pre-gastrulation staged embryos with 2.5 μM DBP, a concentration environmentally noted. We find that general hindbrain structure and rhombomere patterning is disrupted at 72 h post fertilization (hpf). We investigated hindbrain specific neural patterning of cranial motor neurons and find defects in branchiomotor neuron patterning and migration. Furthermore, defects in r4 specific Mauthner neuron development were also noted. Thus, we conclude that DBP exposure during embryonic development induces defects to the hindbrain and concomitantly the neurons that are born and differentiate there.
Collapse
Affiliation(s)
- Evelyn Paquette
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Naomi Mumper
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Alissa Rodrigues
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Morgan Voulo
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Sierrah Rich
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, United States of America.
| |
Collapse
|
9
|
Hamid N, Junaid M, Manzoor R, Duan JJ, Lv M, Xu N, Pei DS. Tissue distribution and endocrine disruption effects of chronic exposure to pharmaceuticals and personal care products mixture at environmentally relevant concentrations in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106040. [PMID: 34856459 DOI: 10.1016/j.aquatox.2021.106040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) as emerging contaminants are ubiquitously present in the aquatic environment. Using in vivo and in silico techniques, this study aims to elucidate tissue distribution and endocrine disruption effects of chronic exposure (120 days) to PPCP mixture at environmentally relevant concentrations (ERCs) in adult zebrafish. Results from UHPLC-MS/MS analyses showed elevated distribution of PPCPs in zebrafish tissues in the order of liver > gonad > brain. Upregulation of steroid hormone receptors, both gonadotropin, and steroidogenic genes perturb the HPG axis pathway in females, while male fish exhibited significantly downregulated expressions of vtg, cyp17, and 17βhsd genes with inhibited fecundity. The Spearman correlation indicated a significant positive relationship between PPCPs bioaccumulation and mRNA levels of HPG axis genes. In silico molecular docking (MD) revealed specific amino acid residues of PPCPs binding with zebrafish estrogen receptors. Furthermore, the strongest binding energies of sulfamethoxazole, carbamazepine, and triclosan were discovered in erα and erβ estrogen receptors, confirming PPCPs' xenoestrogenic behavior. To summarize, chronic exposure to ERCs resulted in a high accumulation of PPCPs in the liver and gonad tissues of adult zebrafish, as well as associated perturbed genetic responses. As a result, strict environmental regulations for the disposal of PPCPs should be ensured to protect ecological and public health.
Collapse
Affiliation(s)
- Naima Hamid
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Rakia Manzoor
- University of Chinese Academy of Sciences, Beijing 100049, China; State key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Jing Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Ming Lv
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Barbagallo S, Baldauf C, Orosco E, Roy NM. Di-butyl phthalate (DBP) induces defects during embryonic eye development in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:178-185. [PMID: 34773557 DOI: 10.1007/s10646-021-02468-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Di-butyl phthalate (DBP) is a phthalate ester (PAEs) added during the manufacturing of plastics to make them stronger, yet more pliable. DBP is noncovalently bound to plastics resulting in leaching into the environment. Concerning concentrations of DBP have been noted in surface and groundwater, aquatic ecosystems, soil and atmospheric environments globally. Global production of phthalates and thus concomitant exposure has increased over the years making studies on the ecological and environmental safety needed. Most of the literature on DBP focuses on the endocrine disrupting properties of phthalate esters, but the developmental toxicity of DBP is an understudied area. Here, we treat gastrula staged zebrafish embryos with environmentally relevant concentrations of DBP (2.5 µM). We find defects in eye development at 96 h post fertilization including a decrease in the size of the lens and retina in DBP-treated embryos. Defects in eye vascularization as well as loss of the optic nerve and optic tectum were also noted. Here we conclude that exposure to environmentally relevant doses of DBP during early embryonic development is toxic to eye development.
Collapse
Affiliation(s)
| | - Cassidy Baldauf
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Emily Orosco
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, USA.
| |
Collapse
|
11
|
Chen H, Feng W, Chen K, Qiu X, Xu H, Mao G, Zhao T, Wu X, Yang L. Transcriptomic responses predict the toxic effect of parental co-exposure to dibutyl phthalate and diisobutyl phthalate on the early development of zebrafish offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105838. [PMID: 33910148 DOI: 10.1016/j.aquatox.2021.105838] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP) and diisobutyl phthalate (DiBP) have been reported to exhibit reproductive toxicity in vertebrates. However, the combined effect of DBP and DiBP on offspring of exposed parents remains unclear, especially for aquatic organisms such as fish. The aims of this study were to assess the effects of parental co-exposure to DBP and DiBP on early development of zebrafish offspring, and to explore the potential molecular mechanisms involved. The early developmental indicators and transcriptomic profiles of F1 larvae were examined after parental exposure to DBP, DiBP and their mixtures (Mix) for 30 days. Results showed that parental exposure to DBP and DiBP, alone or in combination, resulted in increased hatchability at 48 hpf and heart rate at 96 hpf, and increased the prevalence of malformations and mortality in F1 larvae. Generalized linear model (GLM) suggested an antagonistic interactive effect between DBP and DiBP on mortality and malformations of F1 larvae. The transcriptomic analysis revealed that the molecular mechanisms of parental co-exposure were different from those of either chemical alone. Disruption of molecular functions involved unfolded protein binding, E-box binding and photoreceptor activity in F1 larvae. These findings provide initial insights in the potential mechanism of action of parental co-exposure to DBP and DiBP.
Collapse
Affiliation(s)
- Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ting Zhao
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| | - Liuqing Yang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
12
|
Zhang Y, Jiao Y, Li Z, Tao Y, Yang Y. Hazards of phthalates (PAEs) exposure: A review of aquatic animal toxicology studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145418. [PMID: 33548714 DOI: 10.1016/j.scitotenv.2021.145418] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
Phthalates (PAEs) are of wide concern because they are commonly used in various plastic products as plasticizers, and can found their way into the environment. However, their interaction with the environment and their toxicity in aquatic animals is still a matter of intense debate. In this review on PAEs in aquatic environments (lakes, rivers and seas), it is found that there is a large variety and abundance of PAEs in developing countries, and the total concentration of PAEs even exceeds 200 μg / L. The interaction between metabolic processes involved in the toxicity induced by various PAEs is summarized for the first time in the article. Exposure of PAEs can lead to activation of the detoxification system CYP450 and endocrine system receptors of aquatic animals, which in turn causes oxidative stress, metabolic disorders, endocrine disorders, and immunosuppression. Meanwhile, each system can activate / inhibit each other, causing genotoxicity and cell apoptosis, resulting in the growth and development of organisms being blocked. The mixed PAEs shows no cumulative toxicity changes to aquatic animals. For the combined pollution of other chemicals and PAEs, PAE can act as an agonist or antagonist, leading to combined toxicity in different directions. Phthalate monoesters (MPEs), the metabolites of PAEs, are also toxic to aquatic animals, however, the toxicity is weaker than the corresponding parent compounds. This review summarizes and analyzes the current ecotoxicological effects of PAEs on aquatic animals, and provides guidance for future research.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
13
|
Hamid N, Junaid M, Pei DS. Combined toxicity of endocrine-disrupting chemicals: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112136. [PMID: 33735605 DOI: 10.1016/j.ecoenv.2021.112136] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicological assessment provides a realistic approach for hazard evaluation of chemical cocktails that co-existed in the environment. This review provides a holistic insight into the studies highlighting the mixture toxicity of the endocrine-disrupting chemicals (EDCs), especially focusing on the screening of biochemical pathways and other toxicogenetic endpoints. Reviewed literature showed that numerous multiplexed toxicogenomic techniques were applied to determine reproductive effects in vertebrates, but limited studies were found in non-mammalian species after mixture chemical exposure. Further, we found that the experimental design and concentration selection are the two important parameters in mixture toxicity studies that should be time- and cost-effective, highly precise, and environmentally relevant. A summary of EDC mixtures affecting the thyroid axis, estrogen axis, androgen axis, growth stress, and immune system via in vivo bioassays was also presented. It is interesting to mention that majority of estrogenic effects of the mixtures were sex-dependent, particularly observed in male fish as compared to female fish. Further, the androgen axis was perturbed with serious malformations in male rat testis (epididymal or gubernacular lesions, and deciduous spermatids). Also, transgenerational epigenetic effects were promoted in the F3 and F4 generations in the form of DNA methylation epimutations in sperm, increasing polycystic ovaries and reducing the offspring. Similarly, increased oxidative stress, high antioxidant enzymatic activities, disturbed estrous cycle, and decreased steroidogenesis were the commonly found effects after acute or chronic exposure to EDC mixtures. Importantly, the concentration addition (CA) and independent action (IA) models became more prevalent and suitable predictive models to unveil the prominence of synergistic estrogenic and anti-androgenic effects of chemical mixtures. More importantly, this review encompasses the research challenges and gaps in the existing knowledge and specific future research perspectives on combined toxicity.
Collapse
Affiliation(s)
- Naima Hamid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
14
|
On a phthalate ester's adsorption kinetics: DBP in 5 wt% aqueous MeOH solution. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Shen C, Zhu K, Ruan J, Li J, Wang Y, Zhao M, He C, Zuo Z. Screening of potential oestrogen receptor α agonists in pesticides via in silico, in vitro and in vivo methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116015. [PMID: 33352482 DOI: 10.1016/j.envpol.2020.116015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In modern agricultural management, the use of pesticides is indispensable. Due to their massive use worldwide, pesticides represent a latent risk to both humans and the environment. In the present study, 1056 frequently used pesticides were screened for oestrogen receptor (ER) agonistic activity by using in silico methods. We found that 72 and 47 pesticides potentially have ER agonistic activity by the machine learning methods random forest (RF) and deep neural network (DNN), respectively. Among endocrine-disrupting chemicals (EDCs), 14 have been reported as EDCs or ER agonists by previous studies. We selected 3 reported and 7 previously unreported pesticides from 76 potential ER agonists to further assess ERα agonistic activity. All 10 selected pesticides exhibited ERα agonistic activity in human cells or zebrafish. In the dual-luciferase reporter gene assays, six pesticides exhibited ERα agonistic activity. Additionally, nine pesticides could induce mRNA expression of the pS2 and NRF1 genes in MCF-7 cells, and seven pesticides could induce mRNA expression of the vtg1 and vtg2 genes in zebrafish. Importantly, the remaining 48 out of 76 potential ER agonists, none of which have previously been reported to have endocrine-disrupting effects or oestrogenic activity, should be of great concern. Our screening results can inform environmental protection goals and play an important role in environmental protection and early warnings to human health.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
16
|
Lu C, Luo J, Liu Y, Yang X. The oxidative stress responses caused by phthalate acid esters increases mRNA abundance of base excision repair (BER) genes in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111525. [PMID: 33120273 DOI: 10.1016/j.ecoenv.2020.111525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023]
Abstract
The base excision repair (BER) pathway is an important defense response to oxidative DNA damage. It is known that exposures to phthalate esters (PAEs), including Dibutyl phthalate (DBP), Mono-(2-ethylhexyl) phthalate (MEHP), and Di-(2-ethylhexyl) phthalate (DEHP), cause reactive oxygen species-induced DNA damage and oxidative stress. Here, we determined the mRNA levels of BER pathway-related genes (ogg1, nthl1, apex1, parp1, xrcc1, lig3, ung, pcna, polb, pold, fen1, and lig1), pro-apoptotic gene (bax), and apoptotic suppressor gene (bcl2) in different PAEs-exposed zebrafish larvae and HEK293T cells. Further investigations were performed to examine reactive oxygen species (ROS) accumulation, superoxide dismutase (SOD) activity, developmental toxicity, and cell viability after PAEs exposure in vivo and in vitro. The results showed that PAEs exposure can induce developmental abnormalities in zebrafish larvae, and inhibit cell viability in HEK293T cells. Additionally, we found that PAEs exposure results in the accumulation of ROS and the inhibition of SOD activation in vivo and in vitro. Notably, the mRNA levels of BER pathway-related genes (OGG1, NTHL1, APEX1, XRCC1, UNG, POLB, POLD, FEN1) were significantly upregulated after DBP or MEHP exposure, whereas the mRNA levels of NTHL1, UNG, POLB, POLD, and FEN1 were significantly altered in DEHP-treated HEK293T cells. In zebrafish, the mRNA levels of ogg1, pcna, fen1 and lig1 genes were increased after DBP or DEHP exposure, whereas the mRNA levels of nthl1, apex1, parp1, lig3, pcna and polb were decreased after MEHP exposure, respectively. Thus, our findings indicated that PAEs exposure can induce developmental toxicity, cytotoxicity, and oxidative stress, as well as activate BER pathway in vivo and in vitro, suggesting that BER pathway might play critical roles in PAEs-induced oxidative stress through repairing oxidative DNA damage.
Collapse
Affiliation(s)
- Chunjiao Lu
- Shantou University Medical College, Shantou 515041, China
| | - Juanjuan Luo
- Shantou University Medical College, Shantou 515041, China
| | - Yao Liu
- Shantou University Medical College, Shantou 515041, China
| | - Xiaojun Yang
- Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
17
|
Chen H, Chen K, Qiu X, Xu H, Mao G, Zhao T, Feng W, Okeke ES, Wu X, Yang L. The reproductive toxicity and potential mechanisms of combined exposure to dibutyl phthalate and diisobutyl phthalate in male zebrafish (Danio rerio). CHEMOSPHERE 2020; 258:127238. [PMID: 32563064 DOI: 10.1016/j.chemosphere.2020.127238] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Dibutyl phthalate (DBP) and diisobutyl phthalate (DiBP) are phthalate compounds frequently detected in the environment. Despite increasing awareness of their toxicity in human and animals, the male reproductive toxicity of their combined exposure remains elusive. The purposes of this study were to investigate whether combined exposure to DBP and DiBP could induce male reproductive toxicity, and to explore the potential toxicological mechanisms. Adult male zebrafish were exposed to DBP (11, 113 and 1133 μg L-1), DiBP (10, 103 and 1038 μg L-1) and their mixtures (Mix) (11 + 10, 113 + 103, 1133 + 1038 μg L-1) for 30 days, and their effects on plasma hormone secretion, testis histology and transcriptomics were examined. Highest concentrations of Mix exposure caused greater imbalance ratio of T/E2 and more severe structural damage to testis than single exposure. These effects were consistent with the testis transcriptome analysis for which 4570 genes were differentially expressed in Mix exposure, while 2795 and 1613 genes were differentially expressed in DBP and DiBP, respectively. KEGG pathway analysis showed that both single and combined exposure of DBP and DiBP could affect cytokine-cytokine receptor interaction. The difference was that combined exposure could also affect steroid hormone synthesis, extracellular matrix receptor interaction, retinol metabolism, and PPAR signaling pathways. These results demonstrated that combined exposure to DBP and DiBP could disrupt spermatogenesis and elicit male reproductive toxicity in zebrafish.
Collapse
Affiliation(s)
- Hui Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Hai Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Guanghua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ting Zhao
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Weiwei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Liuqing Yang
- School of the Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
18
|
Tao Y, Yang Y, Jiao Y, Wu S, Zhu G, Akindolie MS, Zhu T, Qu J, Wang L, Zhang Y. Monobutyl phthalate (MBP) induces energy metabolism disturbances in the gills of adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115288. [PMID: 32795888 DOI: 10.1016/j.envpol.2020.115288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Monobutyl phthalate (MBP) is a primary metabolite of an environmental endocrine disruptor dibutyl phthalate (DBP), which poses a potential threat to living organisms. In this research, the acute toxicity of MBP on energy metabolism in zebrafish gills was studied. Transmission electron microscopy (TEM) results show that 10 mg L-1 MBP can induce mitochondrial structural damage of chloride cells after 96 h of continuous exposure. The activity of ion ATPase and the expression level of oxidative phosphorylation-related genes suggest that MBP interferes with ATP synthesis and ion transport. Further leading to a decrease in mitochondrial membrane potential (MMP) and cell viability, thereby mediating early-stage cell apoptosis. Through a comprehensive analysis of principal component analysis (PCA) and integrated biomarker response (IBR) scores, atp5a1, a subunit of mitochondrial ATP synthase, is mainly inhibited by MBP, followed by genes encoding ion ATPase (atp1b2 and atp2b1). Importantly, MBP inhibits aerobic metabolism by inhibiting the key enzyme malate dehydrogenase (MDH) in the TCA cycle, forcing zebrafish to maintain ATP supply by enhancing anaerobic metabolism.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Song Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Guangxue Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
Hemalatha D, Rangasamy B, Nataraj B, Maharajan K, Narayanasamy A, Ramesh M. Transcriptional, biochemical and histological alterations in adult zebrafish (Danio rerio) exposed to benzotriazole ultraviolet stabilizer-328. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139851. [PMID: 32758936 DOI: 10.1016/j.scitotenv.2020.139851] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The occurrence of Benzotriazole Ultraviolet Stabilizer-328 (BUV-328) in different environmental and biological matrices is of immediate environmental concern. In the present study, we evaluated the toxicity of BUV-328 in zebrafish liver tissues to understand the role of oxidative damage in hepatotoxicity. Adult zebrafish were exposed to 0.01, 0.1 and 1 mg/L of BUV-328. At the end of 14, 28 and 42 days, liver tissues were examined for the responses of antioxidant enzymes, gene expression and histopathological alterations. The results indicated that superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities were elevated at concentrations of 0.1 and 1 mg/L on 14th and 28th day. Glutathione S-transferase (GST) activity and malondialdehyde (MDA) levels were elevated in all the treated groups. The transcriptional levels of genes encoding sod, cat, gpx and gst enzymes were increased at 14th day and then declined (except sod on 28th day). Moreover, transcription of cyp1a and hsp70 were up-regulated throughout the study period. Histopathological lesions such as hypertrophy, cellular and nuclear enlargement, cytoplasmic and nuclear degeneration, necrosis with pyknotic nuclei, lipid and cytoplasmic vacuolization and nuclear displacement to the periphery were found to be increased with the dose and exposure duration. In brief, our findings indicate that even a low dose of BUV-328 is toxic to induce oxidative stress and liver damage in zebrafish over a long period of exposure.
Collapse
Affiliation(s)
- Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology, PSG College of Arts & Science, Avinashi Road, Civil Aerodrome Post, Coimbatore 641014, Tamil Nadu, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
20
|
Hu J, Jiang K, Tang X, Liu H, Zhang H, Yang X, Nie X, Luo H. Chronic exposure to di-n-butyl phthalate causes reproductive toxicity in zebrafish. J Appl Toxicol 2020; 40:1694-1703. [PMID: 32627227 DOI: 10.1002/jat.4030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Di-n-butyl phthalate (DBP) is known to have adverse effects on reproduction in mammals and is pervasive in the aquatic environment. The objective of the present study was to investigate whether long-term exposure to low concentrations of DBP can affect fish reproduction. In this study, zebrafish (Danio rerio) embryos (F0 ) were exposed to low concentrations (4.9, 13.6 and 43.8 μg/L) of DBP from 2 hours post-fertilization until sexual maturation. The results demonstrate that chronic exposure to DBP (43.8 μg/L) impaired the reproductive function of zebrafish, as verified by reduced egg production and modifications to gonadal histology of the treated fish. Plasma 17β-estradiol levels in female zebrafish decreased significantly in a concentration-dependent manner, while testosterone levels in males increased significantly when fish were exposed to 43.8 μg/L DBP. Real-time polymerase chain reaction was performed to examine selected genes in the hypothalamic-pituitary-gonadal (HPG) axis and liver. Hepatic vitellogenin gene transcription was downregulated in both males and females, suggesting that DBP possesses anti-estrogenic activity. The disturbed steroid hormones were accompanied by the significant alterations in gene expression along the HPG axis. Additionally, parental exposure to DBP caused reduced hatching and survival rate as well as decreased growth in the F1 generation. Taken together, these results demonstrate that long-term exposure to low concentrations of DBP in zebrafish could cause reproductive toxicity, implying that DBP could have significant adverse effects on fish populations, particularly in a highly DBP-contaminated aquatic environment.
Collapse
Affiliation(s)
- Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaohu Tang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hao Liu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hu Zhang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xuefeng Yang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiangqian Nie
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
21
|
Wang X, Zheng H, Zhao J, Luo X, Wang Z, Xing B. Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper ( Epinephelus moara) through Disrupting Hepatic Lipid Homeostasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6202-6212. [PMID: 32207945 DOI: 10.1021/acs.est.9b07016] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microplastics (MPs) have caused increasing global concerns due to their detrimental effects on marine ecosystems. However, the role of photodegradation in altering toxicity of MPs to marine organisms is poorly understood. We therefore investigated the photolytic transformation of pristine polystyrene fragments (P-PS) by 60-day ultraviolet (UV) irradiation, and compared the toxicity of P-PS, photodegraded PS (PD-PS), and commercially available polystyrene microbeads (C-PS) to juvenile grouper (Epinephelus moara). Photodegradation reduced the size from ∼55.9 μm of P-PS to ∼38.6 μm of PD-PS, even produced nanoparticles (∼75 nm) with a yield of 7.03 ± 0.37% (w/w), and induced surface oxidation and formation of persistent free radicals (e.g., CO•, COO•). Also, endogenous pollutants (chemical additives and polymer fragments) were leached out. Thus, PD-PS had the highest growth inhibition and lipidosis-driven hepatic lesions of grouper, followed by P-PS and C-PS, which was mainly explained by increased hepatic bioaccumulation of MPs/NPs and released endogenous toxicants. Furthermore, oxidative stress-triggered mitochondrial depolarization, suppression of fatty acid oxidation and transport, and promotion of inflammation were identified as the key mechanisms for the enhanced hepatotoxicity after photodegradation. This work provides new insight into the potential hazard and harm of MPs in marine environments after photodegradation.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100 China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100 China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
22
|
Maurício R, Semedo F, Dias R, Noronha JP, Amaral L, Daam MA, Mano AP, Diniz MS. Efficacy assessment of peracetic acid in the removal of synthetic 17α-ethinyl estradiol contraceptive hormone in wastewater. J Environ Sci (China) 2020; 89:1-8. [PMID: 31892382 DOI: 10.1016/j.jes.2019.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Increasing concerns have been raised on endocrine disrupting chemicals like the sex hormone 17α-ethinylestradiol (EE2), the more since traditional wastewater (WW) treatments appear to be ineffective for their removal. The efficacy of the relatively novel disinfectant peracetic acid (PAA) in EE2 removal was evaluated, as well as its potential effects on WW quality parameters. The treatments tested for EE2 removal were also evaluated in terms of toxicity, through the determination of biochemical responses (antioxidant enzymes, lipid peroxidation and vitellogenin induction) using zebrafish (Danio rerio) as a biological model. PAA contact times less than 20 min appeared insufficient regardless of the PAA dose tested, but a 100% EE2 removal was attained at a PAA concentration of 15 mg/L with a contact time of 20 min. Total suspended solids, chemical oxygen demand and pH in PAA treatments remained well within levels set in European legislation for WW discharge. EE2 induced significant increased vitellogenin (VTG) levels in both female and male fish, indicating increased estrogenic activity, especially in males suggesting an endocrine disruption effect. With the addition of PAA (15 mg/L), however, VTG levels in both sexes returned to control values. Although this PAA treatment showed increased levels of the antioxidant enzyme catalase, the lipid peroxidation levels were similar or even lower than in controls. Overall the results suggest that the use of PAA appears a promising way forward as a less toxic alternative to chlorine disinfection with high efficiency in the removal of EDC like EE2.
Collapse
Affiliation(s)
- Rita Maurício
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal.
| | - Flávia Semedo
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rita Dias
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - João P Noronha
- REQUIMTE/FCT, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Leonor Amaral
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Michiel A Daam
- CENSE, Center for Environmental and Sustainability Research, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - António P Mano
- Department of Environmental Sciences and Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Mário S Diniz
- Biotox Lab, UCIBIO, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Jergensen T, Cusmano D, Roy NM. Di-butyl phthalate (DBP) induces craniofacial defects during embryonic development in zebrafish. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:995-1002. [PMID: 31463621 DOI: 10.1007/s10646-019-02100-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Di-butyl phthalate (DBP) is commonly added to make plastics softer and more pliable and is found in a variety of consumer and industrial products. Alarmingly high levels of DBP have been detected in water and sediment as DBP leaches from products. These levels are concerning and have led the Environmental Protection Agency to label DBP as a priority environmental pollutant and the European Commission to label DBP as a priority substance. Given the ubiquitous presence of DBP globally and continuous exposure to DBP, studies on the developmental toxicity of DBP are needed. The endocrine disrupting effects of DBP are well documented, but developmental toxicity of DBP during critical developmental time windows is understudied. Here, we investigate the developmental effects of DBP exposure during early development. We find defects in craniofacial development including a decrease in overall cranial size in DBP treated embryos, but the intraocular distance was increased compared to controls. Further investigation of jawbone development demonstrated loss of and disorganization of cartilage development. Defects in vascular innervation and neuronal patterning were also noted. Here we conclude that exposure to DBP during crucial time windows of embryonic development is toxic to craniofacial development.
Collapse
Affiliation(s)
- Tanner Jergensen
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA
| | - Danielle Cusmano
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, USA.
| |
Collapse
|
24
|
Baken KA, Lambrechts N, Remy S, Mustieles V, Rodríguez-Carrillo A, Neophytou CM, Olea N, Schoeters G. A strategy to validate a selection of human effect biomarkers using adverse outcome pathways: Proof of concept for phthalates and reproductive effects. ENVIRONMENTAL RESEARCH 2019; 175:235-256. [PMID: 31146096 DOI: 10.1016/j.envres.2019.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/21/2023]
Abstract
Human biomonitoring measures the concentrations of environmental chemicals or their metabolites in body fluids or tissues. Complementing exposure biomarkers with mechanistically based effect biomarkers may further elucidate causal pathways between chemical exposure and adverse health outcomes. We combined information on effect biomarkers previously implemented in human observational studies with mechanisms of action reported in experimental studies and with information from published Adverse Outcome Pathways (AOPs), focusing on adverse reproductive effects of phthalate exposure. Phthalates constitute a group of chemicals that are ubiquitous in consumer products and have been related to a wide range of adverse health effects. As a result of a comprehensive literature search, we present an overview of effect biomarkers for reproductive toxicity that are substantiated by mechanistic information. The activation of several receptors, such as PPARα, PPARγ, and GR, may initiate events leading to impaired male and female fertility as well as other adverse effects of phthalate exposure. Therefore, these receptors appear as promising targets for the development of novel effect biomarkers. The proposed strategy connects the fields of epidemiology and toxicology and may strengthen the weight of evidence in observational studies that link chemical exposures to health outcomes.
Collapse
Affiliation(s)
- Kirsten A Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium.
| | - Nathalie Lambrechts
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium
| | - Sylvie Remy
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Vicente Mustieles
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | | | - Christiana M Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | - Nicolas Olea
- Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada, Granada, Spain; Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Greet Schoeters
- Unit Health, Flemish Institute for Technological Research (VITO NV), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Jabeen K, Li B, Chen Q, Su L, Wu C, Hollert H, Shi H. Effects of virgin microplastics on goldfish (Carassius auratus). CHEMOSPHERE 2018; 213:323-332. [PMID: 30237044 DOI: 10.1016/j.chemosphere.2018.09.031] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 05/18/2023]
Abstract
Microplastics (MPs) are abundant in freshwater and marine environments. They are diverse shape and size and are ingested by organisms. In this study, goldfish (Carassius auratus) were exposed via diet to three types of virgin MPs material types and shapes including fibers, fragments, and pellets. After six weeks of exposure, various sub-lethal effects, but no mortality, was observed. Fish exposed to plastic showed significant weight loss compared with the control. Fibers were found in the gills, gastrointestinal tract (GIT), and feces were not likely to accumulate in the GIT. Pronounced and severe alterations were found in the livers of fish exposed to fibers. The distal intestine showed more pronounced and severe changes compared to the proximal intestine, likely due to an intake of fibers. The ingestion of fibers caused the highest frequencies of progressive and inflammatory changes in the livers and intestines. This is in accordance with the higher organ index in these organs compared to other texa. Conversely, fragments and pellets were not ingested but chewed and expelled. Chewing process resulted in damages to the jaws as ranging from slight exfoliation to deep incisions. The highest frequency of regressive and circulatory (e.g., dilated sinusoids) changes was found in fish exposed to fragments, specifically in the upper and lower jaw, and in lower jaw and liver, respectively. Together, these results demonstrate that ingestion and chewing of MPs lead to damages in various organs and tissues of the gastrointestinal system, and suggest that different materials can have drastically different impacts on fish.
Collapse
Affiliation(s)
- Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 1 Worringerweg, 52074, Aachen, Germany
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; Institute of Eco-Chongming, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
26
|
Szczepańska N, Marć M, Kudłak B, Simeonov V, Tsakovski S, Namieśnik J. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:282-289. [PMID: 29857233 DOI: 10.1016/j.ecoenv.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The development of new methods for identifying a broad spectrum of analytes, as well as highly selective tools to provide the most accurate information regarding the processes and relationships in the world, has been an area of interest for researchers for many years. The information obtained with these tools provides valuable data to complement existing knowledge but, above all, to identify and determine previously unknown hazards. Recently, attention has been paid to the migration of xenobiotics from the surfaces of various everyday objects and the resulting impacts on human health. Since children are among those most vulnerable to health consequences, one of the main subjects of interest is the migration of low-molecular-weight compounds from toys and products intended for children. This migration has become a stimulus for research aimed at determining the degree of release of compounds from popular commercially available chocolate/toy sets. One of main objectives of this research was to determine the impact of time on the ecotoxicity (with Vibrio fischeri bioluminescent bacteria) of extracts of products intended for children and to assess the correlation with total volatile organic compound emissions using basic chemometric methods. The studies on endocrine potential (with XenoScreen YES/YAS) of the extracts and showed that compounds released from the studied objects (including packaging foils, plastic capsules storing toys, most of toys studied and all chocolate samples) exhibit mostly androgenic antagonistic behavior while using artificial saliva as extraction medium increased the impact observed. The impact of time in most cases was positive one and increased with prolonging extraction time. The small-scale stationary environmental test chambers - μ-CTE™ 250 system was employed to perform the studies aimed at determining the profile of total volatile organic compounds (TVOCs) emissions. Due to this it was possible to state that objects from which the greatest amounts of contaminants are released are plastic containers (with emission rate falling down from 3273 to 2280 ng/g of material at 6 h of conditioning in elevated temperature).
Collapse
Affiliation(s)
- Natalia Szczepańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland; Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, pl. Kopernika 11a, 45-040 Opole, Poland.
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| | - Vasil Simeonov
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Stefan Tsakovski
- Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia "St. Kl. Okhridski", 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
27
|
Ahuactzin-Pérez M, Tlécuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C. Kinetics and pathway of biodegradation of dibutyl phthalate by Pleurotus ostreatus. Fungal Biol 2018; 122:991-997. [PMID: 30227934 DOI: 10.1016/j.funbio.2018.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022]
Abstract
Dibutyl phthalate (DBP) is a plasticizer, whose presence in the environment as a pollutant has attained a great deal of attention due to its reported association with endocrine system disturbances on animals. Growth parameters, glucose uptake, percentage of removal efficiency (%E) of DBP, biodegradation constant of DBP (k) and half-life of DBP biodegradation (t1/2) were evaluated for Pleurotus ostreatus grown on media containing glucose and different concentrations of DBP (0, 500 and 1000 mg l-1). P. ostreatus degraded 99.6 % and 94 % of 500 and 1000 mg of DBP l-1 after 312 h and 504 h, respectively. The k was 0.0155 h-1 and 0.0043 h-1 for 500 and 1000 mg of DBP l-1, respectively. t1/2 was 44.7 h and 161 h for 500 and 1000 mg of DBP l-1, respectively. Intermediate compounds of biodegraded DBP were identified by GC-MS and a DBP biodegradation pathway was proposed using quantum chemical calculation. DBP might be metabolized to benzene and acetyl acetate, the first would be oxidated to muconic acid and the latter would enter into the Krebs cycle. P. ostreatus has the ability to degrade DBP and utilizes it as source of carbon and energy.
Collapse
Affiliation(s)
- Miriam Ahuactzin-Pérez
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Mexico; Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, Mexico
| | - Saúl Tlécuitl-Beristain
- Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala, CP 90180, Mexico
| | - Jorge García-Dávila
- Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala, CP 90180, Mexico
| | - Ericka Santacruz-Juárez
- Universidad Politécnica de Tlaxcala, San Pedro Xalcatzinco, Tepeyanco, Tlaxcala, CP 90180, Mexico
| | | | | | - Carmen Sánchez
- Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, Tlaxcala, CP 90062, Mexico.
| |
Collapse
|
28
|
Ahuactzin-Pérez M, Tlecuitl-Beristain S, García-Dávila J, Santacruz-Juárez E, González-Pérez M, Gutiérrez-Ruíz MC, Sánchez C. Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum. 3 Biotech 2018; 8:42. [PMID: 29354353 DOI: 10.1007/s13205-017-1065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
Dibutyl phthalate (DBP) is a widely used plasticizer, whose presence in the environment as a pollutant raises concern because of its endocrine-disrupting toxicity. Growth kinetics, glucose uptake, biodegradation constant of DBP (k), half-life of DBP biodegradation (t1/2) and percentage of removal efficiency (%E) were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DBP (500 and 1000 mg/l). Intermediate compounds of biodegraded DBP were identified by GC-MS and a novel DBP biodegradation pathway was proposed on the basis of the intermolecular flow of electrons of the intermediates identified using quantum chemical modeling. F. culmorum degraded 99% of both 1000 and 500 mg of DBP/l after an incubation period of 168 and 228 h, respectively. %E was 99.5 and 99.3 for 1000 and 500 mg of DBP/l, respectively. The k was 0.0164 and 0.0231 h-1 for 500 and 1000 mg of DBP/l, respectively. DBP was fully metabolized to fumaric and malic acids, which are compounds that enter into the Krebs cycle. F. culmorum has a promising ability for bioremediation of environments polluted with DBP because it efficiently degrades DBP and uses high concentrations of this compound as carbon and energy source.
Collapse
|
29
|
Forner-Piquer I, Maradonna F, Gioacchini G, Santangeli S, Allarà M, Piscitelli F, Habibi HR, Di Marzo V, Carnevali O. Dose-Specific Effects of Di-Isononyl Phthalate on the Endocannabinoid System and on Liver of Female Zebrafish. Endocrinology 2017; 158:3462-3476. [PMID: 28938452 DOI: 10.1210/en.2017-00458] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism. Hence, the aim of our study was to investigate the effects of DiNP on the ECS in zebrafish liver and brain and on hepatic lipid storage. To do so, adult female zebrafish were exposed to three concentrations (0.42 µg/L, 4.2 µg/L, and 42 µg/L) of DiNP via water for 3 weeks. Afterwards, we investigated transcript levels for genes involved in the ECS of the brain and liver as well as liver histology and image analysis, Fourier-transform infrared spectroscopy imaging, and measurement of endocannabinoid levels. Our results demonstrate that DiNP upregulates orexigenic signals and causes hepatosteatosis together with deregulation of the peripheral ECS and lipid metabolism. A decrease in the levels of ECS components at the central level was observed after exposure to the highest DiNP concentration tested. These findings suggest that replacement of DEHP with DiNP should be considered with caution because of observed adverse DiNP effects on aquatic organisms.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Brain/drug effects
- Brain/metabolism
- Dose-Response Relationship, Drug
- Endocannabinoids/metabolism
- Endocrine Disruptors/pharmacology
- Fatty Liver/metabolism
- Female
- Gene Expression/drug effects
- Glycerides/metabolism
- Lipid Metabolism/drug effects
- Lipoprotein Lipase/drug effects
- Lipoprotein Lipase/genetics
- Lipoprotein Lipase/metabolism
- Liver/drug effects
- Phospholipase D/drug effects
- Phospholipase D/genetics
- Phospholipase D/metabolism
- Phthalic Acids/pharmacology
- Plasticizers/pharmacology
- Polyunsaturated Alkamides/metabolism
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Zebrafish
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T3B 2V4, Canada
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Conzorzio Interuniversitario, 00136 Rome, Italy
| |
Collapse
|
30
|
Bosker T, Santoro G, Melvin SD. Salinity and sensitivity to endocrine disrupting chemicals: A comparison of reproductive endpoints in small-bodied fish exposed under different salinities. CHEMOSPHERE 2017; 183:186-196. [PMID: 28549324 DOI: 10.1016/j.chemosphere.2017.05.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/08/2023]
Abstract
The influence of salinity on toxicity outcomes has been demonstrated for various contaminants, but has received limited attention for endocrine disrupting chemicals (EDCs). Short-term laboratory tests using small-bodied fish are an important tool for evaluating impacts of EDCs on reproduction. Tests have been developed for both freshwater and estuarine/marine species, providing an opportunity to assess whether concentrations at which small-bodied fish respond to EDCs may be influenced by salinity. We conducted a semi-quantitative review of short-term laboratory tests with small-bodied fish exposed to EDCs, including 59 studies under freshwater conditions (7 species) and 23 studies conducted under saline conditions (5 species). We focused on two model estrogens [17α-ethinylestradiol and 17β-estradiol (E2)], and three androgens (17β-trenbolone, 5α-dihydrotestosterone and 17α-methyltestosterone). The lowest observed adverse effect concentration (LOAECLOW) for key reproductive endpoints was recorded, including sex-steroid and vitellogenin (VTG) levels, fecundity and fertilization. In 65.2% of cases, responses occurred at lower doses under freshwater compared to saline conditions, compared to only 4.3% of cases where fish responded to lower doses under saline conditions. The potential influence of salinity was more pronounced when estrogenic compounds were considered separately, with fish responding to lower doses under fresh compared to saline conditions in 90.5% of cases. Fecundity and E2 level were identified as the most sensitive endpoints for evaluating EDCs regardless of salinity. Interestingly, female VTG levels were a sensitive endpoint under freshwater but not saline conditions. Overall, our results suggest that salinity may be an important factor influencing how small-bodied fish respond to environmental EDCs.
Collapse
Affiliation(s)
- Thijs Bosker
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, The Netherlands; Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands.
| | - Giacomo Santoro
- Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, The Netherlands
| | - Steven D Melvin
- Australian Rivers Institute, Griffith University, Building G51, Edmund Rice Drive, Southport, QLD 4215, Australia
| |
Collapse
|
31
|
Caballero-Gallardo K, Olivero-Verbel J, Freeman JL. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model. Curr Genomics 2016; 17:515-527. [PMID: 28217008 PMCID: PMC5282603 DOI: 10.2174/1389202917666160513105959] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/24/2022] Open
Abstract
The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed.
Collapse
Affiliation(s)
- Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. Campus of Zaragocilla. School of Pharmaceutical Sciences.University of Cartagena, Cartagena, Colombia
| | | |
Collapse
|
32
|
Cao F, Zhu L, Li H, Yu S, Wang C, Qiu L. Reproductive toxicity of azoxystrobin to adult zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:1109-1121. [PMID: 27616647 DOI: 10.1016/j.envpol.2016.09.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In the past few decades, extensive application of azoxystrobin has led to great concern regarding its adverse effects on aquatic organisms. The objective of the present study was to evaluate the reproductive toxicity of azoxystrobin to zebrafish. After adult zebrafish of both sexes were exposed to 2, 20 and 200 μg/L azoxystrobin for 21 days, egg production, the fertilization rate, the gonadosomatic index (GSI) and hepatosomatic index (HSI), 17β-estradiol (E2), testosterone (T) and vitellogenin (Vtg) concentrations, and histological alterations in the gonads and livers were measured. Meanwhile, expression alterations of genes encoding gonadotropins and gonadotropin receptors (fshb, lhb, fshr and lhr), steroid hormone receptors (era, er2b and ar), steroidogenic enzymes (cyp11a, cyp11b, cyp17, cyp19a, cyp19b, hsd3b and hsd17b) in the hypothalamic-pituitary-gonad (HPG) axis and vitellogenin (vtg1 and vtg2) in the livers were also investigated. The results showed that reduced egg production and fertilization rates were observed at 200 μg/L azoxystrobin. In female zebrafish, reduced E2 and Vtg concentrations, decreased GSI, increased T concentrations, and histological alterations in the ovaries and livers were observed at 200 μg/L azoxystrobin, along with significant down-regulation of lhb, cyp19b, lhr, cyp19a, vtg1 and vtg2, and up-regulation of cyp17, hsd3b and hsd17b. In male zebrafish, increased E2 and Vtg concentrations, reduced T concentration and GSI, and histological alterations in the testes and livers were observed after exposure to 20 and 200 μg/L azoxystrobin, along with significant up-regulations of cyp19b, cyp11a, cyp17, cyp19a, hsd3b and hsd17b, vtg1 and vtg2. Moreover, cyp11a, hsd3b, cyp19a, vtg1 and vtg2 in male zebrafish were significantly up-regulated after treatment with 2 μg/L azoxystrobin. The results of the present study indicate that azoxystrobin led to reproductive toxicity in zebrafish and male zebrafish were more sensitive to azoxystrobin than female zebrafish.
Collapse
Affiliation(s)
- Fangjie Cao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Song Yu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Prokkola JM, Katsiadaki I, Sebire M, Elphinstone-Davis J, Pausio S, Nikinmaa M, Leder EH. Microarray analysis of di-n-butyl phthalate and 17α ethinyl-oestradiol responses in three-spined stickleback testes reveals novel candidate genes for endocrine disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:96-104. [PMID: 26476330 DOI: 10.1016/j.ecoenv.2015.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Phthalate esters are plasticizers frequently found in wastewater effluents. Previous studies on phthalates have reported anti-androgenic activity in mammals, causing concerns of their potential effects on the reproduction of aquatic organisms. Another group of environmental endocrine disrupters, steroidal estrogens, are known to inhibit steroid biosynthesis in the gonads, but the effects related to spermatogenesis are not well understood in fish. In this study, three-spined sticklebacks were exposed to di-n-butyl phthalate (DBP) and 17α ethinyl-oestradiol (EE2) at nominal concentrations 35μg/L and 40ng/L, respectively, for four days. The aim of the study was to obtain insight into the acute transcriptional responses putatively associated with endocrine disruption. RNA samples from eight individual male fish per treatment (including controls) were used in microarray analysis, covering the expression of approximately 21,000 genes. In the EE2 treatment the results show transcriptional downregulation of genes associated with steroid biosynthesis pathway and up-regulation of genes involved in pathways related to epidermal growth factor signaling and xenobiotic metabolism. The transcriptional response to DBP was in general weaker than to EE2, but based on enrichment analysis, we suggest adverse effects on retinoid metabolism, creatine kinase activity and cell adhesion. Among the genes showing highest fold changes after DBP treatment compared to control was the teleost fish -specific cytochrome P450 17A2. Overall, this study promotes our understanding on molecular responses to anti-androgens and estrogens in fish testes.
Collapse
Affiliation(s)
- Jenni M Prokkola
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | - Marion Sebire
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, UK
| | | | - Sanna Pausio
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Erica H Leder
- Department of Biology, University of Turku, 20014 Turku, Finland; Natural History Museum, University of Oslo, Oslo NO-0318, Norway
| |
Collapse
|
34
|
Biodegradation of di-n-Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13510-22. [PMID: 26516878 PMCID: PMC4627046 DOI: 10.3390/ijerph121013510] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022]
Abstract
A bacterial strain W-1, isolated from rural domestic wastewater, can utilize the environmental hormone di-n-butyl phthalate (DBP) as the sole carbon and energy source. The isolated bacterium species was confirmed to belong to the genus Achromobacter based on its 16S rRNA gene sequence. The results of substrate utilization tests showed that the strain W-1 could utilize other common phthalates and phenol. High-performance liquid chromatography analysis revealed that the optimal conditions for DBP degradation were pH 7.0, 35 °C, and an agitation rate of 175 rpm. Under these conditions, 500 mg/L of DBP was completely degraded within 30 h. The effects of heavy metals (50 mg/L Cu(2+) and 500 mg/L Pb(2+)) and surfactants (100 mg/L SDS and 500 mg/L Tween 20) on DBP degradation were investigated. The results demonstrated that Cu(2+) and SDS severely inhibited DBP degradation and Pb(2+) weakly inhibited DBP degradation, while Tween 20 greatly enhanced DBP degradation. Furthermore, phthalate degradation genes were found to be located on a plasmid present in Achromobacter sp. W-1.
Collapse
|
35
|
Frontistis Z, Kouramanos M, Moraitis S, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Xekoukoulotakis NP, Mantzavinos D. UV and simulated solar photodegradation of 17α-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Chen P, Li S, Liu L, Xu N. Long-term effects of binary mixtures of 17α-ethinyl estradiol and dibutyl phthalate in a partial life-cycle test with zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:518-526. [PMID: 25385324 DOI: 10.1002/etc.2803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/26/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Using 17α-ethinyl estradiol (EE2) and dibutyl phthalate (DBP) as a typical estrogen and phthalate ester, respectively, their combined in vivo effects on zebrafish (Danio rerio) were investigated from the juvenile state to the adult stage. The authors spiked EE2 (5 ng/L and 20 ng/L) and DBP (0.1 mg/L and 0.5 mg/L) either individually or in mixture. At 45 d postfertilization (dpf), the survival rate of zebrafish was comparable in all treatments. Dibutyl phthalate did not induce vitellogenin (VTG) synthesis, and no interaction was found between EE2 and DBP on VTG induction. At 90 dpf, both liver and gill were subject to more severe damage (lipid vacuoles of hepatocytes, amalgamation of gill lamellae, and clubbing at the tips of the secondary lamellae) when coexposed to these 2 chemicals, compared with single exposure. At 115 dpf, generally none of the binary mixture groups showed significantly different growth and sex ratios compared with the corresponding EE2 alone groups. In conclusion, no obvious interactions were detected between EE2 and DBP on the growth, VTG induction, or sex ratio of zebrafish, and they may act independently. However, the influence on morphology of gonad, liver, and gill induced by exposure to the mixture of EE2 and DBP was generally more potent than that by single exposure to EE2 or DBP, indicating the combined long-term harmful effects of EE2 and DBP on the development of zebrafish. Environ Toxicol Chem 2015;34:518-526. © 2014 SETAC.
Collapse
Affiliation(s)
- Pengyu Chen
- Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | | | | |
Collapse
|