1
|
Costantini M, Esposito R, Ruocco N, Caramiello D, Cordella A, Ventola GM, Zupo V. De Novo Assembly of the Genome of the Sea Urchin Paracentrotus lividus (Lamarck 1816). Int J Mol Sci 2024; 25:1685. [PMID: 38338963 PMCID: PMC10855541 DOI: 10.3390/ijms25031685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The Mediterranean purple sea urchin Paracentrotus lividus (Lamarck 1816) is a remarkable model system for molecular, evolutionary and cell biology studies, particularly in the field of developmental biology. We sequenced the genome, performed a de novo assembly, and analysed the assembly content. The genome of P. lividus was sequenced using Illumina NextSeq 500 System (Illumina) in a 2 × 150 paired-end format. More than 30,000 open reading frames (ORFs), (more than 8000 are unique), were identified and analysed to provide molecular tools accessible for the scientific community. In particular, several genes involved in complex innate immune responses, oxidative metabolism, signal transduction, and kinome, as well as genes regulating the membrane receptors, were identified in the P. lividus genome. In this way, the employment of the Mediterranean sea urchin for investigations and comparative analyses was empowered, leading to the explanation of cis-regulatory networks and their evolution in a key developmental model occupying an important evolutionary position with respect to vertebrates and humans.
Collapse
Affiliation(s)
- Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton n. 55, 80133 Napoli, Italy;
| | - Roberta Esposito
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton n. 55, 80133 Napoli, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Calabria Marine Centre, C.da Torre Spaccata, 87071 Amendolara, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121 Naples, Italy;
| | - Angela Cordella
- Genomix4Life S.r.l., Baronissi, 84081 Salerno, Italy; (A.C.); (G.M.V.)
- Genome Research Center for Health-CRGS, Baronissi, 84081 Salerno, Italy
| | | | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, 80121 Naples, Italy
| |
Collapse
|
2
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Glaviano F, Federico S, Pinto B, Gharbi M, Russo T, Cosmo AD, Polese G, Costantini M, Zupo V. Morphologic and genic effects of waste pollution on the reproductive physiology of Paracentrotus lividus lmk: a mesocosm experiment. Front Physiol 2023; 14:1161852. [PMID: 37288438 PMCID: PMC10242131 DOI: 10.3389/fphys.2023.1161852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
A considerable amount of coastal contamination is caused by wastes deriving from household and the degradation and the metabolism of plants and animals, even if our attention is commonly focused on industrial pollutants and contaminants. Waste pollutants are mainly represented by highly diluted soluble compounds and particles deriving from dead organisms. This complex combination, consisting of suspended particles and dissolved nutrients, has a significant impact on coastal planktonic and benthic organisms, also playing an active role in the global cycles of carbon. In addition, production practices are nowadays shifting towards recirculated aquaculture systems (RAS) and the genic responses of target organisms to the pollution deriving from animal metabolism are still scarcely addressed by scientific investigations. The reservoir of organic matter dissolved in the seawater is by far the least understood if compared to that on land, cause only a few compounds have been identified and their impacts on animals and plants are poorly understood. The tendency of these compounds to concentrate at interfaces facilitates the absorption of dissolved organic compound (DOC) onto suspended particles. Some DOC components are chemically combined with dissolved metals and form complexes, affecting the chemical properties of the seawater and the life of the coastal biota. In this research, we compared the reproductive performances of the common sea urchin Paracentrotus lividus cultured in open-cycle tanks to those cultured in a recirculating aquaculture system (RAS), where pollution progressively increased during the experiment due to animal escretions. Sea urchins were cultured for 7 months under these two conditions and their gametes were collected. Embryos resulting by in vitro fertilization were analyzed by Real Time qPCR to identify possible effects of pollution-induced stress. The fertility of sea urchins was evaluated, as well as the gonadosomatic indices and the histological features of gonads. Our results indicate that pollution due to excess of nutrients, event at sub-lethal concentrations, may hardly impact the reproductive potential of this key species and that chronic effects of stress are revealed by the analyses of survival rates and gene expression.
Collapse
Affiliation(s)
- Francesca Glaviano
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Naples, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Serena Federico
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Napoli, Italy
| | - Bruno Pinto
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Maissa Gharbi
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Naples, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Naples, Italy
| |
Collapse
|
4
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Albarano L, Zupo V, Guida M, Libralato G, Caramiello D, Ruocco N, Costantini M. PAHs and PCBs Affect Functionally Intercorrelated Genes in the Sea Urchin Paracentrotus lividus Embryos. Int J Mol Sci 2021; 22:ijms222212498. [PMID: 34830379 PMCID: PMC8619768 DOI: 10.3390/ijms222212498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Department of Biology, University of Naples Federico II, Complesso di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, C. da Torre Spaccata, 87071 Amendolara, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.); (N.R.)
- Correspondence:
| |
Collapse
|
6
|
Prato E, Fabbrocini A, Libralato G, Migliore L, Parlapiano I, D'Adamo R, Rotini A, Manfra L, Lofrano G, Carraturo F, Trifuoggi M, Biandolino F. Comparative toxicity of ionic and nanoparticulate zinc in the species Cymodoce truncata, Gammarus aequicauda and Paracentrotus lividus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42891-42900. [PMID: 33829380 PMCID: PMC8354894 DOI: 10.1007/s11356-021-13712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Due to the continuous development, production and consumption of nanoparticles (NPs), their release, fate and effects in marine coastal environment can represent a major concern. The aim of this study was to evaluate the toxicity of ZnO nanoparticles (ZnO NPs) and compare it to bulk ZnSO4 on three macroinvertebrates: the isopod Cymodoce truncata (i.e. used for the first time in ecotoxicology), the amphipod Gammarus aequicauda and the sea urchin Paracentrotus lividus. This study showed concentration- and time-dependent relationships for all biological models for both ZnO NPs and ZnSO4. Both Zn forms elicited high toxicity to G. aequicauda and C. truncata juveniles, but ZnO NPs induced comparable responses to both species (96h-LC50 = 0.30 and 0.37 mg/L for G. aequicauda and C. truncata, respectively; p > 0.05), while differences were found after ZnSO4 exposure (96h-LC50 = 0.28 and 0.63 mg/L, respectively; p < 0.05). ZnO NPs generated sub-lethal effects on P. lividus embryos (72h-EC50 = 0.04 (0.03, 0.05) mg/L), not significantly different from ZnSO4 ones (72h-EC50 = 0.06 (0.05, 0.07) mg/L). Effects of ZnO NPs were similar to existing literature data for other testing species. C. truncata can be considered as a promising new biological model in (nano)ecotoxicology.
Collapse
Affiliation(s)
- Ermelinda Prato
- CNR-IRSA National Research Council - Water Research Institute, Taranto, Italy.
| | - Adele Fabbrocini
- CNR-ISMAR (National Research Council - Institute of Marine Sciences, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy.
| | - Luciana Migliore
- Department of Biology, Tor Vergata University of Rome, Rome, Italy
| | - Isabella Parlapiano
- CNR-IRSA National Research Council - Water Research Institute, Taranto, Italy
| | - Raffaele D'Adamo
- CNR-ISMAR (National Research Council - Institute of Marine Sciences, Naples, Italy
| | - Alice Rotini
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Federica Carraturo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126, Naples, Italy
| | | |
Collapse
|
7
|
Albarano L, Zupo V, Caramiello D, Toscanesi M, Trifuoggi M, Guida M, Libralato G, Costantini M. Sub-Chronic Effects of Slight PAH- and PCB-Contaminated Mesocosms in Paracentrotus lividus Lmk: A Multi-Endpoint Approach and De Novo Transcriptomic. Int J Mol Sci 2021; 22:ijms22136674. [PMID: 34206685 PMCID: PMC8268688 DOI: 10.3390/ijms22136674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/26/2022] Open
Abstract
Sediment pollution is a major issue in coastal areas, potentially endangering human health and the marine environments. We investigated the short-term sublethal effects of sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on the sea urchin Paracentrotus lividus for two months. Spiking occurred at concentrations below threshold limit values permitted by the law (TLVPAHs = 900 µg/L, TLVPCBs = 8 µg/L, Legislative Italian Decree 173/2016). A multi-endpoint approach was adopted, considering both adults (mortality, bioaccumulation and gonadal index) and embryos (embryotoxicity, genotoxicity and de novo transcriptome assembly). The slight concentrations of PAHs and PCBs added to the mesocosms were observed to readily compartmentalize in adults, resulting below the detection limits just one week after their addition. Reconstructed sediment and seawater, as negative controls, did not affect sea urchins. PAH- and PCB-spiked mesocosms were observed to impair P. lividus at various endpoints, including bioaccumulation and embryo development (mainly PAHs) and genotoxicity (PAHs and PCBs). In particular, genotoxicity tests revealed that PAHs and PCBs affected the development of P. lividus embryos deriving from exposed adults. Negative effects were also detected by generating a de novo transcriptome assembly and its annotation, as well as by real-time qPCR performed to identify genes differentially expressed in adults exposed to the two contaminants. The effects on sea urchins (both adults and embryos) at background concentrations of PAHs and PCBs below TLV suggest a need for further investigations on the impact of slight concentrations of such contaminants on marine biota.
Collapse
Affiliation(s)
- Luisa Albarano
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Villa Comunale, 80121 Naples, Italy;
| | - Maria Toscanesi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, 80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Giovanni Libralato
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy;
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Naples, Italy; (L.A.); (G.L.)
- Correspondence:
| |
Collapse
|
8
|
Glaviano F, Ruocco N, Somma E, De Rosa G, Campani V, Ametrano P, Caramiello D, Costantini M, Zupo V. Two Benthic Diatoms, Nanofrustulum shiloi and Striatella unipunctata, Encapsulated in Alginate Beads, Influence the Reproductive Efficiency of Paracentrotus lividus by Modulating the Gene Expression. Mar Drugs 2021; 19:md19040230. [PMID: 33920652 PMCID: PMC8074093 DOI: 10.3390/md19040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
| | - Emanuele Somma
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.D.R.); (V.C.)
| | - Pasquale Ametrano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Davide Caramiello
- Department of Research Infrastructures for Marine Biological Resources, Marine Organisms Core Facility, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (F.G.); (N.R.); (E.S.); (P.A.)
- Correspondence: (M.C.); (V.Z.); Tel.: +39-081-583-3315 (M.C.); Fax: +39-081-764-1355 (M.C.)
| |
Collapse
|
9
|
Multiple Roles of Diatom-Derived Oxylipins within Marine Environments and Their Potential Biotechnological Applications. Mar Drugs 2020; 18:md18070342. [PMID: 32629777 PMCID: PMC7401250 DOI: 10.3390/md18070342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth’s photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant–plant and plant–animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.
Collapse
|
10
|
Ruocco N, Bertocci I, Munari M, Musco L, Caramiello D, Danovaro R, Zupo V, Costantini M. Morphological and molecular responses of the sea urchin Paracentrotus lividus to highly contaminated marine sediments: The case study of Bagnoli-Coroglio brownfield (Mediterranean Sea). MARINE ENVIRONMENTAL RESEARCH 2020; 154:104865. [PMID: 32056706 DOI: 10.1016/j.marenvres.2019.104865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Marine sediments store complex mixtures of compounds, including heavy metals, organotins and a large array of other contaminants. Sediment quality monitoring, characterization and management are priorities, due to potential impacts of the above compounds on coastal waters and their biota, especially in cases of pollutants released during dredging activities. Harbours and marinas, as well as estuaries and bays, where limited exchanges of water occurr, the accumulation of toxic compounds poses major concerns for human and environmental health. Here we report the effects of highly contaminated sediments from the site of national interest Bagnoli-Coroglio (Tyrrhenian Sea, Western Mediterranean) on the sea urchin Paracentrotus lividus, considered a good model for ecotoxicological studies. Adult sea urchins were reared one month in aquaria in the presence of contaminated sediment that was experimentally subject to different patterns of re-suspension events (mimicking the effect of natural storms occurring in the field), crossed with O2 enrichment versus natural gas exchanges in the water. The development of embryos deriving from adult urchins exposed to such experimental conditions was followed until the pluteus stage, checking the power of contaminated sediment to induce morphological malformations and its eventual buffering by high oxygenation. Real-Time qPCR analysis revealed that the expression of several genes (among the fifty analyzed, involved in different functional processes) was targeted by contaminated sediments more than those exposed in oxygen-enriched condition. Our findings have biological and ecological relevance in terms of assessing the actual impact on local organisms of chronic environmental contamination by heavy metals and polycyclic aromatic hydrocarbons affecting the Bagnoli-Coroglio area, and of exploring enhanced sediment and water oxygenation as a promising tool to mitigate the effects of contamination in future environmental restoration actions.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Iacopo Bertocci
- Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Luigi Musco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn,Villa Comunale, 80121, Naples, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Roberto Danovaro
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
11
|
Esposito R, Ruocco N, Albarano L, Ianora A, Manfra L, Libralato G, Costantini M. Combined Effects of Diatom-Derived Oxylipins on the Sea Urchin Paracentrotus lividus. Int J Mol Sci 2020; 21:ijms21030719. [PMID: 31979078 PMCID: PMC7036778 DOI: 10.3390/ijms21030719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023] Open
Abstract
Oxylipins are diatom-derived secondary metabolites, deriving from the oxidation of polyunsatured fatty acids that are released from cell membranes after cell damage or senescence of these single-celled algae. Previous results revealed harmful toxic effects of polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) on sea urchin Paracentrotus lividus embryonic development by testing individual compounds and mixtures of the same chemical group. Here, we investigated the combined effects of these compounds on sea urchin development at the morphological and molecular level for the first time. Our results demonstrated that oxylipin mixtures had stronger effects on sea urchin embryos compared with individual compounds, confirming that PUAs induce malformations and HEPEs cause developmental delay. This harmful effect was also confirmed by molecular analysis. Twelve new genes, involved in stress response and embryonic developmental processes, were isolated from the sea urchin P. lividus; these genes were found to be functionally interconnected with 11 genes already identified as a stress response of P. lividus embryos to single oxylipins. The expression levels of most of the analyzed genes targeted by oxylipin mixtures were involved in stress, skeletogenesis, development/differentiation, and detoxification processes. This work has important ecological implications, considering that PUAs and HEPEs represent the most abundant oxylipins in bloom-forming diatoms, opening new perspectives in understanding the molecular pathways activated by sea urchins exposed to diatom oxylipins.
Collapse
Affiliation(s)
- Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
| | - Loredana Manfra
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (R.E.); (N.R.); (L.A.); (A.I.); (L.M.); (G.L.)
- Correspondence: ; Tel.: +39-081-5833-3285
| |
Collapse
|
12
|
PI3K inhibition highlights new molecular interactions involved in the skeletogenesis of Paracentrotus lividus embryos. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118558. [PMID: 31525406 DOI: 10.1016/j.bbamcr.2019.118558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 02/02/2023]
Abstract
The sea urchin embryo develops a well-defined biomineralized endoskeleton, synthesized exclusively by the skeletogenic cells, supported by ectodermal cues for the correct skeleton patterning. The biomineralization process is tightly regulated via a hierarchical order of gene expression, including transcription and growth factors, biomineralization proteins. Recently, the role of kinases and intracellular signaling pathways in sea urchin skeletogenesis has been addressed, although the downstream components still remain unknown. In this study, we investigated the role of phosphatidylinositide 3-kinase (PI3K)-mediated signaling pathway in Paracentrotus lividus, to identify its genes/proteins targets. The effects of LY294002 (LY), a PI3K-specific inhibitor, were evaluated at morphological and molecular levels. Treatment with 40 μM LY from the blastula stage completely blocked skeleton deposition, which was reversed by wash out experiments. Besides, LY caused a slight delay in the tripartite gut development. Despite the skeleton absence, a few skeleton-specific proteins/mRNAs were regularly expressed and localized in LY-treated embryos, as shown for MSP130 and SM50 by immunofluorescence and in situ hybridization experiments. QPCR analyses showed that LY differently affected the expression of genes coding for other biomineralization proteins, transcription and growth factors. SM30 and carbonic anhydrase expression was severely downregulated, while almost all the transcription factors analyzed were upregulated. Based on the present results and in silico analyses, we propose an "interactomic" model simulating PI3K connections in P. lividus embryos. Our findings define a novel regulatory step in the embryonic skeletogenesis, and provide valuable molecular data for further studies on the role of PI3K signaling in invertebrate biomineralization.
Collapse
|
13
|
Morroni L, Sartori D, Costantini M, Genovesi L, Magliocco T, Ruocco N, Buttino I. First molecular evidence of the toxicogenetic effects of copper on sea urchin Paracentrotus lividus embryo development. WATER RESEARCH 2019; 160:415-423. [PMID: 31163317 DOI: 10.1016/j.watres.2019.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Bioassays with sea urchin embryos are widely used to define the environmental quality of marine waters. Anomalies during embryogenesis are generally considered as end-points, whereas a toxigenomic approach, despite it is wide use in other species, is yet in its infancy. In the present study we evaluated toxigenic effects induced by copper on the sea urchin Paracentrotus lividus embryo, combining morphological observations with gene expression analysis. Many anthropogenic activities release copper in the marine environment, with harmful effects on aquatic organisms. In the present study P. lidivus embryos were exposed to different concentrations of copper (24, 36, 48 μg/L) and the activation of fifty specific marker genes, involved in different biological processes (stress, skeletogenesis, development/differentiation, detoxification) was investigated at early blastula, late gastrula and pluteus stage. At blastula stage no morphological anomalies were found, with early down-regulation of genes involved in development/differentiation and a moderate up-regulation of some detoxification genes. At gastrula stage a slight increase in developmental anomalies (up to 19% of malformed embryos) was followed by an increased number of targeted genes belonging to the same two classes, relative to the blastula stage. At pluteus stage morphological anomalies increased in a dose dependent manner. All the analyzed genes were strongly up-regulated, stress and skeletogenic genes showing a "late response" and almost all genes were targeted by copper at all the concentrations tested. The present study represents the first molecular report on the potential negative effect of copper on P. lividus embryos in the environment. Gene expression analysis should be considered as a promising tool for future environmental biomonitoring programs.
Collapse
Affiliation(s)
- Lorenzo Morroni
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Lorenzo Genovesi
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Thomas Magliocco
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
14
|
Ruocco N, Cavaccini V, Caramiello D, Ianora A, Fontana A, Zupo V, Costantini M. Noxious effects of the benthic diatoms Cocconeis scutellum and Diploneis sp. on sea urchin development: Morphological and de novo transcriptomic analysis. HARMFUL ALGAE 2019; 86:64-73. [PMID: 31358278 DOI: 10.1016/j.hal.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Diatoms are often the dominating group of benthic microalgae living on different types of bottom substrates. Their effects on invertebrate consumers is not well-documented. We here investigate the effects of feeding on another two benthic diatoms, Cocconeis scutellum and Diploneis sp., isolated from leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Our results indicate a noxious effect on sea urchin embryos spawned from adults fed on Diploneis sp., with an increasing number of malformed embryos with respect to those spawned from adults fed on Ulva rigida (used as a feeding control). In contrast C. scutellum did not induce any morphological effect on embryos, similar to control non-diatom diets. Moreover, de novo obtained transcriptome indicated that oxidation-reduction process, translation, proton and electron transmembrane transport, ATP/RNA/GTP/heme/calcium and metal ion binding, NADH dehydrogenase activity, cytochrome c oxidase were affected by feeding of sea urchins on Diploneis sp. Our findings have considerable ecological significance considering that diatom biomass ingested by the sea urchin in these experiments is within the range of cell densities characterizing P. oceanica leaves where sea urchins live and spawn.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy; Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Vincenzo Cavaccini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Davide Caramiello
- Unit Marine Resources for Research, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Valerio Zupo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
15
|
Albarano L, Ruocco N, Ianora A, Libralato G, Manfra L, Costantini M. Molecular and Morphological Toxicity of Diatom-Derived Hydroxyacid Mixtures to Sea Urchin Paracentrotus lividus Embryos. Mar Drugs 2019; 17:md17030144. [PMID: 30823630 PMCID: PMC6470663 DOI: 10.3390/md17030144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/21/2019] [Accepted: 02/24/2019] [Indexed: 11/16/2022] Open
Abstract
Oxylipins such as polyunsaturated aldehydes (PUAs) and hydroxyacids (HEPEs) are signaling molecules derived from the oxidation of polyunsaturated fatty acids. They are common in diatoms that constitute a major group of microalgae in freshwater and oceanic ecosystems. Although HEPEs represent the most common oxylipins produced by diatoms, little information is available on their effects on marine invertebrates, and most of the information has been obtained by testing individual HEPEs. Our previous studies reported that four hydroxyacids, i.e., 5-, 9-, 11-, and 15-HEPE, were able to induce malformations and a marked developmental delay in sea urchin Paracentrotus lividus embryos, which had not been reported for other oxylipins. Here, we tested a mixture of 5-, 9-, 11-, and 15-HEPE at different concentrations for the first time. The results showed that mixtures of HEPEs have synergistic effects that are much more severe compared to those of individual HEPEs: The HEPE mixtures induced malformations in sea urchin embryos at lower concentrations. Increasing HEPE mixture concentrations induced a marked increase in the number of delayed embryos, until all embryos were delayed at the highest concentration tested. At the molecular level, the HEPE mixtures induced variations in the expression of 50 genes involved in different functional processes, mainly down-regulating these genes at the earliest stages of embryonic development. These findings are ecologically significant, considering that during diatom blooms, sea urchins could accumulate HEPEs in concentrations comparable to those tested in the present study.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Giovanni Libralato
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126 Napoli, Italy.
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), 00144 Rome, Italy.
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
16
|
Toxicity of diatom-derived polyunsaturated aldehyde mixtures on sea urchin Paracentrotus lividus development. Sci Rep 2019; 9:517. [PMID: 30679744 PMCID: PMC6345956 DOI: 10.1038/s41598-018-37546-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal, derive from the oxidation of fatty acids and have cytotoxic and anticancer effects. PUAs, tested separately, induce malformations in sea urchin Paracentrotus lividus embryos. Decadienal induces the worst malformations and lowest survival rates. Interestingly, decadienal, heptadienal and octadienal place in motion several genes to counteract their negative effects. To date, no studies are available reporting on the effects of PUA mixtures on marine invertebrates. Here we test binary and ternary mixtures on embryonic development of P. lividus. Our findings demonstrate that mixtures of PUAs act (i) at morphological level in synergistic way, being much more severe compared to individual PUAs; (ii) at molecular level also reveal an additive effect, affecting almost all fifty genes, previously tested using individual PUAs. This study is relevant from an ecological point of view since diatoms are a major food source for both pelagic and benthic organisms. This work opens new perspectives for understanding the molecular mechanisms that marine organisms use in reacting to environmental natural toxin mixtures such as diatom PUAs.
Collapse
|
17
|
Della Torre C, Buttino I, Volpi Ghirardini A, Faimali M, Mugnai C, Libralato G. 7th Biannual ECOtoxicology MEeting (BECOME 2016) - Managing aquatic and terrestrial environments: An ecotoxicological perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:223-224. [PMID: 29554607 DOI: 10.1016/j.ecoenv.2018.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Camilla Della Torre
- Department of Bioscience, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research, ISPRA, Piazzale dei Marmi 12, 57123 Livorno, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari Venice, Via Torino 152, 30172 Venezia-Mestre, Italy
| | - Marco Faimali
- Institute of Marine Sciences, National Research Council, Via de Marini 6, 16149 Genova, Italy
| | - Cristian Mugnai
- Italian Institute for Environmental Protection and Research, ISPRA, Via V. Brancati 48, 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia ed. 7, 80126 Naples, Italy.
| |
Collapse
|
18
|
Toxigenic effects of two benthic diatoms upon grazing activity of the sea urchin: morphological, metabolomic and de novo transcriptomic analysis. Sci Rep 2018; 8:5622. [PMID: 29618786 PMCID: PMC5884808 DOI: 10.1038/s41598-018-24023-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 01/15/2023] Open
Abstract
Diatoms are unicellular algae playing a key role as photosynthetic organisms in the world's ocean food webs. The chemical ecology of planktonic diatoms is well documented, but few studies have reported on the effects of benthic diatoms on their consumers, also due to difficulties in the collection, quantification and massive culturing of benthic species. Here for the first time we investigate the effects of feeding on two abundantly occurring benthic diatoms, Nanofrustulum shiloi and Cylindrotheca closterium, isolated from the leaves of the seagrass Posidonia oceanica, on the sea urchin Paracentrotus lividus. Adult P. lividus were fed for one month on diets of either one of the two diatoms and on the green alga Ulva rigida, used as a feeding control. By combining morphological, metabolomic and de novo transcriptomic approaches, we demonstrate toxigenic effect on embryos generated by females fed with these benthic diatoms. Furthermore, chemical analysis reveal the presence of polyunsaturated aldehydes only for N. shiloi, and a high production of other oxylipins (cytotoxic compounds on their grazers and on cancer cell lines) for both diatoms, including some additional peaks not correlated to the canonic oxylipins commonly observed in planktonic diatoms. These findings open new perspectives in the study of diatom secondary metabolites influencing their grazers.
Collapse
|