1
|
Wang N, Chen H, Tian Y. Effects of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings. Sci Rep 2024; 14:24832. [PMID: 39438605 PMCID: PMC11496656 DOI: 10.1038/s41598-024-77143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Heavy metal pollution causes severe abiotic stress in cereal crops around the world. This study investigated the effects of different concentrations (0, 100, 200, and 300 mg·kg-1) of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings, to provide a reference for research on the mechanism of invasion and screening potential sources of wheat tolerance genes. The results showed that nickel, lead, and copper stress caused a significant decrease in the contents of chlorophyll a, chlorophyll b, and chlorophyll (a + b) in A. tauschii, thereby inhibiting photosynthesis to different degrees and hindering seedling growth, which was reflected in significant reductions in plant height and root length, with the most notable effect observed under stress by 300 mg·kg-1 lead. As the concentration of heavy metals increased, the activities of antioxidant enzymes (SOD, POD, and APX), non-enzymatic antioxidants (GSH and AsA), and the contents of osmotic regulatory substances (proline and soluble proteins) in A. tauschii significantly increased. Additionally, heavy metal stress increased H2O2 and TBARS levels. However, when the nickel, lead, and copper concentrations reached 300 mg·kg-1, no significant differences were found in H2O2 or TBARS levels compared to those in the CK group. To summarize, A. tauschii can mitigate the accumulation of ROS and membrane lipid peroxidation caused by heavy metal stress through self-regulation, thus exhibiting a certain degree of tolerance to stress caused by different concentrations of nickel, lead, and copper. Finally, the evaluation using the membership function method revealed that among the three heavy metals, A. tauschii exhibited the strongest adaptation to Cu, followed by Ni and Pb.
Collapse
Affiliation(s)
- Ning Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Hao Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yaowu Tian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
2
|
Mahmoud AEM, Battaglia ML, Rady MM, Mohamed IAA, Alharby HF, Belal HEE, Desoky ESM, Galal TM, Ali EF. Alleviation of cadmium toxicity in soybean (Glycine max L.): Up-regulating antioxidant capacity and enzyme gene expressions and down-regulating cadmium uptake by organic or inorganic selenium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109068. [PMID: 39216160 DOI: 10.1016/j.plaphy.2024.109068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Although much interest has been focused on the role of selenium (Se) in plant nutrition over the last 20 years, the influences of organic selenium (selenomethionine; Se-Met) and inorganic selenium (potassium selenite; Se-K) on the growth and physiological characters of cadmium (Cd)-stressed Glycine max L.) seedlings have not yet been studied. In this study, the impacts of Se-Met or Se-K on the growth, water physiological parameters (gaseous exchange and leaf water content), photosynthetic and antioxidant capacities, and hormonal balance of G. max seedlings grown under 1.0 mM Cd stress were studied. The results showed that 30 μM Se-K up-regulates water physiological parameters, photosynthetic indices, antioxidant systems, enzymatic gene expression, total antioxidant activity (TAA), and hormonal balance. In addition, it down-regulates levels of reactive oxygen species (ROS; superoxide free radicals and hydrogen peroxide), oxidative damage (malondialdehyde content as an indicator of lipid peroxidation and electrolyte leakage), Cd translocation factor, and Cd content of Cd-stressed G. max seedlings. These positive findings were in favor of seedling growth and development under Cd stress. However, 50 μM Se-Met was more efficient than 30 μM Se-K in promoting the above-mentioned parameters of Cd-stressed G. max seedlings. From the current results, we conclude Se-Met could represent a promising strategy to contribute to the development and sustainability of crop production on soils contaminated with Cd at a concentration of up to 1.0 mM. However, further work is warranted to better understand the precise mechanisms of Se-Met action under Cd stress conditions.
Collapse
Affiliation(s)
- Amr E M Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Martin L Battaglia
- Center for Sustainability Science, The Nature Conservancy, Arlington, VA, 22203, USA
| | - Mostafa M Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
| | - Ibrahim A A Mohamed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hussein E E Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - El-Sayed M Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tarek M Galal
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
3
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
4
|
Saeed W, Mubeen S, Pan J, Rehman M, Fang W, Luo D, Liu P, Li Y, Chen P. Integrated physiological and metabolomic responses reveal mechanisms of Cd tolerance and detoxification in kenaf ( Hibiscus cannabinus L.) under Cd stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1332426. [PMID: 39175486 PMCID: PMC11340530 DOI: 10.3389/fpls.2024.1332426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2024] [Indexed: 08/24/2024]
Abstract
Introduction Cadmium (Cd) is a highly toxic trace element that occurs in large quantities in agricultural soils. The cultivation of industrial crops with high phytoremediation potential, such as kenaf, could effectively reduce soil Cd contamination, but the mechanisms of toxicity, tolerance, and detoxification remain unclear. Methods In this study, the effects of different Cd concentrations (0, 100, 250, and 400 µM) on growth, biomass, Cd uptake, physiological parameters, metabolites and gene expression response of kenaf were investigated in a hydroponic experiment. Results and discussion The results showed that Cd stress significantly altered the ability of kenaf to accumulate and transport Cd; increased the activity of hydrogen peroxide (H2O2), superoxide anion (O2 -), and malondialdehyde (MDA); reduced the activities of superoxide dismutase (SOD) and catalase (CAT); and decreased the content of photosynthetic pigments, resulting in significant changes in growth and biomass production. Exposure to Cd was found to have a detrimental effect on the ascorbate-glutathione (AsA-GSH) cycle in the roots, whereas it resulted in an elevation in AsA levels and a reduction in GSH levels in the leaves. The increased content of cell wall polysaccharides under Cd stress could contribute to Cd retention in roots and limited Cd transport to above-ground plant tissues. Metabolomic analyses revealed that alanine, aspartate, and glutamate metabolism, oxidative phosphorylation, ABC transporter, and carbon metabolism were the major metabolic pathways associated with Cd stress tolerance. Cd stress increased gene expression of IRT1 and MTP1 in roots, which resulted in kenaf roots accumulating high Cd concentrations. This study extends our knowledge of the factors regulating the response of kenaf to Cd stress. This work provided a physiological and metabolomic perspective on the mechanism controlling the response of kenaf to Cd stress.
Collapse
Affiliation(s)
- Wajid Saeed
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wangqiang Fang
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Pingwu Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Yun Li
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
6
|
Osman HE, Fadhlallah RS, El-Morsy MHE. Synergistic effect by Sorghum bicolor L., citric acid, biochar, and vermiwash amendment for the remediation of a mine-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47655-47673. [PMID: 39003426 DOI: 10.1007/s11356-024-34223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
Phytoremediation is an in situ remediation and eco-friendly technique employing accumulator plant species to remove trace elements (TEs) from contaminated sites. Moreover, it has been demonstrated that both natural and synthetic amendments can enhance trace elements (TEs) phytoremediation from polluted soils through bioenergy crops. This work assessed the synergistic impact of two tested biochar (BC) from data palm (B1) and Prosopis (B2) (1.5%/ kg), citric acid (CA, 1.5 mmol/kg) and vermiwash (VW, 20 ml/kg) to enhance the remediation of tested TEs (Mn, Zn, Cd, Pb, Ni, Cu, and Fe) from Mahad AD'Dahab mine-contaminated soil by sorghum (Sorghum bicolor L.). The BC and CA amendments alone and combined with VW significantly augmented the proliferation and survival of sorghum grown in mine-contaminated soil. Considering the individual and combined applications of VW and BC, the influence on plant growth followed this order: K < VW < B2 < B1 < B1 + VW < B2 + VW < CA < CA + VW. Applying tested BC/CA and VW significantly increased chlorophyll compared to unamended soil. The outcomes revealed a substantial elevation in TE absorption in both shoot and root (p ≤ 0.05) with all tested treatments compared to the untreated soil (K). The combined application of CA and VW resulted in the most significant TE uptake of TEs at both the root and the shoot. Furthermore, adding CA or VW as a foliar spray enhanced the bioaccumulation factor (BCF) and translocation factor (TF) of studied metals. The combined addition of CA and foliar spraying of VW was more effective than the sole addition of CA or VW. Such increase reached 20.0%, 15.6%, 19.4%, 14.3%, 14.0%, and 25.6% of TF, and 13.7%, 11.9%, 8.3%, 20.9%, 20.5%,18.7%, and 19.8% of BCE for Cd, Cu, Fe, Mn, Ni, Pb, and Zn, respectively. This study highlights the efficiency of combining CA/BC with VW as a more viable option for remediating mine-contaminated soil than individual amendments. However, future research should prioritize long-term field trials to assess the efficiency of using citric acid and vermiwash for restoring contaminated mining soils.
Collapse
Affiliation(s)
- Hanan E Osman
- Biology Department, Faculty of Science, Umm-Al-Qura University, Makkah, Saudi Arabia.
| | - Ruwaydah S Fadhlallah
- Biology Department, Faculty of Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed H E El-Morsy
- Deanship of Postgraduate Studied and Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
7
|
Vitelli V, Giamborino A, Bertolini A, Saba A, Andreucci A. Cadmium Stress Signaling Pathways in Plants: Molecular Responses and Mechanisms. Curr Issues Mol Biol 2024; 46:6052-6068. [PMID: 38921032 PMCID: PMC11202648 DOI: 10.3390/cimb46060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Heavy metal (HM) pollution, specifically cadmium (Cd) contamination, is a worldwide concern for its consequences for plant health and ecosystem stability. This review sheds light on the intricate mechanisms underlying Cd toxicity in plants and the various strategies employed by these organisms to mitigate its adverse effects. From molecular responses to physiological adaptations, plants have evolved sophisticated defense mechanisms to counteract Cd stress. We highlighted the role of phytochelatins (PCn) in plant detoxification, which chelate and sequester Cd ions to prevent their accumulation and minimize toxicity. Additionally, we explored the involvement of glutathione (GSH) in mitigating oxidative damage caused by Cd exposure and discussed the regulatory mechanisms governing GSH biosynthesis. We highlighted the role of transporter proteins, such as ATP-binding cassette transporters (ABCs) and heavy metal ATPases (HMAs), in mediating the uptake, sequestration, and detoxification of Cd in plants. Overall, this work offered valuable insights into the physiological, molecular, and biochemical mechanisms underlying plant responses to Cd stress, providing a basis for strategies to alleviate the unfavorable effects of HM pollution on plant health and ecosystem resilience.
Collapse
Affiliation(s)
- Valentina Vitelli
- Department of Biology, University of Pisa, 56126 Pisa, Italy;
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Agnese Giamborino
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Area, University of Pisa, 56126 Pisa, Italy; (A.G.); (A.B.); (A.S.)
| | | |
Collapse
|
8
|
Su Y, Shi Q, Li Z, Deng H, Zhou Q, Li L, Zhao L, Yuan S, Liu Q, Chen Y. Rhodopseudomonas palustris shapes bacterial community, reduces Cd bioavailability in Cd contaminated flooding paddy soil, and improves rice performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171824. [PMID: 38521273 DOI: 10.1016/j.scitotenv.2024.171824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Photosynthetic bacteria (PSB) are suitable to live and remediate cadmium (Cd) in the slightly oxygenated or anaerobic flooding paddy field. However, there is currently limited study on the inhibition of Cd accumulation in rice by PSB, and the relevant mechanisms has yet to be elucidated. In the current study, we firstly used Rhodopseudomonas palustris SC06 (a typical PSB) as research target and combined physiology, biochemistry, microbiome and metabolome to evaluate the mechanisms of remeding Cd pollution in paddy field and inhibiting Cd accumulation in rice. Microbiome analysis results revealed that intensive inoculation with R. palustris SC06 successfully survived and multiplied in flooding paddy soil, and significantly increased the relatively abundance of anaerobic bacteria including Desulfobacterota, Anaerolineaceae, Geobacteraceae, and Gemmatimonadaceae by 46.40 %, 45.00 %, 50.12 %, and 21.30 %, respectively. Simultaneously, the structure of microbial community was regulated to maintain relative stability in the rhizosphere soil of rice under Cd stress. In turn, these bacteria communities reduced bioavailable Cd and enhanced residual Cd in soil, and induced the upregulation of sugar and organic acids in the rice roots, which further inhibited Cd uptake in rice seedlings, and dramatically improved the photosynthetic efficiency in the leaves and the activities of antioxidative enzymes in the roots. Finally, Cd content of the roots, stems, leaves, and grains significantly decreased by 38.14 %, 69.10 %, 83.40 %, and 37.24 % comparing with the control, respectively. This study provides a new strategy for the remediation of Cd-contaminated flooding paddy fields and the safe production of rice.
Collapse
Affiliation(s)
- Yanqiu Su
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu 610101, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China.
| | - Qiuyun Shi
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ziyuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Hongmei Deng
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Qian Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lihuan Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Lanyin Zhao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, Guangdong 510640, China
| | - Yanger Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
9
|
Saeed SH, Shah GM, Mahmood Q, Shaheen S, Zeb BS, Nawazish S, Almutairi KF, Avila-Quezada GD, Abd Allah EF. Phytoremediation ability and selected genetic transcription in Hydrocotyle umbellata-under cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1144-1153. [PMID: 38143325 DOI: 10.1080/15226514.2023.2295354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Cadmium (Cd) is the most toxic element which may cause serious consequences to microbial communities, animals, and plants. The use of green technologies like phytoremediation employs plants with high biomass and metal tolerance to extract toxic metals from their rooting zones. In the present work, Hydrocotyle umbellata was exposed to five Cd concentrations (2, 4, 6, 8, and 10 µmol) in triplicates to judge its phytoextraction ability. Effects of metal exposure on chlorophyll (Chl), bio-concentration factor (BCF), translocation factor (TF), and electrolyte leakage (EL) were analyzed after 10 days of treatment. Metal-responding genes were also observed through transcriptomic analysis. Roots were the primary organs for cadmium accumulation followed by stolon and leaves. There was an increase in EL. Plants showed various symptoms under increasing metal stress namely, chlorosis, browning of the leaf margins, burn-like areas on the leaves, and stunted growth, suggesting a positive relationship between EL, and programmed cell death (PCD). Metal-responsive genes, including glutathione, expansin, and cystatin were equally expressed. The phytoextraction capacity and adaptability of H. umbellata L. against Cd metal stress was also demonstrated by BCF more than 1 and TF less than 1.
Collapse
Affiliation(s)
- Sidra H Saeed
- Department of Botany, Hazara University Garden Campus, Mansehra, Pakistan
| | - Ghulam M Shah
- Department of Botany, Hazara University Garden Campus, Mansehra, Pakistan
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
- Department of Environmental Sciences, Kohsar University, Murree, Pakistan
| | - Shahida Shaheen
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Bibi S Zeb
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Khalid F Almutairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
11
|
Hou R, Wang Z, Zhu Q, Wang J, Zhou Y, Li Y, Liu H, Zhao Q, Huang J. Identification and characterization of the critical genes encoding Cd-induced enhancement of SOD isozymes activities in Zhe-Maidong ( Ophiopogon japonicus). FRONTIERS IN PLANT SCIENCE 2024; 15:1355849. [PMID: 38606075 PMCID: PMC11007131 DOI: 10.3389/fpls.2024.1355849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
Abstract
Superoxide dismutase (SOD) protects plants from abiotic stress-induced reactive oxygen species (ROS) damage. Here, the effects of cadmium (Cd) exposure on ROS accumulation and SOD isozymes, as well as the identification of significant SOD isozyme genes, were investigated under different Cd stress treatments to Zhe-Maidong (Ophiopogon japonicus). The exposure to Cd stress resulted in a notable elevation in the SOD activity in roots. Cu/ZnSODa and Cu/ZnSODb were the most critical SOD isozymes in response to Cd stress, as indicated by the detection results for SOD isozymes. A total of 22 OjSOD genes were identified and classified into three subgroups, including 10 OjCu/ZnSODs, 6 OjMnSODs, and 6 OjFeSODs, based on the analysis of conserved motif and phylogenetic tree. Cu/ZnSOD-15, Cu/ZnSOD-18, Cu/ZnSOD-20, and Cu/ZnSOD-22 were the main genes that control the increase in SOD activity under Cd stress, as revealed via quantitative PCR and transcriptome analysis. Additionally, under various heavy metal stress (Cu2+, Fe2+, Zn2+, Mn2+), Cu/ZnSOD-15, Cu/ZnSOD-18, and Cu/ZnSOD-22 gene expression were significantly upregulated, indicating that these three genes play a critical part in resisting heavy metal stress. The molecular docking experiments performed on the interaction between oxygen ion (O2•-) and OjSOD protein have revealed that the critical amino acid residues involved in the binding of Cu/ZnSOD-22 to the substrate were Pro135, Ile136, Ile140, and Arg144. Our findings provide a solid foundation for additional functional investigations on the OjSOD genes, as well as suggestions for improving genetic breeding and agricultural management strategies to increase Cd resistance in O. japonicus.
Collapse
Affiliation(s)
- Ruijun Hou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Zhihui Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Qian Zhu
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jie Wang
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Yifeng Zhou
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Huijun Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qian Zhao
- Zhejiang University of Science and Technology, Hangzhou, China
| | - Jun Huang
- Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
12
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
13
|
Stojanov N, Maletić S, Beljin J, Đukanović N, Kiprovski B, Zeremski T. Enhancing Phytoextraction Potential of Brassica napus for Contaminated Dredged Sediment Using Nitrogen Fertilizers and Organic Acids. PLANTS (BASEL, SWITZERLAND) 2024; 13:818. [PMID: 38592795 PMCID: PMC10976009 DOI: 10.3390/plants13060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Dredged sediment contaminated with heavy metals can be remediated through phytoremediation. The main challenge in phytoremediation is the limited availability of heavy metals for plant uptake, particularly in multi-contaminated soil or sediment. This study aimed to assess the effect of the nitrogen fertilizers (ammonium nitrate (AN), ammonium sulfate (AS), and urea (UR)), organic acids (oxalic (OA) and malic (MA) acids), and their combined addition to sediment on enhancing the bioavailability and phytoremediation efficiency of heavy metals. The sediment dredged from Begej Canal (Serbia) had high levels of Cr, Cd, Cu, and Pb and was used in pot experiments to cultivate energy crop rapeseed (Brassica napus), which is known for its tolerance to heavy metals. The highest accumulation and translocation of Cu, Cd, and Pb were observed in the treatment with AN at a dose of 150 mg N/kg (AN150), in which shoot biomass was also the highest. The application of OA and MA increased heavy metal uptake but resulted in the lowest biomass production. A combination of MA with N fertilizers showed high uptake and accumulation of Cr and Cu.
Collapse
Affiliation(s)
- Nadežda Stojanov
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| | - Snežana Maletić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Jelena Beljin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Nina Đukanović
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (S.M.); (J.B.); (N.Đ.)
| | - Biljana Kiprovski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| | - Tijana Zeremski
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (B.K.); (T.Z.)
| |
Collapse
|
14
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
15
|
Wang H, Liu H, Li J, Chen S, Uz Zaman Q, Sultan K, Rehman M, Saud S, El-Kahtany K, Fahad S, Deng G, Chen A. Combined passivators regulate physiological, antioxidant potential and metals accumulation in potato grown in metals contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168956. [PMID: 38043817 DOI: 10.1016/j.scitotenv.2023.168956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
To solve the problem of excessive heavy metals in farmland soil, there is a dire need for research effort to screen for the soil passivator materials. This study aimed to develop a practical novel approach for improving the potato growth and remedial effectiveness of the metals by optimal combination and dosage of various passivators. Experimental treatments were comprised of various levels of passivating agents (sepiolite, quicklime and calcium magnesium phosphate) in individual and combined form. Results showed that application of passivating agents significantly enhanced growth by optimizing photosynthetic attributes, enzymatic antioxidants, and soil health. Balanced application of passivators effectively reduce the bioavailability of metals, curbing their uptake by potato plants. Sole application of all the agents results statistically similar outcomes as compared with combined form. Additionally, passivators indirectly enhance the activity of essential antioxidant enzymes. Synergistic effect of all the agents significantly improved the tuber quality by decreasing the accumulation of proline, malondialdehyde content, and bioaccumulation of Cu, Pb, Cd, and As in potato parts. In crux, combined usage of passivating agents proved to be of better growth, improvement in antioxidative defense system, and better quality of potato. By mitigating heavy metal contamination, passivators not only enhance crop quality and yield but also ensure heavy metal-free potatoes that meet stringent food safety standards.
Collapse
Affiliation(s)
- Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Hao Liu
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Junhua Li
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products Safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Khaled El-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, Yunnan 650504, China.
| | - Aie Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan 650500, China; Teaching Affairs Department, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
16
|
Hussain M, Hafeez A, Al-Huqail AA, Alsudays IM, Alghanem SMS, Ashraf MA, Rasheed R, Rizwan M, Abeed AHA. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108433. [PMID: 38364631 DOI: 10.1016/j.plaphy.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Rapid industrialization and extensive agricultural practices are the major causes of soil heavy metal contamination, which needs urgent attention to safeguard the soils from contamination. However, the phytotoxic effects of excessive metals in plants are the primary obstacle to efficient phytoextraction. The present study evaluated the effects of hesperidin (HSP) on metals (Cu, Cd, Cr, Zn) phytoextraction by hyperaccumulator (Celosia argentea L.) plants. For this purpose, HSP, a flavonoid compound with strong antioxidant potential to assist metal phytoextraction was used under metal stress in plants. Celosia argentea plants suffered significant (P ≤ 0.001) oxidative damage due to the colossal accumulation of metals (Cu, Cd, Cr, Zn). However, HSP supplementation notably (P ≤ 0.001) abated ROS generation (O2•‒, •OH, H2O2), lipoxygenase activity, methylglyoxal production, and relative membrane permeability that clearly indicated HSP-mediated decline in oxidative injury in plants. Exogenous HSP improved (P ≤ 0.001) the production of non-protein thiol, phytochelatins, osmolytes, and antioxidant compounds. Further, HSP enhanced (P ≤ 0.001) H2S and NO endogenous production, which might have improved the GSH: GSSG ratio. Consequently, HSP-treated C. argentea plants had higher biomass alongside elevated metal accumulation mirrored as profound modifications in translocation factor (TF), bioaccumulation coefficient (BAC), and bioconcentration factor (BCF). In this context, HSP significantly enhanced TF of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.01), while BAC of Cr (P ≤ 0.001), Cd (P ≤ 0.001), and Zn (P ≤ 0.001). Further, BCF was significant (P ≤ 0.05) only in plants grown under Cr-spiked soil. Overall, HSP has the potential for phytoremediation of metals by C. argentea, which might be a suitable strategy for metal-polluted soils.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | | | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
17
|
Yang X, Li J, Yang Z, Chen M, Zhang L. Plant growth promoting bacteria and citric acid promote growth and cadmium phytoremediation in ryegrass. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:382-392. [PMID: 37578385 DOI: 10.1080/15226514.2023.2243631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Based on the growth-promoting effect of plant growth promoting bacteria on plants and the mobilization of Cd by citric acid, an experiment was designed in which the combined treatment of Bacillus megaterium and citric acid promoted ryegrass to repair Cd-contaminated soil. This study aimed to evaluate the effects of different treatments on the antioxidant enzyme activity, photosynthesis intensity, Cd accumulation, and rhizosphere cadmium migration under cadmium contamination conditions. And the soil morphology and structure changes were studied by infrared spectroscopy FourierTransformInfrared(FT-IR) and scanning electron microscope Energy Dispersive Spectrometer(SEM-EDS) before and after different treatments. The results show that the combined treatment of Bacillus megaterium and citric acid significantly improved the oxidative stress defense and plant photosynthesis and increased of rye biomass. rye biomass 1.28 times higher than CK treatment. Joint treatment significantly increased the amount of shoot accumulation of Cd, 2.31 times higher than CK treatment, increased the migration and accumulation of cadmium. FTIR and SEM-EDS also showed that the organic constituents such as O-H, C-O and C-N in soils as a major mechanism for mobilization of the heavy metal Cd. Thus, the combined treatment of Bacillus megaterium and citric acid can promote plant growth, improve the damage to ryegrass caused by single organic acid addition, and improve the plant extraction efficiency, which is a feasible way to repair Cd-contaminated soil through activated extraction system.
Collapse
Affiliation(s)
- Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | | | - Mengxin Chen
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University Qingdao, PR China
| |
Collapse
|
18
|
Okla MK, Saleem MH, Saleh IA, Zomot N, Perveen S, Parveen A, Abasi F, Ali H, Ali B, Alwasel YA, Abdel-Maksoud MA, Oral MA, Javed S, Ercisli S, Sarfraz MH, Hamed MH. Foliar application of iron-lysine to boost growth attributes, photosynthetic pigments and biochemical defense system in canola (Brassica napus L.) under cadmium stress. BMC PLANT BIOLOGY 2023; 23:648. [PMID: 38102555 PMCID: PMC10724993 DOI: 10.1186/s12870-023-04672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
In the current industrial scenario, cadmium (Cd) as a metal is of great importance but poses a major threat to the ecosystem. However, the role of micronutrient - amino chelates such as iron - lysine (Fe - lys) in reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous applications of Fe - lys i.e., 0 and10 mg L - 1, were examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments, oxidative stress indicators and antioxidant response, sugar and osmolytes under the soil contaminated with varying levels of Cd i.e., 0, 50 and 100 µM using two different varieties of canola i.e., Sarbaz and Pea - 09. Results revealed that the increasing levels of Cd in the soil decreased plant growth and growth-related attributes and photosynthetic apparatus and also the soluble protein and soluble sugar. In contrast, the addition of different levels of Cd in the soil significantly increased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), which induced oxidative damage in both varieties of canola i.e., Sarbaz and Pea - 09. However, canola plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and non-enzymatic compounds such as phenolic, flavonoid, proline, and anthocyanin, which scavenge the over-production of reactive oxygen species (ROS). Cd toxicity can be overcome by the supplementation of Fe - lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and sugar contents, and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of Cd in the soil. Research findings, therefore, suggested that the Fe - lys application can ameliorate Cd toxicity in canola and result in improved plant growth and composition under metal stress.
Collapse
Affiliation(s)
- Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110, Jordan
| | - Shagufta Perveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yasmeen A Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mükerrem Atalay Oral
- Elmalı Vocational School of Higher Education, Akdeniz University, Antalya, 07058, Türkiye
| | - Sadia Javed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan.
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Muhammad Hassan Sarfraz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Institute of Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.
| | - Mahdy H Hamed
- Department of Soils and Water, Faculty of Agriculture, New Valley University, Kharga, 72511, Egypt
| |
Collapse
|
19
|
Raina R, Sharma P, Batish DR, Kohli RK, Singh HP. Comparative assessment of two biodegradable chelants, S,S-ethylenediamine disuccinic acid and nitrilotriacetic acid, in facilitating Cd remediation by lesser swine cress (Coronopus didymus, Brassicaceae). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1526. [PMID: 37996714 DOI: 10.1007/s10661-023-12073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Chemically assisted phytoremediation is suggested as an effective approach to amplify the metal-remediating potential of hyperaccumulators. The current study assessed the efficiency of two biodegradable chelants (S,S-ethylenediamine disuccinic acid, EDDS; nitrilotriacetic acid, NTA) in enhancing the remediation of Cd by Coronopus didymus (Brassicaceae). C. didymus growing in Cd-contaminated soil (35-175 mg kg-1 soil) showed increased growth and biomass due to the hormesis effect, and chelant supplementation further increased growth, biomass, and Cd accumulation. A significant interaction with chelants and different Cd concentrations was observed, except for Cd content in roots and Cd content in leaves, which exhibited a non-significant interaction with chelant addition. The effect of the NTA amendment on the root dry biomass and shoot dry biomass was more pronounced than EDDS at all the Cd treatments. Upon addition of EDDS and NTA, bio-concentration factor values were enhanced by ~184-205 and ~ 199-208, respectively. The tolerance index of root and shoot increased over the control upon the addition of chelants, with NTA being better than EDDS. With chelant supplementation, bio-accumulation coefficient values were in the order Cd35 + NTA (~163%) > Cd105 + NTA (~137%) > Cd35 + EDDS (~89%) > Cd175 + NTA (~85%) > Cd105 + EDDS (~62%) > Cd175 + EDDS (~40%). The translocation factor correlated positively (r ≥ 0.8) with tolerance index and Cd accumulation in different plant parts. The study demonstrated that chelant supplementation enhanced Cd-remediation efficiency in C. didymus as depicted by improved plant growth and metal accumulation, and NTA was more effective than EDDS in reclaiming Cd.
Collapse
Affiliation(s)
- Riya Raina
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Ravinder K Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
20
|
Kaya C, Ashraf M, Alyemeni MN, Rinklebe J, Ahmad P. Citric acid and hydrogen sulfide cooperate to mitigate chromium stress in tomato plants by modulating the ascorbate-glutathione cycle, chromium sequestration, and subcellular allocation of chromium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122292. [PMID: 37536477 DOI: 10.1016/j.envpol.2023.122292] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
The study aimed to investigate the role of hydrogen sulfide (H2S) in regulating chromium stress (Cr-S) tolerance of tomato plants treated with citric acid (CA). Prior to the Cr treatment, tomato plants were foliar-fed with CA (100 μM) daily for 3 days. Subsequently, the plants were grown for another ten days in a hydroponic system in a 50 μM Cr (VI) solution. Chromium treatment reduced photosynthetic pigments and plant biomass, but boosted the levels of hydrogen peroxide (H2O2) malondialdehyde (MDA), H2S, phytochelatins (PCs), and glutathione (GSH), electrolyte leakage (EL), and antioxidant enzyme activity in tomato plants. However, the foliar spray of CA mitigated the levels of H2O2, MDA, and EL, promoted plant growth and chlorophyll content, enhanced antioxidant enzymes' activities, and increased H2S production in Cr-S-tomato plants. CA also increased the levels of GSH and PCs, potentially reducing the toxicity of Cr through regulated sequestration. Additionally, the application of sodium hydrogen sulfide (NaHS), a donor of H2S, improved CA-induced Cr stress tolerance. The addition of CA promoted Cr accumulation in root cell wall and leaf vacuoles to suppress its toxicity. To assess the involvement of H2S in CA-mediated Cr-S tolerance, 0.1 mM hypotaurine (HT), an H2S scavenger, was provided to the control and Cr-S-plants along with CA and CA + NaHS. HT reduced the beneficial effects of CA by decreasing H2S production in tomato plants. However, the NaHS addition with CA + HT inverted the adverse impacts of HT, indicating that H2S is required for CA-induced Cr-S tolerance in tomato plants.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan; International Centre for Chemical and Biological Sciences, The University of Karachi, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
21
|
Ibrahim EA. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress. Sci Rep 2023; 13:13070. [PMID: 37567950 PMCID: PMC10421947 DOI: 10.1038/s41598-023-40233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoextraction is a novel technique that involves using plants to remove heavy metals from contaminated soils. An outdoor pot experiment was designed to evaluate the phytoextraction potential of three plant species Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus in soil contaminated with multiple metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) under the application of citric acid. The results showed that Raphanus sativus, out of all the studied plants, had the highest root and shoot dry weight and the capacity to accumulate all heavy metals at higher concentrations except for Cu. The application of citric acid into the polluted soil significantly increased plant growth, biomass, and heavy metal uptake. High bioconcentration values indicate that Raphanus sativus is a promising plant for absorbing and accumulating Cd and Ni from the soil. The maximum values of bioconcentration were also observed by the application of citric acid. The values of metal translocation from the root to the shoot were varied by plant species and the citric acid application. Regarding the biomass, metal content, as well as removal metal percentage values, it became apparent that the Raphanus sativus plant was the most effective crop in removing heavy metals from multi-metal contaminated Soil. Generally, these findings emphasize that the application of citric acid could be a useful approach to assist Cd and Ni phytoextraction by Raphanus sativus plants. When these plants are growing as vegetable crops, more attention should be given to evaluating the heavy metal content in them, especially when adding citric acid to their soil through fertigation systems to avoid food chain contamination.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| |
Collapse
|
22
|
Silambarasan S, Logeswari P, Vangnai AS, Pérez R, Kamaraj B, Cornejo P. Co-application of citric acid and Nocardiopsis sp. strain RA07 enhances phytoremediation potentiality of Sorghum bicolor L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86244-86254. [PMID: 37402921 DOI: 10.1007/s11356-023-28375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the combined effects of citric acid (CA) and Nocardiopsis sp. RA07 on the phytoremediation potential of lead (Pb)- and copper (Cu)-contaminated soils by Sorghum bicolor L. The strain RA07 was able to tolerate Pb and Cu, and exhibited plant growth-promoting features like siderophore production, indole-3-acetic acid (IAA) synthesis, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and phosphate solubilization. The combined application of CA and strain RA07 significantly increased S. bicolor growth, chlorophyll content and antioxidant enzymatic activity, and decreased oxidative stress (hydrogen peroxide and malondialdehyde content) under Pb and Cu stress circumstances as compared to individual treatments (i.e., CA and strain RA07). Furthermore, the combined application of CA and RA07 significantly enhanced S. bicolor ability to accumulate Pb and Cu by 64.41% and 60.71% in the root and 188.39% and 125.56% in the shoot, respectively, as compared to the corresponding uninoculated plants. Our results indicate that inoculation of Nocardiopsis sp. together with CA could be a useful practical approach to mitigate Pb and Cu stress on plant growth and increase the effectiveness of phytoremediation in Pb- and Cu-polluted soils.
Collapse
Affiliation(s)
- Sivagnanam Silambarasan
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile.
| | - Peter Logeswari
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Alisa S Vangnai
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rodrigo Pérez
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
- Doctorate Program in Sciences of Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco, Chile
| | - Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Pablo Cornejo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| |
Collapse
|
23
|
Ashraf MA, Ibrahim SM, Rasheed R, Rizwan M, Hussain I, Ali S. Effect of seed priming by taurine on growth and chromium (Cr) uptake in canola (Brassica napus L.) under Cr stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87851-87865. [PMID: 37434055 DOI: 10.1007/s11356-023-28471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Taurine is a recently recognized plant growth regulator under abiotic stress. However, the information on taurine-mediated plant defense responses is scarce, particularly on taurine-mediated regulation of the glyoxalase system. There is currently no report available on the use of taurine as seed priming under stress. Chromium (Cr) toxicity considerably subsided growth characteristics, photosynthetic pigments, and relative water content. Furthermore, plants encountered intensified oxidative injury due to a significant increase in relative membrane permeability, H2O2, O2•‒, and MDA production. The amount of antioxidant compounds and the functioning of antioxidant enzymes rose, but imbalance due to over ROS generation frequently depleted antioxidant compounds. Taurine seed priming (50, 100, 150, and 200 mg L‒1) notably diminished oxidative injury, strengthened the antioxidant system, and conspicuously subsided methylglyoxal levels through enhanced activities of glyoxalase enzymes. The accumulation of Cr content was minimal in plants administered taurine as seed priming. In conclusion, our research demonstrates that taurine priming effectively mitigated the adverse effects of Cr toxicity on canola. Taurine reduced oxidative damage, leading to improved growth, enhanced chlorophyll levels, optimized ROS metabolism, and enhanced methylglyoxal detoxification. These findings highlight the potential of taurine as a promising strategy to enhance the tolerance of canola plants to Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
24
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
25
|
Alam R, Rasheed R, Ashraf MA, Hussain I, Ali S. Allantoin alleviates chromium phytotoxic effects on wheat by regulating osmolyte accumulation, secondary metabolism, ROS homeostasis and nutrient acquisition. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131920. [PMID: 37413799 DOI: 10.1016/j.jhazmat.2023.131920] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/27/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Allantoin is a nitrogen metabolite with significant potential to mediate plant defense responses under salinity. However, the impact of allantoin on ions homeostasis and ROS metabolism has yet to be established in plants under Cr toxicity. In the current study, chromium (Cr) notably diminished growth, photosynthetic pigments, and nutrient acquisition in two wheat cultivars (Galaxy-2013 and Anaj-2017). Plants subjected to Cr toxicity displayed excessive Cr accumulation. Chromium produced substantial oxidative stress reflected as higher levels of O2•, H2O2, MDA, methylglyoxal (MG) and lipoxygenase activity. Plants manifested marginally raised antioxidant enzyme activities due to Cr stress. Further, reduced glutathione (GSH) levels diminished with a concurrent rise in oxidized glutathione levels (GSSG). Plants exhibited a considerable abridge in GSH:GSSG due to Cr toxicity. Allantoin (200 and 300 mg L1) subsided metal phytotoxic effects by strengthening the activities of antioxidant enzymes and levels of antioxidant compounds. Plants administered allantoin displayed a considerable rise in endogenous H2S and nitric oxide (NO) levels that, in turn, lessened oxidative injury in Cr-stressed plants. Allantoin diminished membrane damage and improved nutrient acquisition under Cr stress. Allantoin markedly regulated the uptake and distribution of Cr in wheat plants, abridging the degree of metal phytotoxic effect.
Collapse
Affiliation(s)
- Rizwan Alam
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
26
|
Tripti, Kumar A, Maleva M, Borisova G, Rajkumar M. Amaranthus Biochar-Based Microbial Cell Composites for Alleviation of Drought and Cadmium Stress: A Novel Bioremediation Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1973. [PMID: 37653890 PMCID: PMC10222574 DOI: 10.3390/plants12101973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Metal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains Serratia sp. FV34b and Pseudomonas sp. ASe42b isolated from multi-metal and drought stressed sites showed multiple plant-growth-promoting attributes (phosphate solubilization, indole-3-acetic acid, siderophore, and ammonia production). Both strains were able to tolerate a high concentration of Cd along with being resistant to drought (-0.05 to -0.73 MPa). The seldom studied biomass of Amaranthus caudatus L. was used for biochar preparation by pyrolyzing it at 470 °C for 160 min under limited oxygen and then using it for the preparation of biochar-based microbial cell composites (BMC)s. To check the efficiency of BMC under Cd stress (21 mg kg-1 soil) and drought, a pot-scale study was conducted using Brassica napus L. for 47 days. Both the BMC5 (Biochar + Serratia sp. FV43b) and BMC9 (Biochar + Pseudomonas sp. ASe42b) improved the seed germination, plant biometrical (shoot and root biomass, length of organs) and physiological (photosynthetic pigments, proline, malondialdehyde, and relative water content) parameters under drought (exerted until it reaches up to 50% of field capacity) and Cd-spiked soil. However, for most of them, no or few significant differences were observed for BMC9 before and after drought. Moreover, BMC9 maximized the Cd accumulation in root and meager transfer to shoot, making it a best bioformulation for sustainable bioremediation of Cd and drought stressed soils using rapeseed plant.
Collapse
Affiliation(s)
- Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Adarsh Kumar
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Maria Maleva
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia;
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Galina Borisova
- Department of Experimental Biology and Biotechnology, Ural Federal University, 620002 Ekaterinburg, Russia;
| | - Mani Rajkumar
- Department of Environmental Sciences, Bharathiar University, Coimbatore 641046, India;
| |
Collapse
|
27
|
Jiao Z, Shi Y, Wang J, Wang Z, Zhang X, Jia X, Du Q, Niu J, Liu B, Du R, Ji G, Cao J, Lv P. Integration of transcriptome and metabolome analyses reveals sorghum roots responding to cadmium stress through regulation of the flavonoid biosynthesis pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1144265. [PMID: 36909379 PMCID: PMC9996021 DOI: 10.3389/fpls.2023.1144265] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) pollution is a serious threat to plant growth and human health. Although the mechanisms controlling the Cd response have been elucidated in other species, they remain unknown in Sorghum (Sorghum bicolor (L.) Moench), an important C4 cereal crop. Here, one-week-old sorghum seedlings were exposed to different concentrations (0, 10, 20, 50, 100, and 150 μM) of CdCl2 and the effects of these different concentrations on morphological responses were evaluated. Cd stress significantly decreased the activities of the enzymes peroxidase (POD), superoxide dismutase (SOD), glutathione S-transferase (GST) and catalase (CAT), and increased malondialdehyde (MDA) levels, leading to inhibition of plant height, decreases in lateral root density and plant biomass production. Based on these results, 10 μM Cd concentration was chosen for further transcription and metabolic analyses. A total of 2683 genes and 160 metabolites were found to have significant differential abundances between the control and Cd-treated groups. Multi-omics integrative analysis revealed that the flavonoid biosynthesis pathway plays a critical role in regulating Cd stress responses in sorghum. These results provide new insights into the mechanism underlying the response of sorghum to Cd.
Collapse
Affiliation(s)
- Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xing Zhang
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Xinyue Jia
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Qi Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Bocheng Liu
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Ruiheng Du
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Guisu Ji
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| | - Junfeng Cao
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/ Hebei Branch of National Sorghum Improvement center/ Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs/ Key Laboratory of Minor Cereal Crops of Hebei Province, Shijiazhuang, China
| |
Collapse
|
28
|
Hussain A, Faizan S. Rhizobium induced modulation of growth and photosynthetic efficiency of Lens culinaris Medik. grown on fly ash amended soil by antioxidants regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46295-46305. [PMID: 36719579 DOI: 10.1007/s11356-023-25616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Rhizobium leguminosarum is a rhizospheres' nitrogen fixing microbe that improves plant growth and productivity by releasing sufficient nutrient sources from the root, by biological nitrogen fixation, solubilization of phosphorous, acquisition of iron, and enhancement of antioxidant activity in plants. On this account, a greenhouse experiment was carried out to assess the feasibility of growing lentil (Lens culinaris Medik.) on fly ash (FA) amended soil (0%, 10%, 20%, and 30%) in combination with R. leguminosarum inoculation. The data was recorded at 45 day after sowing to evaluate the plant growth characteristics, photosynthetic variables (total chlorophyll and carotenoid pigments, carbonic anhydrase activity, nitrate reductase activity), damage markers (ROS, MDA, and cell viability), and defensive factors (proline and antioxidants). Among the FA-proportions tested, 20% proved most favorable in all the mentioned attributes while 30% concentration had negative repercussions on all the variables. Rhizobium inoculation had synergistic effect on all the concentrations being maximum on 20% FA. Thus, Rhizobium and 20% FA caused a significant increase on growth characteristics, photosynthetic pigments; stomatal behavior (aperture shape, size, and frequency of stomata); and activity of CA and NR, and cell viability. Application of Rhizobium on 20% FA was corroborated with decline in MDA and ROS contents and a coordinated enhancement of the activity of SOD, CAT, and POX. Therefore, 20% FA with fly ash-tolerant strain of Rhizobium in Lens culinaris may be utilized as an integrated approach towards sustainable agriculture and an impulse of management of fly-ash.
Collapse
Affiliation(s)
- Alisha Hussain
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
29
|
Al-Khayri JM, Banadka A, Rashmi R, Nagella P, Alessa FM, Almaghasla MI. Cadmium toxicity in medicinal plants: An overview of the tolerance strategies, biotechnological and omics approaches to alleviate metal stress. FRONTIERS IN PLANT SCIENCE 2023; 13:1047410. [PMID: 36733604 PMCID: PMC9887195 DOI: 10.3389/fpls.2022.1047410] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.
Collapse
Affiliation(s)
- Jameel M. Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - R Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Fatima M. Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mustafa I. Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
30
|
Wang Y, Duan W, Lv C, Wei Z, Zhu Y, Yang Q, Liu Y, Shen Z, Xia Y, Duan K, Quan L. Citric Acid and Poly-glutamic Acid Promote the Phytoextraction of Cadmium and Lead in Solanum nigrum L. Grown in Compound Cd-Pb Contaminated Soils. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:37. [PMID: 36607448 DOI: 10.1007/s00128-022-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Phytoextraction is an efficient strategy for remediating heavy metal-contaminated soil. Chelators can improve the bioavailability of heavy metals and increase phytoextraction efficiency. However, traditional chelators have gradually been replaced due to secondary pollution. In this study, a typical organic acid (citric acid, CA) and a novel biodegradable chelator (poly-glutamic acid, PGA), were investigated using pot experiments to compare the phytoextraction efficiency of Solanum nigrum L. (a Cd (hyper)accumulator) for cadmium (Cd) and lead (Pb) in contaminated soil. The results showed CA and PGA significantly improved plant growth, and total Cd and Pb amounts of S. nigrum, both CA and PGA significantly increased the shoot Cd and Pb concentrations. However, only PGA significantly increased the root Pb concentration. CA and PGA application promoted the bioavailability of Cd and Pb in rhizosphere soils and their translocations from roots to shoots in S. nigrum. Both CA and PGA increased the phytoextraction efficiency of Cd and Pb in S. nigrum plants, and the PGA for Cd and Pb phytoextraction was more effective than CA. Our findings demonstrate that the biodegradable chelator PGA has great potential for enhancing phytoextraction from compound Cd-Pb contaminated soils, suggesting that biodegradable chelator-assisted phytoextraction with (hyper)accumulator is strongly recommended in severely contaminated sites.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Weidong Duan
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Chao Lv
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zhuangzhuang Wei
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Yanping Zhu
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qi Yang
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Ying Liu
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Zhenguo Shen
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, 450000, Zhengzhou, China
| | - Lingtong Quan
- College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
31
|
Xiao W, Zhang Q, Zhao S, Chen D, Gao N, Huang M, Ye X. Citric acid secretion from rice roots contributes to reduction and immobilization of Cr(VI) by driving microbial sulfur and iron cycle in paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158832. [PMID: 36122705 DOI: 10.1016/j.scitotenv.2022.158832] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Root exudates released by plants can promote microbial growth and activity, thereby affecting the transformation and availability of soil pollutants. However, the effects of the root exudates of rice plants on chromium (Cr) transformation in paddy soils and the underlying mechanisms are yet to be elucidated properly. The present study investigated how rice root exudates interact with rhizosphere microorganisms to influence the transformation of Cr and explored the key components in root exudates that affect Cr(VI) reduction. The results showed that the addition of root exudate and citric acid markedly decreased soil pH and increased dissolved organic carbon content that created favorable conditions and provided sufficient electron donors for Cr(VI) reduction, thereby greatly facilitating the reduction of Cr(VI) and the transformation of HOAc-extractable Cr into more stable oxidizable and residual Cr. Additionally, Desulfovibrio-related sulfate-reducing bacteria, Thiobacillus-related sulfide-oxidizing bacteria, and Geobacter-related Fe(III)-reducing bacteria were enriched with the addition of root exudate and citric acid. Among them, sulfate would be reduced by Desulfovibrio to sulfide, which would be further utilized by Thiobacillus to reduce Cr(VI), thereby enabling the continuous reduction of Cr(VI); simultaneously, Geobacter would sustain the reduction of Cr(VI) by reducing Fe(III) to Fe(II). Furthermore, based on the high-level secretion of citric acid in response to Cr(VI) exposure and the similar effects of root exudates and citric acid on Cr(VI) reduction, it is proposed that citric acid is the key component in rice root exudates that affects Cr(VI) reduction. These results suggest that root exudates (citric acid as the key component) contribute to the reduction and immobilization of Cr(VI) by driving microbial S and Fe cycles, with Desulfovibrio, Thiobacillus, and Geobacter being the keystone genera. The study provides a novel insight into the Fe/S/Cr co-transformation processes with microbial involvement, and the artificial root exudate mixtures designed to reduce Cr(VI).
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
32
|
Abdelkrim S, Abid G, Chaieb O, Taamalli W, Mannai K, Louati F, Jebara M, Jebara SH. Plant growth promoting rhizobacteria modulates the antioxidant defense and the expression of stress-responsive genes providing Pb accumulation and tolerance of grass pea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10789-10802. [PMID: 36083364 DOI: 10.1007/s11356-022-22874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
To ensure the success of phytoremediation, it is important to consider the appropriate combination of plants and microorganisms. This study was conducted to get a better insight into the underlying molecular and biochemical mechanism of grass pea (Lathyrus sativus L.) induced by plant growth promoting rhizobacteria (PGPR), when exposed for 3, 6, 9, and 14 days to 1 mM Pb in a hydroponic system. The significant positive effect of bacterial inoculation was reproduced in various parameters. Results indicated that inoculation of PGPR significantly increased the accumulation of Pb by 20%, 66%, 43%, and 36% in roots and by 46%, 55%, 37%, and 46% in shoots, respectively after 3, 6, 9, and 14 days of metal exposure compared to the uninoculated plants. The metal accumulation in grass pea plants triggered a significant elevation in the synthesis of non-protein thiols (NPT), particularly in inoculated plant leaves where it was about 3 and 2-fold higher than the uninoculated set on the 6th and the 9th day. Nevertheless, Pb treatment significantly increased oxidative stress and membrane damage in leaves with the highest hydrogen peroxide (H2O2) production and tissue malondialdehyde (MDA) concentration recorded in uninoculated plants. Furthermore, the PGPR inoculation alleviated the oxidative stress, improved significantly plant tolerance, and modulated the activities of antioxidant enzymes (SOD, CAT, APX, GR, DHAR, and MDHAR). Similarly, the expression patterns of LsPCS, LsGCN, LsCNGC, LsGR, and LsGST through qRT-PCR demonstrated that bacterial inoculation significantly induced gene expression levels in leaves 6 days after Pb treatment, indicating that PGPR act as regulators of stress-responsive genes. The findings suggest the key role of PGPR (R. leguminosarum (M5) + Pseudomonas fluorescens (K23) + Luteibacter sp. + Variovorax sp.) in enhancing Pb accumulation, reducing metal toxicity, strengthening of the antioxidant system, and conferring higher Pb tolerance to grass pea plants. Hence, the association Lathyrus sativus-PGPR is an effective tool to achieve the goal of remediation of Pb contaminated sites.
Collapse
Affiliation(s)
- Souhir Abdelkrim
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
- National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Oumaima Chaieb
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Wael Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
- Higher Institute of Biotechnology of Beja, University of Jendouba, BP 382, 9000, Beja, Tunisia
| | - Khediri Mannai
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Faten Louati
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia.
| | - Salwa Harzalli Jebara
- Laboratory of Legumes and Sustainable Agro-systems, Center of Biotechnology of Borj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| |
Collapse
|
33
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
34
|
Ahmad J, Beg MA, Ali AA, Al-Huqail AA, Qureshi MI. Trigonella foenum-graecum (fenugreek) differentially regulates antioxidant potential, photosynthetic, and metabolic activities under arsenic stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114128. [PMID: 36193587 DOI: 10.1016/j.ecoenv.2022.114128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As) contamination is continuously increasing in the groundwaters and soils around the world causing toxicity in the plants with a detrimental effect on physiology, growth, and yield. In a hydroponic system, thirty-day-old plants of Trigonella foenum-graecum were subjected to 0, 50, or 100 µM NaHAsO40.7 H2O for 10 days. The magnitude of oxidative stress increased, whereas growth indices and photosynthetic parameters decreased in a dose-dependent manner. The efficiency of photosystem II in terms of Hill reaction activity (HRA) or chlorophyll-a was adversely affected by As stress. The antioxidant potential of plants regarding ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was enhanced, indicating the augmented resistance mechanism in plants to counter As stress. The metabolite analysis of leaf extracts revealed many As responsive metabolites including amino acids, organic acids, sugars/polyols, and others. Phenylalanine and citrulline were highly accumulated at 50 or 100 µM As, salicylic acid accumulated more at 50 µM of As while ascorbic acid notably increased at 100 µM of As. At 50 or 100 µM As, the glucose and fructose contents increased while the sucrose content decreased. At both As doses, tagatose and glucitol contents were 13 times higher than controls. Varied accumulation of metabolites could be associated with the different As doses that represent the range of tolerance in T. foenum-graecum towards As toxicity. Pathway analysis of metabolites revealed that amino acid and carbohydrate metabolism and the citrate cycle play important roles under As stress. This study helps in a better metabolomic understanding of the dose-dependent toxicity and response of As in T. foenum-graecum.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India.
| | - Arlene A Ali
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Asma A Al-Huqail
- Chair of Climate Change, Environmental Development and Vegetation Cover, Department of Botany and Microbiology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - M Irfan Qureshi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
35
|
Sharma P, Rathee S, Ahmad M, Raina R, Batish DR, Singh HP. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1106-1115. [PMID: 36264021 DOI: 10.1080/15226514.2022.2133081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Riya Raina
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, India
| |
Collapse
|
36
|
Teng Y, Li Z, Yu A, Guan W, Wang Z, Yu H, Zou L. Phytoremediation of cadmium-contaminated soils by Solanum nigrum L. enhanced with biodegradable chelating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56750-56759. [PMID: 35347607 DOI: 10.1007/s11356-022-19879-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The application of biodegradable chelating agents to enhance phytoremediation is a low-cost and promising method to improve the remediation efficiency of heavy metal-contaminated soil. The effects of N, N-bis glutamic acid (GLDA) on the growth and heavy metal absorption of Solanum nigrum were studied by pot experiment. The addition of chelate on the 20th day after sowing can improve the bioavailability of cadmium (Cd) in the soil. The results showed that the addition of chelating agents effectively improved the migration rate of the target heavy metal Cd in the soil, and significantly increased the accumulation of heavy metal in the roots, stems, and leaves of plants. The results showed that compared with the control group, the chelating agent could increase the extraction rate of total Cd by 28.65-68.74%. The application of GLDA significantly increased the accumulation of Cd (20 mg kg-1 and 40 mg kg-1), reaching 24.28-40.30 and 25.71-33.16 μg of pot-1 DW, respectively. At the same time, GLDA increased Cd stress by decreasing plant biomass, inhibiting photosynthetic pigment synthesis and increasing MDA levels. These results indicated that GLDA could improve the absorption of Cd by S. nigrum, which provided a new idea for its practical application in the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yue Teng
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215009, China.
| | - Zhishuai Li
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - An Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wenjie Guan
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenjun Wang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hongyan Yu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyi Zou
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
37
|
Zhao Y, Vlasselaer L, Ribeiro B, Terzoudis K, Van den Ende W, Hertog M, Nicolaï B, De Coninck B. Constitutive Defense Mechanisms Have a Major Role in the Resistance of Woodland Strawberry Leaves Against Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2022; 13:912667. [PMID: 35874021 PMCID: PMC9298464 DOI: 10.3389/fpls.2022.912667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The necrotrophic fungus Botrytis cinerea is a major threat to strawberry cultivation worldwide. By screening different Fragaria vesca genotypes for susceptibility to B. cinerea, we identified two genotypes with different resistance levels, a susceptible genotype F. vesca ssp. vesca Tenno 3 (T3) and a moderately resistant genotype F. vesca ssp. vesca Kreuzkogel 1 (K1). These two genotypes were used to identify the molecular basis for the increased resistance of K1 compared to T3. Fungal DNA quantification and microscopic observation of fungal growth in woodland strawberry leaves confirmed that the growth of B. cinerea was restricted during early stages of infection in K1 compared to T3. Gene expression analysis in both genotypes upon B. cinerea inoculation suggested that the restricted growth of B. cinerea was rather due to the constitutive resistance mechanisms of K1 instead of the induction of defense responses. Furthermore, we observed that the amount of total phenolics, total flavonoids, glucose, galactose, citric acid and ascorbic acid correlated positively with higher resistance, while H2O2 and sucrose correlated negatively. Therefore, we propose that K1 leaves are more resistant against B. cinerea compared to T3 leaves, prior to B. cinerea inoculation, due to a lower amount of innate H2O2, which is attributed to a higher level of antioxidants and antioxidant enzymes in K1. To conclude, this study provides important insights into the resistance mechanisms against B. cinerea, which highly depend on the innate antioxidative profile and specialized metabolites of woodland strawberry leaves.
Collapse
Affiliation(s)
- Yijie Zhao
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Liese Vlasselaer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bianca Ribeiro
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Konstantinos Terzoudis
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Wim Van den Ende
- KU Leuven Plant Institute, Heverlee, Belgium
- Laboratory of Molecular Plant Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Maarten Hertog
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| | - Bart Nicolaï
- Division of Mechatronics, Biostatistics and Sensors, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
- Flanders Centre of Postharvest Technology, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, Heverlee, Belgium
| |
Collapse
|
38
|
Rao MJ, Duan M, Wang J, Han S, Ma L, Mo X, Li M, Hu L, Wang L. Transcriptomic and Widely Targeted Metabolomic Approach Identified Diverse Group of Bioactive Compounds, Antiradical Activities, and Their Associated Genes in Six Sugarcane Varieties. Antioxidants (Basel) 2022; 11:antiox11071319. [PMID: 35883810 PMCID: PMC9311902 DOI: 10.3390/antiox11071319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Sugarcane is cultivated mainly for its high sucrose content but it can also produce many metabolites with promising antioxidant potential. However, very few studies have been reported on the biosynthesis of metabolites in sugarcane to date. In this study, we have identified a wide range of amino acids and organic acids in the rind of six sugarcane varieties by the LC-MS/MS method. A total number of 72 amino acids and 55 organic acid compounds were characterized; among these, 100 were reported for the first time. Moreover, 13 amino acids and seven organic acids were abundantly distributed in all varieties tested and considered major amino acids and organic acids in sugarcane. The variety Taitang134 (F134) showed the highest content of total amino acids, whereas the varieties ROC16 and Yuetang93/159 (YT93/159) had maximum content of organic acids. The amino acids of the rind extract presented higher antioxidant capacity than the organic acids of the rind extract. In addition, the transcriptomic and metabolic integrated analysis highlighted some candidate genes associated with amino acid biosynthesis in sugarcane. We selected a transcription factor gene, MYB(t), and over-expressed it in Arabidopsis. The transgenic plants showed a higher accumulation of amino acids with higher antiradical activity compared with the wild-type Arabidopsis plants. Thus, we characterize a wide range of amino acids and organic acids and their antiradical activities in different sugarcane varieties and present candidate genes that can be potentially valuable for the genetic improvement of metabolites in sugarcane bagasse
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Mingzheng Duan
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Jihong Wang
- Department of Life Science, Tangshan Normal University, Tangshan 063000, China;
| | - Shijian Han
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Li Ma
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Xinyi Mo
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Min Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (L.H.); (L.W.)
| | - Lingqiang Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China; (M.J.R.); (M.D.); (S.H.); (L.M.); (X.M.); (M.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (L.H.); (L.W.)
| |
Collapse
|
39
|
Li Q, Tang Z, Zhang J, Hu J, Chen J, Chen D. Simultaneous biodegradation of dimethyl sulfide and 1-propanethiol by Pseudomonas putida S-1 and Alcaligenes sp. SY1: "Lag" cause, reduction, and kinetics exploration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48638-48647. [PMID: 35195861 DOI: 10.1007/s11356-022-19306-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Simultaneous biodegradation of malodorous 1-propanethiol (PT) and dimethyl sulfide (DMS) by Pseudomonas putida S-1 and Alcaligenes sp. SY1 was investigated and the interactions implicated were explored. Results showed that PT was completely degraded in 33 h, while a lag of 10 h was observed for DMS degradation alone, and the lag was even extended to 81 h in the binary mixture. Mechanism analysis found that the lag was mainly attributed to the exposure of DMS degrader (Alcaligenes sp. SY1), rather than PT metabolites and PT degrader. The exposure time and PT concentration also influenced the lag duration much. Citric acid could effectively reduce the lag. Pseudo-first-order model was proved suitable for the description of PT degradation, revealing that PT degradation could be enhanced in presence of DMS with a concentration of < 50 mg L-1. A modified Gompertz model, incorporated the lag phase, was developed for the description of DMS degradation in the mixture, revealing that DMS degradation depended on the initial PT concentration, and when the lag was not considered, PT with low-concentration could promote DMS biodegradation, while a higher concentration (> 20 mg L-1) cast negative effect.
Collapse
Affiliation(s)
- Qian Li
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004, China
| | - Zeqin Tang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiahui Zhang
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jingtao Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianmeng Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004, China
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Dongzhi Chen
- Department of Environmental Science and Engineering, School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316004, China.
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhoushan, 316004, China.
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
40
|
Li Q, Xing Y, Huang B, Chen X, Ji L, Fu X, Li T, Wang J, Chen G, Zhang Q. Rhizospheric mechanisms of Bacillus subtilis bioaugmentation-assisted phytostabilization of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154136. [PMID: 35218830 DOI: 10.1016/j.scitotenv.2022.154136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Plant growth promoting (PGP) traits of inoculation in bioaugmentation assisted phytostabilization of heavy metal-contaminated soil have been well documented. The property of inoculation to immobilize heavy metals is another major contributor to phytostabilization efficiency. This study investigated the effects of inoculation with different concentrations of rhizobacteria Bacillus subtilis on the cadmium (Cd) bioavailability and distribution, enzyme activities, and bacterial community structure in soil planted with ryegrass (Lolium multiflorum L.). Addition of a high dosage of Bacillus subtilis decreased plant malondialdehyde (MDA) amount, increased plant antioxidant enzyme and soil nutrient cycling-involved enzyme activities, and subsequently enhanced biomass by 20.9%. In particular, the inoculation reduced the Cd bioavailability in soil, bioaccumulation coefficient (BCF), translocation factors (TF), and accumulation in ryegrass by 39.1%, 36.5%, 24.2%, and 27.9%, respectively. Furthermore, 16S rRNA gene sequencing analysis of rhizosphere soil revealed microbial community structure alterations (e.g., enrichment of Proteobacteria), eight phenotype regulations, and seventeen Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway transformations accounted for the stress mitigation and Cd immobilization in the presence of inocula. Besides, intracellular accumulation and biofilm sequestration were proposed as primary immobilization mechanisms induced by bioaugmentation.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
41
|
Ashraf MA, Rasheed R, Hussain I, Iqbal M, Farooq MU, Saleem MH, Ali S. Taurine modulates dynamics of oxidative defense, secondary metabolism, and nutrient relation to mitigate boron and chromium toxicity in Triticum aestivum L. plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45527-45548. [PMID: 35147884 DOI: 10.1007/s11356-022-19066-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/01/2022] [Indexed: 05/27/2023]
Abstract
The present study was undertaken to appraise the efficacy of exogenous taurine in alleviating boron (B) and chromium (Cr) toxicity. Taurine protects cell membranes from lipid peroxidation due to its function as a ROS scavenger. However, there exists no report in the literature on the role of taurine in plants under abiotic stresses. The present investigation indicated the involvement of exogenous taurine in mediating plant defense responses under B and Cr toxicity. Wheat plants manifested a significant drop in growth, chlorophyll molecules, SPAD values, relative water content, nitrate reductase activity, and uptake of essential nutrients under B, Cr, and combined B-Cr toxicity. Plants showed significant oxidative damage due to enhanced cellular levels of superoxide radicals (O2•-), hydrogen peroxide (H2O2), malondialdehyde (MDA), relative membrane permeability, and activity of lipoxygenase (LOX). Additionally, a significant negative correlation existed in B and Cr levels with the uptake of essential nutrients. Taurine substantially improved growth, photosynthetic pigments, and nutrient uptake by regulating ROS scavenging, secondary metabolism, and ions homeostasis under stress. Taurine protected plants from the detrimental effects of B and Cr by upregulating the production of nitric oxide, hydrogen sulfide, glutathione, and phenolic compounds.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan.
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Umar Farooq
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000, Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
42
|
Singhal RK, Kumar M, Bose B, Mondal S, Srivastava S, Dhankher OP, Tripathi RD. Heavy metal (loid)s phytotoxicity in crops and its mitigation through seed priming technology. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:187-206. [PMID: 35549957 DOI: 10.1080/15226514.2022.2068502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unexpected bioaccumulation and biomagnification of heavy metal(loid)s (HMs) in the environment have become a predicament for all living organisms, including plants. The presence of these HMs in the plant system raised the level of reactive oxygen species (ROS) and remodeled several vital cellular biomolecules. These lead to several morphological, physiological, metabolic, and molecular aberrations in plants ranging from chlorosis of leaves to the lipid peroxidation of membranes, and degradation of proteins and nucleic acid including the modulation of the enzymatic system, which ultimately affects the plant growth and productivity. Plants are equipped with several mechanisms to counteract the HMs toxicity. Among them, seed priming (SP) technology has been widely tested with the use of several inorganic chemicals, plant growth regulators (PGRs), gasotransmitters, nanoparticles, living organisms, and plant leaf extracts. The use of these compounds has the potential to alleviate the HMs toxicity through the strengthening of the antioxidant defense system, generation of low molecular weight metallothionein's (MTs), and phytochelatins (PCs), and improving seedling vigor during early growth stages. This review presents an account of the sources, uptake and transport, and phytotoxic effects of HMs with special attention to different mechanism/s, occurring to mitigate the HMs toxicity in plants employing SP technology.Novelty statement: To the best of our knowledge, this review has delineated the consequences of HMs on the crucial plant processes, which ultimately affect plant growth and development. This review also compiled the up to dated information on phytotoxicity of HMs through the use of SP technology, this review discussed how different types of SP approaches help in diminishing the concentration HMs in plant systems. Also, we depicted mechanisms, represent how HMs transport and their actions on cellular levels, and emphasized, how diverse SP technology effectiveness in the mitigation of plants' phytotoxicity in unique ways.
Collapse
Affiliation(s)
| | - Mahesh Kumar
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sananda Mondal
- Plant Physiology Section, Department of ASEPAN, Institute of Agriculture, Sriniketan, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Om Parkash Dhankher
- School of Agriculture, University of Massachusetts Amherst, Stockbridge, MA, USA
| | | |
Collapse
|
43
|
Sardar R, Ahmed S, Akbar M, Yasin NA, Li G. Alleviation of cadmium phytotoxicity in triacontanol treated Coriandrum sativum L. by modulation of physiochemical attributes, oxidative stress biomarkers and antioxidative system. CHEMOSPHERE 2022; 295:133924. [PMID: 35149022 DOI: 10.1016/j.chemosphere.2022.133924] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a hazardous metal that has a significant risk of transfer from soil to edible parts of food crops including shoots and seeds. Reduction of Cd accumulation is required to lower the risk of Cd exposure in humans and animals feeding on metal contaminated parts of such plants. Coriandrum sativum L. (coriander) exposed to Cd showed stress symptoms such as stunted growth, reduced photosynthetic activity and synthesis of chlorophyll pigments. Growth inhibition in Cd-treated plants was attributed to induction of oxidative stress as demonstrated by higher level of stress biomarkers such as electrolyte leakage, lipid peroxidation and hydrogen peroxide. Primary objective of the current study was to observe the ameliorative role of triacontanol (Tria) in Cd-stressed coriander seedlings. For this purpose, coriander seeds were primed with Tria concentrations of 5, 10, and 20 μmol L-1. Seedlings developed from Tria treated seeds exhibited reduced loss of photosynthetic pigments; mitigated oxidative stress caused by Cd, through improved efficacy of antioxidant machinery comprising superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT) enzymes besides non-enzymatic antioxidants including proline, phenolics and flavonoids. Triacontanol treated seedlings showed enhanced yield attributes suggesting that exogenous Tria could be employed to improve plant tolerance to Cd stress.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Muhammad Akbar
- Department of Botany, University of Gujrat, Gujrat, 50700, Pakistan
| | - Nasim Ahmad Yasin
- SSG, RO-II Department, University of the Punjab, Lahore, Pakistan; Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| |
Collapse
|
44
|
Fajardo C, Martín C, Garrido E, Sánchez-Fortún S, Nande M, Martín M, Costa G. Copper and Chromium toxicity is mediated by oxidative stress in Caenorhabditis elegans: The use of nanoparticles as an immobilization strategy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103846. [PMID: 35288336 DOI: 10.1016/j.etap.2022.103846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Environmental contamination by heavy metals (HMs) has impelled searching for stabilization strategies, where the use of zero-valent iron nanoparticles (nZVI) is considered a promising option. We have evaluated the combined effect of Cu(II)-Cr(VI) on two Caenorhabditis elegans strains (N2 and RB1072 sod-2 mutant) in aqueous solutions and in a standard soil, prior and after treatment with nZVI (5% w/w). The results showed that HMs aqueous solutions had an intense toxic effect on both strains. Production of reactive oxygen species and enhanced expression of the heat shock protein Hsp-16.2 was observed, indicating increased HM-mediated oxidative stress. Toxic effects of HM-polluted soil on worms were higher for sod-2 mutant than for N2 strain. However, nZVI treatment significantly diminished all these effects. Our findings highlighted C. elegans as a sensitive indicator for HMs pollution and its usefulness to assess the efficiency of the nanoremediation strategy to decrease the toxicity of Cu(II)-Cr(VI) polluted environments.
Collapse
Affiliation(s)
- Carmen Fajardo
- Dpt. Biomedicine and Biotechnology, Faculty of Pharmacy, Universidad de Alcalá, 28805 Madrid, Spain.
| | - Carmen Martín
- Dpt. of Biotechnology-Plant Biology, School of Agricultural, Food and Biosystems Engineering, Technical University of Madrid (UPM), 3 Complutense Ave., 28040 Madrid, Spain
| | - Elena Garrido
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Sebastian Sánchez-Fortún
- Dpt. of Pharmacology and Toxicology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Mar Nande
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Margarita Martín
- Dpt. of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| | - Gonzalo Costa
- Dpt of Physiology. Faculty of Veterinary Sciences. Complutense University (UCM), w/n Puerta de Hierro Ave., 28040 Madrid, Spain
| |
Collapse
|
45
|
Rong L, Zhang S, Wang J, Li S, Xie S, Wang G. Phytoremediation of uranium-contaminated soil by perennial ryegrass (Lolium perenne L.) enhanced with citric acid application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33002-33012. [PMID: 35020149 DOI: 10.1007/s11356-022-18600-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) was planted in uranium-contaminated soil mixtures supplemented with different amounts of citric acid to investigate the defense strategies of perennial ryegrass against U and the enhanced mechanism of citric acid on the remediation efficiency in the laboratory. The uranium content in the plant tissues showed that the roots were the predominant tissue for uranium accumulation. In both root and shoot cells, the majority of U was located in the cell wall fraction. Furthermore, antioxidant enzymes were also stimulated when exposed to U stress. These results suggested that perennial ryegrass had evolved defense strategies, such as U sequestration in root tissue, compartmentalization in the cell wall, and antioxidant enzyme systems, to minimize uranium stress. For an enhanced mechanism, the optimal concentration of citric acid was 5 mmol/kg, and the removal efficiency of U in the shoots and roots increased by 47.37% and 30.10%, respectively. The treatment with 5 mmol/kg citric acid had the highest contents of photosynthetic pigment and soluble protein, the highest activity of antioxidant enzymes, and the lowest content of MDA (malondialdehyde) and relative electrical conductivity. Moreover, the TEM (transmission electron microscope) results revealed that after 5 mmol/kg citric acid was added, the cell structure of plant branches partially returned to normal, the number of mitochondria increased, chloroplast surfaces seemed normal, and the cell wall became visible. The damage to the cell ultrastructure of perennial ryegrass was significantly alleviated by treatment with 5 mmol/kg citric acid. All the results above indicated that perennial ryegrass could accumulate uranium with elevated uranium tolerance and enrichment ability with 5 mmol/kg citric acid.
Collapse
Affiliation(s)
- Lishan Rong
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiqi Zhang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Jiali Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiyou Li
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
46
|
Gupta A, Mishra R, Rai S, Bano A, Pathak N, Fujita M, Kumar M, Hasanuzzaman M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int J Mol Sci 2022; 23:3741. [PMID: 35409104 PMCID: PMC8998651 DOI: 10.3390/ijms23073741] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/17/2022] Open
Abstract
Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Smita Rai
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Ambreen Bano
- IIRC-3, Plant–Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India; (A.G.); (S.R.); (A.B.)
| | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224123, Uttar Pradesh, India; (R.M.); (N.P.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
47
|
Zhang L, Zou D, Zeng N, Li L, Xiao Z. Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis hypogaea L.) under Cd stress. Sci Rep 2022; 12:4388. [PMID: 35288602 PMCID: PMC8921238 DOI: 10.1038/s41598-022-08339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Slaked lime has been used to remediate contaminated agricultural soils as an in situ chemical immobilization amendment for a long time. However, the effects of slaked lime on peanut and soil cadmium (Cd) levels remain poorly understood with respect to remediating Cd-contaminated soil. In this study, six rates of slaked lime (e.g., 0, 300, 600, 900, 1200 and 1500 kg ha-1) were applied to evaluate the effects of slaked lime treatments on soil pH and the growth, Cd accumulation and physiology characteristics of peanut, which were in Cd-contaminated soil, and 0 kg ha-1 was taken as the control. The results indicated that slaked lime application significantly increased soil pH and reduced total Cd contents in peanut tissues at all growth stages. As the rates of slaked lime were increased, kernel biomass increased in the maturity stage, which increased peanut yields. The irregular variations in catalase, peroxidase, and superoxide dismutase activities and chlorophyll and malondialdehyde contents that were observed at all growth stages may be due to the interactions among soil pH, Ca nutrients and Cd, etc. In summary, slaked lime is suitable as an in situ chemical immobilization amendment to increase Cd immobilization and peanut yields in Cd-contaminated soil.
Collapse
Affiliation(s)
- Liqing Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Dongsheng Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Ningbo Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| | - Zhihua Xiao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Noor I, Sohail H, Hasanuzzaman M, Hussain S, Li G, Liu J. Phosphorus confers tolerance against manganese toxicity in Prunus persica by reducing oxidative stress and improving chloroplast ultrastructure. CHEMOSPHERE 2022; 291:132999. [PMID: 34808198 DOI: 10.1016/j.chemosphere.2021.132999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/02/2023]
Abstract
In this study, we evaluated the mitigative role of phosphorus (P) in terms of manganese (Mn) toxicity in peach (Prunus persica L.) plants. Ten-day-old seedlings were treated with excess Mn (1 mM MnSO4) alone and in combination with different P levels (100, 150, 200 and 250 μM KH2PO4) in half-strength Hoagland medium. The results demonstrated that Mn toxicity plants accumulated a significant amount of Mn in their tissues, and the concentration was higher in roots than in leaves. The accumulated Mn led to a considerable reduction in plant biomass, water status, chlorophyll content, photosynthetic rate, and disrupted the chloroplast ultrastructure by increasing oxidative stress (H2O2 and O2•-). However, P supplementation dramatically improved plant biomass, leaf relative water and chlorophyll contents, upregulating the ascorbate-glutathione pool and increasing the activities of antioxidant enzymes (superoxide dismutase; peroxidase dismutase; ascorbate peroxidase; monodehydroascorbate reductase; dehydroascorbate reductase), thus reducing oxidative damage as evidenced by lowering H2O2 and O2•- staining intensity. Moreover, P application markedly restored stomatal aperture and improved chloroplast ultrastructure, as indicated by the improved performance of photosynthetic machinery. Altogether, our findings suggest that P (250 μM) has a great potential to induce tolerance against Mn toxicity by limiting Mn accumulation in tissues, upregulating antioxidant defense mechanisms, alleviating oxidative damage, improving chloroplast ultrastructure and photosynthetic performance in peach plants.
Collapse
Affiliation(s)
- Iqra Noor
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Sajjad Hussain
- Department of Horticulture, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
49
|
Yang X, Gao Y, Gan T, Yang P, Cao M, Luo J. Elevated atmospheric CO 2 enhances the phytoremediation efficiency of tall fescue (Festuca arundinacea) in Cd-polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1273-1283. [PMID: 35014567 DOI: 10.1080/15226514.2021.2025203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the economic development of society, concentrations of atmospheric CO2 and heavy metals in soils have been increasing. The physiological responses of plants to the interaction between soil pollution and climatic change need to be understood. Pot experiments were designed to assess variations in Festuca arundinacea dry weight, leaf type, chlorophyll content, antioxidase activities, and Cd accumulation ability, under different atmospheric CO2 treatments. The results showed that the total dry weights increased with increasing CO2, and Cd concentrations in falling leaf tissues increased with raised atmospheric CO2, before reaching a peak at 600 ppm, above which they remained constant. Compared with the control (400 ppm), 600, 650, and 700 ppm CO2 treatments increased the proportions of the falling tissues by 1.7%, 3.3%, and 4.5%, respectively. Antioxidant enzyme activities in plant leaves increased with increasing atmospheric CO2 levels. The concentration of H2O2 in leaf tissues increased with increasing CO2, reaching a peak at 600 ppm, and then decreased significantly as the CO2 content increased further, to 700 ppm. The results in this study suggest that F. arundinacea could be regarded as a potential candidate for phytoremediation of Cd-polluted soil; especially if senescent and dead leaf tissues could be harvested, and that raised atmospheric CO2 levels could improve its soil remediation efficiency.Novelty statement Extrapolation of results from experiments of environmental impacts in greenhouse to real scale field requires to be considered cautiously. External factors such as water, temperature, humidity, and pollution are variable in real field. Plants will face a lot of beneficial or detrimental conditions which will influence the magnitude of the results. However, the elevation of CO2 is an inevitable phenomenon in future. Therefore, findings from experiments under artificial conditions are sometime a good choice to obtain knowledge about elevated CO2 related impacts on phytoremediation efficiency of a specific plant. The final goal of this work is to find a suitable CO2 fumigation strategy optimized for soil remediation. We report on that elevated atmospheric CO2 can increase the phytoremediation efficiency of Festuca arundinacea for Cd. This is significant because the combined influences of elevated atmospheric CO2 and metal pollution in terms of biomass yield, pollutant uptake, and phytoremediation efficiency would be more complex than the effects of each individual factor.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yueping Gao
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
50
|
Teng Y, Guan W, Yu A, Li Z, Wang Z, Yu H, Zou L. Exogenous melatonin improves cadmium tolerance in Solanum nigrum L. without affecting its remediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1284-1291. [PMID: 35016578 DOI: 10.1080/15226514.2021.2025204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium (Cd). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. The present work aimed to evaluate the effects of exogenous application of melatonin (MT) in the physiological and biochemical responses of S. nigrum and remediation potential exposed to Cd. After 30 days of exposure, the results revealed that Cd-mediated inhibitory effects on biomass and photosynthetic pigment synthesis were efficiently mitigated upon application of melatonin, without affecting Cd accumulation. Higher levels of Cd were found in roots, regardless of the pretreatment with the melatonin. Foliar application of melatonin, however, induced distinctive effects, lowering malondialdehyde (MDA), relative electrical conductivity (REL), and proline levels in shoots. These changes contributed to improvements in the water status, photosynthetic pigment synthesis, and biomass production of S. nigrum under Cd stresses. Overall, our results indicate a protective effect of melatonin on S. nigrum response to excess Cd, contributing to a better tolerance and growth rate, without disturbing its phytoremediation potential.Novelty statementAlthough Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium. This study evaluated the potential of melatonin to boost S. nigrum defence against Cd toward a better growth rate and remediation potential.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Wenjie Guan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhishuai Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenjun Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|