1
|
Yang X, Chen Y, Liu W, Huang T, Yang Y, Mao Y, Meng Y. Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171497. [PMID: 38453091 DOI: 10.1016/j.scitotenv.2024.171497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yinguang Chen
- School of Environment Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiguo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
| | - Tingwen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yang Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yuqing Mao
- Wuwei Academy of Agricultural Sciences, Wuwei 733000, China
| | - Yao Meng
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| |
Collapse
|
2
|
Meng L, Wu Y, Mu M, Wang Z, Chen Z, Wang L, Ma Z, Cui G, Yin X. Effects of different concentrations of biochar amendments and Pb toxicity on rhizosphere soil characteristics and bacterial community of red clover ( Trifolium pretense L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1112002. [PMID: 37056492 PMCID: PMC10088434 DOI: 10.3389/fpls.2023.1112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
Amending soil with biochar can reduce the toxic effects of heavy metals (HM) on plants and the soil. However, the effects of different concentrations of biochar on the properties and microbial activities in lead (Pb)-contaminated soils are unclear. In this study, two Pb concentrations were set (low, 1000 mg/kg; high, 5000 mg/kg), and five corn straw biochar (CSB) concentrations (0, 2.5, 5, 10 and 15%) were used to determine the response of the growth and rhizosphere of red clover (Trifolium pretense L.) (in terms of soil properties and bacteria) to CSB and Pb application. The results showed that 5% CSB better alleviated the toxicity of Pb on the shoot length of red clover, the biomass increased by 74.55 and 197.76% respectively and reduced the enrichment factor (BCF) and transport factor (TF) of red clover. Pb toxicity reduced soil nutrients, catalase (CAT), acid phosphatase (ACP) and urease activity, while the addition of CSB increased soil pH, soil organic matter (SOM) content and soil enzyme activity. 16S rDNA amplicon sequencing analysis showed that Pb toxicity reduced the diversity of rhizosphere bacteria in red clover and reduced the relative abundance of plant growth-promoting rhizobacteria such as Gemmatimonas, Devosia and Bryobacter. Spearman correlation analysis showed that the addition of alkaline CSB restored the relative abundance of rhizobacteria positively correlated with pH, such as Chitinophaga, Sphingomonas, Devosia and Pseudomonas, and thus restored the rhizosphere soil environment. This study demonstrates that 5% CSB can better alleviate the toxicity of Pb to red clover and soil. We also provide a theoretical basis for the subsequent use of beneficial bacteria to regulate the repair efficiency of red clover.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
3
|
Ramzan M, Zia A, Naz G, Shahid M, Shah AA, Farid G. Effect of nanobiochar (nBC) on morpho-physio-biochemical responses of black cumin (Nigella sativa L.) in Cr-spiked soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:859-867. [PMID: 36871496 DOI: 10.1016/j.plaphy.2023.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Chromium is a highly toxic heavy metal. High concentrations of Cr (III) can affect metabolic processes in plants, resulting in different morphological, physiological, and biochemical defects. Agricultural practices such as sewage irrigation, over-fertilization, and sewage sludge application contribute significantly to Cr contamination. It can reduce the growth of plants by affecting the activity of antioxidant enzymes. The materials in nano form play an important role in nano-remediation and heavy metals absorption due to their high surface area and micropores. This research was conducted to study the potential of foliar application of nanobiochar/nBC (100 mg/L-1 and 150 mg/L-1) for mitigation of Cr (III) stress (200 mg/kg and 300 mg/kg) in black cumin (Nigella sativa) plants. The results showed that increased Cr stress (300 mg/kg) decreased the plant growth parameters, chlorophyll content, total soluble sugars, and proteins. However, increased the level of hydrogen peroxide (H2O2) and malondialdehyde acetate (MDA) as a result of the activity of antioxidant enzymes (Catalase, Superoxide dismutase, peroxidase dismutase, and ascorbic peroxidase) increased in Nigella sativa seedlings. Foliar application of the nBC (100 mg/L-1) increased plant growth parameters, chlorophyll content, and osmoprotectants, while decreasing the levels of oxidative stress markers (H2O2 and MDA). Furthermore, with the application of nBC, the antioxidant enzyme activity considerably improved. Improved antioxidant activity shows that nBC helped to decrease oxidative stress, which in return improved the growth of Nigella sativa seedlings. Overall, present study findings concluded that foliar application of nBC in Nigella sativa seedlings improved growth, chlorophyll, and antioxidant enzymes. The nBC treatment of 100 mg/L-1 showed better results compared to 150 mg/L-1 under chromium stress.
Collapse
Affiliation(s)
- Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan.
| | - Arooj Zia
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Gul Naz
- Institute of Physics, Faculty of Physical and Mathematical Sciences, The Islamia University of Bahawalpur, Pakistan
| | - Muhammad Shahid
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ghulam Farid
- Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan
| |
Collapse
|
4
|
Ijaz M, Ansari MUR, Alafari HA, Iqbal M, Alshaya DS, Fiaz S, Ahmad HM, Zubair M, Ramzani PMA, Iqbal J, Abushady AM, Attia K. Citric acid assisted phytoextraction of nickle from soil helps to tolerate oxidative stress and expression profile of NRAMP genes in sunflower at different growth stages. FRONTIERS IN PLANT SCIENCE 2022; 13:1072671. [PMID: 36531389 PMCID: PMC9751920 DOI: 10.3389/fpls.2022.1072671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Introduction Soil polluted with Nickel (Ni) adversely affects sunflower growth resulting in reduced yield. Counterbalancing Ni toxicity requires complex molecular, biochemical, and physiological mechanisms at the cellular, tissue, and whole plant levels, which might improve crop productivity. One of the primary adaptations to tolerate Ni toxicity is the enhanced production of antioxidant enzymes and the elevated expression of Ni responsive genes. Methods In this study, biochemical parameters, production of ROS, antioxidants regulation, and expression of NRAMP metal transporter genes were studied under Ni stress in sunflower. There were four soil Ni treatments (0, 50, 100, and 200 mg kg-1 soil), while citric acid (CA, 5 mM kg-1 soil) was applied on the 28th and 58th days of plant growth. The samples for all analyses were obtained on the 30th and 60th day of plant growth, respectively. Results and discussion The results indicated that the concentrations of Ni in roots and shoots were increased with increasing concentrations of Ni at both time intervals. Proline contents, ascorbic acid, protein, and total phenolics were reduced under Ni-stress, but with the application of CA, improvement was witnessed in their contents. The levels of malondialdehyde and hydrogen peroxide were enhanced with the increasing concentration of Ni, and after applying CA, they were reduced. The contents of antioxidants, i.e., catalase, peroxidase, superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase, were increased at 50 ppm Ni concentration and decreased at higher concentrations of Ni. The application of CA significantly improved antioxidants at all concentrations of Ni. The enhanced expression of NRAMP1 (4, 51 and 81 folds) and NRAMP3 (1.05, 4 and 6 folds) was found at 50, 100 and 200ppm Ni-stress, respectively in 30 days old plants and the same pattern of expression was recorded in 60 days old plants. CA further enhanced the expression at both developmental stages. Conclusion In conclusion, CA enhances Ni phytoextraction efficiency as well as protect plant against oxidative stress caused by Ni in sunflower.
Collapse
Affiliation(s)
- Munazza Ijaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mahmood-ur-Rahman Ansari
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hayat Ali Alafari
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Iqbal
- Department of Environmental Science and Engineering, Government College University, Faisalabad, Pakistan
| | - Dalal S. Alshaya
- Department of Biology, College of science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | | | - Javed Iqbal
- Department of Agricultural Engineering, Khwaja Fareed university of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, Sheikh Zayed, Giza, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
- Rice Biotechnology Lab, Rice Department, Field Crops Research Institute, ARC, Sakha, Egypt
| |
Collapse
|
5
|
Liang JH, Lin XY, Huang DK, Xue RY, Fu XQ, Ma LQ, Li HB. Nickel oral bioavailability in contaminated soils using a mouse urinary excretion bioassay: Variation with bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156366. [PMID: 35654181 DOI: 10.1016/j.scitotenv.2022.156366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
To assess the health risk of nickel (Ni) in contaminated soils, studies rarely evaluated Ni bioavailability in the gastrointestinal (GI) tract, limiting the accurate regulation of contaminated sites. Here, for 15 soil samples contaminated by Ni-electroplating, Ni oral relative bioavailability (RBA, relative to NiSO4) was measured using a mouse urinary excretion bioassay. Nickel-RBA varied from 7.89% to 33.8% at an average of 19.1 ± 18.6%. The variation was not explained well by variation in soil properties including Ni speciation and co-contamination of other metals, which showed weak correlation with Ni-BRA (R2 < 0.36). In comparison, the Ni-RBA variation was explained well by the variation of soil-Ni solubility in simulated human gastric or gastrointestinal fluids, i.e., Ni bioaccessibility. Determined using the gastric (GP) and intestinal phases (IP) of solubility bioaccessibility research consortium (SBRC), physiologically based extraction test methods (PBET), and unified BARGE method (UBM), Ni bioaccessibility explained 54-71% variation of the Ni-RBA, suggesting that Ni oral bioavailability was predominantly controlled by Ni solubility in the GI tract. The results highlight the suitability of using simple, fast, and cost-effective bioaccessbility assays to predict site-specific Ni oral bioavailability.
Collapse
Affiliation(s)
- Jia-Hui Liang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dan-Kun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiao-Qing Fu
- Jiangsu SEP Analytical Services Co., Ltd, Nanjing 210033, People's Republic of China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
6
|
Meng L, Yang Y, Ma Z, Jiang J, Zhang X, Chen Z, Cui G, Yin X. Integrated physiological, transcriptomic and metabolomic analysis of the response of Trifolium pratense L. to Pb toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129128. [PMID: 35594664 DOI: 10.1016/j.jhazmat.2022.129128] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Lead (Pb) interferes with plant gene expression, alters metabolite contents and affects plant growth. However, the molecular mechanism underlying the plant response to Pb is not completely understood. In the present study, Trifolium pratense L. was exposed to Pb concentrations of 0 (Pb0), 500 (Pb500), 1000 (Pb1000), 2000 (Pb2000) and 3000 (Pb3000) mg/kg in soils. Pb stress affected the ability of T. pratense to accumulate and transport Pb, increased the activity of peroxidase (POD) and the contents of malondialdehyde (MDA) and proline, decreased the amount of photosynthetic pigments and soluble proteins, and led to changes in growth and biomass. Transcriptomic and metabolomic analyses showed that Pb mainly affected eight pathways, and LHC, flavonoids, organic acids, amino acids and carbohydrates were upregulated or downregulated. Moreover, Pb500 induced the upregulation of serA, promoted the synthesis of citric acid, maintained photosynthetic pigment levels, and ultimately promoted an increase in stem length. Pb3000 induced the upregulation of ARF, GH3 and SAUR genes, but the saccharide contents and stem length decreased in response to Pb stress. We used a variety of methods to provide a molecular perspective on the mechanism underlying the response of T. pratense to Pb stress.
Collapse
Affiliation(s)
- Lingdong Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yupeng Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewang Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zirui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Inoculation with the pH Lowering Plant Growth Promoting Bacterium Bacillus sp. ZV6 Enhances Ni Phytoextraction by Salix alba from a Ni-Polluted Soil Receiving Effluents from Ni Electroplating Industry. SUSTAINABILITY 2022. [DOI: 10.3390/su14126975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soil contamination with Ni poses serious ecological risks to the environment. Several members of the Salix genus have the ability to accumulate high concentrations of Ni in their aerial parts, and thus can be used for the remediation of Ni-contaminated soils. Interestingly, the efficacy of Ni phytoextraction by Salix may be improved by the acidification of rhizosphere with rhizosphere acidifying bacterial strains. Therefore, the aim of this study was to assess the efficacy of bacterial strain Bacillus sp. ZV6 in the presence of animal manure (AM) and leaf manure (LM) for enhancing the bioavailability of Ni in the rhizosphere of Salix alba via reducing the pH of rhizosphere and resultantly, enhanced phytoextraction of Ni. Inoculation of Ni-contaminated soil with strain ZV6 significantly increased plant growth as well as Ni uptake by alba. It was found that the addition of AM and LM resulted into a significant increase in plant growth and Ni uptake by alba in Ni-contaminated soil inoculated with ZV6 stain. However, the highest improvements in diethylene triamine penta-acetic acid (DTPA) extractable Ni (10%), Ni removal from soil (54%), Ni bioconcentration factor (26%) and Ni translocation factor (13%) were detected in the soil inoculated with ZV6 along with the addition of LM, compared to control. Similarly, the enhancements in microbial biomass (92%), bacterial count (348%), organic carbon (organic C) (57%) and various enzymatic activities such as urease (56%), dehydrogenase (32%), β-glucosidase (53%), peroxidase (26%) and acid phosphatase (38%) were also significantly higher in the soil inoculated with ZV6 along with the addition of LM. The findings of this study suggest that the inoculation of Ni-contaminated soils with rhizosphere acidifying bacteria can effectively improve Ni phytoextraction and, in parallel, enhance soil health.
Collapse
|
8
|
Helaoui S, Hattab S, Mkhinini M, Boughattas I, Majdoub A, Banni M. The Effect of Nickel Exposure on Oxidative Stress of Vicia faba Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:1074-1080. [PMID: 35524792 DOI: 10.1007/s00128-022-03535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination is a serious threat for terrestrial ecosystems. Thus, they could be accumulated in living organisms leading consequently to harmful consequences. In this context, the present work aims to evaluate the effects of four increasing Nickel (Ni) nominal concentrations (T: 0 mg/kg, C1: 150 mg/kg, C2: 250 mg/kg, C3: 500 mg/kg) on agronomic and biochemical parameters in bean (Vicia faba) plants. The measured exposure concentrations were in the range of 96.69%-104.18% of the nominal concentrations. Bean's responses were evaluated at biometric levels, chlorophyll content and biochemical parameters namely catalase glutation-S-transferase activities and malondialdehyde content, in booth parts of plants. Our data revealed a marked negative effect of Ni exposure on bean plant development and chlorophyll content. Biochemical biomarkers reported that plants anti-oxidative defense system has been significantly affected specially in roots at the high Ni concentration. Briefly, resistance mechanisms of Vicia faba to Ni seem to imply an activation of the antioxidant system and a limitation of the reactive oxygen species.
Collapse
Affiliation(s)
- Sondes Helaoui
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA, Chott-Meriem, 4042, Sousse, Tunisia
| | - Sabrine Hattab
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA, Chott-Meriem, 4042, Sousse, Tunisia
- Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042, Sousse, Tunisia
| | - Marouane Mkhinini
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA, Chott-Meriem, 4042, Sousse, Tunisia
| | - Iteb Boughattas
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA, Chott-Meriem, 4042, Sousse, Tunisia.
| | - Afifa Majdoub
- Regional Research Centre in Horticulture and Organic Agriculture, Chott-Mariem, 4042, Sousse, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR21AGR02, ISA, Chott-Meriem, 4042, Sousse, Tunisia
| |
Collapse
|
9
|
Lebrun M, Bourgerie S, Morabito D. Effects of Different Biochars, Activated Carbons and Redmuds on the Growth of Trifolium repens and As and Pb Stabilization in a Former Mine Technosol. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:403-414. [PMID: 34041578 DOI: 10.1007/s00128-021-03271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Soil pollution by metal(loid)s is an important issue in Europe, as it causes environmental and health problems. Therefore, remediation of these areas is needed. The success of phytoremediation process will depend on the ability of plants to implement, which can require the addition of amendments to the soil in order to improve soil conditions, immobilize pollutant and thus ameliorate plant growth. Amendments that can be used are biochar, activated carbon and redmuds, all of which have previously shown positive outcomes. The objectives of this study were to evaluate the effects of several amendments (biochars, activated carbons and redmuds) on (i) the soil physico-chemical properties of a former mine technosol contaminated by As and Pb, (ii) As and Pb immobilization and (iii) the growth of Trifolium repens. Results showed that amendment addition could ameliorate soil conditions, by reducing soil acidity (pH increased by 1.2 to 1.7 units) and immobilizing pollutants (85 to 99% of Pb immobilized); and improve plant growth (dry weight increased 1.5 to 2.5 times). However, not all amendments were beneficial to the soil and plant. For instance, the L27 activated carbon acidified soil pH, mobilized As and lowered plant growth. This study has allowed us to conclude that amendment effect is dependent on soil type, metal(loid)s and amendment properties, and it is thus necessary to choose the right amendment. Finally, amendments could be combined for better outcomes.
Collapse
Affiliation(s)
- Manhattan Lebrun
- INRA USC1328, LBLGC EA1207, University of Orléans, Orléans, France.
| | | | | |
Collapse
|
10
|
Turan V. Calcite in combination with olive pulp biochar reduces Ni mobility in soil and its distribution in chili plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:166-176. [PMID: 34053385 DOI: 10.1080/15226514.2021.1929826] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The presence of Ni above the permissible limit in agriculture soils poses negative effects on soil health, crop quality, and crop productivity. Surprisingly, the usage of various organic and inorganic amendments can reduce Ni mobility in the soil and its distribution in the crops. A pot experiment was conducted to elucidate the effects of olive pulp biochar (BR), calcite (CAL), and wheat straw (WS), as sole amendments and their mixtures of 50:50 ratio, added to Ni polluted soil on Ni mobility in the soil, Ni immobilization index (Ni - IMi), soil enzymatic activities, Ni distribution in parts of chili plant, Ni translocation factor and bioaccumulation factor in fruit, plant growth parameters and oxidative stress encountered by the plants. Outcomes of this pot experiment revealed that amendments raised soil pH, improved soil enzymatic activities, values of Ni - IMi, while significantly reduced bioavailable Ni fraction in the post-harvest soil. However, the highest activities of acid phosphatase, urease, catalase, and dehydrogenase by 50, 70, 239, and 111%, respectively, improvement in Ni - IMi up to 60% while 60% reduction in the bioavailable Ni fraction was observed in BR + CAL treatment, compared to control was noted. Among all amendments, the top most reduction in Ni concentrations in shoots, roots, fruit, Translocation Factor (TF), and Bioaccumulation Factor (BAF) values of fruit by 72%, 36%, 86%, 72%, and 86%, in BR + CAL treatment, compared to control. Moreover, the plants growing on BR + CAL amended Ni contaminated soil showed the topmost improvement in plant phonological parameters while encountered the least oxidative stress. Such findings refer to the prospective usage of BR + CAL at 50:50 ratio than BR, CAL, WS alone, and BR + WS as well as WS + CAL for reducing Ni mobility in the soil, improving Ni - IMi, soil enzymatic activities, plant phonological and oxidative stress while reducing Ni distribution in plant parts. Novelty statementIn this experiment, it was hypothesized that amending Ni polluted soil with olive pulp biochar (BR), CAL, and WS as alone soil amendments and their combinations at 50:50 ratios can reduce Ni bioavailability in soil, Ni distribution in chili plant and oxidative stress encountered by the plants. Moreover, these amendments may improve, soil enzymatic activities, Ni immobilization index, plant phenological traits. Therefore, it was aimed to undertake useful scientific planning and research, to restore and rehabilitate the dwellings, biological resources and to minimize the sufferings of the peoples in nutrient-poor Ni contaminated soils, by improving soil health and chili productivity.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, Bingöl, Turkey
| |
Collapse
|
11
|
Pescatore A, Grassi C, Rizzo AM, Orlandini S, Napoli M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. CHEMOSPHERE 2022; 287:131986. [PMID: 34481173 DOI: 10.1016/j.chemosphere.2021.131986] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Urban soil pollution by heavy metals (HMs) is a pressing problem in the development of urban agriculture (UA). In this context, the use of amendments, such as biochar, and phytoremediation are considered potentially cost-effective alternatives to conventional methods, and can be also combined to improve the remediation of soils from HMs. A pot experiment was performed to investigate the combined effect of berseem clover (Trifolium alexandrinum, L.) and biochar amendment in remediating a sandy soil collected near a shooting range area co-contaminated with Cd, Cr, Cu, Ni, Pb, and Zn. The biochar, obtained from a wood-chip gasifier fed with a mix of Douglas (Pseudotsuga menziesii, Mirb.) and Black Pine (Pinus nigra, J.F.Arnold) wood, was applied at two rates (0.8% and 1.6%, w/w). Eighteen weeks after sowing, all plants were harvested. The roots and aboveground tissues of the crops were separately collected and analyzed. The tested biochar effectively adsorbed the HMs (Cd, Cr, Cu, Ni, Pb, and Zn) from the soil. Biochar increased DW production of aboveground and root tissues. Moreover, biochar significantly reduced the concentration of Cr, Cu, Ni, and Pb in the aboveground tissues of berseem clover, although a significant reduction was not detected for Cd and Zn. Results indicated that berseem clover was a Cr, Ni and Pb excluder. However, this species can be considered suitable for Cu phytoextraction and Cd and Zn phytostabilization of slightly polluted urban soil. Only the Cu levels in the aerial biomass were below the acceptable limit for use as fodder.
Collapse
Affiliation(s)
- Antonio Pescatore
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144, Firenze, Italy.
| | - Chiara Grassi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144, Firenze, Italy.
| | - Andrea Maria Rizzo
- RE-CORD, Renewable Energy COnsortium for R&D, Viale Kennedy 182, 50038, Scarperia e San Piero, Florence, Italy.
| | - Simone Orlandini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144, Firenze, Italy.
| | - Marco Napoli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Piazzale Delle Cascine 18, 50144, Firenze, Italy.
| |
Collapse
|
12
|
Hua X, Gao Z, Wang Q, Hao W, Yan X, Li R. Immobilization of nickel ions by the confinement of surface aluminate spinel at low temperature. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Ali U, Shaaban M, Bashir S, Chhajro MA, Qian L, Rizwan MS, Fu Q, Zhu J, Hu H. Potential of organic and inorganic amendments for stabilizing nickel in acidic soil, and improving the nutritional quality of spinach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57769-57780. [PMID: 34097222 DOI: 10.1007/s11356-021-14611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Contamination of soils by nickel (Ni) has become a serious environmental problem throughout the world, and this substance wields dangerous effects on the ecosystem and food chain. A pot experiment was conducted to examine the effect of rice straw (RS), rice straw biochar (BI), and calcite (CC) at 1% and 2% application rates in a Ni-contaminated soil. The objective was to potentially stabilize Ni and reduce its bioavailability to spinach (Spinacia Oleracea L.). Spinach plants were grown in a Ni-contaminated Ultisol (commonly known as a red clay soil). Plant growth parameter results indicated that a BI 2% application rate significantly increased the root and shoots dry biomass increased by 1.7- and 6.3-fold, respectively, while essential nutrients were enhanced in the spinach plant compared to those in the untreated soil (CK). Moreover, adding amendments significantly decreased CaCl2 extractable Ni by 62.5% 94.1%, and 87.2%, while the toxicity characteristics leaching procedure (TCLP) fell by 26.7%, 47.8%, and 41.7% when using RS, BI, and CC, respectively, at 2% compared to CK. The Ni concentrations in the spinach roots declined by 51.6%, 73.3%, and 68.9%, and in the shoots reduced by 54.1%, 76.7%, and 70.8% for RS, BI, and CC, at a 2% application rate, respectively. Bio-concentration factor (BCF) and translocation factor (TF) dropped significantly by as much as 72.7% and 20%, respectively, for BI 2% application rate. Results of the present study clearly indicated that biochar potential soil amendments for Ni stabilization, thereby reducing its bioavailability in the Ni-contaminated soil. This process enhanced the safety of food to be consumed and mitigated security risks.
Collapse
Affiliation(s)
- Umeed Ali
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Shaaban
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Saqib Bashir
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Afzal Chhajro
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Office of Research Innovation and Commercialization (ORIC), Sindh Madressatul Islam University (SMIU), Karachi, Pakistan
| | - Li Qian
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Shahid Rizwan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Oladejo OF, Ogundele LT, Inuyomi SO, Olukotun SF, Fakunle MA, Alabi OO. Heavy metals concentrations and naturally occurring radionuclides in soils affected by and around a solid waste dumpsite in Osogbo metropolis, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:730. [PMID: 34661752 DOI: 10.1007/s10661-021-09480-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The presence of heavy metals and naturally occurring radioactive materials (NORMs) in high concentrations in soils can be hazardous to exposed humans. This study is aimed at measuring the concentrations of heavy metals (Cu, Pb, Ni, Zn, Cd, Co, and Cr) and activity concentration of 232Th, 238U, and 40K in soils affected by and around a solid waste dumpsite in Osogbo metropolis, Nigeria. Atomic absorption spectrometry and gamma-ray spectrometric techniques were used to determine the concentrations of metals and NORMs, respectively. Possible environmental impact of the heavy metal content and the probable radiological hazard by the NORMs to the general public were assessed. The calculated pollution indices reported in this work for Co, Cr, Pb, and Ni show low pollution status. Geoaccumulation indices for Cu, Zn, and Cd indicated that the area under study is strongly contaminated by these metals. Evaluated ecological risk index narrowed down Cd as the poisonous metal with high concentration. The measured radionuclides' mean activity concentrations and the evaluated mean of radium equivalent and absorbed dose rate values are higher than the recommended safe limit, an indication of possible radiological hazard. The principal factor analysis results explained 76% of the collection of data and described chips of galvanized/chrome metals, scrap metals, waste from electronics, Cr, and Cd-containing waste as sources of the heavy metals. The practice of land cultivation around the dumpsite should be deterred to prevent the transportation of these vicious heavy metals into the food chain.
Collapse
Affiliation(s)
| | - Lasun T Ogundele
- Department of Physics, University of Medical Sciences, Ondo, Nigeria
| | - Samuel O Inuyomi
- Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Stephen F Olukotun
- Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Mutiu A Fakunle
- Department of Physics, Osun State University, Osogbo, Nigeria
| | | |
Collapse
|
15
|
Arabi Z, Rinklebe J, El-Naggar A, Hou D, Sarmah AK, Moreno-Jiménez E. (Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117199. [PMID: 33992901 DOI: 10.1016/j.envpol.2021.117199] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/17/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Biochar is a promising immobilizing agent of trace elements (TEs) in contaminated soils. However, several contradictory results have been reported regarding the potential of biochar to immobilize arsenic (As), chromium (Cr), and nickel (Ni) in contaminated soils. We conducted a meta-analysis on the published papers since 2006 until 2019 to examine the effects of biochar on the chemical (im)mobilization of As, Cr, and Ni in contaminated soils and to elucidate the major factors that control their interactions with biochar in soil. We synthesized 48 individual papers comprised of a total of 9351 pairwise comparisons and used the statistical tool of Cohen's d as an appropriate effect size for the comparison between means. We found that the application of biochar often increased the As mobilization in soils. Important variables that modulated the biochar effects on As mobilization in soil were pyrolysis temperature and time (ranging between 8 and 16 times when T > 450 °C and t > 1hr), organic matter (7-16 times when SOM<3%) and further site conditions. In contrast to As, biochar efficiently immobilized Cr and Ni in contaminated soils. The extent of the Cr and Ni immobilization was determined by the feedstock (Cr: 7-18 times for agricultural residue-derived biochar; Ni: 13-32 times for woody biomass-derived biochar). Our meta-analysis provides a compilation on the potential of different types of biochar to reduce/increase the mobilization of As, Cr, and Ni in various soils and under different experimental conditions. This study provides important insights on factors that affect biochar's efficiency for the (im)mobilization of As, Cr, and Ni in contaminated soils. While biochar effectively immobilizes Cr and Ni, a proper management of As-polluted soils with pristine biochar is still challenging. This limitation might be overcome by modification of biochar surfaces to exhibit higher surface area and functionality and active sites for surface complexation with TEs.
Collapse
Affiliation(s)
- Zahra Arabi
- Department of Agriculture and Natural Resources, Islamic Azad University, Gorgan Branch, 4914739975-717, Gorgan, Iran.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
16
|
Turan V. Arbuscular mycorrhizal fungi and pistachio husk biochar combination reduces Ni distribution in mungbean plant and improves plant antioxidants and soil enzymes. PHYSIOLOGIA PLANTARUM 2021; 173:418-429. [PMID: 34235745 DOI: 10.1111/ppl.13490] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 05/12/2023]
Abstract
Soil pollution with nickel (Ni) casts detrimental effects on the quality of crops. Low-cost amendments can restrict Ni mobility in soil and its uptake by the plants. In this pot experiment, the effects of pistachio husk biochar (PHB) and arbuscular mycorrhizal fungi (AMF) on the distribution of Ni in mung bean and its bioavailability in Ni-spiked soil were evaluated. Plant parameters like Ni plant height, root dry weight, shoot dry weight, grain yield, chlorophyll contents, oxidative stress, Ni distribution in the roots, shoot, and grain, as well as the nutritional potential of grains, were measured on plants grown on Ni-contaminated soil amended or not (control) with AMF, zeolite (ZE), PHB, ZE + AMF, and PHB + AMF. Moreover, DTPA (diethylenetriamine pentaacetate)-extractable Ni in the soil, microbial biomass carbon (MBC), total glomalin (TG), extractable glomalin (EG), mycorrhizal root colonization (MRC), and the activities of soil enzymes (i.e. urease, acid phosphatase, and catalase) were also assessed after the plant harvest. With few exceptions, all treatments had significant effects on plant and soil parameters. The PHB + AMF treatment showed the topmost significant increment in plant physical parameters while reducing the Ni distribution in plant parts and oxidative injury. Based on these findings, it is proposed that PHB + AMF treatment can reduce Ni distribution and oxidative stress in mung bean plants and improve the biochemical compounds in grain.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, Bingöl, Turkey
| |
Collapse
|
17
|
Hannan F, Huang Q, Farooq MA, Ayyaz A, Ma J, Zhang N, Ali B, Deyett E, Zhou W, Islam F. Organic and inorganic amendments for the remediation of nickel contaminated soil and its improvement on Brassica napus growth and oxidative defense. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125921. [PMID: 34492853 DOI: 10.1016/j.jhazmat.2021.125921] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
In-situ stabilization has been considered an effective way to remediate metal contaminated soil. Thus, pot experiments were undertaken to investigate the effectiveness of multiple stabilization agents such as biochar (BC), mussel shell (MS), zeolite (ZE) and limestone (LS) on the immobilization of Ni, physicochemical features and enzyme activities in polluted soil. Results showed that the sole application of Ni adversely affected the rapeseed growth, photosynthetic pigments, and antioxidative defense. However, the addition of amendments to the contaminated soil significantly reduced Ni bioavailability. The XRD analysis confirmed the formation of Ni related ligands and FTIR showed the presence of hydroxyl, carboxyl and sulfur functional groups, as well as complexation and adsorption of Ni on amendments. Among multiple amendments, biochar significantly enhanced plant biomass attributes and total chlorophyll content. Moreover, addition of amendments also strengthened the antioxidant defense by decreasing Ni induced oxidative stress (H2O2 and O2.-), increased macronutrient availability, reduced Ni uptake and improved soil health. The qPCR analysis showed that the Ni transporters were significantly suppressed by amendments, which is correlated with the lower accumulation of Ni in rapeseed. The present study showed that immobilizing agents, especially biochar, is an effective amendment to immobilize Ni in soil, which restricts its entry into the food chain.
Collapse
Affiliation(s)
- Fakhir Hannan
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Muhammad A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Junyi Ma
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Na Zhang
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Elizabeth Deyett
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Chitosan with Bentonite and Biochar in Ni-Affected Soil Reduces Grain Ni Concentrations, Improves Soil Enzymes and Grain Quality in Lentil. MINERALS 2020. [DOI: 10.3390/min11010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ecological and human health risks associated with Ni-affected soils are one of the major attention seeking issues nowadays. The current investigation is based on the usage of biochar (BR), chitosan (CN), bentonite (BE), and their mixture to immobilize Ni in a Ni-polluted soil and accordingly contracted Ni distribution in lentil plant parts, improved grain nutritional quality, antioxidant defense system, and soil enzymatic activities. The soil was initially amended with CN, BE, and BR and later lentil was grown in this soil in pots. Results depicted the highest significance of BE+CN treatment in terms of reducing the Ni distribution in the roots, shoots, grain, and DTPA-extractable fractions, relative to control treatment. Contrarily, the BR+CN treatment displayed the minimum oxidative stress and the utmost plant growth, chlorophyll contents in the leaves, relative water content (RWC), micronutrient concentrations, and grain biochemistry. The BR+CN indicated the highest activities of soil enzymes. Based on the results, we recommend BE+CN treatment to reduce the Ni distribution in the lentil plant. Although, improvement in plant growth, grain quality, soil enzymes, and a significant reduction in plant oxidative stress can only be gained with BR+CN.
Collapse
|
19
|
Dai Q, Ren N, Ning P, Ma L, Guo Z, Xie L, Yang J, Cai Y. Inorganic flocculant for sludge treatment: Characterization, sludge properties, interaction mechanisms and heavy metals variations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 275:111255. [PMID: 32841793 DOI: 10.1016/j.jenvman.2020.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 06/17/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
As an industrial waste, phosphogypsum was modified to produce flocculant for sludge dewatering. In this paper, characteristics of flocculant, properties of treated sludge, and interactions of sludge and flocculant were investigated. Results suggested that after modification, flocculant showed a positive electrical property and a porous structure. Besides, larger sludge flocs formed in treated sludge showed a higher settleability and filterability. Flocculant could narrow sludge colloid network by compressing its Electrical double-layer due to the presence of CaSO4. With potential change, the electronegative colloidal network cracked quickly and released sludge particles, active groups, unstable heavy metals and 82.91% of bound water. Moreover, porous adsorption between sludge particles and flocculant was found under molecular electrostatic potential and Van Der Waals force caused by flocculant addition. After modification, shear modulus of CaSO4, SiO2 and Al2O3 in modified phosphogypsum increased by 21%, 23% and 17%, respectively. This provided a strong skeleton support for sludge particles, which is significant to sludge dewatering. Particularly, through chelation, adsorption and rolling-sweeping process, risk level of unstable heavy metals excepting Cu in sludge filter cake was largely weakened. Immobilized rate of risky heavy metals was 23.96% (CdF1/F2), 39.92% (CrF1), 11.11% (PbF1/F2), 21.21% (ZnF1), 35.49% (NiF1/F2), and 78.61% (AsF1/F2), respectively. Therefore, this study provided significant insight for developing efficient method to promote bound water removal from sludge, and to stabilize risky heavy metals in sludge.
Collapse
Affiliation(s)
- Quxiu Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, 150090, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Zhiying Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Longgui Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Jie Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Yingying Cai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
20
|
Zhou X, Wang S, Liu Y, Huang G, Yao S, Hu H. Coupling phytoremediation efficiency and detoxification to assess the role of P in the Cu tolerant Ricinus communis L. CHEMOSPHERE 2020; 247:125965. [PMID: 32069730 DOI: 10.1016/j.chemosphere.2020.125965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Phosphorous (P) fertilization is an important agronomic practice, but its role in enhancing phytoremediation efficacy and mediating detoxification has rarely been reported in environmental remediation studies. In this study, a pot experiment was undertaken to assess: firstly, the effect of P on phytoextraction of Cu by Ricinus communis L.; secondly, the potential mechanisms by differentiating the effects of the plant from that of P fertilizer (Ca(H2PO4)2); and thirdly, the role of P in physiological detoxification. Results showed that the application of P fertilizer significantly (p ≤ 0.05) increased the plant biomass as well as the Cu concentrations in plant tissues. This enhanced the phytoremediation efficiency represented by the total Cu extraction (up to 121.3 μg Cu plant-1). Phosphorous (P) fertilizer led to a negligible decline in soil pH (0.2 units) but significantly (p ≤ 0.05) reduced the concentrations of soil available in Cu and Fe, due to the formation of insoluble Cu/Fe-phosphate precipitates. Nevertheless, P fertilizer still improved the accumulation and extraction of Cu by R. communis, most likely attributable to the Fe-deficiency induced by applied P fertilizer. Moreover, the application of P fertilizer revealed a significant reduction in MDA, and a profound (p ≤ 0.05) elevation in the amount of photosynthetic pigments, GSH and AsA, along with the enhanced activities of antioxidative enzymes (SOD, POD, and CAT). In this way, Cu toxicity was alleviated. P fertilizers not only enhance the phytoremediation efficiency of Cu-contaminated soils by R. communis, but they also facilitate detoxification, which improves our understanding of the role of P in phytoremediation technologies.
Collapse
Affiliation(s)
- Xiupei Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheliang Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yonghong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoyong Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shiyuan Yao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Xu W, Hou S, Li Y, Khan MA, Luo W, Chen Z, Li Y, Wu X, Ye Z, Liu D. Bioavailability and Speciation of Heavy Metals in Polluted Soil as Alleviated by Different Types of Biochars. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:484-488. [PMID: 32100059 DOI: 10.1007/s00128-020-02804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Biochar is an important material for remediation of contaminated soils, however, different biochars have variable effects on bioavailability of heavy metals. This experiment revealed that peanut shell biochar (PSB) has highest reduction of 78% concentration of Pb in plant roots. The maize straw biochar (MSB) has significantly decreased Zn and Cd concentration (mg/kg dry weight) in Chinese cabbage than other treatments of biochars. The plants of Chinese cabbage have exhibited an efficient transport capability for Zn and Cd. The biochars have reduced exchangeable form of Cd/Zn, enhanced residual heavy metals, and consequently diminished accumulation of heavy metals in plants. The straw block biochar (SBB), PSB and MSB have efficiently relieved the stresses of heavy metals in plants.
Collapse
Affiliation(s)
- Weijie Xu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Shuzhen Hou
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Yaqian Li
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Muhammad Aman Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wenxuan Luo
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Zhenhua Chen
- Agriculture and Rural of Jingning, Lishui, 323000, People's Republic of China
| | - Yongqing Li
- Agriculture and Rural of Jingning, Lishui, 323000, People's Republic of China
| | - Xiangdong Wu
- Agriculture and Rural of Jingning, Lishui, 323000, People's Republic of China
| | - Zhengqian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, Zhejiang, People's Republic of China.
| |
Collapse
|
22
|
Turan V. Potential of pistachio shell biochar and dicalcium phosphate combination to reduce Pb speciation in spinach, improved soil enzymatic activities, plant nutritional quality, and antioxidant defense system. CHEMOSPHERE 2020; 245:125611. [PMID: 31864057 DOI: 10.1016/j.chemosphere.2019.125611] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/17/2019] [Accepted: 12/09/2019] [Indexed: 05/12/2023]
Abstract
Lead-contaminated soils are becoming an ecological risk to the environment because of producing low-quality food which is directly causing critical health issues in humans and animals. We hypothesized that incorporation of dicalcium phosphate (DCP), eggshell powder (ESP) and biochar (BH) at diverse rates into a Pb-affected soil can proficiently immobilize Pb and decline its bioavailability to spinach (Spinacia oleracea L.). A soil was artificially spiked with Pb concentration (at 600 mg kg-1) and further amended with DCP, ESP, and BH (as sole treatments at 2% and in concoctions at 1% each) for immobilization of Pb in the soil. The interlinked effects of applied treatments on Pb concentrations in shoots and roots, biomass, antioxidants, biochemistry, and nutrition of spinach were also investigated. Results depicted that the highest reduction in DTPA-extractable Pb and the concentrations of Pb in shoots and roots was achieved in DCP1%+BH1% treatment that was up to 58%, 66%, and 53%, respectively over control. Likewise, the DCP1%+BH1% treatment also showed the maximum shoot and root dry weight (DW), chlorophyll-a (Chl-a) and chlorophyll-b (Chl-b) contents and relative water content (RWC) in spinach up to 92%, 121%, 60%, 65%, and 30%, respectively, compared to control. Likewise, DCP1%+BH1% treatment noticeably improved antioxidant enzymes, biochemistry, and nutrition in the leaves. Moreover, the DCP1%+BH1% treatment depicted mostly enhanced activities of dehydrogenase, catalase, acid phosphatase, alkaline phosphatase, phosphomonoesterase, urease, protease and B-glucosidase in the post-harvested soil up to 118%, 345%, 55%, 92%, 288%, 107%, 53% and 252%, respectively over control.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000, Bingöl, Turkey.
| |
Collapse
|
23
|
Ali U, Shaaban M, Bashir S, Fu Q, Zhu J, Shoffikul Islam M, Hu H. Effect of rice straw, biochar and calcite on maize plant and Ni bio-availability in acidic Ni contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109674. [PMID: 32072945 DOI: 10.1016/j.jenvman.2019.109674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Metals that contaminate soil is one of the major problems seriously affecting sustainable agriculture worldwide. Nickel (Ni) toxicity to agricultural crops is a global problem. Mobility of heavy metals present in contaminated soil can be reduced by the amendment of soil passivators, which will ultimately reduce the risk of them entering the food chain. A greenhouse pot experiment was conducted to investigate the effects of rice straw (RS), biochar derived from rice straw (BI) and calcium carbonate (calcite) on Ni mobility and its up take by maize (Zea maize L.) plant. Maize crop was grown in Ni spiked (100 mg kg-1) soil with three application rates of passivators (equivalent to 0, 1and 2% of each RS, BI and calcite) applied separately to the soil. Results revealed that the post-harvest soil properties (pH, DOC and MBC), plant phenology (plant height, root length, total dry weight) and physiological characteristics were significantly enhanced with passivator application. Additionally, incorporating passivator into the soil reduced Ni mobility (DTPA) by 68%, 88.9% and 79.3%, and leachability (TCLP) by 72.4%, 76.7% and 66.7% for RS, BI and calcite, respectively at 2% application rate. The Ni concentration in the maize shoots reduced by 30%, 95.2% and 95% and in the roots by 56%, 66% and 63.8% with RS, BI and calcite at 2% application rate, respectively. These findings suggest that the application of 2% biochar (BI) is very promising in reducing Ni uptake, and can reduce toxicity to plants, decrease mobility and leachability in the soil.
Collapse
Affiliation(s)
- Umeed Ali
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Shaaban
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Saqib Bashir
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Md Shoffikul Islam
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Department of Soil Science, University of Chittagong, Bangladesh
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture; College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Turan V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109594. [PMID: 31454752 DOI: 10.1016/j.ecoenv.2019.109594] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Nickel being a toxic heavy metal is considered as a hazardous pollutant in the soil environment. The cultivation of edible vegetables on Ni contaminated soil can deteriorate plant quality which causes critical health issues to humans and animals. Therefore, the remediation for such Ni polluted soils has currently become a great challenge for the researchers. Contrastingly, lowering bioavailability of Ni in those soils based on applying appropriate immobilizing amendments demonstrating a target to relieve virulence to plants can remarkably diminish the environmental hazard. In this experiment, biochar (BR) along diverse clays like bentonite (BE), cationic-zeolite (C-ZE), chitosan (CN) and attapulgite (AP) as individual doses at 2% each in a soil synthetically spiked with Ni (at 50 ppm) magnificently immobilize Ni and curtailed its bioavailability to lettuce (Lactuca sativa L.). In addition, the related influences of planned treatments on translocation of Ni to shoots and leaves, antioxidant preventive system over oxidative injury, biochemistry and nutritional ability of lettuce were monitored. Results suggested that the CN2% treatment performed excellently in terms of reducing Ni concentrations in leaves and roots of lettuce plants along bioavailable Ni in the soil after plant harvest. Surprisingly, the BR2% treatment efficiently promoted enzymatic activities in the soil and developed moisture content, photosynthesis, biomass, biochemistry, and nutrition (both micronutrients and macronutrients) and antioxidant preventive system while diminished Ni oxidative injury in lettuce plants over rest of the treatments. Finally, our results confirmed that individually applying CN at 2% in a Ni contaminated soil could significantly control Ni bioavailability, whereas, application of BR at 2% could remarkably develop aforementioned parameters in lettuce plants.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000, Bingöl, Turkey.
| |
Collapse
|
25
|
Tauqeer HM, Ur-Rahman M, Hussain S, Abbas F, Iqbal M. The potential of an energy crop "Conocarpus erectus" for lead phytoextraction and phytostabilization of chromium, nickel, and cadmium: An excellent option for the management of multi-metal contaminated soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:273-284. [PMID: 30776560 DOI: 10.1016/j.ecoenv.2019.01.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 05/25/2023]
Abstract
Past studies have thoroughly explored the phytoextraction/phytostabilization potentials of different plant species for particular metals. However, none of the plants was able to tackle the problem of multi-metal in contaminated soils. We report herewith the potential of Conocarpus erectus to extract lead (Pb) while having the capability to stabilize chromium (Cr), nickel (Ni) and cadmium (Cd) in polluted soil. The C. erectus was subjected to grow for 120 days in a soil spiked with four different levels of each metal i.e. Pb (0, 600, 1200 and 2400 mg kg-1), Ni (0, 50, 100 and 200 mg kg-1), Cr (0, 150, 300 and 600 mg kg-1) and Cd (0, 20, 40 and 80 mg kg-1). Data related to plant growth, physiology, biochemistry and antioxidants activities revealed that forenamed parameters were significantly reduced with increasing spiking levels. Contrarily, metal speciation in plant parts (metal concentrations in shoots and roots, and metal contents in these corresponding plant parts), metal removal per pot, and DTPA-extractable metals from the soil were significantly increased with increasing spiking level upon the termination of the experiment. Curiously, each spiking level demonstrated elevated Pb concentrations in shoots than roots, while the concentrations of other metals (Cr, Ni, and Cd) were found higher in roots than in the shoots. Likewise, at each spiking level, C. erectus showed both bioconcentration factor (BCF) and translocation factor (TF) values greater than 1 for Pb, while these values were ever lower than 1 for Cr, Ni, and Cd. Moreover, the percentages of Pb removal were ever higher than other metals at each spiking level. Outcomes of our experiment suggest that C. erectus has immense potential for the phytoextraction of Pb and phytostabilization of Cr, Ni, and Cd in polluted soil. It is suggested that this plant can be used to tackle the problem of multi-metal pollution in soils.
Collapse
Affiliation(s)
- Hafiz Muhammad Tauqeer
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Mahmood- Ur-Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
26
|
Shahbaz AK, Adnan Ramzani PM, Saeed R, Turan V, Iqbal M, Lewińska K, Abbas F, Saqib M, Tauqeer HM, Iqbal M, Fatima M, Rahman MU. Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:182-191. [PMID: 30772708 DOI: 10.1016/j.ecoenv.2019.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Since Ni-rich soils are a threat to the environment, growing edible crops on Ni-rich soils can pose a serious risk to human, animal, plant and ecosystem health and, hence, is considered as a challenging task for the researchers. Contrarily, limiting the bioavailability of Ni in such soils upon the addition of suitable amendments cum foliar spray of proteinogenic amino acids having an objective to alleviate stress to crop plants can considerably reduce the environmental risk. In this pot trail, we substantiate the effects of biochar (BR) and zeolite (ZL) addition in the soil along with proline (PN) spray on the resistance, and stress responses of wheat against Ni as well as on Ni translocation and accumulation in wheat plants grown on a Ni-rich soil contaminated by electroplating effluent. The treatments, applied with and without PN spray, involved: no amendment; BR; ZL; and a concoction of both amendments (BR50%+ZL50%). We found that BR50%+ZL50% treatment significantly immobilized Ni in the soil, reduced its accumulation in the shoot, root, and grain, blocked membrane lipid peroxidation and showed an improvement in photosynthetic parameters, the status of antioxidant activities, grain biochemistry and grain yield, compared to the control. Interestingly, exogenous PN spray caused a significant additive effect on the aforementioned parameters in the wheat plants grown on BR50%+ZL50% treated soil. Our results involved a reduced Ni bioavailability in wheat rhizosphere due to BR50%+ZL50% in soil and, furthermore, the additive effect of PN spray to scavenging ROS, obstructing peroxidation of lipid membrane and, thus providing resilience to wheat plant against Ni stress. The suggested technique can make Ni-rich soils suitable for cultivation and production of high-quality food by minimizing Ni bioavailability and toxicity to plants.
Collapse
Affiliation(s)
- Ali Khan Shahbaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | | | - Rashid Saeed
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Veysel Turan
- Institute of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000 Bingöl, Turkey
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680 Poznań, Poland
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Saqib
- Department of Agronomy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hafiz Muhammad Tauqeer
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Mutahar Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Maryam Fatima
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Mahmood-Ur Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
27
|
Ameen N, Amjad M, Murtaza B, Abbas G, Shahid M, Imran M, Naeem MA, Niazi NK. Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10496-10514. [PMID: 30835069 DOI: 10.1007/s11356-019-04540-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/07/2019] [Indexed: 05/25/2023]
Abstract
Nickel (Ni) is a ubiquitous and highly important heavy metal. At low levels, Ni plays an essential role in plants such as its role in urease, superoxide dismutase, methyl-coenzyme M reductase, hydrogenase, acetyl-coenzyme A synthase, and carbon monoxide dehydrogenase enzyme. Although its deficiency in crops is very uncommon, but in the past few years, many studies have demonstrated Ni deficiency symptoms in plants. On the other hand, high levels of applied Ni can provoke numerous toxic effects (such as biochemical, physiological, and morphological) in plant tissues. Most importantly, from an ecological and risk assessment point of view, this metal has narrow ranges of its essential, beneficial, and toxic concentrations to plants, which significantly vary with plant species. This implies that it is of great importance to monitor the levels of Ni in different environmental compartments from which it can enter plants. Additionally, several abiotic stresses (such as salinity and drought) have been reported to affect the biogeochemical behavior of Ni in the soil-plant system. Thus, it is also important to assess Ni behavior critically under different abiotic stresses, which can greatly affect its role being an essential or toxic element. This review summarizes and critically discusses data about sources, bioavailability, and adsorption/desorption of Ni in soil; its soil-plant transfer and effect on other competing ions; accumulation in different plant tissues; essential and toxic effects inside plants; and tolerance mechanisms adopted by plants under Ni stress.
Collapse
Affiliation(s)
- Nuzhat Ameen
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Nabeel K Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| |
Collapse
|
28
|
Hou W, Li S, Li S, Shi D, Liu C. Screening and isolation of cyclooxygenase-2 inhibitors from Trifolium pratense L. via ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography. J Sep Sci 2019; 42:1133-1143. [PMID: 30620132 DOI: 10.1002/jssc.201800986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Nonsteroidal anti-inflammatory drugs reportedly reduce the risk of developing cancer. One mechanism by which they reduce carcinogenesis involves the inhibition of the activity of cyclooxygenase-2, an enzyme that is overexpressed in various cancer tissues. Its overexpression increases cell proliferation and inhibits apoptosis. However, selected cyclooxygenase-2 inhibitors can also act through cyclooxygenase-independent mechanisms. In this study, using ultrafiltration, enzyme-immobilized magnetic beads, high-performance liquid chromatography, and electrospray-ionization mass spectrometry, several isoflavonoids in Trifolium pratense L. extracts were screened and identified. Semi-preparative high-performance liquid chromatography and high-speed counter-current chromatography were then applied to separate the active constituents. Using these methods, seven major compounds were identified in Trifolium pratense L. As cyclooxygenase-2 inhibitors: rothindin, ononin, daidzein, trifoside, pseudobaptigenin, formononetin, and biochanin A, which were then isolated with >92% purity. This is the first report of the presence of potent cyclooxygenase-2 inhibitors in Trifolium pratense L. extracts. The results of this study demonstrate that the systematic isolation of bioactive components from Trifolium pratense L., by using ultrafiltration, enzyme-immobilized magnetic beads, semi-preparative high-performance liquid chromatography, and high-speed counter-current chromatography, represents a feasible and efficient technique that could be extended for the identification and isolation of other enzyme inhibitors.
Collapse
Affiliation(s)
- Wanchao Hou
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Senlin Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Dongfang Shi
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Erdao District, Changchun, P. R. China
| |
Collapse
|
29
|
Zeng L, Lin X, Zhou F, Qin J, Li H. Biochar and crushed straw additions affect cadmium absorption in cassava-peanut intercropping system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:520-530. [PMID: 30384059 DOI: 10.1016/j.ecoenv.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Cassava (Manihot esculenta Crantz) intercropped with peanut (Arachis hypogaea) has good complementary effects in time and space. In the field plot test, the land equivalent ratio (LER) of cassava-peanut intercropping system was 1.43, showing obvious intercropping yield advantage. Compared with monocropping, Cd contents in the roots of cassava and seeds of peanut were significantly reduced by 20.00% and 31.67%, respectively (p < 0.05). Under the unit area of hectare, compared with monocropping of cassava and peanut, the bioconcentration amount (BCA) of Cd in the intercropping system increased significantly by 24.98% and 25.59%, respectively (p < 0.05), and the metal removal equivalent ratio (MRER) of Cd was 1.25, indicating that the intercropping pattern had advantage in Cd removal. In the cement pool plot test, compared with the control, cassava intercropped with peanut under biochar and crushed straw additions did not only enhance the available nutrients and organic matter contents in rhizosphere soil but also promoted the crop growth and increased the content of chlorophyll (SPAD values) of plant leaves. The peanut seeds biomass under biochar and straw additions were significantly increased by 112.34% and 59.38% (p < 0.05), respectively, while the cassava roots biomass under biochar addition was significantly increased by 63.54% (p < 0.05). Applying biochar significantly decreased the content of Cd which extracted by diethylenetriaminepentaacetic acid (DTPA-Cd) in soil and reduced Cd uptake as well as translocation into plant tissues. The BCA of Cd of cassava under biochar addition decreased significantly by 53.87% in maturity stage (p < 0.05), thus reduced the ecological risk of Cd to crops and was of great significance to produce high quality and safe agricultural products. Besides, the crushed straw enhanced the biomass of crops, reduced Cd content in all tissues and maintained Cd uptake in the intercropping system. Therefore, it can realize the integration of ecological remediation and economic benefit of two energy plants in Cd contaminated soil after applied crushed straw in cassava-peanut intercropping system.
Collapse
Affiliation(s)
- Luping Zeng
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China
| | - Xianke Lin
- Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong Higher Education Institutes, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Fei Zhou
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China
| | - Junhao Qin
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China
| | - Huashou Li
- Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture/South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture/Key Laboratory of Agroecology and Rural Environment of Guangzhou Regular Higher Education Institutions, Guangzhou 510642, PR China.
| |
Collapse
|
30
|
Turan V, Khan SA, Iqbal M, Ramzani PMA, Fatima M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:409-419. [PMID: 29906760 DOI: 10.1016/j.ecoenv.2018.05.082] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 05/12/2023]
Abstract
Depleting aquifers, lack of planning and low socioeconomic status of Pakistani farmers have led them to use wastewater (WW) for irrigating their crops causing food contamination with heavy metals and ultimately negative effects on human health. This study evaluates the effects of chitosan (CH) and biochar (BC) on growth and nutritional quality of brinjal plant together with in situ immobilization of heavy metals in a soil polluted with heavy metals due to irrigation with wastewater (SPHIW) and further irrigated with the same WW. Both CH and BC were applied at three different rates i.e. low rate [(LR), BC0.5%, CH0.5% and BC0.25%+CH0.25%], medium rate [(MR), BC1%, CH1% and BC0.5%+CH0.5%] and high rate [(HR), BC1.5%, CH1.5% and BC0.75%+CH0.75%]. Result revealed that brinjal growth, antioxidant enzymes, and fruit nutritional quality significantly improved from LR to HR for each amendment, relative to control. However, these results were more prominent with BC alone and BC+CH, compared with CH alone at each rate. Similarly, with few exceptions, significant reduction in Ni, Cd, Co, Cr and Pb concentrations in the root, shoot and fruit were found in sole CH treatment both at LR and MR but in both CH and BC+CH treatments at HR, relative to control. Interestingly, the concentrations of Fe in the roots, shoots and fruit were more pronounced at BC treatments relative to CH and BC+CH treatments at each rate, compared to control. Overall, the BC+CH treatment at HR was the most effective treatment for in situ immobilization of heavy metals in SPHIW and further irrigated with the same WW, compared to rest of the treatments. This study indicates that BC0.75%+CH0.75% treatment can be used to reduce mobility and bioavailability of heavy metals in SPHIW and facilitates plant growth by improving the antioxidant system. However, the feasibility of BC0.75%+CH0.75% treatment should also be tested at the field scale.
Collapse
Affiliation(s)
- Veysel Turan
- Institute of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000 Bingöl, Turkey
| | - Shahbaz Ali Khan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000 Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000 Pakistan
| | | | - Maryam Fatima
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000 Pakistan
| |
Collapse
|
31
|
Shahbaz AK, Lewińska K, Iqbal J, Ali Q, Iqbal M, Abbas F, Tauqeer HM, Ramzani PMA. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:256-270. [PMID: 29684778 DOI: 10.1016/j.jenvman.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
Nickel (Ni) contaminated soils pose a potential ecological risk to the environment, soil health, and quality of food produced on them. We hypothesized that application of miscanthus biochar (BC) and cationic zeolite (ZE) at various proportions into a Ni contaminated soil can efficiently immobilize Ni and reduce its bioavailability to sunflower (Helianthus annuus L.) and maize (Zea mays L.). An electroplating effluent contaminated soil was amended with BC and ZE, as sole treatments (2% w/w) and their combinations of various ratios (BC, ZE, BC25%ZE75%, BC50%ZE50% and BC75%ZE25%) for immobilization of Ni in the soil. Furthermore, the associated effects of these treatments on residual and DTPA-extractable Ni from the soil; concentrations of Ni in shoots, roots, and grain; growth, physiology, biochemistry and the antioxidant defence mechanisms of sunflower and maize were investigated. Results revealed that BC50%ZE50% treatment efficiently reduced DTPA-extractable Ni in the soil, Ni concentrations in shoots, roots, and grain, while improved selective parameters of both plants. Interestingly, the BC75%ZE25% treatment significantly improved the biomass, grain yield, physiology, biochemistry and antioxidant defense machinery, while decreased Ni oxidative stress in both sunflower and maize, compared to rest of the treatments. The results demonstrate that the BC50%ZE50% treatment can efficiently reduce Ni concentrations in the roots, shoots and grain of both sunflower and maize whereas, an improvement in biomass, grain yield, physiological, biochemical, and antioxidant defense machinery of both crops can only be achieved with the application of BC75%ZE25% treatment in a Ni contaminated soil.
Collapse
Affiliation(s)
- Ali Khan Shahbaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Javed Iqbal
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Tauqeer
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Pia Muhammad Adnan Ramzani
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|