1
|
Lan W, Zhou Q, Li J, Liu M, Deng Y, Huang Y, Zhou Y, Yang H, Xiao Y. Investigation of Cd and Pb enrichment capacities of Erigeron sumatrensis across three polluted regions: Insights into soil parameters and microbial communities. ENVIRONMENTAL RESEARCH 2024; 262:119868. [PMID: 39216739 DOI: 10.1016/j.envres.2024.119868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erigeron sumatrensis is a vigorously growing invasive plant in mining areas and has been the subject of research for its potential in the phytoremediation of heavy metals. In this study, the bioconcentration factor (BCF) and translocation factor (TF) of E. sumatrensis were assessed to evaluate its phytoaccumulation potential for cadmium (Cd) and lead (Pb) across three distinct zinc mining regions with different degrees of contamination, including Huayuan (HY), Yueyang (YY), and Liuyang (LY) areas. The region of HY is identified as having the most severe Cd contamination, while the most pronounced Pb pollution characterizes the LY area. The findings indicate that E. sumatrensis demonstrated a stronger ability to enrich Cd and Pb in less contaminated areas. To elucidate the underlying mechanisms, high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions was employed to analyze the rhizosphere bacterial and fungal communities across the three areas. The results revealed significant variations in the microbial community structure, function, and composition, suggesting a complex interplay between the plant and its associated microorganisms. Correlation analysis identified several soil properties, including soil pH, total nitrogen (TN), available nitrogen (AN), organic matter (OM), and available phosphorus (AP), as pivotal factors that may influence the heavy metal enrichment capabilities of the plant. Notably, some microorganisms (e.g., Burkholderia, Brevundimonas, Paraglomus, and Trichoderma) and enzymes (e.g., P-type ATPases, citrate synthase, catalase) of microorganisms were found to be potentially involved in facilitating the accumulation of Cd and Pb by E. sumatrensis. This research contributes to understanding how invasive alien plants can be utilized to remedy contaminated environments. It highlights the importance of modulating critical soil factors to enhance the phytoremediation potential of E. sumatrensis, which could aid in developing strategies to manage invasive plants and mitigate heavy metal pollution in ecosystems.
Collapse
Affiliation(s)
- Wendi Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qingfan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Mingxin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yong Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hua Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China; Yuelushan Laboratory, Changsha, 410128, China.
| |
Collapse
|
2
|
Lashkari Sanami N, Ghorbani J, Vahabzadeh G, Hodjati SM, Motesharezadeh B. Spontaneous growth of plants enhances phytoextraction on abandoned coal mine wastes in Central Alborz coalfield, Iran. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2154-2162. [PMID: 39001639 DOI: 10.1080/15226514.2024.2378217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Coal mining disperses heavy metals into the environment, necessitating the identification of metal-tolerant plants for ecosystem restoration. This study evaluated the phytoremediation potential of plant species in abandoned coal wastes in northern Iran. Pollution indices indicated moderate contamination of Cu, Ni, V, Zn, Pb, Cr, and As in coal wastes. The plants varied in their ability to accumulate and translocate these metals, with most showing efficient root-to-shoot translocation. Artemisia scoparia (41.06 mg.kg-1) and Capparis spinosa (42.48 mg.kg-1) were effective for Cu phytoextraction. Most species, notably Cynodon dactylon (3.4 mg.kg-1), showed promise for phytoextraction of Cr. Capparis spinosa (7.67 mg.kg-1) exhibited potential for Pb phytoextraction. Most plants, particularly Hordeum vulgare and Melica persica, were effective phytoextractors of Ni. Sylibum marianum accumulated V beyond phytotoxic levels. Chenopodium album and Glaucium fimbriligerum were identified as phytoextractors of Zn while Cynodon dactylon and Hordeum vulgare, accumulating >100 mg.kg-1 Zn in roots, showed potential for phytostabilization. Sylibum marianum and Glaucium fimbriligerum, acted as excluders for As. Kochia prostrata and Artemisia aucheri were excluders for Cu, Cr, Ni, and Pb. This study provided the role of multiple indigenous plants, including perennials and annuals with diverse life forms, in metal extraction and stabilization for sustainable coal waste management.
Collapse
Affiliation(s)
- Nateq Lashkari Sanami
- Department of Rangeland Management, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Jamshid Ghorbani
- Department of Rangeland Management, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
- Department of Earth, Ocean, and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Ghorban Vahabzadeh
- Department of Watershed Management, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Seyed Mohammad Hodjati
- Department of Forestry, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Babak Motesharezadeh
- Department of Soil Science Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Liu J, Liu C, Zheng J, Zhang X, Zheng K, Zhuang J. Response of Plant Endophyte Communities to Heavy Metal Stress and Plant Growth Promotion by the Endophyte Serratia marcescens (Strain JG1). PLANTS (BASEL, SWITZERLAND) 2024; 13:2755. [PMID: 39409625 PMCID: PMC11479206 DOI: 10.3390/plants13192755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Effects of heavy metals on soil microbial communities have been extensively studied due to their persistence in the environment and imposed threats to living organisms; however, there is a lack of in-depth studies of the impacts of heavy metals on plant endophyte communities. Therefore, the responses of plant endophyte communities to different concentrations of heavy metals were investigated in this study. The endophyte communities of plants existing in severely (W1, Pb, 110.49 mg/kg, Cd, 1.11 mg/kg), moderately (W2, Pb, 55.06 mg/kg, Cd, 0.48 mg/kg), and mildly (W3, Pb, 39.06 mg/kg, Cd, 0.20 mg/kg) contaminated soils were analyzed by 16s rRNA high-throughput Illumina sequencing. Furthermore, networks were constructed to illustrate the relationships between microorganisms and environmental factors. High-quality sequences were clustered at a 97% similarity level. Results revealed that the diversity of the community and relative abundance of Cyanobacteria phylum increased with decreasing levels of pollution. Cyanobacteria and Proteobacteria were found to be the dominant phylum, while Methylobacterium and Sphingomonas were observed as the dominant genus. Tukey's HSD test showed that the relative abundances of Cyanobacteria and Proteobacteria phyla and Methylobacterium and Sphingomonas genera differed significantly (p < 0.01) among the plants of the three sample sites. Environmental factor analysis revealed a significant negative correlation (p < 0.01) of Cyanobacteria and a significant positive correlation (p < 0.01) of Methylobacterium with the heavy metal content in the environment. These findings suggest that Cyanobacteria and Methylobacterium may be phylum and genus indicators, respectively, of heavy metal toxicity. Tax4Fun analysis showed the effect of heavy metal toxicity on the abundance of genes involved in plant metabolism. In addition, culturable endophytic strains were isolated to study their resistance to heavy metal stress and their ability to promote plant growth. The potting tests showed that the JG1 strain was tolerant to heavy metals, and it could significantly promote the growth of the host plant under stress caused by multiple heavy metals. Compared to the control, the JG1-treated plants showed a 23.14% increase in height and a 12.84% increase in biomass. Moreover, AP, AK, and HN contents in JG1-treated plants were 20.87%, 12.55%, and 9.03% higher, respectively, under heavy metal stress. The results of this study provide a scientific basis for the construction of an efficient plant endophyte restoration system.
Collapse
Affiliation(s)
- Jiayi Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaxin Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxia Zhang
- China Construction First Group Co., Ltd., Beijing 100000, China
| | - Kang Zheng
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Oujdi M, Chafik Y, Boukroute A, Bourgerie S, Sena-Velez M, Morabito D, Addi M. Exploring Phytoremediation Potential: A Comprehensive Study of Flora Inventory and Soil Heavy Metal Contents in the Northeastern Mining Districts of Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1811. [PMID: 38999651 PMCID: PMC11244480 DOI: 10.3390/plants13131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Mining activities produce waste materials and effluents with very high metal concentrations that can negatively impact ecosystems and human health. Consequently, data on soil and plant metal levels are crucial for evaluating pollution severity and formulating soil reclamation strategies, such as phytoremediation. Our research focused on soils and vegetation of a highly contaminated site with potentially toxic metals (Pb, Zn, and Cu) in the Touissit mining districts of eastern Morocco. Vegetation inventory was carried out in three mine tailings of the Touissit mine fields using the "field tower" technique. Here, 91 species belonging to 23 families were inventoried: the most represented families were Poaceae and Asteraceae, and the biological spectrum indicated a predominance of Therophytes (55.12%). From the studied areas, 15 species were selected and collected in triplicate on the tailings and sampled with their corresponding rhizospheric soils, and analyzed for Pb, Zn, and Cu concentrations. Reseda lutea, lotus marocanus, and lotus corniculatus can be considered as hyperaccumulators of Pb, as these plants accumulated more than 1000 mg·kg-1 in their aerial parts. According to TF, these plant species could serve as effective plants for Pb phytoextraction.
Collapse
Affiliation(s)
- Mohammed Oujdi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Yassine Chafik
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Azzouz Boukroute
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| | - Sylvain Bourgerie
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Marta Sena-Velez
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Domenico Morabito
- University of Orleans, P2E-EA1207, INRAE USC1328, Rue de Chartres, Cedex 2, 45067 Orleans, France (D.M.)
| | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, Oujda 60000, Morocco;
| |
Collapse
|
5
|
Diallo A, Hasnaoui SE, Dallahi Y, Smouni A, Fahr M. Native plant species growing on the abandoned Zaida lead/zinc mine site in Morocco: Phytoremediation potential for biomonitoring perspective. PLoS One 2024; 19:e0305053. [PMID: 38924033 PMCID: PMC11207124 DOI: 10.1371/journal.pone.0305053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.
Collapse
Affiliation(s)
- Alassane Diallo
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
- Centre d’Excellence Africain Mines et Environnement Minier, Institut National Polytechnique Félix HOUPHOUET BOIGNY, Yamoussoukro, Côte d’Ivoire
| | - Said El Hasnaoui
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Youssef Dallahi
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Abdelaziz Smouni
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| | - Mouna Fahr
- Faculté des Sciences, Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Université Mohammed V de Rabat, Rabat, Morocco
- Laboratoire International Associé « Sciences, Environnements, Sociétés et Activités Minières » « LIA-SESAM », Université Mohammed V Morocco/ Université Laval, Laval, Canada
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, Rabat, Morocco
| |
Collapse
|
6
|
Liu T, Wang Q, Li Y, Chen Y, Jia B, Zhang J, Guo W, Li FY. Bio-organic fertilizer facilitated phytoremediation of heavy metal(loid)s-contaminated saline soil by mediating the plant-soil-rhizomicrobiota interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171278. [PMID: 38417528 DOI: 10.1016/j.scitotenv.2024.171278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/11/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Bio-organic fertilizer (BOF) was effective to promote the phytoremediation efficiency of heavy metal(loid)s-contaminated saline soil (HCSS) by improving rhizosphere soil properties, especially microbiome. However, there existed unclear impacts of BOF on plant metabolome and plant-driven manipulation on rhizosphere soil microbiota in HCSS, which were pivotal contributors to stress defense of plants trapped in adverse conditions. Here, a pot experiment was conducted to explore the mechanisms of BOF in improving alfalfa (Medicago sativa)-performing phytoremediation of HCSS. BOF application significantly increased the biomass (150.87-401.58 %) to support the augments of accumulation regarding heavy metal(loid)s (87.50 %-410.54 %) and salts (38.27 %-271.04 %) in alfalfa. BOF promoted nutrients and aggregates stability but declined pH of rhizosphere soil, accompanied by the boosts of rhizomicrobiota including increased activity, reshaped community structure, enriched plant growth promoting rhizobacteria (Blastococcus, Modestobacter, Actinophytocola, Bacillus, and Streptomyces), strengthened mycorrhizal symbiosis (Leohumicola, Funneliformis, and unclassified_f_Ceratobasidiaceae), optimized co-occurrence networks, and beneficial shift of keystones. The conjoint analysis of plant metabolome and physiological indices confirmed that BOF reprogrammed the metabolic processes (synthesis, catabolism, and long-distance transport of amino acid, lipid, carbohydrate, phytohormone, stress-resistant secondary metabolites, etc) and physiological functions (energy supply, photosynthesis, plant immunity, nutrients assimilation, etc) that are associated intimately. The consortium of root metabolome, soil metabolome, and soil microbiome revealed that BOF facilitated the exudation of metabolites correlated with rhizomicrobiota (structure, biomarker, and keystone) and rhizosphere oxidative status, e.g., fatty acyls, phenols, coumarins, phenylpropanoids, highlighting the plant-driven regulation on rhizosphere soil microbes and environment. By compiling various results and omics data, it was concluded that BOF favored the adaptation and phytoremediation efficiency of alfalfa by mediating the plant-soil-rhizomicrobiota interactions. The results would deepen understanding of the mechanisms by which BOF improved phytoremediation of HCSS, and provide theoretical guidance to soil amelioration and BOF application.
Collapse
Affiliation(s)
- Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qian Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yongchao Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yunong Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Frank Yonghong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Dong S, Li L, Chen W, Chen Z, Wang Y, Wang S. Evaluation of heavy metal speciation distribution in soil and the accumulation characteristics in wild plants: A study on naturally aged abandoned farmland adjacent to tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170594. [PMID: 38309366 DOI: 10.1016/j.scitotenv.2024.170594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Heavy metal composite pollution is widespread in the surrounding environment of tailings ponds in arid and semi-arid regions, leading to the abandonment of substantial agricultural land. This study investigates the speciation distribution and plant accumulation characteristics of heavy metals in abandoned farmland with different durations of natural aging. The aim is to comprehend the local heavy metal behavior pattern in the soil-plant system and offer insights for environmental remediation. Our findings reveal that Cd stands out as the primary heavy metal pollutant in this area. The mobility ranking of heavy metals is Cd > Pb > Zn > Cu, with Cd and Pb mobility decreasing along the basin. Notably, active Pb exhibits a higher affinity for soil binding compared to other metals. The predominant plant species in the region are primarily small shrubs, herbaceous plants, and semi-shrubs that demonstrate tolerance to drought and salt. Most plant samples showed elevated levels of Cd, Pb, and Zn, surpassing the maximum tolerance levels for dietary minerals in livestock. This elevated metal content poses potential threats to the health of local livestock and wildlife, yet it is also considered a potential for phytoremediation. Selected dominant plant species from the current study include Kalidium foliatum & gracile which shows potential as a Cd accumulator and indicator. Neotrinia splendens and Reaumuria songarica demonstrate potential as Cd excluders, with the latter exhibiting higher tolerance to Cd (62.9 mg/kg). Additionally, our observations indicate that different plant parts exhibit distinct responses to heavy metals, and Zn synergistically influences the aerial part accumulation of Cd. This study holds significant importance in understanding the complex behavior patterns of multi-metal pollutants in the natural environment. The identification of native plants with remediation potential is valuable for phytoremediation of environment pollution in mining area.
Collapse
Affiliation(s)
- Suhang Dong
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Longrui Li
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weijie Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoming Chen
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yufan Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Technology Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Saleem I, Ahmed SR, Lahori AH, Mierzwa-Hersztek M, Bano S, Afzal A, Muhammad MT, Afzal M, Vambol V, Vambol S, Zhang Z. Utilizing thiourea-modified biochars to mitigate toxic metal pollution and promote mustard (Brassica campestris) plant growth in contaminated soils. JOURNAL OF GEOCHEMICAL EXPLORATION 2024; 257:107331. [DOI: 10.1016/j.gexplo.2023.107331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
9
|
Du Y, Tian Z, Zhao Y, Wang X, Ma Z, Yu C. Exploring the accumulation capacity of dominant plants based on soil heavy metals forms and assessing heavy metals contamination characteristics near gold tailings ponds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119838. [PMID: 38145590 DOI: 10.1016/j.jenvman.2023.119838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Heavy metal contamination of soil commonly accompanies problems around gold mine tailings ponds. Fully investigating the distribution characteristics of heavy metals and the survival strategies of dominant plants in contaminated soils is crucial for effective pollution management and remediation. This study aims to investigate the contamination characteristics, sources of heavy metals (As, Cd, Pb, Hg, Cu, Zn, Cr, and Ni) in soils around gold mine tailings ponds areas (JHH and WZ) and to clarify the form distribution of heavy metals (As, Cd, Pb, Hg) in contaminated plots as well as their accumulation and translocation in native dominant plants. The results of the study showed that the concentrations of As, Pb, Cd, Cu, and Zn in soil exceeded the national limits at parts of the sampling sites in both study areas. The Nemerow pollution index showed that both study areas reached extreme high pollution levels. Spatial analysis showed that the main areas of contamination were concentrated around metallurgical plants and tailings ponds, with Cd exhibiting the most extensive area of contamination. In the JHH, As (74%), Cd (66%), Pb (77%), Zn (47%) were mainly from tailings releases, and Cu (52%) and Hg (51%) were mainly from gold ore smelting. In the WZ, As (42%), Cd (41%), Pb (73%), Cu (47%), and Zn (41%) were mainly from tailings releases. As, Cd, Pb, and Hg were mostly present in the residue state, and the proportion of water-soluble, ion-exchangeable, and carbonate-bound forms of Cd (19.93%) was significantly higher than that of other heavy metals. Artemisia L. and Amaranthus L. are the primary dominating plants, which exhibited superior accumulation of Cd compared to As, Pb, and Hg, and Artemisia L. demonstrated a robust translocation capacity for As, Pb, and Hg. Compared to the concentrations of other forms of soil heavy metals, the heavy metal content in Artemisia L correlates significantly better with the total soil heavy metal concentration. These results offer additional systematic data support and a deeper theoretical foundation to bolster pollution-control and ecological remediation efforts in mining areas.
Collapse
Affiliation(s)
- Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zhijun Tian
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Yunfeng Zhao
- Beijing Institute of Mineral Geology, Beijing, 101500, China
| | - Xinrong Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Zizhen Ma
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| |
Collapse
|
10
|
Zhang H, Li Y, Li R, Wu W, Abdelrahman H, Wang J, Al-Solaimani SG, Antoniadis V, Rinklebe J, Lee SS, Shaheen SM, Zhang Z. Mitigation of the mobilization and accumulation of toxic metal(loid)s in ryegrass using sodium sulfide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168387. [PMID: 37952661 DOI: 10.1016/j.scitotenv.2023.168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Remediation of soils contaminated with toxic metal(loid)s (TMs) and mitigation of the associated ecological and human health risks are of great concern. Sodium sulfide (Na2S) can be used as an amendment for the immobilization of TMs in contaminated soils; however, the effects of Na2S on the leachability, bioavailability, and uptake of TMs in highly-contaminated soils under field conditions have not been investigated yet. This is the first field-scale research study investigating the effect of Na2S application on soils with Hg, Pb and Cu contents 70-to-7000-fold higher than background values and also polluted with As, Cd, Ni, and Zn. An ex situ remediation project including soil replacement, immobilization with Na2S, and safe landfilling was conducted at Daiziying and Anle (China) with soils contaminated with As, Cd, Cu, Hg, Ni, Pb and Zn. Notably, Na2S application significantly lowered the sulfuric-nitric acid leachable TMs below the limits defined by Chinese regulations. There was also a significant reduction in the DTPA-extractable TMs in the two studied sites up to 85.9 % for Hg, 71.4 % for Cu, 71.9 % for Pb, 48.1 % for Cd, 37.1 % for Zn, 34.3 % for Ni, and 15.7 % for As compared to the untreated controls. Moreover, Na2S treatment decreased the shoot TM contents in the last harvest to levels lower than the TM regulation limits concerning fodder crops, and decreased the TM root-to-shoot translocation, compared to the untreated control sites. We conclude that Na2S has great potential to remediate soils heavily tainted with TMs and mitigate the associated ecological and human health risks.
Collapse
Affiliation(s)
- Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - You Li
- Key laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Weilong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza 12613, Egypt
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China
| | - Samir G Al-Solaimani
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
11
|
Chen T, Wen X, Zhou J, Lu Z, Li X, Yan B. A critical review on the migration and transformation processes of heavy metal contamination in lead-zinc tailings of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122667. [PMID: 37783414 DOI: 10.1016/j.envpol.2023.122667] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
The health risks of lead-zinc (Pb-Zn) tailings from heavy metal (HMs) contamination have been gaining increasing public concern. The dispersal of HMs from tailings poses a substantial threat to ecosystems. Therefore, studying the mechanisms of migration and transformation of HMs in Pb-Zn tailings has significant ecological and environmental significance. Initially, this study encapsulated the distribution and contamination status of Pb-Zn tailings in China. Subsequently, we comprehensively scrutinized the mechanisms governing the migration and transformation of HMs in the Pb-Zn tailings from a geochemical perspective. This examination reveals the intricate interplay between various biotic and abiotic constituents, including environmental factors (EFs), characteristic minerals, organic flotation reagents (OFRs), and microorganisms within Pb-Zn tailings interact through a series of physical, chemical, and biological processes, leading to the formation of complexes, chelates, and aggregates involving HMs and OFRs. These interactions ultimately influence the migration and transformation of HMs. Finally, we provide an overview of contaminant migration prediction and ecological remediation in Pb-Zn tailings. In this systematic review, we identify several forthcoming research imperatives and methodologies. Specifically, understanding the dynamic mechanisms underlying the migration and transformation of HMs is challenging. These challenges encompass an exploration of the weathering processes of characteristic minerals and their interactions with HMs, the complex interplay between HMs and OFRs in Pb-Zn tailings, the effects of microbial community succession during the storage and remediation of Pb-Zn tailings, and the importance of utilizing process-based models in predicting the fate of HMs, and the potential for microbial remediation of tailings.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jiawei Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zheng Lu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| |
Collapse
|
12
|
Ma D, Teng W, Yi B, Lin Y, Pan Y, Wang L. Effects of the nitrate and ammonium ratio on plant characteristics and Erythropalum scandens Bl. substrates. PLoS One 2023; 18:e0289659. [PMID: 37540657 PMCID: PMC10403090 DOI: 10.1371/journal.pone.0289659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/23/2023] [Indexed: 08/06/2023] Open
Abstract
Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.
Collapse
Affiliation(s)
- Daocheng Ma
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Weichao Teng
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Biao Yi
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yongzhi Lin
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Yuanyuan Pan
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| | - Linghui Wang
- College of Forestry, Guangxi University, University Road, Nanning, Guangxi Zhuang Autonomous Region, 530004, China
| |
Collapse
|
13
|
Kang J, Liu M, Qu M, Guang X, Chen J, Zhao Y, Huang B. Identifying the potential soil pollution areas derived from the metal mining industry in China using MaxEnt with mine reserve scales (MaxEnt_MRS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121687. [PMID: 37105461 DOI: 10.1016/j.envpol.2023.121687] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Identifying the potential soil pollution areas derived from the metal mining industry usually requires extensive field investigation and laboratory analysis. Moreover, the previous studies mainly focused on a single or a few mining areas, and thus couldn't provide effective spatial decision support for controlling soil pollution derived from the metal mining industry at the national scale. This study first conducted a literature investigation and web crawler for the relevant information on the metal mining areas in China. Next, MaxEnt with mine reserve scales (MaxEnt_MRS) was proposed for spatially predicting the probabilities of soil pollution derived from the metal mining industry in China. Then, MaxEnt_MRS was compared with the basic MaxEnt. Last, the potential soil pollution areas were identified based on the pollution probabilities, and the relationships between the soil pollution probabilities and the main environmental factors were quantitatively assessed. The results showed that: (i) MaxEnt_MRS (AUC = 0.822) obtained a better prediction effect than the basic MaxEnt (AUC = 0.807); (ii) the areas with the soil pollution probabilities higher than 54% were mainly scattered in the eastern, south-western, and south-central parts of China; (iii) GDP (45.7%), population density (30.1%), soil types (15.5%), average annual precipitation (3.9%), and land-use types (3.1%) contributed the most to the prediction of the soil pollution probabilities; and (iv) the soil pollution probabilities in the areas with all the following conditions were higher than 54%: GDP, 7600-2612670 thousand yuan/km2; population density, 152-551 people/km2; precipitation, 924-2869 mm/year; soil types, Ferralisols or Luvisols; and land-use types, townland, mines, and industrial areas. The above-mentioned results provided effective spatial decision support for controlling soil pollution derived from the metal mining industry at the national scale.
Collapse
Affiliation(s)
- Junfeng Kang
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Maosheng Liu
- School of Civil and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Mingkai Qu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China.
| | - Xu Guang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Jian Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yongcun Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China; University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| |
Collapse
|
14
|
Chen H, Zhu L, Jiang W, Ji H, Zhou X, Qin Y, Wu L. Multiple fluorescence polymer dots-based differential array sensors for highly efficient heavy metal ions detection. ENVIRONMENTAL RESEARCH 2023:116278. [PMID: 37321342 DOI: 10.1016/j.envres.2023.116278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Water pollution caused by harmful heavy metal ions (HMIs) can significantly impact aquatic ecosystems and pose a high risk to human health. In this work, equipped with ultra-high fluorescence brightness, efficient energy transfer, and environmentally friendly performance, polymer dots (Pdots) were employed to construct a pattern recognition fluorescent HMIs detection platform. A single-channel unary Pdots differential sensing array was first developed to identify multiple HMIs with 100% classification accuracy. Then an "all-in-one" multiple Förster resonance energy transfer (FRET) Pdots differential sensing platform was constructed to discriminate HMIs in the artificial polluted water samples and actual water samples, exhibiting high classification accuracy in distinguishing HMIs. The proposed strategy leverages the compounded cumulative differential variation of diverse sensing channels for analytes, which is anticipated to find extensive applications in other fields for detection purposes.
Collapse
Affiliation(s)
- Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Wenjun Jiang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Xiaobo Zhou
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
15
|
Zheng J, Wang P, Shi H, Zhuang C, Deng Y, Yang X, Huang F, Xiao R. Quantitative source apportionment and driver identification of soil heavy metals using advanced machine learning techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162371. [PMID: 36828066 DOI: 10.1016/j.scitotenv.2023.162371] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The accurate identification of pollution sources is essential for the prevention and control of possible pollution from soil heavy metals (SHMs). However, the positive matrix factorisation (PMF) model has been widely used as a conventional method for pollution source apportionment, and the classification of source apportionment results mainly relies on existing research and expert experience, which can result in high subjectivity in the source interpretation. To address this limitation, a comprehensive source apportionment framework was developed based on advanced machine learning techniques that combine self-organizing mapping and PMF with a gradient boosting decision tree (GBDT) model. Analysis of Cd, Pb, Zn, Cu, Cr, and Ni in 272 topsoils showed that the average contents of six heavy metals were 1.72-13.79 times greater than corresponding background values, among which Cd pollution was relatively serious, with 66.91 % of the sites having higher values than the specified soil risk screening values. The PMF results revealed that 79.43 % of Pb was related to vehicle emissions and atmospheric deposition, 79.32 % of Cd and 38.84 % of Zn were related to sewage irrigation, and 85.97 % of Cr and 85.50 % of Ni were from natural sources. Moreover, the GBDT detected that industrial network density, water network density, and Fe2O3 content were the major drivers influencing each pollution source. Overall, the novelty of this study lies in the development of an improved framework based on advanced machine learning techniques that led to the accurate identification of the sources of SHM pollution, which can provide more detailed support for environmental protection departments to propose targeted control measures for soil pollution.
Collapse
Affiliation(s)
- Jiatong Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Hangyuan Shi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Changwei Zhuang
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510006, China
| | - Xiaojun Yang
- Florida State University, Tallahassee 10921, United States
| | - Fei Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Rongbo Xiao
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
16
|
Fernández-Braña A, Salgado L, Gallego JLR, Afif E, Boente C, Forján R. Phytoremediation potential depends on the degree of soil pollution: a case study in an urban brownfield. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67708-67719. [PMID: 37118389 PMCID: PMC10203031 DOI: 10.1007/s11356-023-26968-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/08/2023] [Indexed: 05/25/2023]
Abstract
Phytoremediation is a cost-effective nature-based solution for brownfield reclamation. The choice of phytoextraction or phytostabilization strategies is highly relevant when planning full-scale treatments. A suitable approach to identify such species involves the evaluation of plants that grow spontaneously on the contaminated sites. Here, we sought to determine the phytoremediation potential of three spontaneous plant species, namely the trees Acer pseudoplatanus L (A. pseudoplatanus) and Betula celtiberica Rothm. & Vasc (B. celtiberica), and the shrub Buddleja davidii Franch (B. davidii), for the recovery of an urban brownfield. To determine the response of the species to the degree of contamination, we conducted soil and vegetation sampling inside and outside the site. The concentrations of As, Cu, and Zn in soil and plant samples were measured, and then various indexes related to phytoremediation were calculated. The translocation factor and transfer coefficient indicated that vegetation outside the brownfield had phytoextraction capacity while the same plants inside the brownfield revealed phytostabilization properties. Given our results, we propose that the selected species are suitable for phytostabilization strategies in areas with high concentrations of contaminants, whereas they could be used for phytoextraction only in soils with low or moderate levels of pollution.
Collapse
Affiliation(s)
- Alicia Fernández-Braña
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
- Department of Organisms and Systems Biology, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Lorena Salgado
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
- SMartForest Group, Department of Organisms and Systems Biology, Polytechnic School of Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - José Luis R Gallego
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Elías Afif
- Department of Organisms and Systems Biology, Universidad de Oviedo, Mieres, Asturias, Spain
| | - Carlos Boente
- Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, Huelva, Spain
| | - Rubén Forján
- INDUROT and Environmental Biogeochemistry and Raw Materials Group, Campus de Mieres, Universidad de Oviedo, Mieres, Asturias, Spain.
- Department of Organisms and Systems Biology, Universidad de Oviedo, Mieres, Asturias, Spain.
| |
Collapse
|
17
|
Enrichment and distribution characteristics of heavy metal(loid)s in native plants of abandoned farmlands in sewage irrigation area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50471-50483. [PMID: 36795208 DOI: 10.1007/s11356-023-25810-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
Soil samples and native plants were collected from abandoned farmlands with a long history of sewage irrigation along Dongdagou stream, Baiyin City. We investigated the concentrations of heavy metal(loid)s (HMMs) in soil-plant system to evaluate the accumulation and transportation ability of HMMs in native plants. Results indicated that soils in study area were severely polluted by Cd, Pb, and As. With the exception of Cd, the correlation between total HMM concentrations in soil and plant tissues was poor. Among all investigated plants, no one was close to the criteria for the HMM concentrations of hyperaccumulators. The concentrations of HMMs in most plants were reached the phytotoxic level and the abandoned farmlands could not be used as forages, which showed that native plants may possess resistance capabilities or high tolerance for As, Cu, Cd, Pb, and Zn. The FTIR (Fourier transform infrared spectrometer) results suggested that the detoxification of HMMs in plants may depend on the functional groups (-OH, C-H, C-O, and N-H) of some compounds. Bioaccumulation factor (BAF), bioconcentration factor (BCF), and biological transfer factor (BTF) were used to identify the accumulation and translocation characteristics of HMMs by native plants. S. glauca had the highest mean values of BTF for Cd (8.07) and Zn (4.75). C. virgata showed the highest mean BAFs for Cd (2.76) and Zn (9.43). P. harmala, A. tataricus, and A. anethifolia also presented high accumulation and translocation abilities for Cd and Zn. High HMMs (As, Cu, Cd, Pb, and Zn) accumulation in the aerial parts of plants may lead to increased accumulation of HMMs in the food chain; additional research is desperately required. This study demonstrated the HM enrichment characteristics of weeds and provided a basis for the management of abandoned farmlands.
Collapse
|
18
|
Khan IU, Qi SS, Gul F, Manan S, Rono JK, Naz M, Shi XN, Zhang H, Dai ZC, Du DL. A Green Approach Used for Heavy Metals 'Phytoremediation' Via Invasive Plant Species to Mitigate Environmental Pollution: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040725. [PMID: 36840073 PMCID: PMC9964337 DOI: 10.3390/plants12040725] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Heavy metals (HMs) normally occur in nature and are rapidly released into ecosystems by anthropogenic activities, leading to a series of threats to plant productivity as well as human health. Phytoremediation is a clean, eco-friendly, and cost-effective method for reducing soil toxicity, particularly in weedy plants (invasive plant species (IPS)). This method provides a favorable tool for HM hyperaccumulation using invasive plants. Improving the phytoremediation strategy requires a profound knowledge of HM uptake and translocation as well as the development of resistance or tolerance to HMs. This review describes a comprehensive mechanism of uptake and translocation of HMs and their subsequent detoxification with the IPS via phytoremediation. Additionally, the improvement of phytoremediation through advanced biotechnological strategies, including genetic engineering, nanoparticles, microorganisms, CRISPR-Cas9, and protein basis, is discussed. In summary, this appraisal will provide a new platform for the uptake, translocation, and detoxification of HMs via the phytoremediation process of the IPS.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Farrukh Gul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sehrish Manan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Justice Kipkorir Rono
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Misbah Naz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin-Ning Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiyan Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Inspection and Testing Certificate, Changzhou Vocational Institute Engineering, Changzhou 213164, China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dao-Lin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
19
|
Wu Y, Tian X, Wang R, Zhang M, Wang S. Effects of vegetation restoration on distribution characteristics of heavy metals in soil in Karst plateau area of Guizhou. PeerJ 2023; 11:e15044. [PMID: 36949760 PMCID: PMC10026723 DOI: 10.7717/peerj.15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
In southwest China, vegetation restoration is widely used in karst rocky desertification control projects. This technology can effectively fix the easily lost soil, gradually restore the plant community and improve soil fertility. However, the change law of soil heavy metals in the restoration process remains to be further studied. Therefore, in this work, Guizhou Caohai Nature Reserve as a typical karst area was taken as the research object to investigate the influence of vegetation restoration technology on repairing soil heavy metal pollution. The spatial distribution characteristics of soil heavy metals (chromium, nickel, arsenic, zinc, lead) before and after vegetation restoration in karst area were studied by comparative analysis and linear stepwise regression analysis. The main influencing factors and spatial distribution characteristics of heavy metals in karst area were further discussed. The results showed that: (1) heavy metals in karst soils are affected by surface vegetation, root exudates, microorganisms and leaching. Only heavy metals nickel (Ni) and lead (Pb) showed the tendency of surface enrichment and bottom precipitation enrichment in non-karst soils. Path analysis suggested that non-metallic soil factors such as soil bulk density (BD), total nitrogen (TN) and ammonium nitrogen (NH4 +-N) had direct effect on the content of heavy metals in soil. (2) The proportion of 0.25-2 mm aggregates in the surface soil of vegetation restoration belt was more than 40%, and the proportion of surface soil ≤2 mm aggregates in this increased to 83% and 88%, respectively, which could improve the soil structure and properties effectively. (3) Vegetation restoration effectively restored the nutrient elements such as carbon and nitrogen in the soil, and enhanced the soil material circulation. Furthermore the content of heavy metals in the surface soil higher than that in the 10-20 cm soil layer. Plant absorption, biosorption mechanism of microorganisms, coupling of root exudates, dissolution of soil soluble organic carbon and pH make the contents of heavy metals Cr, Ni and Pb in vegetation restoration belt slightly lower than those in karst soil. At the same time, affected by vegetation coverage, residual heavy metals in soil are further leached by surface runoff. Therefore, the content of heavy metals in soil could reduce combined heavy metal enrichment plants for extraction with remediation. This study elucidates the advantages and remedy mechanism of vegetation restoration in the remediation of heavy metal contaminated soils in Caohai area of Guizhou, and this plant activation and enrichment extraction remediation technology would be popularized and applied in the remediation of heavy metal contaminated soils in other karst areas.
Collapse
Affiliation(s)
- Yunjie Wu
- College of Eco-Environmental Engineering, The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, Asia, China
| | - Xin Tian
- College of Eco-Environmental Engineering, The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, Asia, China
| | - Runze Wang
- College of Eco-Environmental Engineering, The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, Asia, China
| | - Mingyi Zhang
- College of Eco-Environmental Engineering, The Institute of Karst Wetland Ecology, Guizhou Minzu University, Guiyang, Asia, China
| | - Shuo Wang
- Department of Mechanical and Electrical and Urban Construction, Guizhou Vocational College of Agriculture, Qingzhen, Asia, China
| |
Collapse
|
20
|
Zhu H, Xu J, Zhou B, Ren J, Yang Q, Wang Z, Nie W. Leaching Characteristics of Potentially Toxic Metals from Tailings at Lujiang Alum Mine, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17063. [PMID: 36554944 PMCID: PMC9779374 DOI: 10.3390/ijerph192417063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
To investigate the leaching characteristics and potential environmental effects of potentially toxic metals (PTMs) from alum mine tailings in Lujiang, Anhui Province, soaking tests and simulated rainfall leaching experiments were conducted for two types of slag. PTMs comprising Cd, Cr, Cu, Mn, and Ni were detected in the slag. Cu and Cd contents exceeded the national soil risk screening values (GB 15618-2018). pH values of the two slag soaking solutions were negatively correlated with the solid:liquid ratio. pH values of the sintered slag soaking solutions with different solid:liquid ratios finally stabilized between 4.4 and 4.59, and those of the waste slag soaking solutions finally stabilized between 2.7 and 3.4. The concentrations of Cd, Cr, Cu, Mn, and Ni leached from waste slag were higher than those from sintered slag, and the dissolved concentrations of these PTMs in sintered slag were higher under rainfall leaching conditions than soaking conditions (the difference in Cr concentration was the smallest, 5.6%). The cumulative release of Cd, Cr, Cu, Mn, and Ni increased as the leaching liquid volume increased. The kinetic characteristics of the cumulative release of the five PTMs were best fitted by a double constant equation (R2 > 0.98 for all fits). Single factor index evaluations showed that Mn and Ni were the PTMs with high pollution degrees (Pi for Mn and Ni exceed 1) in the leaching solutions. However, considering the biotoxicity of PTMs, the water quality index evaluations showed that the water quality of the sintered slag soaking solution, the waste slag soaking solution, and the sintered slag leachate was good, poor, and undrinkable, respectively. The health risk assessment showed that the total non-carcinogenic risk (HI) values in adults for both the sintered slag leachate and waste slag soaking solution exceeded the safe level of 1, with HI values of 3.965 and 2.342, respectively. The hazard quotient (HQ) for Cd was 1.994 for the sintered slag leachate, and Cd and Cr make up 50.29% and 15.93% of the total risk, respectively. Cr makes up 28.38% of the total risk for the waste slag soaking solution. These results indicate a high non-carcinogenic risk of exposure to Cd and Cr in the leaching solution used for drinking purposes. These findings may provide a reference for the evaluation and ecological control of PTM pollution in alum mining areas.
Collapse
Affiliation(s)
- Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Jinbo Xu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Jia Ren
- Shaanxi Mining Development Industry and Trade Corporation Limited, Xi’an 710054, China
| | - Qiang Yang
- Northwest Engineering Corporation Limited Power China, Xi’an 710065, China
| | - Zhe Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Weibo Nie
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
21
|
Kolberg F, Tóth B, Rana D, Arcoverde Cerveira Sterner V, Gerényi A, Solti Á, Szalóki I, Sipos G, Fodor F. Iron Status Affects the Zinc Accumulation in the Biomass Plant Szarvasi-1. PLANTS (BASEL, SWITZERLAND) 2022; 11:3227. [PMID: 36501267 PMCID: PMC9738582 DOI: 10.3390/plants11233227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Thinopyrum obtusiflorum (syn. Elymus elongatus subsp. ponticus) cv. Szarvasi-1 (Poaceae, Triticeae) is a biomass plant with significant tolerance to certain metals. To reveal its accumulation capacity, we investigated its Zn uptake and tolerance in a wide range: 0.2 to 1000 µM Zn concentration. The root and shoot weight, shoot length, shoot water content and stomatal conductance proved to be only sensitive to the highest applied Zn concentrations, whereas the concentration of malondialdehyde increased only at the application of 1 mM Zn in the leaves. Although physiological status proved to be hardy against Zn exposure, shoot Zn content significantly increased in parallel with the applied Zn treatment, reaching the highest Zn concentration at 1.9 mg g-1 dry weight. The concentration of K, Mg and P considerably decreased in the shoot at the highest Zn exposures, where that of K and P also correlated with a decrease in water content. Although the majority of microelements remained unaffected, Mn decreased in the root and Fe content had a negative correlation with Zn both in the shoot and root. In turn, the application of excessive EDTA maintained a proper Fe supply for the plants but lowered Zn accumulation both in roots and shoots. Thus, the Fe-Zn competition for Fe chelating phytosiderophores and/or for root uptake transporters fundamentally affects the Zn accumulation properties of Szarvasi-1. Indeed, the considerable Zn tolerance of Szarvasi-1 has a high potential in Zn accumulation.
Collapse
Affiliation(s)
- Flóra Kolberg
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary
| | - Brigitta Tóth
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi út., H-4032 Debrecen, Hungary
| | - Deepali Rana
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány Péter lane 1/a, H-1117 Budapest, Hungary
| | - Vitor Arcoverde Cerveira Sterner
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány Péter lane 1/a, H-1117 Budapest, Hungary
| | - Anita Gerényi
- Institute of Nuclear Techniques, Budapest University of Technology and Economics, 9 Műegyetem rkp., H-1111 Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary
| | - Imre Szalóki
- Institute of Nuclear Techniques, Budapest University of Technology and Economics, 9 Műegyetem rkp., H-1111 Budapest, Hungary
| | - Gyula Sipos
- Agricultural Research and Development Institute, 30 Szabadság út., H-5540 Szarvas, Hungary
| | - Ferenc Fodor
- Department of Plant Physiology and Molecular Plant Biology, ELTE Eötvös Loránd University, 1/C Pázmány P. sétány, H-1117 Budapest, Hungary
| |
Collapse
|
22
|
Yang Y, Zhang H, Qiu S, Sooranna SR, Deng X, Qu X, Yin W, Chen Q, Niu B. Risk assessment and early warning of the presence of heavy metal pollution in strawberries. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114001. [PMID: 36027710 DOI: 10.1016/j.ecoenv.2022.114001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution is a major threat to agricultural produce and it can pose potential ecological risks which subsequently impacts on human health. Strawberries are an economically important produce of China. The intrinsic link of heavy metal pollution risk in the soil-strawberry ecosystem is of concern. In this study, the pollution index of heavy metal pollutants in farmlands of different provinces were evaluated, and the results showed significantly high levels of cadmium. In addition, Nemerow integrated pollution index analysis showed that low-pollution farmlands only accounted for 14.07% of the total arable land area. Then, the transfer factors were used to calculate the migration of heavy metals from the soil into strawberries. The results showed that cadmium and nickel were relatively high in strawberries from the Guangxi province. Similar results were found for mercury in Jiangxi Province. The pollution index of single food pollution also showed that mercury in strawberries from Jiangxi Province was at a moderate pollution level. The comprehensive pollution index indicated that heavy metal pollution in strawberries in Central China may be severe. In addition, spatial clustering analysis showed that cadmium, chromium, lead, arsenic and zinc in strawberries had significant hotspot clustering in central, south and southwest China. Finally, our studies also suggested that the risk of carcinogenic and non-carcinogenic diseases was higher in the (2, 4] years age group than in other age groups. People in Yunnan Province were also found to have a higher non-carcinogenic risk than those in other provinces and cities in China. This study provides a comprehensive view of the potential risks of heavy metal contamination in strawberries, which could provide assistance in the design of regulatory and risk management programs for chemical pollutants in strawberries, thus ensuring the safety of consumption of these edible fruits.
Collapse
Affiliation(s)
- Yunfeng Yang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Hui Zhang
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
| | - Songyin Qiu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, PR China
| | - Suren Rao Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, 369 Fulham Road, London SW10 9NH, United Kingdom
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine, Shanghai Customs, Shanghai 200135, PR China
| | - Xiaosheng Qu
- National Engineering laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal, Nanning, PR China
| | - Wenyu Yin
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, PR China.
| | - Qin Chen
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| | - Bing Niu
- School of life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China.
| |
Collapse
|
23
|
Hussain T, Ahmed SR, Lahori AH, Mierzwa-Hersztek M, Vambol V, Khan AA, Rafique L, Wasia S, Shahid MF, Zengqiang Z. In-situ stabilization of potentially toxic elements in two industrial polluted soils ameliorated with rock phosphate-modified biochars. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119733. [PMID: 35820570 DOI: 10.1016/j.envpol.2022.119733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The present study was aimed at determining the efficacy of rock phosphate (RP) 3% loaded in a green coconut shell, chicken manure, and vegetable waste to make green coconut-modified biochar (GMB), chicken manure modified-biochar (CMB), and vegetable waste-modified biochar (VMB) in the fixation of Cr, Pb, Cu, Zn, Ni, and Cd in Sharafi goth and Malir polluted soils. The impact of RP impregnated with organic waste material to produce modified biochars (MBs) on stabilizing PTEs from polluted soils and reducing their uptake by mustard plant has not yet been thoroughly investigated. All modified BCs in 0.5, 1, and 2% doses were used to stabilize Cr, Pb, Cu, Zn, Ni, and Cd in two polluted soils and to reduce their uptake by the mustard plant. The obtained results revealed that the maximum mustard fresh biomass was 17.8% higher with GMB 1% in Sharafi goth polluted soil and 25% higher with VMB 0.5% in Malir polluted soil than in the control treatment. After applying modified BCs, immobilization of Cr, Pb, Cu, Ni, and Cd was observed in both soils and it reduced the uptake of these elements by mustard plants. On the other hand, although Zn mobilization increased by 0.38% for CMB 0.5% and by 5.9% for VMB 0.5% in Sharafi goth polluted soil, as well as by 3.15% for GMB 1%, 6.34% for GMB 2%, and 4.78% for VMB 0.5% in Malir polluted soil, this was due to changes in soil pH and OM. It was found that GMB 1%, CMB 0.5%, and VMB 0.5% have the potential to increase Zn uptake by mustard, while VMB 2% can reduce the element uptake by the plant. Redundancy analysis showed that soil chemical parameters were negatively correlated with PTEs in both soils and reduced their uptake by mustard. The present study revealed that MBs can stabilize PTEs in industrial and wastewater soils polluted with multiple metals and reduce their uptake by plants.
Collapse
Affiliation(s)
- Tanveer Hussain
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Samreen Riaz Ahmed
- Department of English, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Altaf Hussain Lahori
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan.
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Viola Vambol
- Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Lublin, Poland; Department of Applied Ecology and Environmental Sciences, National University «Yuri Kondratyuk Poltava Polytechnic», Poltava, Ukraine
| | - Asif Ali Khan
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Lubna Rafique
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Sajid Wasia
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Muhammad Faizan Shahid
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Zhang Zengqiang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
24
|
Bhatti ZI, Ishtiaq M, Khan SA, Nawab J, Ghani J, Ullah Z, Khan S, Baig SA, Muhammad I, Din ZU, Khan A. Contamination level, source identification and health risk assessment of potentially toxic elements in drinking water sources of mining and non-mining areas of Khyber Pakhtunkhwa, Pakistan. JOURNAL OF WATER AND HEALTH 2022; 20:1343-1363. [PMID: 36170190 DOI: 10.2166/wh.2022.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Accelerated mining activities have increased water contamination with potentially toxic elements (PTEs) and their associated human health risk in developing countries. The current study investigated the distribution of PTEs, their potential sources and health risk assessment in both ground and surface water sources in mining and non-mining areas of Khyber Pakhtunkhwa, Pakistan. Water samples (n = 150) were taken from selected sites and were analyzed for six PTEs (Ni, Cr, Zn, Cu, Pb and Mn). Among PTEs, Cr showed a high mean concentration (497) μg L-1, followed by Zn (414) μg L-1 in the mining area, while Zn showed the lowest mean value (4.44) μg L-1 in non-mining areas. Elevated concentrations of Ni, Cr and a moderate level of Pb in ground and surface water of Mohmand District exceeded the permissible limits set by WHO. Multivariate statistical analyses showed that the pollution sources of PTEs were mainly from mafic-ultramafic rocks, acid mine drainage, open dumping of mine wastes and mine tailings. The hazard quotient (HQ) was the highest for children relative to that for adults, but not higher than the USEPA limits. The hazard index (HI) for ingestions of all selected PTEs was lower than the threshold value (HIing < 1), except for Mohmand District, which showed a value of HI >1 in mining areas through ingestion. Moreover, the carcinogenic risk (CR) values exceeded the threshold limits for Ni and Cr set by the USEPA (1.0E-04-1.0E-06). In order to protect the drinking water sources of the study areas from further contamination, management techniques and policy for mining operations need to be implemented.
Collapse
Affiliation(s)
- Zahid Imran Bhatti
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China; School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Muhammad Ishtiaq
- Department of Community Medicine, Nowshera Medical College, Nowshera Kalan, Pakistan E-mail:
| | - Said Akbar Khan
- Department of Earth & Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Junaid Ghani
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Zahid Ullah
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Ihsan Muhammad
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Zia Ud Din
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, Pakistan
| | - Asad Khan
- Department of Geology, FATA University, F.R. Kohat, Darra Adam Khel, Pakistan
| |
Collapse
|
25
|
Bahadur DS, Ahmed SR, Lahori AH, Hussain T, Alvi SK, Shafique S, Fatima S, Vambol V, Mierzwa-Hersztek M, Hinduja P, Vambol S, Zhang Z. Novel Fuller Earth, Rock Phosphate, and Biochar for Phytomanagement of Toxic Metals in Polluted Soils. AGRICULTURE 2022; 12:1216. [DOI: 10.3390/agriculture12081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The present study was aimed to assess the efficacy of individual and combined effects of novel fuller earth, rock phosphate, and biochar (grapefruit peel) at 1% dosage on maize plant growth, soil chemical properties anduptake of toxic metals (TMs), such as Cu, Zn, Fe, and Cd, by maize plant sown in Korangi (district of Karachi, Pakistan) heavily polluted and Korangi less polluted (K-HP and K-LP) soils. The obtained results indicate that the dry biomass of maize crop increased by 14.13% with combined (FE1% + GBC1%) on K-HP soil and 18.24% with combined (FE 1% + GBC 1%) effects on K-LP soil. The maximum immobilization of Cu, Zn, Fe, and Cd was observed by 36% with GBC1%, 11.90% with FE1%, 98.97% with combined RP1% + GBC1%, 51.9% with FE1% + GBC1% for K-HP, 11.90% with FE1%, 28.6% with FE1%, 22.22% with RP1% + GBC1%, and 57.05% with FE 1% + GBC 1% for K-LP soil. After the addition of proposed substances, modification of soil OM, SOC, TOC, and pH level appeared this lead to the changes in the phyto-availability of Cu, Zn, Fe, and Cd in maize plant. It was concluded that the application of individual and combined effects of novel fuller earth, rock phosphate, and biochar (grapefruit peel) have potential to stabilize pollutants from multi-metal polluted soils for safe crop production.
Collapse
|
26
|
Yang Y, Liao J, Chen Y, Tian Y, Chen Q, Gao S, Luo Z, Yu X, Lei T, Jiang M. Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113603. [PMID: 35551046 DOI: 10.1016/j.ecoenv.2022.113603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.
Collapse
Affiliation(s)
- Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahui Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yuan Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
27
|
Chen Z, Xu J, Duan R, Lu S, Hou Z, Yang F, Peng M, Zong Q, Shi Z, Yu L. Ecological Health Risk Assessment and Source Identification of Heavy Metals in Surface Soil Based on a High Geochemical Background: A Case Study in Southwest China. TOXICS 2022; 10:toxics10060282. [PMID: 35736891 PMCID: PMC9228051 DOI: 10.3390/toxics10060282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023]
Abstract
A total of 28,095 surface soil samples were collected in areas with high natural background levels; the potential ecological risk is generally low, and the high-risk area is small and mainly affected by lead−zinc mines. The contribution to the potential ecological risk factor (RI) is as follows: Hg > Cd > As > Pb > Cu > Ni > Cr > Zn, with noncarcinogenic chronic risks of Cr > As > Cd > Pb > Ni > Cu > Hg > Zn; furthermore, dermal contact is the main pathway of exposure causing health risks. The total carcinogenic risks caused by heavy metals were as follows: Cr > Cd > As > Pb; and the risks posed by Cr, Cd, and As were higher than the threshold value (1.0 × 10−4); people face a higher threat to heavy metals in soils in Zhenxiong, Ludian, Huize, Weixin, and Zhaoyang. The evaluation result of the EPA PMF model shows that the soil heavy metals are mainly composed of five sources, of which basalt, Permian, and Triassic carbonate rock parent material constitute the natural background source, while the mining activities of lead−zinc mines and the emissions of coal burning by residents constitute the anthropogenic source. The contribution was ranked in order of lead−zinc mining (26.7%) > Triassic carbonate (23.7%) > basalt (20.9%) > coal burning and automobile emissions (16.1%) > Permian carbonate (12.6%).
Collapse
Affiliation(s)
- Ziwan Chen
- School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
- Department of Geophysical and Geochemical Exploration, Yunnan Institute of Geological Survey, Kunming 650216, China; (J.X.); (Z.H.); (Q.Z.)
- Correspondence: (Z.C.); (Z.S.)
| | - Jing Xu
- Department of Geophysical and Geochemical Exploration, Yunnan Institute of Geological Survey, Kunming 650216, China; (J.X.); (Z.H.); (Q.Z.)
| | - Ruichun Duan
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China; (R.D.); (S.L.)
| | - Shansong Lu
- Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China; (R.D.); (S.L.)
| | - Zhaolei Hou
- Department of Geophysical and Geochemical Exploration, Yunnan Institute of Geological Survey, Kunming 650216, China; (J.X.); (Z.H.); (Q.Z.)
| | - Fan Yang
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; (F.Y.); (M.P.)
| | - Min Peng
- Institute of Geophysical & Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China; (F.Y.); (M.P.)
| | - Qingxia Zong
- Department of Geophysical and Geochemical Exploration, Yunnan Institute of Geological Survey, Kunming 650216, China; (J.X.); (Z.H.); (Q.Z.)
| | - Zeming Shi
- School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
- Correspondence: (Z.C.); (Z.S.)
| | - Linsong Yu
- School of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
28
|
Mo F, Li H, Li Y, Ma C, Wang M, Li Z, Deng N, Zhang C, Xing B, Xu J, Li G, Wang L, Zheng Y, Yang Y. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151380. [PMID: 34780825 DOI: 10.1016/j.scitotenv.2021.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This present study investigated detoxification mechanisms of leguminous forage Trifolium pratense L. (red clover) seedlings upon exposure to Ag ions (Ag+) on an atomic level. Depressed plant growth (maximum inhibition rate: 46.57%) and significantly altered antioxidase/antioxidant substances levels (maximum inhibition rate: 65.45%/55.41%) revealed that the physiological metabolism was disturbed. Notable lesions were observed in both leaf and root cells at 588 μM Ag+ treatment. All differentially expressed genes (DEGs) were remarkably mapped to biological metabolism related pathways. Red clover seedlings were speculated to initially transform and immobilize Ag+ in the culture medium, then transporting and fixing them inside the cell, mainly as unreduced Ag+ bound to oxygen-, nitrogen-, sulfur-, chloride-containing biological molecules. A portion of Ag+ was reduced to Ag0 and aggregated to form crystalline argentiferous nanoparticles. Effective reducing agents such as alcohols, carboxylic acid, and etc, which are capable of coordinating heavy metals to reduce and stabilize them, were assumed to play a role in Ag+ reduction. The research results are of great value to understand the defense and tolerance mechanisms of red clover to Ag+ and explore the main existing forms of Ag+ in vivo and in vitro, which could indicate contamination condition in regional ecological environment such as mining area and its potential effects.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Geng Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lixin Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yaqin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
29
|
Sun R, Gao Y, Yang Y. Leaching of heavy metals from lead-zinc mine tailings and the subsequent migration and transformation characteristics in paddy soil. CHEMOSPHERE 2022; 291:132792. [PMID: 34748803 DOI: 10.1016/j.chemosphere.2021.132792] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The leaching of heavy metals (HMs) from lead-zinc mine tailings caused by natural precipitation and the subsequent migration and transformation characteristics in paddy soil were investigated using simulative experiments. The contents of HMs in the leachate from lead-zinc mine tailings increased with the increasing of liquid-to-solid ratio. Significant differences of contents under the same rainfall were found among different HMs (P < 0.01). The increasing rates of the concentrations for Mn and Zn in leachate were much higher than the other selected HMs. The leaching results of all HMs were well fitted by the DoseResp equation, indicating that the leaching processes are controlled by multiple factors. When the paddy soil was exposed to lead-zinc mine tailings, the HMs could accumulate significantly in the paddy soil, and their contents increased with the simulated time. The average vertical migration rates (mg kg-1 cm-1 d-1) of HMs in the paddy soil during the four months was ranked in the order of Zn (9.0✕10-2) > Mn (8.1✕10-2) > Cu (1.8✕10-2) > Pb (1.6✕10-2) > Cd (2.7✕10-4) > As (2.4✕10-4). Compared with the other HMs, Mn and Zn can be more easily leached from lead-zinc mine tailings, then migrate into deeper layers in paddy soil. The proportions in five chemical fractions of HMs varied significantly with the impact of lead-zinc mine tailings. The Zn, Cu, and As were mainly presented in residual fraction, while Pb, Mn, and Cd were mainly presented in carbonate-bound, Fe/Mn oxides-bound, and exchangeable fractions, respectively. The risk assessment code results showed that Zn, Mn, Cu, and As posed medium risk, while Pb and Cd posed an extremely high risk to the paddy soil environment. It's found that lead-zinc mine tailings could significantly enhance the ecological risk associated with HMs in the paddy soil.
Collapse
Affiliation(s)
- Rongguo Sun
- School of Chemistry and Material, Guizhou Normal University, Guiyang, 550025, China
| | - Yue Gao
- School of Chemistry and Material, Guizhou Normal University, Guiyang, 550025, China
| | - Yang Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, PR China.
| |
Collapse
|
30
|
Liu N, Liu H, Wu P, Meng W, Li X, Chen X. Distribution characteristics and potential pollution assessment of heavy metals (Cd, Pb, Zn) in reservoir sediments from a historical artisanal zinc smelting area in Southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14288-14298. [PMID: 34608580 DOI: 10.1007/s11356-021-16824-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/26/2021] [Indexed: 05/10/2023]
Abstract
Reservoir sediment contamination with heavy metals produced by mining activities has aroused widespread global concern owing to its potential threat to human health. In this study, the total concentrations and speciation of heavy metals (Cd, Pb, Zn) in the Lexi (LX) and Maoshui (MS) reservoirs around the historical artisanal zinc smelting area in Southwest China were determined, and pollution indices were applied to assess the pollution levels and potential ecological risks of the two reservoirs. The results showed that all the detected samples in the two reservoirs presented significant metal accumulation, especially for Cd, as compared with the soil background values in Guizhou Province. Between the two reservoirs, the vertical distribution characteristics of each metal in sediment columns were similar. The heavy metal concentrations of the three columns in the LX reservoir reached their maxima at 35, 15, and 10 cm and showed a trend of first increasing and then decreasing overall. However, the heavy metal contents of the three columns in the MS reservoir all exhibited wave-like characteristics in the vertical direction, and all of them reached a relatively obvious high point at approximately 5 and 30 cm. The geoaccumulation index (Igeo) and potential ecological risk index (RI) indicated that Cd was strongly enriched and represented the main risk factor, and the pollution level of the MS reservoir was significantly higher than that of the LX reservoir. Furthermore, the effect coefficients (ERMQ) confirmed that the two reservoirs are likely to have toxic impacts on aquatic organisms and need to be controlled and mitigated. The speciation analysis of heavy metals revealed that Cd was primarily in the acid-extractable fraction (69.57%, 68.28%), Pb was chiefly in the reducible fraction (55.24%, 42.18%) and oxidizable fraction (22.60%, 38.02%), and Zn was mainly in the oxidizable fraction (32.54%, 37.65%) in the LX and MS reservoirs, respectively. The ratios of the secondary phase and primary phase (RSP) and risk assessment code (RAC) evaluation demonstrated that Cd in the sediments of the two reservoirs presents a very high potential ecological risk, and Pb and Zn were at medium to high ecological risk levels. This study highlighted that the artisanal zinc smelting activities had caused serious heavy metal pollution in reservoir sediments, posing a threat to the local ecological environment.
Collapse
Affiliation(s)
- Nanting Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Hongyan Liu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, 550025, China
| | - Wei Meng
- Guizhou Academy of Geological Survey, Guiyang, 550005, China
| | - Xuexian Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Xue Chen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
31
|
El Berkaoui M, El Adnani M, Hakkou R, Ouhammou A, Bendaou N, Smouni A. Assessment of the Transfer of Trace Metals to Spontaneous Plants on Abandoned Pyrrhotite Mine: Potential Application for Phytostabilization of Phosphate Wastes. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020179. [PMID: 35050067 PMCID: PMC8777678 DOI: 10.3390/plants11020179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The abandoned Kettara pyrrhotite mine (Marrakech region, Morocco) is a real source of acid mine drainage (AMD) and heavy metal pollution from previous mining operations-which has spread, particularly because of wind erosion. A store-and-release cover system made of phosphate wastes was built on the site for preventing AMD. To ensure the integrity of this cover and its durability, it is desirable to revegetate it (phytostabilization) with plants adapted to the edaphoclimatic conditions of the region. In this paper, a study was carried out on the spontaneous vegetation around the phosphate cover in order to consider the selection of plants to promote the stabilization of the Kettara mine tailings pond. Nine species of native plants with their rhizospheric soils growing in agricultural soils and tailings from the Kettara mine were collected, and metals (As, Cd, Co, Cu, Pb, Zn, Ni, Cr) were analyzed. The soil analysis showed that the tailings contained high concentrations of Cu (177.64 mg/kg) and Pb (116.80 mg/kg) and that the agricultural soil contained high concentrations of As (25.07 mg/kg) and Cu (251.96 mg/kg) exceeding the toxicity level (Cu > 100 mg/kg, Pb > 100 mg/kg, As > 20 mg/kg). The plant analysis showed low trace metal accumulation in Scolymus hispanicus, Festuca ovina, Cleome brachycarpa, Carlina involucrata and Peganum harmala. These species had a bioconcentration factor (BCF) greater than 1 and a translocation factor (TF) less than 1, demonstrating a high tolerance to trace metals. Therefore, they are good candidates for use in the phytoremediation of the Kettara mine tailings. These species could also potentially be used for the phytostabilization of the phosphate waste cover of the Kettara mine, thus completing the rehabilitation process of this area.
Collapse
Affiliation(s)
- Meryem El Berkaoui
- Laboratory of Plant Physiology and Biotechnology, Laboratoire Mixte International—LMI AMIR, Research Center on Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco;
- Mining and Environmental Engineering Laboratory, National School of Mines of Rabat, l Av. Hadj Ahmed Cherkaoui, BP 753, Rabat 53000, Morocco;
- Correspondence: (M.E.B.); (A.S.); Tel.: +212-697-914-205 (M.E.B.); +212-661-771-662 (A.S.)
| | - Mariam El Adnani
- Mining and Environmental Engineering Laboratory, National School of Mines of Rabat, l Av. Hadj Ahmed Cherkaoui, BP 753, Rabat 53000, Morocco;
| | - Rachid Hakkou
- IMED-Lab, Faculty of Sciences and Technology, Cadi Ayyad University, BP 549, Marrakech 40000, Morocco;
- Mining Environment & Circular Economy (EMEC) Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Ahmed Ouhammou
- Laboratory of Microbial Biotechnology, Agrosciences and Environment, Faculty of Sciences-Semlalia, Cadi Ayyad University, BP 2390, Marrakech 40000, Morocco;
| | - Najib Bendaou
- Laboratory of Plant Physiology and Biotechnology, Laboratoire Mixte International—LMI AMIR, Research Center on Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco;
| | - Abdelaziz Smouni
- Laboratory of Plant Physiology and Biotechnology, Laboratoire Mixte International—LMI AMIR, Research Center on Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco;
- Correspondence: (M.E.B.); (A.S.); Tel.: +212-697-914-205 (M.E.B.); +212-661-771-662 (A.S.)
| |
Collapse
|
32
|
Wu B, Luo H, Wang X, Liu H, Peng H, Sheng M, Xu F, Xu H. Effects of environmental factors on soil bacterial community structure and diversity in different contaminated districts of Southwest China mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149899. [PMID: 34464792 DOI: 10.1016/j.scitotenv.2021.149899] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A mass of tailings left by mineral exploitation have caused serious environmental pollution. Although many studies have shown that soil microorganisms have the potential to remediate environmental pollution, the interaction mechanism between microorganisms and the surrounding environment of tailings is still unclear. In this study, 15 samples around pyrite mine tailing were collected to explore the ecological effects of environmental factors on bacterial community. The results showed that most of the samples were acidic and contaminated by multiple metals. Cadmium (Cd), copper (Cu), nickel (Ni) migrated and accumulated to into downstream farmlands while chromium (Cr) was the opposite. Proteobacteria, Chloroflex and Actinobacteria were the dominant phyla. Soil pH, total phosphorus (TP), total nitrogen (TN), available potassium (AK), available phosphorus (AP), the bacteria abundance and diversity all gradually increased with the increase of the distance from the tailing. Invertase, acid phosphatase, total organic carbon (TOC), pH, TP and Cr were the main influencing factors to cause the variation of bacterial community. This work could help us to further understand the changes in soil microbial communities around pollution sources.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - He Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mingping Sheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
33
|
Qin H, Wang Z. Biogeochemistry of Dominant Plants and Soils in Shewushan Gold Lateritic Deposit, China. PLANTS 2021; 11:plants11010038. [PMID: 35009041 PMCID: PMC8747375 DOI: 10.3390/plants11010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
This paper describes the effect of mineral elements on dominant plants in the Shewushan lateritic gold deposit, China. For this purpose, 30 soil profile samples at different depths and 3 kinds of dominant plants including Populus canadensis (Populus X canadensis Moench), Cinnamomun camphora (Cinnamomum camphora (L.) Presl.) and Rhus chinensis (Rhus chinensis Mill.) were collected. The concentration of ore-forming elements including Au, Ag, Pb, Zn, Cu, As, Fe, and S were analyzed. Based on the investigation of two mine profiles, it can be found that Au, Pb, As, and Fe were mainly enriched in laterite layer and the brown clay layer at a depth of 5–11 m. Moreover, the biological accumulate coefficient (BAC) and the contrast coefficient (CM) were calculated to assess the sensitivity and concentrating ability of Populus canadensis and Cinnamomun camphora. To investigate the response of the two species to metal stress, the contents of chlorophyll, malondialdehyde (MDA), and activities of superoxide dismutase (SOD) and peroxidase (POD) were determined. The result showed that Populus canadensis and Cinnamomun camphora have a high tolerance to metal stress and that both of the two species can indicate the content of Au, As, Pb, and Co in topsoil.
Collapse
|
34
|
Rahmonov O, Cabała J, Krzysztofik R. Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. BIOLOGY 2021; 10:biology10121242. [PMID: 34943157 PMCID: PMC8698733 DOI: 10.3390/biology10121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Remnants of former Zn-Pb mining in southern Poland are an important element of geographical space. Some of the post-mining areas have found new economic and residential functions. Many of them are undergoing ecological succession and constitute valuable natural habitats enriching biodiversity of the surrounding landscapes. There are places where we can observe and document various ecological and geochemical transformations in its historical and contemporary aspects. These changes provide a basis for observing and functioning of ecosystems developing in an area transformed under the influence of Zn-Pb mining. Abstract Post-mining waste from Zn-Pb ore exploitation undergoes processes of spontaneous succession and changes in soil chemical composition. The Zakawie area was industrially transformed by historical mining activity, ore enrichment, and the metallurgical processing of Zn-Pb ore. The subject of the study was to analyse the rate of vegetation succession (from 1999 to 2019), soil chemistry, and the relationships between them in an anthropogenic habitat with high concentrations of potentially toxic metals. Ecological and geochemical studies were carried out in an area contaminated with waste from a disused Zn-Pb ore-washing plant. Between 1999 and 2019, the transformation of grassland and meadow vegetation into scrub and forest–grassland communities was observed. This transformation led to a decrease in the area of Molinietum caeruleae meadow (from 25.8% in 1999 to 10.7% in 2019), whose place was taken by Prunus spinosa and Rhamnus cathartica. The community of xerothermic limestone grasslands completely disappeared, being replaced in favour of the Diantho-Armerietum and Prunus spinosa community. In this period, the share of lifeforms of plants and species composition (46 and 60, respectively) also changed. The Shannon and Simpson biodiversity index reached high values in the second investigation period, and it was 0.893 and 0.86, respectively. The anthrosols had a high content of Zn—85,360 mg kg−1, Pb—28,300 mg kg−1, Cd—340 mg kg−1, and As—1200 mg kg−1. Carbonates, clay minerals, and fe-oxides are predominant in the mineral composition of the rhizosphere; the metal-bearing phases are stable; and hardly soluble minerals include smithsonite, cerussite, monheimite, hemimorphite, and oxides of Fe and Fe-Mn. Mineralisation/crust processes formed on the epidermis, and their influences on root development were found. Scanning electron microscopy and energy-dispersive X-ray spectroscopy studies on rhizosphere soil components provide information on the type of minerals and their susceptibility to heavy metals release. The identification of some biotic and mineral structures in rhizospheres can be an interesting source of information on pedogenic processes identified in back-scattered electron images.
Collapse
Affiliation(s)
- Oimahmad Rahmonov
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińksa 60, 41-200 Sosnowiec, Poland;
| | - Jerzy Cabała
- Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, Będzińksa 60, 41-200 Sosnowiec, Poland;
- Correspondence:
| | - Robert Krzysztofik
- Institute of Social and Economic Geography and Spatial Management, Faculty of Natural Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland;
| |
Collapse
|
35
|
Gao T, Wang X, Liu Y, Wang H, Zuo M, He Y, Li H, Li G, Li C, Li X, Li X, Yang Y. Characteristics and diversity of microbial communities in lead-zinc tailings under heavy metal stress in north-west China. Lett Appl Microbiol 2021; 74:277-287. [PMID: 34822179 DOI: 10.1111/lam.13608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/31/2021] [Indexed: 11/30/2022]
Abstract
High-throughput 16S rRNA and 18S rRNA sequencing were performed to study the changes of soil microbial diversity and community structure under different heavy metal pollution levels in Chengxian lead-zinc mining area, Gansu Province. In this study, we characterized the main physicochemical properties, multiple heavy metal pollution, and microbial community structure of the soil in the tailings. The results show that the soil near the tailings pond was alkaline, barren and the heavy metals were seriously polluted. The microbial diversity and richness of S1 and S2 sites were significantly lower than that of CK2 site (P < 0·05), indicating that the heavy metal pollution could change the physicochemical properties and microbial community structure in soil. Among 97 identified core operating taxa of fungal communities, Ascomycota, Teguta and Basidiomycota were dominant at the phylum level, while among 1523 identified core operating taxa of bacterial communities, Actinomycota was dominant at the phylum level. In addition, the redundancy analysis and Spearman correlation analysis showed that the physicochemical properties and the heavy metal concentration had significant effects on the composition and distribution of soil microbial community. The basic characteristics of soil physicochemical properties, multiple heavy metal pollution and microbial community structure in the tailings were revealed, hoping to provide a basis for ecological rehabilitation of tailings by revealing the variance rule of microbial community diversity in the future.
Collapse
Affiliation(s)
- T Gao
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China.,Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - X Wang
- Xi'an Institute of Environment Sanitation Sciences, Xi'an, China
| | - Y Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - H Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - M Zuo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Y He
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - H Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - G Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - C Li
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - X Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, PR China
| | - X Li
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| | - Y Yang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| |
Collapse
|
36
|
Leng Y, Lu M, Li F, Yang B, Hu ZT. Citric acid-assisted phytoextraction of trace elements in composted municipal sludge by garden plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117699. [PMID: 34271519 DOI: 10.1016/j.envpol.2021.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Sludge landscaping after compost stabilization is a popular recycling process; however, until trace elements (TEs) are extracted by plants and reduced to safe concentrations, they present a potential exposure risk. Three garden plants, Liriope platyphylla Wang et Tang (L. platyphylla), Iris tectorum Maxim (I. tectorum), and Photinia x fraseri Dress (P. x fraseri), were selected for field experiments, and their ability to phytoremediate TEs and the promotion effect of citric acid (CA) were studied over 3 months of observation. Among the three kinds of plants, L. platyphylla had the highest biomass per unit soil area, and the CA treatment further increased the biomass of this plant per unit soil area as well as the uptake of TEs. When treated with 3 mmol kg-1 CA, L. platyphylla showed increases in the bioconcentration factors of Cu, Zn, Pb, and Cd by 24%, 63%, 27%, and 123%, respectively. Because of the large biomass and high concentrations of TEs, L. platyphylla had high phytoremediation indexes for Zn, Cu, Pb, Ni, and Cd, which reached 18.5, 3.7, 3.2, 2.2, and 0.4 mg m-2, respectively, and were further improved by 60%-187% by the CA treatment. These advantages indicate the potential usefulness of L. platyphylla for phytoremediation. The results provide basic data and technical support for the use of sludge-based compost and phytoremediation by garden plants.
Collapse
Affiliation(s)
- Yaling Leng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Minying Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Boxuan Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; Zhejiang PUZE Environmental Protection Technology Pte Ltd, Ningbo, 315301, China
| |
Collapse
|
37
|
Zhang Y, Ji H, Xi H, Zhu Y. Co-remediation of PTEs contaminated soil in mining area by heat modified sawdust and herb. CHEMOSPHERE 2021; 281:130908. [PMID: 34034084 DOI: 10.1016/j.chemosphere.2021.130908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Exploring efficient remediation technologies to remediate potentially toxic element (PTE) in soil around the mining area has become a trendy research topic. This study conducted material composed of sawdust ash (SA) and sawdust biochar (SB) with mass ratio of SA:SB = 1:2 in combination with Medicago sativa L. and Festuca arundinacea to remediate soil contaminated by zinc (Zn), cadmium (Cd), and arsenic (As) in a mining area. The result showed that the removal rates of Zn, Cd, and As were the highest under the treatment of Festuca arundinacea combined with 5% material with values of 22.15%, 22.05%, and 12.47%, respectively. Festuca arundinacea had the most potent ability to absorb and tolerate composite PTEs, and the co-remediation process could remarkably improve soil enzyme environment and microbial community diversity. The distribution of PTEs in plant subcellular showed that the accumulation of Zn, Cd, and As in the cell wall of Festuca arundinacea root was significantly increased by adding 2% materials. The concentrations of Zn, Cd, and As in the cell wall were 4486.25, 33.59, and 124.15 mg/kg, respectively. The combination of 2% material and Festuca arundinacea could effectively remove PTEs in soil and enhance the detoxification ability of the plant, thus effectively improving the soil environment and remediating PTEs pollution. This study provided insights into the remediation of PTE-contaminated soil in mining area by combining materials and plants.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Hongbing Ji
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollution, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
38
|
Joshi A, Kanthaliya B, Rajput V, Minkina T, Arora J. Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica. Biol Futur 2021; 71:301-312. [PMID: 34554515 DOI: 10.1007/s42977-020-00038-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
Halophyte is a distinctive group of plants that can survive, even well flourish, at a concentration of Na+ and Cl- ions along with heavy metals that would be lethal to most of the agricultural crop species. These capabilities make certain halophytes good contenders for phytoremediation through phytoextraction or phytostabilization of the salt and heavy metals (HMs) in polluted soils. Thus, the present study elucidates the phytoextraction capacity of three halophytes (Suaeda monoica, Tamarix indica and Cressa critica) growing in saline soil (EC 112 ds m-1), with higher level of HMs rather than a cultivated soil. The accumulation of ions in above-ground tissue was determined in the all three studied plants, considering the fact that maintaining a stable cytosolic Na+/K+ ratio has become a crucial salinity tolerance mechanism. The higher salinity of soil resulted in high level of Na+ ions in leaves, increased synthesis of osmolyte components and robust antioxidant activities to combat the oxidative stress. As whole, changes in cellular metabolites were determined by using FT-IR spectroscopy, evident as differential FT-IR profiles in both leaves and stem specific to these metabolites. The considerable amounts of HMs accumulation including Zn, Fe, Mn, Cu, Cr, and Cd with highest being Fe in above-ground tissue of all three studied halophytes were obtained. These preliminary findings represent S. monoica, T. indica and C. cretica as potent phytoremediation plant using phytosequestration to accumulate HMs. The present study project a light on the use of these three plants in reclamation of degraded saline soils.
Collapse
Affiliation(s)
- Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, M. L. Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Bhanupriya Kanthaliya
- Laboratory of Biomolecular Technology, Department of Botany, M. L. Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Vishnu Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, Russia, 344090
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, M. L. Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
39
|
Wu B, Peng H, Sheng M, Luo H, Wang X, Zhang R, Xu F, Xu H. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112368. [PMID: 34082243 DOI: 10.1016/j.ecoenv.2021.112368] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 05/22/2023]
Abstract
A field investigation on the content of heavy metals in soils and dominant plants was conducted in three sites (A<0.5 km, B<1.0 km, C<1.5 km) with different distances of mine tailings. The spatial distribution of heavy metals and the accumulation in plants were compared, and the candidate species for ecosystem restoration were selected. The results indicated that the soil was polluted by chromium (Cr), Cadmium (Cd), copper (Cu), nickel (Ni) in varying degrees, which is 2.07, 2.60, 1.79, and 4.49 times higher than the Class-Ⅱ standard in China. The concentrate of Ni, Cd, and Zinc (Zn) increased, while Cr, Lead (Pb), and Cu decreased with the distance from the mine tailings. 73 species (34 families) were found and mainly herbaceous plants. The concentrate of Cd, Cu, Cr, and Ni in 29 dominant plants were measured and 66.67%, 21.43%, 100%, 47.62% plants exceeded the normal concentration range. Based on the comparative analysis of heavy metal content, bioconcentration factor, and translocation factor in plants, Polygonum capitatum has good phytoextraction ability, Boehmeria nivea, Chrysanthemum indicum, Miscanthus floridulus, Conyza canadensis, Rubus setchuenensis, Senecio scandens, and Arthraxon hispidus showed remarkable phytostabilization abilities of Cr, Cd, Ni, and Cu, which can be used as potential phytoremediation candidate.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - He Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mingping Sheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Rong Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
40
|
Su J, Weng X, Luo Z, Huang H, Wang W. Impact of Biochar on Soil Properties, Pore Water Properties, and Available Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:544-552. [PMID: 33999280 DOI: 10.1007/s00128-021-03259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Some effects of biochar on soil properties (such as pore water DOC) are not very clear. The changes of soil properties [cation exchange capacity (CEC)], pore water properties [pH, dissolved organic carbon (DOC), and Cd concentration (CPW-Cd)], Cd concentration measured by diffusive gradients in thin films (CDGT-Cd), and available Cd content (Cd in weak acid extractable state and reducible state, CBCR-Cd) determined by the BCR sequential extraction procedure over time after biochar addition were studied by soil incubation and potted corn experiments with five soils from a mining area. The results showed increases of 20.3%-64.6% in CEC and 0.34-1.02 in pH (both p < 0.05) in the soil incubation after adding biochar. The DOC concentration was reduced by 8.2%-33.2% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 14.2%-47.2%, 15.3%-47.9%, and 22.3%-61.4%, respectively. During the corn cultivation phase, CEC increased by 5.1%-29.0%, and DOC concentration decreased by 10.4%-41.3% (p < 0.05). CPW-Cd, CDGT-Cd, and CBCR-Cd decreased by 5.9%-22.4%, 7.2%-25.1%, and 10.5%-64.8%, respectively. Biochar effectively increased the biomass of corn roots and reduced the concentration of Cd in the roots. Biochar altered the properties of soil and pore water, reduced the bioavailability of Cd in soil, and mitigated the harm to corn caused by Cd.
Collapse
Affiliation(s)
- Jiao Su
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xia Weng
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zijian Luo
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Huchen Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Weisheng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
41
|
Pecina V, Juřička D, Vašinová Galiová M, Kynický J, Baláková L, Brtnický M. Polluted brownfield site converted into a public urban park: A place providing ecosystem services or a hidden health threat? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112669. [PMID: 33934019 DOI: 10.1016/j.jenvman.2021.112669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/03/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The conversion of old brownfield sites into places once again serving society is becoming an upward global trend, especially in urban areas. Due to the increasingly growing pressure on the expansion of urban green spaces, such sites can become, for instance, urban parks. The aim of the study was to assess whether the solution is appropriate and if it does not pose a potential health risk. Heavy pollution of soils was found out by means of the example of the urban park newly established in a reclaimed area of a historic mining town. The high average values in the topsoil were found out mainly in As (132 mg/kg), Cd (6.8 mg/kg), Pb (535 mg/kg) and Zn (1604 mg/kg). The assessment of the non-carcinogenic health risk has revealed possible As-related adverse health effects in children even at irregular park visits. According to the carcinogenic risk assessment, As, Cd, Cr and Ni can be ranked in the category of an acceptable total risk for regulatory purposes. The health status of park vegetation as a significant component of the urban ecosystem was also assessed. Soil phytotoxicity brought about severe damage to the seedlings, with a mortality rate of up to 84% locally. The results indicate that heavily polluted brownfield sites with historic mining-related activities are not suitable for establishing urban parks even after reclamation and nature-based solutions may not be invariably appropriate. Based on the findings, the management steps that ought to be implemented in the process of brownfield redevelopment into the urban park even after its establishment have been highlighted in order to minimize the health risk to park visitors while providing the required ecosystem services by vegetation.
Collapse
Affiliation(s)
- Václav Pecina
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - David Juřička
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic.
| | - Michaela Vašinová Galiová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | | | - Ludmila Baláková
- Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic.
| | - Martin Brtnický
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
42
|
Derakhshan Nejad Z, Rezania S, Jung MC, Al-Ghamdi AA, Mustafa AEZMA, Elshikh MS. Effects of fine fractions of soil organic, semi-organic, and inorganic amendments on the mitigation of heavy metal(loid)s leaching and bioavailability in a post-mining area. CHEMOSPHERE 2021; 271:129538. [PMID: 33453484 DOI: 10.1016/j.chemosphere.2021.129538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of soil amendments including biomasses (rice husk, RRH and maple leaf, RML), biochar (rice husk biochar, RHB and maple leaf biochar, MLB), and industrial by-products (red mud, RM and steel slag, SS), at two application rates (0, 1, and 2% w/w) on leaching and bioavailability of heavy metal(loid)s (HMs) (As, Cd, Cu, Pb, and Zn) in the presence of an Asteraceae (i.e., lettuce). Physicochemical properties of the soil (i.e., pH, EC, CEC, and HMs leaching) and plants were examined before and after amending. The addition of amendments significantly (p < 0.05) increased soil EC (from 100 to 180 μScm-1) and CEC (from 7.6 to 15 meq100 g-1). Soil pH from 6.7 ± 0.05 increased about 2 units with increasing in the application rate of MLB, RM, and SS, while it decreased about 0.8 units in RML amended soil. Soil amendments reduced the easily leachable fractions (exchangeable and carbonate) of HMs in the order of MLB > SS > RM > RHB. The average concentration of Cd, Cu, Pb, and Zn in plant roots and shoots decreased >30 wt% in biochars and industrial by-products amended soils, while biomasses mitigated As uptake in lettuce. Results demonstrated that adding maple-derived biochar combined with revegetation effectively immobilized HMs in a post-mining area beside an induce in plant growth parameters.
Collapse
Affiliation(s)
- Zahra Derakhshan Nejad
- Department of Energy Resources and Geosystem Engineering, College of Engineering, Sejong University, Seoul, 05006, South Korea.
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Myung Chae Jung
- Department of Energy Resources and Geosystem Engineering, College of Engineering, Sejong University, Seoul, 05006, South Korea
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abd El-Zaher M A Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Yap CK, Chew W, Al-Mutairi KA, Al-Shami SA, Nulit R, Ibrahim MH, Wong KW, Bakhtiari AR, Sharifinia M, Cheng WH, Okamura H, Ismail MS, Saleem M. Invasive Weed Asystasia gangetica as a Potential Biomonitor and a Phytoremediator of Potentially Toxic Metals: A Case Study in Peninsular Malaysia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094682. [PMID: 33924835 PMCID: PMC8124176 DOI: 10.3390/ijerph18094682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
The invasive weed Asystasia gangetica was investigated for its potential as a biomonitor and as a phytoremediator of potentially toxic metals (PTMs) (Cd, Cu, Ni, Pb, and Zn) in Peninsular Malaysia owing to its ecological resistance towards unfavourable environments. The biomonitoring potential of PTMs was determined based on the correlation analysis of the metals in the different parts of the plant (leaves, stems, and roots) and its habitat topsoils. In the roots, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 2.18, 9.22 to 139, 0.63 to 5.47, 2.43 to 10.5, and 50.7 to 300, respectively. In the leaves, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.16, 7.94 to 20.2, 0.03 to 6.13, 2.10 to 21.8, and 18.8 to 160, respectively. In the stems, the concentrations (mg/kg dry weight) of Cd, Cu, Ni, Pb, and Zn ranged from 0.03 to 1.25, 5.57 to 11.8, 0.23 to 3.69, 0.01 to 7.79, and 26.4 to 246, respectively. On the other hand, the phytoremediation potential of the five metals was estimated based on the bioconcentration factor (BCF) and the translocation factor (TF) values. Correlation analysis revealed that the roots and stems could be used as biomonitors of Cu, the stems as biomonitors of Ni, the roots and leaves as biomonitors of Pb, and all three parts of the plant as biomonitors of Zn. According to the BCF values, in the topsoil, the “easily, freely, leachable, or exchangeable” geochemical fractions of the five metals could be more easily transferred to the roots, leaves, and stems when compared with total concentrations. Based on the TF values of Cd, Ni, and Pb, the metal transfer to the stems (or leaves) from the roots was efficient (>1.0) at most sampling sites. The results of BCF and TF showed that A. gangetica was a good phytoextractor for Cd and Ni, and a good phytostabilizer for Cu, Pb, and Zn. Therefore, A. gangetica is a good candidate as a biomonitor and a phytoremediator of Ni, Pb, and Zn for sustainable contaminant remediation subject to suitable field management strategies.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
- Correspondence:
| | - Weiyun Chew
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | | | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| | - Rosimah Nulit
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Mohd Hafiz Ibrahim
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia; (W.C.); (R.N.); (M.H.I.); (K.W.W.)
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor 46417-76489, Iran;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran;
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN, Nilai 71800, Malaysia;
| | - Hideo Okamura
- Graduate School of Maritime Sciences, Faculty of Maritime Sciences, Kobe University, Kobe 658-0022, Japan;
| | | | - Muhammad Saleem
- Department of Chemistry, Government Post Graduate College Mirpur, Affiliated Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| |
Collapse
|
44
|
Salazar MJ, Wannaz ED, Blanco A, Miranda Pazcel EM, Pignata ML. Pb tolerance and accumulation capabilities of Bidens pilosa L. growing in polluted soils depend on the history of exposure. CHEMOSPHERE 2021; 269:128732. [PMID: 33143889 DOI: 10.1016/j.chemosphere.2020.128732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation, especially phytoextraction, is a good alternative for remediation of soils contaminated with heavy metals. This method requires selection of species for their tolerance, high accumulation levels in harvestable parts, and high biomass production. Bidens pilosa L. has been reported as tolerant to and potentially hyperaccumulator of several heavy metals, including Pb, but with variable results in terms of effectiveness. The aim of this study was to analyse the intra- and interpopulation variability of B. pilosa in response to Pb in individuals from two populations: one historically exposed to Pb and another with no history of exposure. Bidens pilosa L. presented tolerance to Pb pollution in soil, evidenced in a higher survival rate, a better antioxidant response, and an efficient reduction in cell membrane damage mainly due to history of exposure. The period of exposure (30 years) was not long enough to obtain a B. pilosa population that provides seeds for phytoextraction projects, since the average value of total extraction was relatively low. Collecting seeds from a historically exposed population will provide some suitable individuals with Pb accumulation and translocation capabilities, but not a sufficient amount to conduct a large phytoremediation project. The individual accumulator profile of B. pilosa is not related to the physiological behaviour or to the Pb entry into the vascular bundle in root, but to the incorporation of other heavy metals that are micronutrients.
Collapse
Affiliation(s)
- María J Salazar
- Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina.
| | - Eduardo D Wannaz
- Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
| | - Andrés Blanco
- Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
| | - Eliana M Miranda Pazcel
- Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
| | - María L Pignata
- Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
| |
Collapse
|
45
|
Saebi A, Minaei S, Mahdavian AR, Ebadi MT. Precision Harvesting of Medicinal Plants: Elements and Ash Content of Hyssop (Hyssopus officinalis L.) as Affected by Harvest Height. Biol Trace Elem Res 2021; 199:753-762. [PMID: 32394355 DOI: 10.1007/s12011-020-02171-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/24/2020] [Indexed: 11/30/2022]
Abstract
To investigate the effect of harvest height on the amassed elements and ash content of Hyssop (Hyssopus officinalis L.), an experiment was conducted in a randomized complete block design with three replications. Treatments included four harvest heights, i.e., 15, 25, 35, and 45 cm (from the tip of the plant) and the residual stalks. The dependent variables were the amassed content of elements N, K, P, Ca, Mg, Cu, Zn, and Pb in different heights of the plant and the associated ash content (total ash (TA), acid-insoluble ash (AA), and water-insoluble ash (WA)). The results showed that by moving from the upper shoots toward the ground, the amassed content of Mg, Ca, Cu, Zn, and Pb increased by 22.67%, 43.74%, 12.87%, 39.02%, and 85.04%, respectively. Further, a downward trend was observed for N (50.16%) and K (6.41%) content, while an upward trend reported for P (29.06%) content. As for the residual stalks, by moving from the upper shoots toward the ground, Mg, Ca, Cu, Zn, and Pb contents decreased by 1.01%, 21.03%, 9.11%, 17.02%, and 51.06%, respectively, while N and P contents increased by 60.59% and 3.15%, respectively, and a 34.74% increase was seen in P content. With increasing harvest height, TA, AA, and WA values increased by 33.48%, 27.03%, and 18.25%, respectively. As for the residues, these variables increased by 11.44%, 6.35%, and 5.22%, respectively. Our results showed that 15 cm harvest height had the highest quality with the lowest heavy metal content. Graphical Abstract.
Collapse
Affiliation(s)
- Ali Saebi
- Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Minaei
- Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Ali Reza Mahdavian
- Biosystems Engineering Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad-Taghi Ebadi
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
46
|
Liu W, Yang X, Duan L, Naidu R, Yan K, Liu Y, Wang X, Gao Y, Chen Y. Variability in plant trace element uptake across different crops, soil contamination levels and soil properties in the Xinjiang Uygur Autonomous Region of northwest China. Sci Rep 2021; 11:2064. [PMID: 33483606 PMCID: PMC7822888 DOI: 10.1038/s41598-021-81764-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
This study investigated contamination status of eight trace elements (As, Cd, Cr, Hg, Pb, Cu, Zn and Ni) in farmland soils and crops at 535 sites across the Xinjiang Uygur Autonomous Region, Northwest China. Land use types of the sampling sites included vegetable patch, grain field and orchard. Our experimental results indicated all farmland soils were considered as trace element contamination based on the Nemerow comprehensive pollution index (NCPI > 1). However, 91.97% of the crop samples were uncontaminated according to the Chinese Risk Control Standard. Soils from the vegetable patch showed higher pollution level comparison with that from grain field and orchard. Health risks for both non-carcinogenic and carcinogenic risks were calculated through crop ingestion exposure pathway. Grain samples showed highest health risks, followed by melon and fruit, and vegetables. The health risks of crops were mainly driven by Cr and Cd. Crop consumption may pose risks for children but not adults. The source of trace element contamination in the different farmland soils varied and may be attributed to the different agricultural activities. Plant type had a greater influence on the trace element accumulation in crops compared with soil trace element contents and physicochemical properties.
Collapse
Affiliation(s)
- Weiguo Liu
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China
| | - Xiaodong Yang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.
- Department of Geography and Spatial Information Technology, Ningbo University, NO.1188 North ring Road, Ningbo, 315211, China.
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Kaihong Yan
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW, 2308, Australia
| | - Xiyuan Wang
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China
| | - Yongchao Gao
- Ecology Institute, Shandong Provincial Key Laboratory of Applied Microbiology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250306, China
| | - Yinguang Chen
- Institute of Resources and Environment Science, Xinjiang University, Urumqi, 830046, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
47
|
Liu X, Guo D, Ren C, Li R, Du J, Guan W, Li Y, Zhang Z. Performance of Streptomyces pactum-assisted phytoextraction of Cd and Pb: in view of soil properties, element bioavailability, and phytoextraction indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43514-43525. [PMID: 32594441 DOI: 10.1007/s11356-020-09842-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Microbe-assisted phytoremediation provides an eco-friendly and cost-effective approach to reclaim Cd- and Pb-contaminated soils. In this work, incubation and pot experiments were established to investigate the effect of Streptomyces pactum (Act12) combined with compost on soil physicochemical properties, enzymatic activities, and thereby acted on phytoextraction of Cd and Pb by using potherb mustard (Brassica juncea Coss.). The addition of Act12 and compost increased EC (7.2%), available phosphorus (P) (14.9%), available potassium (K) (17.0 folds), DOC (37.7%), OM (2.8 folds), urease (49.8%), dehydrogenase (2.2 folds), and alkaline phosphatase (23.0 folds) of soil, while reduced pH (7.7%) compared with control. Significant decrease of available Cd and Pb uptake was observed after adding compost and Act12 by 29.1% and 32.2%. Presence of compost and Act12 enhanced the biomass by 3.98 folds and 1.83 folds in shoots and roots of plant. Results showed the assimilation of Cd and Pb in shoots was increased by 103.8% and 48.7% due to the increased of biomass. Meanwhile, the rhizosphere effect of soil microorganisms increased the uptake of Cd (60.4%) and Pb (19.2%) in roots. These findings suggested that Act12 joined with compost-strengthened potherb mustard phytoremediation of Cd- and Pb-polluted soils, which may provide new insights into the clean-up of mining-contaminated soils in field practice.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chunyan Ren
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juan Du
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weidou Guan
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiman Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
48
|
Dai W, Holmstrup M, Slotsbo S, Ke X, Li Z, Gao M, Wu L. Compartmentation and effects of lead (Pb) in the collembolan, Folsomia candida. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43638-43645. [PMID: 32737783 DOI: 10.1007/s11356-020-10300-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The impact of soil lead (Pb) pollution on survival, growth, and reproduction of the collembolan, Folsomia candida, and Pb compartmentation in its gut and remaining body parts were studied by exposing animals to laboratory-spiked soil. The survival, growth, and reproduction of F. candida were significantly reduced by increasing soil Pb concentration. The LC50 values of survival based on total and CaCl2-extractable Pb concentration in soil were 2562 mg kg-1 and 351 mg kg-1, respectively. The EC50 values of reproduction were 1244 mg kg-1 and 48 mg kg-1, respectively. The Pb concentration in whole body, gut, and remaining body parts was significantly increased with the increase of soil Pb concentration and followed an exponential increase when the soil Pb concentration was equal to or above a threshold (1000 mg kg-1 for whole body and remaining body part, 500 mg kg-1 for gut). Below this threshold, these relationships were linear. The Pb concentration in the gut was higher than whole body and remaining body part of F. candida, and the threshold of internal Pb concentration at which F. candida can compensate was in the range 7-13 mg Pb kg-1 dry animal (corresponding to soil Pb concentration 500-1000 mg Pb kg-1 dry soil). The results indicate that reproduction of F. candida was a more sensitive indicator of lead toxicity than survival and growth. Pb was mainly accumulated in the gut of F. candida. We discuss the internal Pb concentration as an indicator of adverse effects in the risk assessment of soil Pb pollution.
Collapse
Affiliation(s)
- Wencai Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Martin Holmstrup
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Section of Terrestrial Ecology, Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Xin Ke
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ming Gao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
49
|
Hasnaoui SE, Fahr M, Keller C, Levard C, Angeletti B, Chaurand P, Triqui ZEA, Guedira A, Rhazi L, Colin F, Smouni A. Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1458. [PMID: 33137928 PMCID: PMC7693513 DOI: 10.3390/plants9111458] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Screening of native plant species from mining sites can lead to identify suitable plants for phytoremediation approaches. In this study, we assayed heavy metals tolerance and accumulation in native and dominant plants growing on abandoned Pb/Zn mining site in eastern Morocco. Soil samples and native plants were collected and analyzed for As, Cd, Cu, Ni, Sb, Pb, and Zn concentrations. Bioconcentration factor (BCF), translocation factor (TF), and biological accumulation coefficient (BAC) were determined for each element. Our results showed that soils present low organic matter content combined with high levels of heavy metals especially Pb and Zn due to past extraction activities. Native and dominant plants sampled in these areas were classified into 14 species and eight families. Principal components analysis separated Artemisia herba-alba with high concentrations of As, Cd, Cu, Ni, and Pb in shoots from other species. Four plant species, namely, Reseda alba, Cistus libanotis, Stipa tenacissima, and Artemisia herba-alba showed strong capacity to tolerate and hyperaccumulate heavy metals, especially Pb, in their tissues. According to BCF, TF, and BAC, these plant species could be used as effective plants for Pb phytoextraction. Stipa tenacissima and Artemisia herba-alba are better suited for phytostabilization of Cd/Cu and Cu/Zn, respectively. Our study shows that several spontaneous and native plants growing on Pb/Zn contaminated sites have a good potential for developing heavy metals phytoremediation strategies.
Collapse
Affiliation(s)
- Said El Hasnaoui
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Catherine Keller
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Clément Levard
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Bernard Angeletti
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Perrine Chaurand
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Zine El Abidine Triqui
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Abdelkarim Guedira
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| | - Laila Rhazi
- Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco;
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
- Aix Marseille Univ., CNRS, IRD, INRAE, Collège de France, CEREGE, 13100 Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Centre de Biotechnologie Végétale et Microbienne Biodiversité et Environnement, Faculté des Sciences, Université Mohammed V de Rabat, 10000 Rabat, Morocco; (S.E.H.); (Z.E.A.T.); (A.G.)
- Laboratoire Mixte International Activité Minière Responsable “LMI-AMIR”, IRD/UM5/INAU, 10000 Rabat, Morocco; (C.K.); (C.L.); (B.A.); (P.C.); (F.C.)
| |
Collapse
|
50
|
Lahori AH, Mierzwa-Hersztek M, Demiraj E, Sajjad RU, Ali I, Shehnaz H, Aziz A, Zuberi MH, Pirzada AM, Hassan K, Zhang Z. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. CHEMOSPHERE 2020; 250:126317. [PMID: 32120154 DOI: 10.1016/j.chemosphere.2020.126317] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/22/2020] [Indexed: 05/10/2023]
Abstract
In the present work, in-situ two pot trials were conducted to explore the direct and residual influences of zeolite (ZL) on plant height, dry biomass and bioavailability of Pb, Cd, Cu, and Zn by growing cabbage followed by corn in goldmine-contaminated (GM-C), smelter factory-contaminated (SF-C), and farmland-contaminated (FL-C) soils. Initially, a single treatment of ZL was applied at 20 t/ha, and cabbage was grown under greenhouse pot conditions. After cabbage harvesting, corn was grown in the same pots without additional application of ZL. The results indicated that ZL as an amendment evidently promoted the cabbage and corn yields, whereas the residual influence of ZL did not promote corn dry matter yield in SF-C and FL-C soils compared to CK. Incorporation of ZL potentially decreased the mobility of Pb, Cd, Cu and Zn in contaminated soils after harvesting cabbage and corn compared with CK. In both crops, the Pb, Cd, Cu and Zn contents in plants root and shoot biomasses were dramatically reduced by the direct and residual impacts of ZL rather than CK. This study highlights that the direct and residual influences of ZL at a 20 t/ha application rate have the possibility to support the reclamation of soils polluted with harmful elements and that, by itself, ZL can promote plant growth and increase the value of field crops. The detailed studied regarding residual influence of ZL for restoration of multi-metal polluted soils would be confirmed at the ex-situ condition.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi, 712100, China; Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, 31-120, Krakow, Poland; AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, al. Mickiewicza 30, 30-059, Krakow, Poland
| | - Erdona Demiraj
- Department of Agro-Environment and Ecology, Faculty of Agriculture and Environment, Agriculture University of Tirana, 9302, Albania
| | - Raja Umer Sajjad
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Imran Ali
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Hina Shehnaz
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Ambreen Aziz
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Mohammad Hashim Zuberi
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Abdul Majeed Pirzada
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Khalid Hassan
- Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi, 712100, China.
| |
Collapse
|