1
|
Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Mandiki SNM, Kestemont P. Comparative study on accuracy of mucosal estradiol-17β, testosterone and 11-ketotestosterone, for maturity, and cutaneous vitellogenin gene expression in goldfish (Carassius auratus). JOURNAL OF FISH BIOLOGY 2022; 100:532-542. [PMID: 34822181 DOI: 10.1111/jfb.14963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Providing a non-invasive procedure to track fish maturity remains a priority in broodstocks' management. In the present study, the main goal was to assess reproduction status by measuring sex steroids and vitellogenin (VTG) in the skin mucosa, as a non-invasive method. For this purpose, the present study compared the levels of estradiol-17β (E2 ), testosterone (T), 11-ketotestosterone (11-KT), VTG and calcium (Ca) in skin mucosa and blood plasma of goldfish (Carassius auratus). Skin mucosal and blood samples were collected, as well as gonad tissues, from goldfish, as a seasonal spawner. Histological analysis confirmed the gender and maturity status from females' ovaries (as primary-growth, cortical-alveoli, initial and late-vitellogenesis) and males' testes (as spermatogenesis and spermiation). Furthermore, vitellogenin (vtg) expression was observed in skin, liver and gonads. The results indicate that mucosal E2 concentrations were significantly higher during initial and late vitellogenesis than the other stages. Mucosal 11-KT concentrations significantly increased at spermiation (P < 0.05). E2 /T and 11-KT/E2 ratios significantly increased at early vitellogenesis and spermatogenesis, respectively (P < 0.05). Females' mucosal VTG levels were significantly fluctuated according to the maturity stage. Ca showed a similar trend, but Ca was more accurate for sex identification than the VTG. Although mucus showed high levels of VTG, ovarian vtg expression was strongest while liver and skin had the similar results. These results show that measuring the mucosal androgens could be considered as an accurate, non-invasive method to monitor fish maturity.
Collapse
Affiliation(s)
- Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Mirmasoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Syaghalirwa N M Mandiki
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
2
|
Yusuf A, O'Flynn D, White B, Holland L, Parle-McDermott A, Lawler J, McCloughlin T, Harold D, Huerta B, Regan F. Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5120-5143. [PMID: 34726207 DOI: 10.1039/d1ay01184g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Dylan O'Flynn
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Blanaid White
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Anne Parle-McDermott
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Jenny Lawler
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Thomas McCloughlin
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
- Water Institute, Dublin City University, Dublin, Ireland
| | - Denise Harold
- School of Biotechnology, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland.
| | - Belinda Huerta
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| | - Fiona Regan
- School of Chemical Sciences, Dublin City University Glasnevin, Dublin 9, Dublin, Ireland
- Water Institute, Dublin City University, Dublin, Ireland
| |
Collapse
|
3
|
Pyrzanowski K, Zięba G, Chwatko G, Przybylski M. Does habitat otherness affect weatherfish Misgurnus fossilis reproductive traits? THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1887379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- K. Pyrzanowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - G. Zięba
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - G. Chwatko
- Department of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Łódź, Poland
| | - M. Przybylski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| |
Collapse
|
4
|
Zheng R, Fang C, Hong F, Kuang W, Lin C, Jiang Y, Chen J, Zhang Y, Bo J. Developing and applying a classification system for ranking the biological effects of endocrine disrupting chemicals on male rockfish Sebastiscus marmoratus in the Maowei Sea, China. MARINE POLLUTION BULLETIN 2021; 163:111931. [PMID: 33418343 DOI: 10.1016/j.marpolbul.2020.111931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting compounds (EDCs) in marine environments has become a major environmental concern. Nonetheless, the biological effects of EDCs on organisms in coastal environments remain poorly characterized. In this study, biomonitoring of EDCs in male fish Sebastiscus marmoratus was carried out in the Maowei Sea, China. The results showed that the concentration of 4-nonylphenol (4-NP) was below the detection limit, the concentrations of 4-tert-octylphenol (4-t-OP) and bisphenol A (BPA) in seawater were moderate compared with those in other global regions, and the possible sources are the municipal wastewater discharge. Nested ANOVA analyses suggest significant differences of the brain aromatase activities and plasma vitellogenin (VTG) expression between the port area and the oyster farming area. A new fish expert system (FES) was developed for evaluating the biological effects of EDCs on fish. Our findings show that the FES is a potential tool to evaluate the biological effects of marine pollutants.
Collapse
Affiliation(s)
- RongHui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China
| | - FuKun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - WeiMing Kuang
- Laboratory of Marine Ecological Environment Monitoring Pre-Warning Technology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Laboratory of Marine Ecological Environment Monitoring Pre-Warning Technology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - YuLu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - JinCan Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - YuSheng Zhang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
5
|
Varea R, Piovano S, Ferreira M. Knowledge gaps in ecotoxicology studies of marine environments in Pacific Island Countries and Territories - A systematic review. MARINE POLLUTION BULLETIN 2020; 156:111264. [PMID: 32510405 DOI: 10.1016/j.marpolbul.2020.111264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The Pacific Island Countries and Territories (PICTs) are heavily dependent on the marine resources for food security, employment, government revenue and economic development, hence the concern about the potential exposure of these resources to pollutants. The main goal of this review was to identify ecotoxicology studies published that were done in PICTs. Four major gaps were identified: i) a quantitative gap, with low number of studies published on the PICTs; ii) a geographic gap, where ecotoxicology studies have unevenly covered the different PICTs; iii) a temporal gap, as no biological effect monitoring study has so far been published for the PICTs; and, iv) a pollutants gap, as all of the PICTs studies focused mainly on environmental monitoring studying on average two types of pollutants (heavy metals and pesticides) per PICT only. We suggest, therefore, the potential risk to the marine environment to be estimated by assessing the fate of pollutants via chemical and biological effect monitoring.
Collapse
Affiliation(s)
- Rufino Varea
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Susanna Piovano
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Marta Ferreira
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
6
|
Yu W, Du B, Yang L, Zhang Z, Yang C, Yuan S, Zhang M. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9443-9468. [PMID: 30758794 DOI: 10.1007/s11356-019-04402-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/25/2019] [Indexed: 05/06/2023]
Abstract
Natural steroid estrogens (NSEs), including free estrogens (FEs) and conjugated estrogens (CEs), are of emerging concern globally among public and scientific community due to their recognized adverse effects on human and wildlife endocrine systems in recent years. In this review, the properties, occurrence, sorption process, and transformation pathways of NSEs are clarified in the environment. The work comprehensively summarizes the occurrence of both free and conjugated estrogens in different natural and built environments (e.g., river, WWTPs, CAFOs, soil, and sediment). The sorption process of NSEs can be impacted by organic compounds, colloids, composition of clay minerals, specific surface area (SSA), cation exchange capacity (CEC), and pH value. The degradation and transformation of free and conjugated estrogens in the environment primarily involves oxidation, reduction, deconjugation, and esterification reactions. Elaboration about the major, subordinate, and minor transformation pathways of both biotic and abiotic processes among NSEs is highlighted. The moiety types and binding sites also would affect deconjugation degree and preferential transformation pathways of CEs. Notably, some intermediate products of NSEs still remain estrogenic potency during transformation process; the elimination of total estrogenic activity needs to be addressed in further studies. The in-depth researches regarding the behavior of both free and conjugated estrogens are further required to tackle their contamination problem in the ecosystem. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China.
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Chun Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments of the Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shaochun Yuan
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, No.66 Xuefu Rd., Nan'an Dist, Chongqing, 400074, China
| |
Collapse
|
7
|
Scott PD, Coleman HM, Khan S, Lim R, McDonald JA, Mondon J, Neale PA, Prochazka E, Tremblay LA, Warne MSJ, Leusch FDL. Histopathology, vitellogenin and chemical body burden in mosquitofish (Gambusia holbrooki) sampled from six river sites receiving a gradient of stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1638-1648. [PMID: 29079092 DOI: 10.1016/j.scitotenv.2017.10.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/25/2017] [Accepted: 10/14/2017] [Indexed: 05/11/2023]
Abstract
There are over 40,000 chemical compounds registered for use in Australia, and only a handful are monitored in the aquatic receiving environments. Their effects on fish species in Australia are largely unknown. Mosquitofish (Gambusia holbrooki) were sampled from six river sites in Southeast Queensland identified as at risk from a range of pollutants. The sites selected were downstream of a wastewater treatment plant discharge, a landfill, two agricultural areas, and two sites in undeveloped reaches within or downstream of protected lands (national parks). Vitellogenin analysis, histopathology of liver, kidney and gonads, morphology of the gonopodium, and chemical body burden were measured to characterize fish health. Concentrations of trace organic contaminants (TrOCs) in water were analyzed by in vitro bioassays and chemical analysis. Estrogenic, anti-estrogenic, anti-androgenic, progestagenic and anti-progestagenic activities and TrOCs were detected in multiple water samples. Several active pharmaceutical ingredients (APIs), industrial compounds, pesticides and other endocrine active compounds were detected in fish carcasses at all sites, ranging from <4-4700ng/g wet weight, including the two undeveloped sites. While vitellogenin protein was slightly increased in fish from two of the six sites, the presence of micropollutants did not cause overt sexual endocrine disruption in mosquitofish (i.e., no abnormal gonads or gonopodia). A correlation between lipid accumulation in the liver with total body burden warrants further investigation to determine if exposure to low concentrations of TrOCs can affect fish health and increase stress on organs such as the liver and kidneys via other mechanisms, including disruption of non-sexual endocrine axes involved in lipid regulation and metabolism.
Collapse
Affiliation(s)
- Philip D Scott
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Heather M Coleman
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Stuart Khan
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Richard Lim
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales 2007, Australia
| | - James A McDonald
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales 2052, Australia
| | - Julie Mondon
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Victoria 3280, Australia
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Erik Prochazka
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax St. East, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland 1142, New Zealand
| | - Michael St J Warne
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia; Water Quality and Investigations, Department of Science, Information Technology and Innovation, Queensland Government, Queensland 4001, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Queensland 4222, Australia.
| |
Collapse
|
8
|
Tolussi CE, Gomes ADO, Kumar A, Ribeiro CS, Lo Nostro FL, Bain PA, de Souza GB, Cuña RD, Honji RM, Moreira RG. Environmental pollution affects molecular and biochemical responses during gonadal maturation of Astyanax fasciatus (Teleostei: Characiformes: Characidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:926-934. [PMID: 28985654 DOI: 10.1016/j.ecoenv.2017.09.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Endocrine disrupting compounds (EDCs) have the potential to alter fish reproduction at various levels of organization. The aim of this study was to assess the impact of a natural environment with heavily anthropogenic influence on the physiological processes involved in reproduction in the freshwater fish lambari (Astyanax fasciatus) using different biomarkers. Adult males and females were collected in different seasons from two distinct sites in the same watershed: Ponte Nova Reservoir (PN) considered a pristine or small anthropogenic influence reference point; and Billings Reservoir (Bil), subjected to a large anthropogenic impact. Biological indices, such as hepatosomatic index and gonadosomatic index (GSI), gonadal histomorphology, fecundity, and biomarkers such as plasma levels of estradiol (E2) as well as hepatic gene expression of its alfa nuclear receptor (ERα), were analyzed. Hepatic vitellogenin (VTG) gene expression was evaluated in both sexes, as an indicator of xenoestrogen exposure. Females collected at PN presented a typical annual variation reflected in GSI, whereas for those sampled at Bil the index did not change through the seasons. The higher concentration of E2 in males collected at Bil during spring/2013, together with the detection of VTG gene expression, suggest the presence of EDCs in the water. These EDCs may have also influenced fecundity of females from Bil, which was higher during winter and spring/2013. Gene expression of ERα and ovarian morphology did not differ between fish from both sites. Water conditions from Bil reservoir impacted by anthropic activity clearly interfered mainly with biomarkers of biological effect such as plasma E2 levels and absolute and relative fecundity, but also altered biomarkers of exposure as VTG gene expression. These facts support the notion that waterborne EDCs are capable of causing estrogenic activity in A. fasciatus.
Collapse
Affiliation(s)
- Carlos E Tolussi
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil.
| | - Aline D Olio Gomes
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Anupama Kumar
- Environmental Contaminant Mitigation and Technologies Program, CSIRO Land and Water, Private Bag No. 2, Glen Osmond SA 5064, Australia
| | - Cristiele S Ribeiro
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Ilha Solteira, Rua Monção, n°226, 15385-000 Ilha Solteira, Brazil
| | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Peter A Bain
- Environmental Contaminant Mitigation and Technologies Program, CSIRO Land and Water, Private Bag No. 2, Glen Osmond SA 5064, Australia
| | - Gabriela B de Souza
- Centro de Aquicultura (CAUNESP). Universidade Estadual Paulista Júlio de Mesquita Filho, V. Acesso Prof. Paulo Donato Castelane s/n, 14884-900 Jaboticabal, SP, Brazil
| | - Rodrigo Da Cuña
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, CONICET-UBA, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Renato M Honji
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| | - Renata G Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Trav.14, n° 321, 05508-090 São Paulo, SP, Brazil
| |
Collapse
|
9
|
Scott PD, Coleman HM, Colville A, Lim R, Matthews B, McDonald JA, Miranda A, Neale PA, Nugegoda D, Tremblay LA, Leusch FDL. Assessing the potential for trace organic contaminants commonly found in Australian rivers to induce vitellogenin in the native rainbowfish (Melanotaenia fluviatilis) and the introduced mosquitofish (Gambusia holbrooki). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:105-120. [PMID: 28208107 DOI: 10.1016/j.aquatox.2017.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
In Australia, trace organic contaminants (TrOCs) and endocrine active compounds (EACs) have been detected in rivers impacted by sewage effluent, urban stormwater, agricultural and industrial inputs. It is unclear whether these chemicals are at concentrations that can elicit endocrine disruption in Australian fish species. In this study, native rainbowfish (Melanotaenia fluviatilis) and introduced invasive (but prevalent) mosquitofish (Gambusia holbrooki) were exposed to the individual compounds atrazine, estrone, bisphenol A, propylparaben and pyrimethanil, and mixtures of compounds including hormones and personal care products, industrial compounds, and pesticides at environmentally relevant concentrations. Vitellogenin (Vtg) protein and liver Vtg mRNA induction were used to assess the estrogenic potential of these compounds. Vtg expression was significantly affected in both species exposed to estrone at concentrations that leave little margin for safety (p<0.001). Propylparaben caused a small but statistically significant 3× increase in Vtg protein levels (p=0.035) in rainbowfish but at a concentration 40× higher than that measured in the environment, therefore propylparaben poses a low risk of inducing endocrine disruption in fish. Mixtures of pesticides and a mixture of hormones, pharmaceuticals, industrial compounds and pesticides induced a small but statistically significant increase in plasma Vtg in rainbowfish, but did not affect mosquitofish Vtg protein or mRNA expression. These results suggest that estrogenic activity represents a low risk to fish in most Australian rivers monitored to-date except for some species of fish at the most polluted sites.
Collapse
Affiliation(s)
- Philip D Scott
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - Heather M Coleman
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Anne Colville
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007, Australia
| | - Richard Lim
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007, Australia
| | - Benjamin Matthews
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - James A McDonald
- School of Civil & Environmental Engineering, University of New South Wales, New South Wales, 2052, Australia
| | - Ana Miranda
- School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Peta A Neale
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia
| | - Dayanthi Nugegoda
- School of Applied Sciences, Royal Melbourne Institute of Technology, PO Box 71, Bundoora, Victoria, 3083, Australia
| | - Louis A Tremblay
- Cawthron Institute, 98 Halifax St. East, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New Zealand
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, Queensland, 4222, Australia.
| |
Collapse
|
10
|
Liu S, Huang X, Jin Q, Zhu G. Determination of a broad spectrum of endocrine-disrupting pesticides in fish samples by UHPLC-MS/MS using the pass-through cleanup approach. J Sep Sci 2017; 40:1266-1272. [DOI: 10.1002/jssc.201601121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/28/2016] [Accepted: 12/30/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Shaoying Liu
- Laboratory of Chemistry and Physics; Hangzhou Center for Disease Control and Prevention; Hangzhou P. R.China
| | - Xihui Huang
- Laboratory of Chemistry and Physics; Hangzhou Center for Disease Control and Prevention; Hangzhou P. R.China
| | - Quan Jin
- Laboratory of Chemistry and Physics; Hangzhou Center for Disease Control and Prevention; Hangzhou P. R.China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology; Zhejiang University; Hangzhou P. R. China
| |
Collapse
|