1
|
Liu X, Zhu Q, Liu W, Zhang J. Exogenous Brassinosteroid Enhances Zinc tolerance by activating the Phenylpropanoid Biosynthesis pathway in Citrullus lanatus L. PLANT SIGNALING & BEHAVIOR 2023; 18:2186640. [PMID: 37083111 PMCID: PMC10124981 DOI: 10.1080/15592324.2023.2186640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Zinc (Zn) is an important element in plants, but over-accumulation of Zn is harmful. The phytohormone brassinosteroids (BRs) play a key role in regulating plant growth, development, and response to stress. However, the role of BRs in watermelon (Citrullus lanatus L.) under Zn stress, one of the most important horticultural crops, remains largely unknown. In this study, we revealed that 24-epibrassinolide (EBR), a bioactive BR enhanced Zn tolerance in watermelon plants, which was related to the EBR-induced increase in the fresh weight, chlorophyll content, and net photosynthetic rate (Pn) and decrease in the content of hydrogen peroxide (H2O2), malondialdehyde (MDA), and Zn in watermelon leaves. Through RNA deep sequencing (RNA-seq), 350 different expressed genes (DEG) were found to be involved in the response to Zn stress after EBR treatment, including 175 up-regulated DEGs and 175 down-regulated DEGs. The up-regulated DEGs were significantly enriched in 'phenylpropanoid biosynthesis' pathway (map00940) using KEGG enrichment analysis. The gene expression levels of PAL, 4CL, CCR, and CCoAOMT, key genes involved in phenylpropanoid pathway, were significantly induced after EBR treatment. In addition, compared with Zn stress alone, EBR treatment significantly promoted the activities of PAL, 4CL, and POD by 30.90%, 20.69%, and 47.28%, respectively, and increased the content of total phenolic compounds, total flavonoids, and lignin by 23.02%, 40.37%, and 29.26%, respectively. The present research indicates that EBR plays an active role in strengthening Zn tolerance, thus providing new insights into the mechanism of BRs enhancing heavy metal tolerance.
Collapse
Affiliation(s)
- Xuefang Liu
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
- CONTACT Xuefang Liu College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou225009, China
| | - Quanwen Zhu
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
| | - Wentao Liu
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| | - Jun Zhang
- College of Resources and Environmental Engineering, Yangzhou Polytechnic College, Yangzhou, China
- Jiangsu Safety & Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou, China
| |
Collapse
|
2
|
Liu A, Wang W, Chen X, Zheng X, Fu W, Wang G, Ji J, Guan C. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120303. [PMID: 36181940 DOI: 10.1016/j.envpol.2022.120303] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd-Zn resistance and DEHP degradability. The results showed that the rice assisted by the bacterial consortium dissipated 86.1% DEHP while removing 76.0% Cd2+ and 92.2% Zn2+ from soil within 30 d. The presence of the PGPR consortium promoted plant growth and improved soil enzymatic activity, which may have helped enhance the removal of DEHP and heavy metals from the soil. Moreover, the application of the consortium modified the bacterial community and increased the relative abundance of bacteria related to DEHP degradation (Sphingomonas, Xanthobacteraceae), heavy metal immobilization (Massilia), and soil nutrient cycling (Nitrospira, Vicinamibacterales), which promoted plant growth and the removal of DEHP and heavy metals from soil. Notably, the DEHP and heavy metal contents in rice decreased substantially during the phytoremediation process. Therefore, the PGPR consortium could be beneficial for enhancing the removal of DEHP and heavy metals from the soil, without inducing the accumulation of these pollutants in rice. In general, this study confirmed that the combined use of rice and the PGPR consortium could remedy DEHP and heavy metal co-contaminated soil economically and ecologically without simultaneously posing risks for rice consumption.
Collapse
Affiliation(s)
- Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
3
|
Liu A, Wang W, Zheng X, Chen X, Fu W, Wang G, Ji J, Jin C, Guan C. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. CHEMOSPHERE 2022; 302:134900. [PMID: 35568210 DOI: 10.1016/j.chemosphere.2022.134900] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and zinc (Zn) in contaminated soil inhibit rice yield and produce toxic effects on human body through rice accumulation. Plant growth promoting rhizobacteria (PGPR) assisted phytoremediation is an effective ecological measure to improve the remediation efficiency of heavy metal contaminated soil. The purpose of this study was to investigate the efficiency of the combination of rice and Cd/Zn-tolerant PGPR strain Bacillus sp. ZC3-2-1 for the remediation of Cd-Zn contaminated soil. Moreover, the effects of inoculations on rhizosphere bacterial communities and ion homeostasis of rice under Cd-Zn exposure will also be explored. The results showed that compared with the treatment without inoculation, ZC3-2-1 decreased the bioavailable Cd and Zn concentrations in soil by 39.3% and 32.0%, respectively, and increase the phytoextraction of Cd2+ and Zn2+ by rice to 48.2% and 8.0%, respectively. This inoculation process significantly increased the rice biomass, resulting that the contents of Cd2+ and Zn2+ per biomass unit of rice didn't change significantly. This fact meant that ZC3-2-1 could improve the phytoremediation efficiency of Cd-Zn contaminated soil by promoting the phytoextraction and immobilization of the metal, while might not affect the crop food safety. Besides, through regulation of the Na+ and Mg2+ concentration in rice, ZC3-2-1 played a positive role in maintaining ion homeostasis which was disrupted by Zn or Cd. Moreover, ZC3-2-1 could modulate the beneficial bacterial communities in rice rhizosphere soil, and then enhanced Cd-Zn immobilization and enzyme activities in soil, leading to the enhancement of rice growth and phytoremediation efficiency. Above all, this study provided novel insights into developing an efficient phytoremediation system and safe production of rice in Cd-Zn contaminated soil with the application of Bacillus sp. ZC3-2-1, as well as advance our understanding of the principles of rhizosphere bacterial community assemble and maintaining ion homeostasis in rice during this phytoremediation process.
Collapse
Affiliation(s)
- Anran Liu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenjing Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoyan Zheng
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xiancao Chen
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wenting Fu
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chao Jin
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Chunfeng Guan
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
4
|
Zhang H, Zhang W, Huang S, Xu P, Cao Z, Chen M, Lin X. The potential role of plasma membrane proteins in response to Zn stress in rice roots based on iTRAQ and PRM under low Cd condition. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128324. [PMID: 35091190 DOI: 10.1016/j.jhazmat.2022.128324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Cd pollution had already caused serious threats to crop growth and development, food safety and human health, and become a potential agricultural and global environmental problem. Zn had been used to reduce Cd accumulation in soil and plants. Proteins located in plasma membrane (PM) played important roles in transferring stress signals in plants. To further elucidate how PM proteins modulated Zn/Cd transport under low-Cd condition, quantitative proteomics was employed to identify and verify the differentially expressed proteins (DEPs) and their biological functions at proteome level. A total of 4008 proteins were identified, and 332 DEPs (192 up and 140 down, fold >1.50 or <0.66, p < 0.01) were screened. Functional analysis showed that DEPs were mainly catalytic active and binding proteins, involved in glutathione metabolism, phenylpropanoid biosynthesis, etc. DEPs involved in ion transport played key roles in regulating transmembrane transport, resisting stress and alleviating toxicity of heavy metals to rice roots. DEPs were as the marker proteins in rice root responding to heavy metal stress. This study had important guiding significances for metal ions transport mechanism and screening of biomarkers responding to abiotic stress, and provided references for further researches underlying abiotic stress and detoxication in rice and other plants.
Collapse
Affiliation(s)
- Hantong Zhang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Weixing Zhang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Siqi Huang
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ping Xu
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhenzhen Cao
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Mingxue Chen
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiaoyan Lin
- Rice Product Quality Inspection & Supervision Testing Center of MOA, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
5
|
Carvalho LC, Santos ES, Saraiva JA, Magalhães MCF, Macías F, Abreu MM. The Potential of Cistus salviifolius L. to Phytostabilize Gossan Mine Wastes Amended with Ash and Organic Residues. PLANTS (BASEL, SWITZERLAND) 2022; 11:588. [PMID: 35270057 PMCID: PMC8912684 DOI: 10.3390/plants11050588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
The São Domingos mine is within the Iberian Pyrite Belt, a mining district with large concentrations of polymetallic massive sulfide deposits. Mine waste heaps are considered extreme environments, since they contain high total concentrations of potentially hazardous elements (PHE), which contribute to inhibiting the development of most plants. Autochthonous plant species, such as Cistus salviifolius L., are able to grow naturally in this degraded environment, and may contribute to minimizing the negative chemical impacts and improving the landscape quality. However, the environmental rehabilitation processes associated with the development of these plants (phytostabilization) are very slow, so the use of materials/wastes to improve some physicochemical properties of the matrix is necessary in order to speed up the process. This work studied the effectiveness of the phytostabilization with C. salviifolius of gossan mine wastes from the mine of São Domingos amended with organic and inorganic wastes in order to construct Technosols. The mine wastes have an acid pH (≈3.5), high total concentrations of PHE and low concentrations of organic C and available nutrients. The best vegetative development occurred without visible signs of toxicity in the Technosols containing a mixture of agriculture residues. These treatments allowed the improvement of the soil-plant system providing a better plant cover and improved several chemical properties of mine wastes, helping to speed up the environmental rehabilitation.
Collapse
Affiliation(s)
- Luísa C. Carvalho
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| | - Erika S. Santos
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| | - Jorge A. Saraiva
- QOPNA & LAQV-REQUIMTE, Departamento de Química, Campus Universitário de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Clara F. Magalhães
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
- School of Biological, Earth & Environmental Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Felipe Macías
- Departamento de Edafología y Química Agrícola, Facultad de Biología, Campus Universitario Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Instituto de Investigaciones Tecnológicas, Campus Universitario Sur, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; (E.S.S.); (M.C.F.M.); (M.M.A.)
| |
Collapse
|
6
|
Influence of Seed Source and Soil Contamination on Ecophysiological Responses of Lavandula pedunculata in Rehabilitation of Mining Areas. PLANTS 2021; 11:plants11010105. [PMID: 35009108 PMCID: PMC8747297 DOI: 10.3390/plants11010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell’s redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.
Collapse
|
7
|
Downregulation of Zn-transporters along with Fe and redox imbalance causes growth and photosynthetic disturbance in Zn-deficient tomato. Sci Rep 2021; 11:6040. [PMID: 33727682 PMCID: PMC7966403 DOI: 10.1038/s41598-021-85649-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
Zinc (Zn) deficiency hinders growth and development in tomato. This study unveils the responses of how Zn starvation affects physiological and molecular processes in tomato. Zn deficiency negatively affected the biomass, cellular integrity, and chlorophyll synthesis in tomato. Also, Zn deficiency decreased the maximum yield of PSII, photosynthesis performance index and dissipation energy per active reaction center, although the antenna size, trapping energy efficiency and electron transport flux were stable in Zn-starved leaves. Further, Zn shortage caused a substantial reduction in Zn and Fe concentrations in both roots and shoots along with decreased root Fe-reductase activity accompanied by the downregulation of Fe-regulated transporter 1, Zn transporter-like (LOC100037509), and Zn transporter (LOC101255999) genes predicted to be localized in the root plasma membrane. The interactome partners of these Zn transporters are predominantly associated with root-specific metal transporter, ferric-chelate reductase, BHLH transcriptional regulator, and Zn metal ion transporters, suggesting that Zn homeostasis may be tightly linked to the Fe status along with BHLH transcription factor in Zn-deficient tomato. We also noticed elevated O2.− and H2O2 due to Zn deficiency which was consistent with the inefficient antioxidant properties. These findings will be useful in the downstream approach to improve vegetable crops sensitive to Zn-deficiency.
Collapse
|
8
|
Carvalho LC, Vieira C, Abreu MM, Magalhães MCF. Physiological response of Cistus salviifolius L. to high arsenic concentrations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2305-2319. [PMID: 31473873 DOI: 10.1007/s10653-019-00389-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Arsenic is a trace element found in the environment which can be particularly toxic to living organisms. However, some plant species such as those of the genus Cistus are able to grow in soils with high As concentrations and could be used in the sustainable rehabilitation of mining areas through phytostabilization. In this work, the growth and the physiological response of Cistus salviifolius L. to As-induced oxidative stress at several concentrations (reaching 30 mg L-1) in an hydroponic system were evaluated for 30 days. Several growth parameters, chlorophyll content, chemical composition, one indicator of oxidative stress (H2O2) and two of the major antioxidative metabolites (ascorbate and glutathione) were analysed. The toxic effect of As was better perceived in the plants submitted to treatments with concentrations of 20 and 30 mg As L-1. Plants subjected to these treatments had higher concentration of As in roots and shoots. The concentrations of Ca, Mg, K and Fe in the plants as well as a large part of the evaluated growth parameters were also affected. Arsenic did not interfere with the ability of the plant to perform photosynthesis, as there were no significant differences in the contents of chlorophyll a, b and total between the different treatments. Plants from all treatments accumulated higher amount of As in roots than in shoots, and it was also in the roots that the concentrations of H2O2, AsA and GSH were higher. Cistus salviifolius showed high tolerance to As up to the concentration of 5 mg L-1, which makes it a species with high potential to be used in the phytostabilization of soils contaminated with As and presenting high concentrations of the element in the soil solution.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal.
| | - Cláudia Vieira
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Manuela Abreu
- Instituto Superior de Agronomia, Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Universidade de Lisboa, Lisbon, Portugal
| | - Maria Clara F Magalhães
- Departamento de Química and CICECO-Aveiro Institute of Materials, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Li H, Mo F, Li Y, Wang M, Li Z, Hu H, Deng W, Zhang R. Effects of silver(I) toxicity on microstructure, biochemical activities, and genic material of Lemna minor L. with special reference to application of bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22735-22748. [PMID: 32323236 DOI: 10.1007/s11356-020-08844-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
In this research, several biochemical variations in plant of Lemna minor L. were investigated to reflect Ag+ toxicity. Lemna minor L. changed colorless AgNO3 to colloidal brown at doses equal to and greater than 1 mg L-1. Optical and fluorescence microscopy revealed the presence of bright spots in roots of tested plant related to Ag/Ag2O-NPs. Photosynthetic pigment contents of Lemna minor L. declined upon exposure to Ag+ with an evidently higher decrease in chlorophyll a than in chlorophyll b. Similarly, Ag+ treatment caused an evident reduction in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). The reduction in antioxidase activity was significantly higher in POD than in SOD and CAT. Ag+ treatment resulted in a significant increment in the level of malondialdehyde (MDA) content as the judging criteria of cellular injury which showed sign of dose-related. The alterations occurred in RAPD profiles of treated samples following Ag+ toxicity containing loss of normal bands, appearance of new bands, and variation in band intensities compared with the normal plants. In addition, morphological character and biomass of Lemna minor L. subjected to increasing Ag+ concentrations were evaluated to reveal Ag+ toxicity. Our study demonstrated that Lemna minor L. have a high sensitivity to indicate fluctuation of water quality. It would be beneficial that modulating the genotype of Lemna minor L. to bear high proportion of contaminates.
Collapse
Affiliation(s)
- Haibo Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Fan Mo
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Haiyang Hu
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Wenhe Deng
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| | - Ran Zhang
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang, 110819, China
| |
Collapse
|
10
|
Effects of zinc and molybdenum on European Bluestar (Amsonia orientalis): An in vitro study. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
This study aimed to investigate the effects of possible zinc (Zn) and molybdenum (Mo) contaminations on the critically endangered European Bluestar (Amsonia orientalis). The effects of Zn and Mo were tested in a dose-dependent manner on in vitro cultures. Zn at 0.1 mM in the medium inhibited root development whereas Mo showed the same effect only at ≥2.5 mM concentration. Gradual inhibition of shoot development was observed after treatment with both metals. Protein contents were also negatively affected by increasing metal concentrations, while proline levels increased gradually. Successive increases in metal concentrations resulted in higher hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations. The activity of the antioxidant enzymes, peroxidase (POD) and catalase (CAT), were found to be enhanced in response to increasing metal concentrations. Superoxide dismutase (SOD) activity decreased after Zn treatment but increased after Mo treatment. A marked increase in POD and CAT in response to metal stress suggests that these enzymes might have a significant cooperative role in regulating H2O2 production, although CAT, in response to drought and salt stress, has been reported to only play a supplementary role in A. orientalis. These results indicated that A. orientalis is susceptible to long-term Zn stress but can tolerate up to 2.5 mM Mo in the long-term. Deficiency of Mo is more common than high toxic concentrations in the environment. Therefore Zn contamination should be considered as one of the major threats for A. orientalis in its native habitat.
Collapse
|
11
|
Chowardhara B, Borgohain P, Saha B, Awasthi JP, Moulick D, Panda SK. Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Carvalho LC, Santos ES, Abreu MM. Unraveling the crucial role of the ascorbate-glutathione cycle in the resilience of Cistus monspeliensis L. to withstand high As concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:389-397. [PMID: 30634090 DOI: 10.1016/j.ecoenv.2018.12.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas of the Iberian Pyrite Belt. This species can accumulate high concentrations of As in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown in an Arenosol irrigated with aqueous nutrient solutions containing increasing concentrations of As (0, 1500, 5000, 10000, 15000 µM) and the effects of this metalloid on plant development and on the defence mechanisms against oxidative stress were monitored. Independently of the treatment, As was mainly retained in the roots. The plants with the highest concentrations of As in the shoots (> 5000 µM) showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production and also nutritional deficiencies. Most of the studied physiological parameters (pigments, glutathione, ascorbate and antioxidative enzymes) showed significant correlation with As concentration in roots and shoots. Pigments, especially anthocyanins, were negatively affected even in the treatments with the lowest As concentrations. Glutathione increased significantly in roots at low As levels while in shoots this increase occurred in all As treatments. Ascorbate decreased in both tissues with As addition. The highest concentrations of As in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by inducing the expression of genes coding antioxidative enzymes.
Collapse
Affiliation(s)
- Luísa C Carvalho
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal.
| | - Erika S Santos
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - M Manuela Abreu
- Linking Landscape, Environment, Agriculture and Food (LEAF) Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Sofo A, Moreira I, Gattullo CE, Martins LL, Mourato M. Antioxidant responses of edible and model plant species subjected to subtoxic zinc concentrations. J Trace Elem Med Biol 2018; 49:261-268. [PMID: 29477361 DOI: 10.1016/j.jtemb.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 12/25/2022]
Abstract
Zinc (Zn) is a common heavy metal in polluted soils, as it is a widespread pollutant deriving both from natural sources and anthropogenic activities. The antioxidant tolerance/defence mechanisms against oxidative stress induced by subtoxic concentrations of Zn (50 and 150 μM ZnSO4) were studied in a widespread edible plant (lettuce; Lactuca sativa L.) and in an important model plant (Arabidopsis thaliana (L.) Heynh.). After 10 days (Arabidopsis) and 20 days (lettuce) of Zn exposure, Zn uptake/translocation was evaluated in both roots and shoots, while indicators of oxidative stress and stress intensity, total antioxidant capacity, and enzymatic and non-enzymatic antioxidative defence were measured in leaves. From an overall comparison of the two species, Zn root uptake in Arabidopsis subjected to 50 and 150 μM ZnSO4 was approximately 3- and 5-fold lower than in lettuce, while Zn translocation from roots to apical leaves was more efficient in Arabidopsis (23.7 vs 21.3% at 50 μM ZnSO4 and 19.3 vs 12.9% at 150 μM ZnSO4). Generally, a higher degree of Zn-induced oxidative stress (863.8 vs 21.3 μg g-1 FW H2O2 and 1.33 vs 0.75 μM g-1 FW MDAeq at 150 μM ZnSO4) and antioxidant response (441.2 vs 258.5 mM g-1 FW TEAC and 91.0 vs 54.9% RSA at 150 μM ZnSO4) were found in lettuce. The aim of this study is understanding (a) if subtoxic Zn levels can affect Zn uptake and translocation in the studied species and (b) if this eventual Zn absorption can influence plant oxidative status/antioxidant response. Considering that soil contamination by Zn can affect crop production and quality, the results of this research could be important for environmental, nutritional and human health issues.
Collapse
Affiliation(s)
- Adriano Sofo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Via dell'Ateneo Lucano, 10, I-85100 Potenza, Italy.
| | - Inês Moreira
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Concetta Eliana Gattullo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (DiSSPA), Università degli Studi di Bari, Via Amendola, 165/A, 70126, Bari, Italy
| | - Luisa Louro Martins
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Miguel Mourato
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
14
|
González CI, Maine MA, Hadad HR, Sanchez GC, Benavides MP, Campagnoli MA. Effects on Eichhornia crassipes under Zn stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26957-26964. [PMID: 30008163 DOI: 10.1007/s11356-018-2741-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Eichhornia crassipes is a macrophyte widely used in phytoremediation, demonstrating a high ability to remove metals from water. The aim of this work was to evaluate its enzymatic detoxification strategies and metal accumulation when it is exposed to different Zn concentrations (0, 2, 4, 6, and 9 ppm) for periods of 24, 48, and 72 h. Zn concentration in roots was significantly higher than in aerial parts. Independently of the treatment, in the first 48 h, concentrations of photosynthetic pigments were not affected. However, a significant increase (between 19 and 34%) in Chl-b concentrations for all treatments was observed at 72 h. Carotenoid concentration was not affected during the first 48 h, while at 72 h, there was a significant increase regarding the control (between 11 and 24%) for all treatments. Malondialdehyde concentration in aerial parts and roots was not affected during the experiment. Nonetheless, a significant increase in the enzymatic activity of the antioxidant system was observed. Results suggest that Zn could have potential antioxidant properties, which may result in the activation of different antioxidant enzymes involved in the protection against metal stress.
Collapse
Affiliation(s)
- Cesar Iván González
- Quimica Analítica, Instituto de Quimica Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingenieria Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - María Alejandra Maine
- Quimica Analítica, Instituto de Quimica Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingenieria Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Hernán Ricardo Hadad
- Quimica Analítica, Instituto de Quimica Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingenieria Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, 3000, Santa Fe, Argentina.
| | - Gabriela Cristina Sanchez
- Quimica Analítica, Instituto de Quimica Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingenieria Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - María Patricia Benavides
- Departamento de Química Biológica, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires. Junín 956, 1113, Buenos Aires, Argentina
| | - Marcelo Abel Campagnoli
- Quimica Analítica, Instituto de Quimica Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingenieria Química, Universidad Nacional del Litoral (UNL)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| |
Collapse
|
15
|
Rana V, Maiti SK. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9745-9758. [PMID: 29368202 DOI: 10.1007/s11356-018-1254-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/09/2018] [Indexed: 05/13/2023]
Abstract
Opencast bituminous coal mining invariably generates huge amount of metal-polluted waste rocks (stored as overburden (OB) dumps) and reclaimed by planting fast growing hardy tree species which accumulate metals in their tissues. In the present study, reclaimed OB dumps located in Jharia coal field (Jharkhand, India) were selected to assess the accumulation of selected metals (Pb, Zn, Mn, Cu and Co) in tissues (leaf, stem bark, stem wood, root bark and root wood) of two commonly planted tree species (Acacia auriculiformis A.Cunn. ex Benth. and Melia azedarach L.). In reclaimed mine soil (RMS), the concentrations of pseudo-total and available metals (DTPA-extractable) were found 182-498 and 196-1877% higher, respectively, than control soil (CS). The positive Spearman's correlation coefficients between pseudo-total concentration of Pb and Cu (r = 0.717; p < 0.05), Pb and Co (r = 0.650; p < 0.05), Zn and Mn (0.359), Cu and Co (r = 0.896; p < 0.01) suggested similar sources for Pb-Cu-Co and Mn-Zn. Among the five tree tissues considered, Pb selectively accumulated in root bark, stem bark and leaves; Zn and Mn in leaves; and Cu in root wood and stem wood. These results suggested metal accumulation to be "tissue-specific". The biological indices (BCF, TFleaf, TFstem bark and TFstem wood) indicated variation in metal uptake potential of different tree tissues. The study indicated that A. auriculiformis could be employed for Mn phytoextraction (BCF, TFleaf, TFstem bark and TFstem wood > 1). The applicability of both the trees in Cu phytostabilization (BCF > 1; TFleaf, TFstem bark and TFstem wood < 1) was suggested. The study enhanced knowledge about the selection of tree species for the phytoremediation of coal mine OB dumps and specific tree tissues for monitoring metal pollution.
Collapse
Affiliation(s)
- Vivek Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
16
|
Kumar A, Tsechansky L, Lew B, Raveh E, Frenkel O, Graber ER. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:188-198. [PMID: 29128767 DOI: 10.1016/j.scitotenv.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/29/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Zinc (Zn) immobilization by two distinct biochars in soil, together with concomitant alleviation of phytotoxic responses in Ficus elastica Roxb. ex Hornem., were examined. Rooted cuttings of F. elastica were grown in 880mgkg-1 Zn-spiked sandy soil amended with grain husk (GH) or cattle manure (CM) biochar at 0, 10, 30 and 50gkg-1 soil for a period of 6months. Addition of both GH and CM biochars had significant positive impacts on physiological parameters such as plant growth, leaf relative water content, photosynthetic pigments and leaf gas exchange characteristics. The responses to addition of CM biochar were significantly better than to GH biochar. Lipid peroxidation declined in leaves of plants grown in Zn-contaminated, biochar-amended soil. This was confirmed by luminescence and Fourier transform infrared analysis of the leaf material. Biochar significantly reduced the availability of soil Zn, as evidenced by lower concentrations of Zn in leaves and leachates of biochar treated plants relative to control plants. These findings show that biochar can effectively immobilize soil Zn, and as a result, alleviate Zn phytotoxicity by reducing its uptake and accumulation in the plant. Adding biochar to soils contaminated with metals thus holds promise as a means of restoring blighted lands.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ludmila Tsechansky
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Beni Lew
- Department of Growing, Production and Environmental Engineering, Institute of Agricultural Engineering, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Eran Raveh
- Department of Fruit Tree Sciences, Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Center, D.N. Negev 85289, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ellen R Graber
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7505101, Israel.
| |
Collapse
|