1
|
Nafees M, Ali MA, Qiu L, Yin Y, Xu M, Wang G, Ali S, Guo H. Mechanistic approach of tannery wastewater and sulfadiazine mutual toxicity in wheat (Triticum aestivum L.) and mitigation through exogenous application of gallic acid. CHEMOSPHERE 2024; 358:142203. [PMID: 38697571 DOI: 10.1016/j.chemosphere.2024.142203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Excessive release of chromium (Cr) from the tanning industry and antibiotics from livestock caused severe hazards to humans. Gallic acid (GA 10 mM) alleviated alone/combined SDZ 30 mg kg-1 and TWW 40, 60, and 100% stress in wheat. GA (10 mM) decreased the TSP 12 and 13%, TFAA 8 and 10%, TSS 14 and 16%, RS 18 and 16%, and NRS 11 and 9% in shoots and grains under SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) declined the MDA 20 and 31, EL 13 and 36%, H2O2 17 and 15%, O2•- 10 and 11% in leaves and roots, under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar. GA (10 mM) improved the POD 106 and 30%, SOD 145 and 31%, CAT 78, and 35%, APX 100 and 25% in leaves and roots under combined SDZ + TWW (30 mg kg-1+100%), compared without foliar application. Considerably GA (10 mM) reduced total Cr 18, CrIII 20, and CrVI 50% in roots and shoots 19, 41, and 48%, and grains 15, 27, and 29% respectively, under combined SDZ + TWW (30 mg kg-1+100%) stress, compared without foliar. Overall, GA boosted the wheat growth, physiology, and defence system by inhibiting the combined SDZ + Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, and College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Linlin Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guobing Wang
- Institute of Geography, Henan Academy of Sciences, Zhengzhou, 450052, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China.
| |
Collapse
|
2
|
Yang G, Jiang D, Huang LJ, Cui C, Yang R, Pi X, Peng X, Peng X, Pi J, Li N. Distinct toxic effects, gene expression profiles, and phytohormone responses of Polygonatum cyrtonema exposed to two different antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133639. [PMID: 38309169 DOI: 10.1016/j.jhazmat.2024.133639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The excessive usage of veterinary antibiotics has raised significant concerns regarding their environmental hazard and agricultural impact when entering surface water and soil. Animal waste serves as a primary source of organic fertilizer for intensive large-scale agricultural cultivation, including the widely utilized medicinal and edible plant, Polygonatum cyrtonem. In this study, we employed a novel plant stress tissue culture technology to investigate the toxic effects of tetracycline hydrochloride (TCH) and sulfadiazine (SDZ) on P. cyrtonema. TCH and SDZ exhibited varying degrees of influence on plant growth, photosynthesis, and the reactive oxygen species (ROS) scavenging system. Flavonoid levels increased following exposure to TCH and SDZ. The biosynthesis and signaling pathways of the growth hormones auxin and gibberellic acid were suppressed by both antibiotics, while the salicylic acid-mediated plant stress response was specifically induced in the case of SDZ. Overall, the study unveiled both common and unique responses at physiological, biochemical, and molecular levels in P. cyrtonema following exposure to two distinct types of antibiotics, providing a foundational framework for comprehensively elucidating the precise toxic effects of antibiotics and the versatile adaptive mechanisms in plants.
Collapse
Affiliation(s)
- Guoqun Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dong Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chuantong Cui
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Runke Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xia Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Peng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua 418099, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Key Laboratory of Forest Bio-resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
3
|
Wang JX, Li P, Chen CZ, Liu L, Li ZH. Biodegradation of sulfadiazine by ryegrass (Lolium perenne L.) in a soil system: Analysis of detoxification mechanisms, transcriptome, and bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132811. [PMID: 37866149 DOI: 10.1016/j.jhazmat.2023.132811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
The indiscriminate use of sulfadiazine has caused severe harm to the environment, and biodegradation is a viable method for the removal of sulfadiazine. However, there are few studies that consider sulfadiazine biodegradation mechanisms. To comprehensively investigate the process of sulfadiazine biodegradation by plants in a soil system, a potted system that included ryegrass and soil was constructed in this study. The removal of sulfadiazine from the system was found to be greater than 95% by determining the sulfadiazine residue. During the sulfadiazine removal process, a significant decrease in ryegrass growth and a significant increase in antioxidant enzyme activity were observed, which indicates the toxic response and detoxification mechanism of sulfadiazine on ryegrass. The ryegrass transcriptome and soil bacterial communities were further investigated. These results revealed that most of the differentially expressed genes (DEGs) were enriched in the CYP450 enzyme family and phenylpropanoid biosynthesis pathway after sulfadiazine exposure. The expression of these genes was significantly upregulated. Sulfadiazine significantly increased the abundance of Vicinamibacteraceae, RB41, Ramlibacter, and Microvirga in the soil. These key genes and bacteria play an important role in sulfadiazine biodegradation. Through network analysis of the relationship between the DEGs and soil bacteria, it was found that many soil bacteria promote the expression of plant metabolic genes. This mutual promotion enhanced the sulfadiazine biodegradation in the soil system. This study demonstrated that this pot system could substantially remove sulfadiazine and elucidated the biodegradation mechanism through changes in plants and soil bacteria.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | | | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
Pérez R, Tapia Y, Antilén M, Ruiz A, Pimentel P, Santander C, Aponte H, González F, Cornejo P. Beneficial Interactive Effects Provided by an Arbuscular Mycorrhizal Fungi and Yeast on the Growth of Oenothera picensis Established on Cu Mine Tailings. PLANTS (BASEL, SWITZERLAND) 2023; 12:4012. [PMID: 38068648 PMCID: PMC10708390 DOI: 10.3390/plants12234012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 07/03/2024]
Abstract
Phytoremediation, an environmentally friendly and sustainable approach for addressing Cu-contaminated environments, remains underutilized in mine tailings. Arbuscular mycorrhizal fungi (AMF) play a vital role in reducing Cu levels in plants through various mechanisms, including glomalin stabilization, immobilization within fungal structures, and enhancing plant tolerance to oxidative stress. Yeasts also contribute to plant growth and metal tolerance by producing phytohormones, solubilizing phosphates, generating exopolysaccharides, and facilitating AMF colonization. This study aimed to assess the impact of AMF and yeast inoculation on the growth and antioxidant response of Oenothera picensis plants growing in Cu mine tailings amended with compost. Plants were either non-inoculated (NY) or inoculated with Meyerozyma guilliermondii (MG), Rhodotorula mucilaginosa (RM), or a combination of both (MIX). Plants were also inoculated with Claroideoglomus claroideum (CC), while others remained non-AMF inoculated (NM). The results indicated significantly higher shoot biomass in the MG-NM treatment, showing a 3.4-fold increase compared to the NY-NM treatment. The MG-CC treatment exhibited the most substantial increase in root biomass, reaching 5-fold that in the NY-NM treatment. Co-inoculation of AMF and yeast influenced antioxidant activity, particularly catalase and ascorbate peroxidase. Furthermore, AMF and yeast inoculation individually led to a 2-fold decrease in total phenols in the roots. Yeast inoculation notably reduced non-enzymatic antioxidant activity in the ABTS and CUPRAC assays. Both AMF and yeast inoculation promoted the production of photosynthetic pigments, further emphasizing their importance in phytoremediation programs for mine tailings.
Collapse
Affiliation(s)
- Rodrigo Pérez
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (R.P.); (P.P.)
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, Santiago 8820808, Chile;
| | - Mónica Antilén
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Antonieta Ruiz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (A.R.); (C.S.)
| | - Paula Pimentel
- Plant Stress Physiology Laboratory, Centro de Estudios Avanzados en Fruticultura (CEAF), Rengo 2940000, Chile; (R.P.); (P.P.)
| | - Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (A.R.); (C.S.)
- Grupo de Ingeniería Ambiental y Biotecnología, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción 4070411, Chile
| | - Humberto Aponte
- Laboratory of Soil Microbiology and Biogeochemistry, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile;
- Centre of Systems Biology for Crop Protection (BioSav), Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Felipe González
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco S/N, La Palma, Quillota 2260000, Chile
- Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales, CERES, La Palma, Quillota 2260000, Chile
| |
Collapse
|
5
|
Deng D, Wang J, Xu S, Sun Y, Shi G, Wang H, Wang X. The physiological effect of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) seed germination and seedling growth under the presence of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27312-7. [PMID: 37147540 DOI: 10.1007/s11356-023-27312-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the physiological and biochemical impacts of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) germination and growth performance in the presence and absence of copper. The study evaluated seed germination, growth, OPFRs concentrations, chlorophyll fluorescence index (Fv/Fm and Fv/F0), and antioxidant enzyme activity. It also calculated the root accumulation of OPFRs and their root-stem translocation. At the germination stage, at a concentration of 20 μg·L-1 OPFR exposure, wheat germination vigor, root, and shoot lengths were significantly decreased compared to the control. However, the addition of a high concentration of copper (60 mg·L-1) decreased by 80%, 82%, and 87% in the seed germination vitality index and root and shoot elongation, respectively, compared to 20 μg·L-1 of OPFR treatment. At the seedling stage, a concentration of 50 μg·L-1 of OPFRs significantly decreased by 42% and 5.4% in wheat growth weight and the photochemical efficiency of photosystem II (Fv/Fm) compared to the control. However, the addition of a low concentration of copper (15 mg·L-1) slightly enhanced the growth weight compared to the other two co-exposure treatments, but the results were not significant (p > 0.05). After 7 days of exposure, the activity of superoxide dismutase (SOD) and malondialdehyde (MDA) (indicates lipid peroxidation) content in wheat roots significantly increased compared to the control and was higher than in leaves. MDA contents in wheat roots and shoots were decreased by 18% and 6.5% when OPFRs were combined with low Cu treatment compared with single OPFRs treatment, but SOD activity was slightly improved. These results suggest that the co-exposure of copper and OPFRs enhances reactive oxygen species (ROS) production and oxidative stress tolerance. Seven OPFRs were detected in wheat roots and stems, with root concentration factors (RCFs) and translocation factors (TFs) ranging from 67 to 337 and 0.05 to 0.33, respectively, for the seven OPFRs in a single OPFR treatment. The addition of copper significantly increased OPFR accumulation in the root and aerial parts. In general, the addition of a low concentration of copper promoted wheat seedling elongation and biomass and did not significantly inhibit the germination process. OPFRs could mitigate the toxicity of low-concentration copper on wheat but had a weak detoxification effect on high-concentration copper. These results indicated that the combined toxicity of OPFRs and Cu had antagonistic effects on the early development and growth of wheat.
Collapse
Affiliation(s)
- Dengxian Deng
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Junxia Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China.
| | - Sijie Xu
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Yueying Sun
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Guangyu Shi
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Huili Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Province Key Laboratory of Environmental Science and Engineering, College of Environmental Science and Engineering, Suzhou University of Science and Technology, No.99, Xuefu Road, Suzhou, 215009, China
| |
Collapse
|
6
|
Zhou C, Gao Y, Ma Q, Xia Z, Zhu M, Zhang X, An S, Li S, Yu W. The single and combined effects of sulfamethazine and cadmium on soil nitrification and ammonia-oxidizing microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56108-56120. [PMID: 36913014 DOI: 10.1007/s11356-023-26141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The coexistence of antibiotics and heavy metals in soil has attracted increasing attention due to their negative effects on microorganisms. However, how antibiotics and heavy metals affect functional microorganisms related to nitrogen cycle remains unclear. The goals of this work were to explore the individual and combined effects of sulfamethazine (SMT) and cadmium (Cd), selected as target pollutants in soil, on potential nitrification rates (PNR) and ammonia oxidizers (ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB)) structure and diversity by 56-day cultivation experiment. Results showed that PNR in Cd- or SMT-treated soil decreased at the beginning of the experiment and then increased over time. PNR was significantly correlated with AOA and AOB-amoA relative abundance (P < 0.01). SMT addition (10 and 100 mg kg-1) significantly improved AOA activity by 13.93% and 17.93%, respectively, and had no effect on AOB at day 1. Conversely, Cd at 10 mg kg-1 significantly inhibited AOA and AOB by 34.34% and 37.39%, respectively. Moreover, the relative abundance of AOA and AOB in combined SMT and Cd addition clearly higher relative to single Cd at 1 day. The single and combined Cd and SMT increased and reduced the community richness of AOA and AOB, respectively, but reduced the diversity of both after 56 days. Cd and SMT treatments significantly changed the relative abundance of AOA phylum levels and AOB genus levels in the soil. It was mainly manifested in reducing the relative abundance of AOA Thaumarchaeota, and increasing the relative abundance of AOB Nitrosospira. Besides, AOB Nitrosospira was more tolerant to the compound addition of both than single application.
Collapse
Affiliation(s)
- Changrui Zhou
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yun Gao
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Zhuqing Xia
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengmeng Zhu
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhui Zhang
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyu An
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuailin Li
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China.
| | - Wantai Yu
- Institute of Applied Ecology Chinese Academy of Sciences, Shenhe District, 72 Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
7
|
Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041949. [PMID: 35206138 PMCID: PMC8872130 DOI: 10.3390/ijerph19041949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022]
Abstract
Duckweed (Spirodela polyrrhiza) has the potential to treat anaerobically digested swine wastewater (ADSW), but the effects of antibiotics and heavy metals in ADSW on the treatment performance and mechanism of Spirodela polyrrhiza are not clear. Herein, an experiment was conducted to investigate the effects of sulfamethazine (SMZ) and cupric ion on NH4+-N and total phosphorus (TP) removal from synthetic ADSW. The activity of superoxide dismutase (SOD) and the contents of photosynthetic pigments, vitamin E, and proteins in duckweed were also evaluated. Under the stress of SMZ, duckweed showed excellent removal efficiency of nutrients, and the results of SOD activity and photosynthetic pigments content indicated that duckweed had good tolerance to SMZ. Interestingly, a combined application of SMZ and cupric ion would inhibit the nutrient removal by duckweed, but significantly increased the contents of photosynthetic pigments, proteins, and vitamin E. In addition, the consequence indicated that high value-added protein and vitamin E products could be produced and harvested by cultivating duckweed in ADSW. Furthermore, possible degradation pathways of SMZ in the duckweed system were proposed based on the analysis with LC-MS/MS. This research proposed a novel view for using duckweed system to remove nutrients from ADSW and produce value-added products under the stress of SMZ and cupric ion.
Collapse
|
8
|
Xin X, Zhao F, Judy JD, He Z. Copper stress alleviation in corn (Zea mays L.): Comparative efficiency of carbon nanotubes and carbon nanoparticles. NANOIMPACT 2022; 25:100381. [PMID: 35559887 DOI: 10.1016/j.impact.2022.100381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Copper (Cu) stress is one of the predominant crop yield-reducing factors in agriculture. Application of carbon nanomaterials (CNMs) could have promotive effects on crop growth; however, their effects on alleviation of Cu stress for plants have rarely been documented. In this study, we investigated the comparative role of carbon nanotubes (CNTs) and carbon nanoparticles (CNPs) in corn (Zea mays) seed germination, seedling growth as well as Cu stress alleviation. The results showed that CNTs and CNPs stimulated corn seed germination by significantly increasing germination rate (GR), shortening the mean germination time (MGT), and increasing overall germination index (GI). They also significantly elongated seedling length and increased fresh biomass with optimal application rates ranging from 50 to 100 mg L-1. Principle component analysis (PCA) confirmed that seed germination indexes and seedling growth were positively affected by CNTs or CNPs, but inversely influenced by high levels of Cu stress (> 20 mg L-1). Furthermore, higher Cu accumulation and anti-oxidative enzyme activity (SOD, POD, CAT) were observed in plants co-exposed to Cu2+ and either CNTs or CNPs compared to plants exposed to Cu2+ alone. CNPs had stronger improvement on plant growth and Cu stress alleviation than CNTs, which suggest they may be cost-effective agriculture amendments to improve plant growth under heavy metal stress.
Collapse
Affiliation(s)
- Xiaoping Xin
- University of Florida-IFAS, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Fengliang Zhao
- University of Florida-IFAS, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States; Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Science, Haikou 571101, China
| | - Jonathan D Judy
- University of Florida-IFAS, Department of Soil and Water Sciences, Gainesville, FL 32611, United States
| | - Zhenli He
- University of Florida-IFAS, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States.
| |
Collapse
|
9
|
Li GZ, Zheng YX, Chen SJ, Liu J, Wang PF, Wang YH, Guo TC, Kang GZ. TaWRKY74 participates copper tolerance through regulation of TaGST1 expression and GSH content in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112469. [PMID: 34198190 DOI: 10.1016/j.ecoenv.2021.112469] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.
Collapse
Affiliation(s)
- Ge-Zi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong-Xing Zheng
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Shi-Juan Chen
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Jin Liu
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Peng-Fei Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Yong-Hua Wang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Tian-Cai Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China
| | - Guo-Zhang Kang
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, China; National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
10
|
Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals 2021; 34:737-759. [PMID: 33909216 DOI: 10.1007/s10534-021-00306-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/15/2021] [Indexed: 01/15/2023]
Abstract
Copper (Cu) is an essential mineral nutrient for the proper growth and development of plants; it is involved in myriad morphological, physiological, and biochemical processes. Copper acts as a cofactor in various enzymes and performs essential roles in photosynthesis, respiration and the electron transport chain, and is a structural component of defense genes. Excess Cu, however, imparts negative effects on plant growth and productivity. Many studies have summarized the adverse effects of excess Cu on germination, growth, photosynthesis, and antioxidant response in agricultural crops. Its inhibitory influence on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity has been verified. The current review focuses on the availability and uptake of Cu by plants. The toxic effects of excess Cu on seed germination, plant growth and development, photosynthesis, and antioxidant response in plants are discussed. Plant tolerance mechanisms against Cu stress, and management of Cu-contaminated soils are presented.
Collapse
|
11
|
Yue Z, Chen Y, Chen C, Ma K, Tian E, Wang Y, Liu H, Sun Z. Endophytic Bacillus altitudinis WR10 alleviates Cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124272. [PMID: 33097348 DOI: 10.1016/j.jhazmat.2020.124272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Soil copper (Cu) pollution severely stunts crops growth and limits sustainable agri-food production. Many microbes are widely used for remediation of polluted soil, including Cu pollution. In this study, the potential of an endophytic Bacillus altitudinis WR10 to protect wheat from Cu stress and the molecular mechanisms were investigated using hydroponic model. The Cu resistance assay showed B. altitudinis WR10 can resist up to 2 mM Cu and remove about 74% Cu in medium after 24 h of fermentation. Co-culture study demonstrated WR10 increased roots length and dry weight in wheat seedlings under 50 μM Cu. These results indicated that WR10 was a Cu-resistant strain and reduced Cu toxicity in wheat. Transcriptome data and biochemical tests of wheat roots indicated that WR10 alleviated Cu toxicity through enhancing peroxidases (PODs) gene expression and activity to remove excess hydrogen peroxide (H2O2) and down-regulating glutathione S-transferases (GSTs) to increase glutathione (GSH) level. Moreover, enrichment and pathway analysis indicated WR10 regulated the expression of genes involved in phenylpropanoid biosynthesis, which may improve phenolic acids accumulation for protecting plant cells from Cu toxicity. Overall, this study revealed that B. altitudinis WR10 alleviated Cu toxicity in wheat via augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis.
Collapse
Affiliation(s)
- Zonghao Yue
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yanjuan Chen
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466001, China
| | - Can Chen
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Keshi Ma
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Erli Tian
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Ying Wang
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Hongzhan Liu
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhongke Sun
- College of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
12
|
Zhang H, Xu S, Lin Q. Influence of metal cation and surface iron oxide on the transport of sulfadiazine in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143621. [PMID: 33218815 DOI: 10.1016/j.scitotenv.2020.143621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Sulfadiazine (SDZ) is an antibiotic frequently detected in soil and groundwater. The transport of SDZ in subsurface environment is a critical process affecting its retention in soil. To date, the effects of iron oxide and metal cation on the transport of SDZ remain largely unknown, so we investigated the transport properties of SDZ in cleaned and iron oxides coated quartz sand, as affected by the presence of conventional cations (Ca2+, Mg2+, K+, and Na+) and Cd2+ through column experiments and simulation. We found that iron oxide coating on sand surface inhibited the transport of SDZ, mainly due to hydrophobic effect, complexation, and electrostatic attraction. The inhibitory effect became more marked with increasing concentration of Cd2+. It favors the transport of Cd2+ due to the electrostatic repulsion between positively charged iron oxide and Cd2+. Ca2+ promoted the transport of SDZ in coated sand, while all the conventional cations had no effect on the transport of SDZ in cleaned sand. The increase in the concentration of Cd2+ favors the transport of SDZ in cleaned sand. However, in iron oxide coated sand, the influence of Cd2+ on the transport of SDZ was dependent on the concentration of Cd2+. At lower concentration of Cd2+ and by competition, the transport is favored. At high concentration, the transport is inhibited mainly due to the formation of ternary surface complexes. A convective-dispersive transport model was applied to simulate and interpret experimental data. Breakthrough curves fitted well with a one-site model (OSM), indicating that SDZ adsorption on the sand experiences reversible kinetic. A low level of KF values with nearly linear sorption isotherm shows high mobility of SDZ and a high potential risk of surface and groundwater contamination. However, such high mobility can be reduced by increasing the content of iron oxides in porous media.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Shaohui Xu
- Department of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Qing Lin
- Department of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
13
|
Ahmadabadi Z, Zarei M, Yasrebi J, Ronaghi A, Ghasemi R, Sadegh Kasmaei L, Bloem E, Schnug E. The effect of bio/organic fertilizers on the phytotoxicity of sulfadiazine to Echium amoenum in a calcareous soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111408. [PMID: 33038728 DOI: 10.1016/j.ecoenv.2020.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The fate of antibiotics and their effects on plant growth may be changed by the application of fertilizers. The present study was carried out to investigate the effect of sulfadiazine (SDZ), rice husk compost (RHC), rice husk biochar (RHB), and mycorrhiza (MR) on the growth attributes of Iranian Echium amoenum Fisch & C.A. Mey. A greenhouse experiment as a completely randomized design with six treatments of bio/organic-fertilizers (no bio-fertilizer (NF), RHB, RHC, MR, RHB+MR, and RHC+MR) and three levels of SDZ application (0, 100, and 200 mg kg-1) was performed for 7months with three replicates. Shoot and root SDZ concentrations were determined using high-pressure liquid chromatography-diode array detection (HPLC-DAD) instrumentation. The results revealed that the application of RHC, RHB, and MR had a significant impact on the reduction of the toxicity effects of SDZ on plant properties. The lowest values of growth parameters belonged to the 200 mg kg-1 of SDZ with no bio-fertilizers, while the highest growth parameters were observed in the treatments of RHB+MR, and RHC+MR with no SDZ application. Also, chlorophyll pigments content was affected by used treatments and the lowest rates of chlorophyll a (4.24), chlorophyll b (2.99), and carotenoids (2.88) were related to the 200 mg kg-1 of SDZ with no biofertilizers application. The co-application of bio-fertilizers and SDZ (at both levels of 100 and 200 mg kg-1) decreased SDZ uptake by both shoot and root in comparison with the control. The same results were obtained with macro (NPK) and micro (Fe, Zn, Cu, and Mn) nutrients uptake by the shoot in which the lowest values of nutrients uptake were observed in treatment of 200 mg kg-1 of SDZ with no bio-fertilizers. Furthermore, in the case of the effect of the used treatments on root colonization, the results showed that the lowest value (7.26%) belonged to the 200 mg kg-1 application of SDZ with no bio-fertilizers. Generally, this study demonstrated that bio-fertilizers could be considered as an effective strategy in controlling the negative effects of antibiotics on the growth properties and nutrients status of the plants grown in such contaminated soils.
Collapse
Affiliation(s)
- Zahra Ahmadabadi
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mehdi Zarei
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Jafar Yasrebi
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Abdolmajid Ronaghi
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Reza Ghasemi
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Leila Sadegh Kasmaei
- Soil Science, Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Elke Bloem
- Julius Kühn-Institut, Braunschweig, Germany.
| | - Ewald Schnug
- Soil Science, Julius Kühn-Institut, Braunschweig, Germany.
| |
Collapse
|
14
|
Pérez R, Tapia Y, Antilén M, Casanova M, Vidal C, Santander C, Aponte H, Cornejo P. Interactive effect of compost application and inoculation with the fungus Claroideoglomus claroideum in Oenothera picensis plants growing in mine tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111495. [PMID: 33099139 DOI: 10.1016/j.ecoenv.2020.111495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Different techniques have been developed for the remediation of Cu contaminated soils, being the phytoremediation a sustainable and environmentally friendly strategy, but its use in mine tailings is scarce. Arbuscular mycorrhizal fungi (AMF) can decrease the Cu concentration in plants by favouring the stabilization of this metal through different mechanisms such as the production of glomalin, immobilization in the fungal wall of hyphae and spores, and the storage of Cu in vacuoles. Additionally, the use of organic amendments promotes the beneficial effects produced by AMF and improves plant growth. Based on the above, the aim of this study was to determine the effect of AMF inoculation and compost application at different doses on the growth of Oenothera picensis in a Cu mine tailing. One group of plants were inoculated with Claroideoglomus claroideum (CC) and other was non-inoculated (NM). Both CC and NM were grown for two month under greenhouse conditions in pots with the Cu mine tailing, which also had increasing compost doses (0%, 2.5%, 5%, and 10%). Results showed greater biomass production of O. picensis by CC up to 2-fold compared with NM. This effect was improved by the compost addition, especially at doses of 5% and 10%. Therefore, the increase of mycorrhizal and nutritional parameters in O. picensis, and the decreasing of Cu availability in the mine tailing, promoted the production of photosynthetic pigments together with the plant growth, which is of importance to accomplish phytoremediation programs in Cu mine tailings.
Collapse
Affiliation(s)
- Rodrigo Pérez
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Yasna Tapia
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808 Santiago, Chile
| | - Monica Antilén
- Departamento de Química Inorgánica, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Manuel Casanova
- Departamento de Ingeniería y Suelos, Universidad de Chile, 8820808 Santiago, Chile
| | - Catalina Vidal
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Humberto Aponte
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile; Laboratory of Soil Microbiology and Biogeochemistry, Institute of Agri-Food, Animal and Environmental Sciences (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
15
|
Zhou C, Ma Q, Li S, Zhu M, Xia Z, Yu W. Toxicological effects of single and joint sulfamethazine and cadmium stress in soil on pakchoi (Brassica chinensis L.). CHEMOSPHERE 2021; 263:128296. [PMID: 33297238 DOI: 10.1016/j.chemosphere.2020.128296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
The combined pollution of heavy metals and antibiotics in soil has attracted increasing attention due to their negative effects on plant growth. The aims of this study were to evaluate the phytotoxicity of single and combined sulfamethazine (SMT) and cadmium (Cd), selected as target pollutants in soil, on growth and physiological response of pakchoi (Brassica chinensis L.). Results revealed that the soil spiked with 10 mg kg-1 Cd inhibited the pakchoi growth regardless of SMT addition. The combined effect of SMT and Cd stress on uptake of SMT or Cd by pakchoi were concerned with their combined concentration. The combined influence of high concentrations SMT and Cd (1 and 10 mg kg-1) exposure on the Cd content of pakchoi showed antagonistic effects and synergistic effects, respectively. Besides, oxidative substances and enzyme activity of pakchoi tissue were affected by Cd and SMT exposure in the soil, particularly by their joint stress. This mainly expressed as the increase of malondialdehyde (MDA), H2O2 content and antioxidant enzyme activity (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)), which could be ascribed to the induction of Cd and SMT stress. Additionally, the SMT-Cd combined stress caused more reduction in nutrients (vitamin C and sugar) of pakchoi than the correspondingly single Cd stress. In conclusion, the SMT and Cd in soil lead to their accumulation and oxidative damage in pakchoi, which disturb the antioxidant defense system and ultimately adversely affect growth and quality of pakchoi.
Collapse
Affiliation(s)
- Changrui Zhou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Ma
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shuailin Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mengmeng Zhu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuqing Xia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wantai Yu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
16
|
Xu J, Liu X, Lv Y, Guo X, Lu S. Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: Growth physiology, transportation, and microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111332. [PMID: 32980655 DOI: 10.1016/j.ecoenv.2020.111332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Plant-microbe is a complementary coupling system for antibiotics removing in constructed wetlands (CWs), but how plant and rhizosphere microbiomes respond to antibiotics exposure and the occurrence of ARGs in this microenvironment have seldom been researched. Thus, the response of the plant-microbe coupling system to different levels of antibiotics (sulfamethoxazole (SMZ) and ofloxacin (OFL)) was investigated. The results showed that two antibiotic stressors have hormetic effects on plant growth, physiology, and microbial community evolution, and the antibiotic toxic effects presented as SMZ + OFL > SMZ > OFL. Antibiotic accumulation in the plants was in the order of roots > stems > leaves. Notably, the root attachments affected antibiotic transportation. The accumulation of antibiotics in the under-ground parts affected the rhizosphere microbial community structure, and the microorganisms were more sensitive to SMZ + OFL than the plants, with inflection points of 0.5 mg L-1 and 1 mg L-1, respectively. Pseudomonas was highly resistant to antibiotics, while Acidovorax and Devosia may play a role in antibiotic degradation. Correlation analysis and network analysis showed that antibiotic enrichment and the bacterial community contributed significantly to the abundance of antibiotic-resistant genes (ARGs), further revealing the co-occurrence of int1, ARGs, and the potential bacterial hosts.
Collapse
Affiliation(s)
- Jiamin Xu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaochun Guo
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shaoyong Lu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Xin X, Zhao F, Rho JY, Goodrich SL, Sumerlin BS, He Z. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:141055. [PMID: 32736110 DOI: 10.1016/j.scitotenv.2020.141055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 05/04/2023]
Abstract
Plant seedlings are susceptible to copper (Cu) toxicity. As copper levels in soil continue to rise with the use of Cu-based agrochemicals, alleviation of Cu stress is of paramount importance. Traditional approaches to allay Cu stress are well documented but are typically found to be either costly or inefficient. Given their small size, ionic character, and high biocompatibility, specific polymeric nanoparticles (NPs) may have the potential for mitigating metal toxicity to crops. In this pioneering study, we investigated the effects of newly synthesized polysuccinimide NPs (PSI-NPs) on corn (Zea mays L.) seed germination and seedling growth under different levels of Cu stress. The results showed that PSI-NPs influenced seed germination in a dose-dependent manner with an optimal rate of 200 mg L-1. In addition, the positive effects of PSI-NPs on seed germination indexes were found to be positively correlated with enhanced seed imbibition (r = 0.82). The addition of PSI-NPs significantly mitigated Cu stress as indicated by improved growth of shoots and roots, and higher antioxidant enzyme activity observed with co-exposure to PSI-NPs as compared to Cu stress treatment only. Cu concentrations in seedling root and shoot significantly increased with increasing Cu treatment rate. Higher uptake of Cu by plant was observed in the Cu-PSI-NPs co-treatment than single Cu treatment. The alleviation effect of PSI-NPs could be explained by the enhanced antioxidant enzyme activities and storage of Cu as Cu-PSI complexes in plants with reduced phytotoxicity. These findings will open the opportunity of using PSI-NPs as a regulator to enhance seed germination and improve seedling growth under stress of heavy metals like Cu.
Collapse
Affiliation(s)
- Xiaoping Xin
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States
| | - Fengliang Zhao
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States; Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Science, Haikou 571101, China
| | - Julia Y Rho
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Department of Chemistry, Gainesville, FL 32611, United States
| | - Sofia L Goodrich
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Department of Chemistry, Gainesville, FL 32611, United States
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, University of Florida, Department of Chemistry, Gainesville, FL 32611, United States
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science/Indian River Research and Education Center, Fort Pierce, FL 34945, United States.
| |
Collapse
|
18
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
19
|
Rong H, Wang C, Liu H, Zhang M, Yuan Y, Pu Y, Huang J, Yu J. Biochemical Toxicity and Potential Detoxification Mechanisms in Earthworms Eisenia fetida Exposed to Sulfamethazine and Copper. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:255-260. [PMID: 32632463 DOI: 10.1007/s00128-020-02927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the biochemical toxicity and potential detoxification mechanisms in earthworms Eisenia fetida exposed to sulfamethazine (SMZ) (7.5, 15 and 30 mg kg-1) either alone or in combination with Copper (Cu) (100 mg kg-1) in soil. The results showed that increasing concentrations of SMZ in soil activated superoxide dismutase, catalase and glutathione peroxidase isozymes, suggesting reactive oxygen species (ROS) burst in earthworms. Treatment with SMZ and Cu separately or in combination caused protein oxidation and damage, elevating the synthesis of ubiquitin, the 20S proteasome, cytochrome P450 (CYP450), and heat shock protein 70 (HSP70). Such treatments also induced the activities of proteases, endoproteinase (EP) and glutathione S-transferases (GSTs). The results suggested that the ubiquitin-20S proteasome, proteases, EP and HSP70 were involved in degradation or remediation of oxidatively damaged proteins. Elevated levels of CYP450 and GSTs also participated in the detoxification of the earthworms.
Collapse
Affiliation(s)
- Hong Rong
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan, China.
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China.
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Min Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yueting Yuan
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Yanjie Pu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jin Huang
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| | - Jinyu Yu
- School of Biological Engineering, Huainan Normal University, Huainan, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, China
| |
Collapse
|
20
|
Cheong MS, Seo KH, Chohra H, Yoon YE, Choe H, Kantharaj V, Lee YB. Influence of Sulfonamide Contamination Derived from Veterinary Antibiotics on Plant Growth and Development. Antibiotics (Basel) 2020; 9:antibiotics9080456. [PMID: 32731577 PMCID: PMC7460019 DOI: 10.3390/antibiotics9080456] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
Veterinary antibiotics such as sulfonamides are widely used to increase feed efficiency and to protect against disease in livestock production. The sulfonamide antimicrobial mechanism involves the blocking of folate biosynthesis by inhibiting bacterial dihydropteroate synthase (DHPS) activity competitively. Interestingly, most treatment antibiotics can be released into the environment via manure and result in significant diffuse pollution in the environment. However, the physiological effects of sulfonamide during plant growth and development remain elusive because the plant response is dependent on folate biosynthesis and the concentration of antibiotics. Here, we present a chemical interaction docking model between Napa cabbage (Brassica campestris) DHPS and sulfamethoxazole and sulfamethazine, which are the most abundant sulfonamides detected in the environment. Furthermore, seedling growth inhibition was observed in lentil bean (Lens culinaris), rice (Oryza sativa), and Napa cabbage plants upon sulfonamide exposure. The results revealed that sulfonamide antibiotics target plant DHPS in a module similar to bacterial DHPS and affect early growth and the development of crop seedlings. Taking these results together, we suggest that sulfonamides act as pollutants in crop fields.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea
| | - Kyung Hye Seo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumsung 27709, Korea;
| | - Hadjer Chohra
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Young Eun Yoon
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Hyeonji Choe
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Vimalraj Kantharaj
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
| | - Yong Bok Lee
- Division of Applied Life Science (BK 21 Plus Program), Gyeongsang National University, Jinju 52828, Korea; (M.S.C.); (H.C.); (Y.E.Y.); (H.C.); (V.K.)
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-557-721-967
| |
Collapse
|
21
|
Shao Y, Liu X, Liu A, Dong Y, Hu X. Co-sorption of sulfamethoxazole and Cu onto several soils with different properties and their binding mechanism. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1755-1315/432/1/012009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Zeng Q, Ling Q, Wu J, Yang Z, Liu R, Qi Y. Excess Copper-Induced Changes in Antioxidative Enzyme Activity, Mineral Nutrient Uptake and Translocation in Sugarcane Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:834-840. [PMID: 31676938 DOI: 10.1007/s00128-019-02735-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Sugarcane is a potential species for use in heavy metal remediation. To analyze the effect of excess copper on sugarcane, the biomass, mineral nutrient content and activities of antioxidative enzymes were measured under copper stress. The results revealed that the biomass of roots and shoots significantly decreased with increasing copper concentration in solution. Most copper accumulated in the roots, and the translocation factor of copper decreased with an increase in copper stress. The MDA content in sugarcane roots notably increased under copper stress. The POD activity in sugarcane roots increased, and CAT activity decreased under copper stress. The Zn, Fe and Mn contents in shoots increased significantly under 200 μmol L-1 Cu2+ treatments. The Zn and Mg contents in roots notably decreased under copper stress, while the Zn and Mg translocation factors increased. These results indicated that the increase in POD activity and the modification of mineral nutrient uptake and transfer might play an important role in reducing the detrimental effects of excess copper.
Collapse
Affiliation(s)
- Qiaoying Zeng
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Qiuping Ling
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Jiayun Wu
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Zhanduan Yang
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Rui Liu
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China
| | - Yongwen Qi
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Research Center for Sugarcane Industry Engineering Technology of Light Industry of China, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, China.
| |
Collapse
|
23
|
Sharma N, Arrigoni G, Ebinezer LB, Trentin AR, Franchin C, Giaretta S, Carletti P, Thiele-Bruhn S, Ghisi R, Masi A. A proteomic and biochemical investigation on the effects of sulfadiazine in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:146-158. [PMID: 31002969 DOI: 10.1016/j.ecoenv.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 μM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.
Collapse
Affiliation(s)
- Nisha Sharma
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | | | - Anna Rita Trentin
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, Italy
| | - Sabrina Giaretta
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Paolo Carletti
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Sören Thiele-Bruhn
- Soil Science, Trier University, Behringstraße 21, D-54286, Trier, Germany
| | - Rossella Ghisi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| | - Antonio Masi
- DAFNAE, University of Padova, Viale Università 16, 30520 Legnaro, PD, Italy
| |
Collapse
|
24
|
Sayen S, Rocha C, Silva C, Vulliet E, Guillon E, Almeida CMR. Enrofloxacin and copper plant uptake by Phragmites australis from a liquid digestate: Single versus combined application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:188-202. [PMID: 30743112 DOI: 10.1016/j.scitotenv.2019.01.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Application of anaerobically digested sludges and manure (digestates) to agricultural fields reduces the need for fertilizer application, but might also pose environmental risks due to the introduction of various pollutants -including metal trace elements and pharmaceuticals- to amended soils. The simultaneous presence of different contaminants can affect plant uptake, altering the performance of phytoremediation. This work aims to investigate and compare the single and combined effects of Enrofloxacin (Enro) and Cu on their plant uptake from digestate solutions. Plant uptake experiments were carried out by exposing, for 5 days, Phragmites australis to three different concentrations of a liquid digestate doped with Cu and/or Enro. Contaminant concentrations were afterward determined in both plant tissues and digestate solutions. Contaminant speciation in solution and Cu speciation in plant roots were also assessed. Cu plant uptake (mostly in plant roots, Cu concentration varied between 55 and 254 μg·g-1) was observed, especially at low concentration of digestate. At high digestate concentration, Cu uptake decreased due to the formation of Cu-DOC complexes rendering Cu less bioavailable. The presence of the antibiotic slightly further reduced Cu plant uptake due to the formation of Cu-Enro complexes. Plant roots also accumulated Enro, an accumulation also higher for the lowest concentration of digestate (an increase of 40%), and that slightly increased in the presence of Cu (up to 226 μg·g-1). However, proportion of free Enro in solution decreased (up to 70%) in the presence of Cu due to complexation. Cu speciation in plant roots confirmed the implication of the complexation in the uptake of Cu and Enro when they are simultaneously present in solution. Thus, the presence of amendments (such as digestates) increasing the DOC content, in addition to the interactions between contaminants, should be taken into account for field crop soils as well as for phytoremediation technologies.
Collapse
Affiliation(s)
- Stéphanie Sayen
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France.
| | - Cristina Rocha
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos, Portugal; MARE-UC, Incubadora de Empresas da Figueira da Foz, Parque Industrial e Empresarial da Figueira da Foz (Laboratório MAREFOZ), Rua das Acácias Lote 40A, 3090-380 Figueira da Foz, Portugal
| | - Cristiana Silva
- MARE-UC, Incubadora de Empresas da Figueira da Foz, Parque Industrial e Empresarial da Figueira da Foz (Laboratório MAREFOZ), Rua das Acácias Lote 40A, 3090-380 Figueira da Foz, Portugal; Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Emmanuelle Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Lyon 1, ENS-Lyon, 5 rue de la Doua, Villeurbanne, France
| | - Emmanuel Guillon
- Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | - C Marisa R Almeida
- MARE-UC, Incubadora de Empresas da Figueira da Foz, Parque Industrial e Empresarial da Figueira da Foz (Laboratório MAREFOZ), Rua das Acácias Lote 40A, 3090-380 Figueira da Foz, Portugal.
| |
Collapse
|
25
|
Zhao L, Liu J, Wang H, Dong YH. Sorption of copper and norfloxacin onto humic acid: effects of pH, ionic strength, and foreign ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10685-10694. [PMID: 30778931 DOI: 10.1007/s11356-019-04515-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Copper (Cu) and norfloxacin (Nor) are frequently used as feed additives for animal growth promotion, which results in a great probability of Cu2+ and Nor coexisting in animal excretion and in soils. Sorption of Cu2+ and Nor on soil organic matter (SOM) can markedly affect their environmental fate. Thus, humic acid (HA), a major fraction of SOM, was chosen to investigate the cosorption behaviors of Cu2+ and Nor on HA under different solution chemistry conditions (pHs, ionic strengths, and foreign ions). The addition of Nor decreased the maximum adsorption capacity (Qm) of Cu2+ and an increasing effect was observed with increasing Nor concentration. Meanwhile, the addition of Cu2+ also markedly inhibited the sorption of Nor on HA. The Qm of Cu2+ increased with increasing pH from 3.0 to 5.0 whether Nor was present or not, but more addition of Nor led to less increment in Qm of Cu2+ at the same pH. The Qm of Nor was observed at pH 4.0 without Cu2+, but that was found at pH 5.0 and 3.0 with the addition of 20 and 100 mg L-1 Cu2+, respectively. The sorption of Cu2+ on HA decreased with increasing ionic strength and followed an order of NaH2PO4 > Na2SO4 ≈ NaNO3 at pH 5.0 whether Nor was present or not. Additionally, the higher valence cation had a stronger inhibition effect on Cu2+ sorption. The competition between Cu2+ and Nor for sorption on HA under the same conditions indicated that the coexistence of Cu2+ and Nor may enhance the feasibility of their mobility and environmental risk.
Collapse
Affiliation(s)
- Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Juan Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Hua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
26
|
Kurt-Gür G, Demirci H, Sunulu A, Ordu E. Stress response of NAD +-dependent formate dehydrogenase in Gossypium hirsutum L. grown under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31679-31690. [PMID: 30209765 DOI: 10.1007/s11356-018-3145-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Cotton (Gossypium hirsutum L.), which is not directly involved in the food chain, appears to be a suitable candidate to remove heavy metals from the food chain and to be a commercial plant which could be planted in contaminated soils. The key point of this approach is selection of the right genotype, which has heavy metal resistance or hyperaccumulation properties. Therefore, in the present study, two G. hirsutum genotypes, Erşan-92 and N-84S, were grown under copper stress and investigated to obtain further insights about the heavy metal tolerance mechanisms of plants by focusing on the expression of NAD+-dependent formate dehydrogenase (FDH). In accordance with the results, which were obtained from RT-PCR analysis and activity measurements, in the Erşan-92 root tissue, FDH activity increased significantly with increasing metal concentrations and a 6.35-fold higher FDH activity was observed in the presence of 100-μM Cu. As opposed to Erşan-92, the maximum FDH activity in the roots of N-84S, which were untreated with copper as the control plants, was measured as 0.0141-U mg-1 g-1 FW, and the activity decreased significantly with the increasing metal concentrations. The metallothionein (GhMT3a) transcript level of the plants grown in a medium containing different Cu concentrations showed nearly the same pattern as that of the FDH gene transcription. It was observed that while the tolerance of N-84S in the lower Cu concentration reduces remarkably, Erşan-92 continues to struggle up to 100-μM Cu. The results of the SOD analysis also confirm this activity of Erşan-92 against the Cu stress.
Collapse
Affiliation(s)
- Günseli Kurt-Gür
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Hasan Demirci
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Akın Sunulu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey
| | - Emel Ordu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
27
|
Liu T, Wang J, Wang J, Zhu L. Assessing the influence of 1-dodecyl-3-methylimidazolium chloride on soil characteristics and Vicia faba seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:114-120. [PMID: 29407777 DOI: 10.1016/j.ecoenv.2018.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 05/19/2023]
Abstract
Imidazolium-based ionic liquids (ILs) have attracted increasing attention in recent years. The IL 1-dodecyl-3-methylimidazolium chloride ([C12mim]Cl) has been widely used in the chemical industry. In this study, the influence of [C12mim]Cl on Vicia faba seedlings, soil physicochemical properties and soil enzyme activities was investigated for the first time. Meanwhile, the variation of [C12mim]Cl concentrations in soil was monitored during the exposure period. The present results showed that the concentration of [C12mim]Cl remained stable in the tested soil with a change rate of no more than 10% during the exposure period. The 50% effective concentration (EC50) values for shoot length, root length and dry weight were 188, 69 and 132 mg kg-1, respectively. At 200 mg kg-1 and 400 mg kg-1, [C12mim]Cl had significant influence on soil organic matter content, pH value and conductivity value. At 40 mg kg-1, the reactive oxygen species (ROS) levels were obviously enhanced, resulting in oxidative stress effects in Vicia faba seedling leaves. Additionally, the soil enzyme activities changed significantly at 40 mg kg-1.
Collapse
Affiliation(s)
- Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
28
|
Ferreira PAA, Tiecher T, Tiecher TL, Rangel WDM, Soares CRFS, Deuner S, Tarouco CP, Giachini AJ, Nicoloso FT, Brunetto G, Coronas MV, Ceretta CA. Effects of Rhizophagus clarus and P availability in the tolerance and physiological response of Mucuna cinereum to copper. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 122:46-56. [PMID: 29175636 DOI: 10.1016/j.plaphy.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) improve plant ability to uptake P and tolerate heavy metals. This study aimed to evaluate the effect of available P and the inoculation of Rhizophagus clarus in a Cu-contaminated soil (i) on the activity of acid phosphatases (soil and plant), the presence of glomalin, and (ii) in the biochemical and physiological status of Mucuna cinereum. A Typic Hapludalf soil artificially contaminated by adding 60 mg kg-1 Cu was used in a 3 × 2 factorial design with three replicates. Treatments consisted of three P levels: 0, 40, and 100 mg kg-1 P. Each P treatment level was inoculated (+AMF)/non-inoculated (-AMF) with 200 spores of R. clarus per pot, and plants grown for 45 days. The addition of at least 40 mg kg-1 P and the inoculation of plants with R. clarus proved to be efficient to reduce Cu phytotoxicity and increase dry matter yield. Mycorrhization and phosphate fertilization reduced the activity of enzymes regulating oxidative stress (SOD and POD), and altered the chlorophyll a fluorescence parameters, due to the lower stress caused by available Cu. These results suggest a synergism between the application of P and the inoculation with R. clarus, favoring the growth of M. cinereum in a Cu-contaminated soil. This study shows that AMF inoculation represents an interesting alternative to P fertilization to improve plant development when exposed to excess Cu.
Collapse
Affiliation(s)
| | - Tales Tiecher
- Department of Soil Science, Federal University of Rio Grande do Sul, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Tadeu Luis Tiecher
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Wesley de Melo Rangel
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Claudio Roberto Fonsêca Sousa Soares
- Centre for Biological Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sidnei Deuner
- Department of Botanic, Federal University of Pelotas, Capão do Leão, 96900-010, RS, Brazil
| | - Camila Peligrinotti Tarouco
- Department of Biology, Center of Natural and Exact Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Admir José Giachini
- Centre for Biological Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Fernando Teixeira Nicoloso
- Department of Biology, Center of Natural and Exact Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Gustavo Brunetto
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Mariana Vieira Coronas
- Academic Coordination, Federal University of Santa Maria, CEP 96506-322, Rio Grande do Sul, Brazil
| | - Carlos Alberto Ceretta
- Department of Soil Science, Federal University of Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| |
Collapse
|