1
|
Liang L, Liang Y, Su M, Wang Z, Zhou Z, Zhou X, Jiang Z. Combined toxicity of microplastic fibers and dibutyl phthalate on algae: Synergistic or antagonistic? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107290. [PMID: 39983350 DOI: 10.1016/j.aquatox.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Plastics, combined with plasticizers, have been widely utilized worldwide. Microplastic fibers (MPFs) and dibutyl phthalate (DBP) account for the most predominant microplastics and plasticizers detected in freshwater ecosystem, with their joint toxicity being limited studied. In this study, we employed freshwater algae (Chlorella vulgaris) as toxicity test model organism to assess their growth, photosynthesis, metabolism, and oxidative response when exposing to different concentrations of polypropylene MPFs and the co-exposure of DBP. In addition, the toxic interaction between MPFs and DBP was assessed by combining the integrated toxicity value (Integrated Biomarker Response version 2, IBRv2) and the mixture toxicity index (Effect Addition Index, EAI). Our results demonstrated significant toxic effects of MPFs and DBP on C. vulgaris, and highlighted their dynamic interactions with C. vulgaris. Specifically, when combining with DBP, MPFs with high concentrations exhibited significantly increase in algae growth inhibition, photosynthetic pigment contents (Chl-a, Chl-b, and carotenoids), protein contents, and oxidative enzymes (SOD, CAT, and MDA). In terms of integrated toxicity values, higher IBRv2 values were recorded by the combined exposure of MPFs and DBP in contrast with the sole exposure groups, indicating that the combined exposure caused more severe damage to photosynthesis, oxidation and metabolism. In addition, our study recorded synergistic combined toxicity when MPFs were in high concentrations, whereas antagonistic combined toxicity when MPFs were in low concentrations. Our study highlights the MPFs concentration-dependent combined toxicity (synergistic or antagonistic) when exposing to microplastics and plasticizers in freshwater ecosystems.
Collapse
Affiliation(s)
- Le Liang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Min Su
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Zhe Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Zhendong Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiaotao Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Zhongguan Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China; Anhui Shengjin Lake wetland ecology national long-term scientific research base, Dongzhi 247230, China.
| |
Collapse
|
2
|
Yang Y, Tong Y, Han Q, Feng L, Gao P, Zhang L. Effects of coexisting nanomaterials on the photodegradation behavior and ecotoxicity of antibiotics in the aqueous. CHEMOSPHERE 2024; 366:143509. [PMID: 39384139 DOI: 10.1016/j.chemosphere.2024.143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Nanomaterials (NPs) and antibiotics, as two emergent pollutants, forms a complex contamination through their interaction, potentially causing adverse effects on the organism. This study systematically examined the influence of two NPs (CuO NPs and carbon nanotubes, CNTs) on the photodegradation behavior of tetracycline (TC) and their combined toxic effects on Chlorella vulgaris. The results showed that CuO NPs significantly accelerated TC photodegradation compared to CNTs, increasing the TC photodegradation rate constant by187.6%. Electron spin resonance (ESR) indicated that under the coexistence of CuO NPs or CNTs, 1O2、O2•- and •OH were the main active species promoting TC photodegradation. Probe and quenching experiments confirmed the predominant role of O2•- and 1O2 in the presence of CuO NPs and CNTs. Additionally, three possible TC photodegradation pathways were proposed for the coexistence of CuO NPs and CNTs. In the Chlorella vulgaris growth inhibition experiment, the combined toxicity of CuO NPs or CNTs and TC was higher than that of individual substance, indicating significant synergistic effects, especially with the combination of CNTs and TC. This study provides a new perspective on accurately assessing the environmental behaviors and risks when NPs and antibiotics coexist.
Collapse
Affiliation(s)
- Yang Yang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yao Tong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qi Han
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Tian Q, Wang J, Shao S, Zhou H, Kang J, Yu X, Huang M, Qiu G, Shen L. Combining metabolomics and transcriptomics to analyze key response metabolites and molecular mechanisms of Aspergillus fumigatus under cadmium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124344. [PMID: 38852660 DOI: 10.1016/j.envpol.2024.124344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The co-cultivation of fungi with microalgae facilitates microalgae harvesting and enhances heavy metal adsorption. However, the mechanisms of fungal tolerance to cadmium (Cd) have not yet been studied in detail. In this study, functional groups of fungi were analyzed under Cd stress using Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and transmission electron microscope (TEM) to explore their morphology. Confocal laser scanning microscope (CLSM) was used to characterize the changes in the content of extracellular polysaccharides and proteins, and a decrease in the ratio of glutathione (GSH) to oxidized glutathione (GSSG) was monitored. The GSH and GSSG contents in mycelium were 7.4 and 7.9 times higher than that in the control, respectively. After 72 h of Cd treatment, the fungal extracellular polysaccharide and extracellular protein contents increased by 16 and 11.4 mg/g, respectively, compared to the control. This provided several functional groups for the complexation of Cd ions to enhance fungal Cd tolerance. The metabolomic and transcriptomic results revealed a total of 358 differential metabolites after 20, 48, and 72 h in the positive and negative ion modes, and the number of differential metabolites specific to each group was 104, 14, and 89, respectively. There were 927, 1167, and 1287 up-regulated genes, and 1301, 1480, and 1683 down-regulated genes at 20, 48, and 72 h, respectively. Energy metabolism, amino acid metabolism, and the ABC transport system are the key metabolic pathways for tolerance enhancement and heavy metal detoxification in fungi. The expression of S-cysteinosuccinic acid was significantly up-regulated after Cd stress and associated with enhanced fungal tolerance and resistance to Cd.
Collapse
Affiliation(s)
- Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Shiyu Shao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Min Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
4
|
Chen Y, Zhang J, Zhu X, Wang Y, Chen J, Sui B, Teng HH. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115509. [PMID: 37742573 DOI: 10.1016/j.ecoenv.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Cadmium (Cd) and aniline frequently co-occur in industrial settings but have rarely been addressed as composite toxicants in terms of the overall toxicity despite extensive knowledge of the environmental impact of each individual pollutant. In this study, we attempt to assess the relation of individual and combined toxic effects of Cd and aniline using a bacterial consortium cultured from soils as a model system. Results showed that the consortial bacteria exhibited drastically stronger tolerance to stand-alone Cd and aniline in comparison to literature data acquired from single species studies. When occurring simultaneously, the joint toxicity displayed a concentration-dependent behavior that wasn't anticipated based on individual chemical tests. Specifically, additive effects manifested with Cd and aniline at their IC10s, but changed to synergistic when the concentrations increased to IC20, and finally transitioned into antagonistic at IC30s and beyond. In addition, co-occurring aniline appeared to have retarded the cellular accumulation of Cd while increasing the enzymatic activities of superoxide dismutase and catalase relative to that in Cd-alone treatments. Finally, the bacterial community experienced distinct compositional changes under solo and combined toxicities with several genera exhibiting inconsistent behavior between treatments of single and composite toxicants. Findings from this study highlight the complexity of bacterial response to composite pollutions and point to the need for more comprehensive references in risk and toxicology assessment at multi-chemical contamination sites.
Collapse
Affiliation(s)
- Yuxuan Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jianchao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| | - Xiangyu Zhu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Yuebo Wang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China
| | - Biao Sui
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - H Henry Teng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 30072, China.
| |
Collapse
|
5
|
Shi G, Hu J, Cheng Y, Shi W, Chen Y. Pseudomonas aeruginosa improved the phytoremediation efficiency of ryegrass on nonylphenol-cadmium co-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28247-28258. [PMID: 36401010 DOI: 10.1007/s11356-022-24224-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The effect of Pseudomonas aeruginosa (P. aeruginosa) on the phytoremediation efficiency of ryegrass on soil contaminated with nonylphenol (NP) and cadmium (Cd) was investigated by pot experiments. Pseudomonas aeruginosa application stimulated the adsorption of Cd by ryegrass and facilitated the biodegradation of NP in the soil. Exogenous P. aeruginosa inoculation increased the activities of urease, dehydrogenase, and polyphenol oxidase in the soil of the T4 treatment by 38.5%, 50.0%, and 56.5% compared to that of the T2 treatment, respectively. There was a significant positive correlation between the activities of dehydrogenase and polyphenol oxidase and the NP removal rate (P < 0.001). The relative abundances of beneficial microorganisms (such as Sphingomonas, Lysobacter, Streptomyces, Chloroflexia, Deltaproteobacteria, and Alphaproteobacteria) were increased as a result of P. aeruginosa inoculation. These microorganisms play important roles in nutrient cycling, Cd adsorption, and NP degradation. Additionally, P. aeruginosa was not the dominate bacterial species at the end of the experiment. According to this study, P. aeruginosa application improved the phytoremediation efficiency of ryegrass on soil contaminated with NP and Cd, with a minimal risk of alien microbial invasion.
Collapse
Affiliation(s)
- Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China.
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fujian, 350000, China.
| | - Jiayuan Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yuanyuan Cheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Weilin Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Yan Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
6
|
Heavy Metals Exacerbate the Effect of Temperature on the Growth of Chlorella sp.: Implications on Algal Blooms and Management. Processes (Basel) 2022. [DOI: 10.3390/pr10122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the accelerated urbanization and rapid development of the industrial and agricultural sectors, concern about the pollution of water environments is becoming more widespread. Algal blooms of varying sizes are becoming increasingly frequent in lakes and reservoirs; temperatures, nutrients, heavy metals, and dissolved oxygen are the factors that influence algal bloom occurrence. However, knowledge of the combined effect of heavy metals and temperature on algal growth remains limited. Thus, this study investigated how specific concentrations of heavy metals affect algal growth at different temperatures; to this end, two heavy metals were used (0.01 mg/L Pb2+ and 0.05 mg/L Cr6+) at three incubation temperatures (15, 25, and 30 °C) with the alga Chlorella sp. A higher incubation temperature contributed to a rise in soluble proteins, which promoted algal growth. The density of algal cells increased with temperature, and catalase (CAT) decreased with increasing temperature. Chlorella sp. growth and catalase activity were optimal at 30 °C (algal cell density: 1.46 × 107 cell/L; CAT activity: 29.98 gprot/L). Pb2+ and Cr6+ significantly promoted Chlorella sp. growth during incubation at 25 and 30 °C, respectively. At specific temperatures, 0.01 mg/L Pb2+ and 0.05 mg/L Cr6+ promoted the production of soluble proteins and, hence, the growth of Chlorella sp. The results provide a useful background for the mitigation and prevention of algal blooms.
Collapse
|
7
|
Su R, Xie T, Yao H, Chen Y, Wang H, Dai X, Wang Y, Shi L, Luo Y. Lead Responses and Tolerance Mechanisms of Koelreuteria paniculata: A Newly Potential Plant for Sustainable Phytoremediation of Pb-Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214968. [PMID: 36429686 PMCID: PMC9691260 DOI: 10.3390/ijerph192214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 05/06/2023]
Abstract
Phytoremediation could be an alternative strategy for lead (Pb) contamination. K. paniculata has been reported as a newly potential plant for sustainable phytoremediation of Pb-contaminated soil. Physiological indexes, enrichment accumulation characteristics, Pb subcellular distribution and microstructure of K. paniculata were carefully studied at different levels of Pb stress (0-1200 mg/L). The results showed that plant growth increased up to 123.8% and 112.7%, relative to the control group when Pb stress was 200 mg/L and 400 mg/L, respectively. However, the average height and biomass of K. paniculata decrease when the Pb stress continues to increase. In all treatment groups, the accumulation of Pb in plant organs showed a trend of root > stem > leaf, and Pb accumulation reached 81.31%~86.69% in the root. Chlorophyll content and chlorophyll a/b showed a rising trend and then fell with increasing Pb stress. Catalase (CAT) and peroxidase (POD) activity showed a positive trend followed by a negative decline, while superoxide dismutase (SOD) activity significantly increased with increasing levels of Pb exposure stress. Transmission electron microscopy (TEM) showed that Pb accumulates in the inactive metabolic regions (cell walls and vesicles) in roots and stems, which may be the main mechanism for plants to reduce Pb biotoxicity. Fourier transform infrared spectroscopy (FTIR) showed that Pb stress increased the content of intracellular -OH and -COOH functional groups. Through organic acids, polysaccharides, proteins and other compounds bound to Pb, the adaptation and tolerance of K. paniculata to Pb were enhanced. K. paniculata showed good phytoremediation potential and has broad application prospects for heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Tianzhi Xie
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haisong Yao
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (Y.C.); (Y.L.)
| | - Hanqing Wang
- School of Civil Engineering, Central South Forestry University, Changsha 410018, China
- Hunan Engineering Research Center of Full Life-Cycle Energy-Efficient Buildings and Environmental Health, Changsha 410018, China
| | - Xiangrong Dai
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Lei Shi
- College of Environmental Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Yiting Luo
- Business College, Hunan First Normal University, Changsha 410205, China
- Correspondence: (Y.C.); (Y.L.)
| |
Collapse
|
8
|
Ke Z, Wang D, Wu Z. Separate and combined effects of cadmium (Cd) and nonylphenol (NP) on growth and antioxidative enzymes in Hydrocharis dubia (Bl.) Backer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78913-78925. [PMID: 35699882 DOI: 10.1007/s11356-022-21164-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is considered a priority pollutant, and nonylphenol (NP) is a common organic pollutant in water environments. However, the ecological risks of combined Cd and NP pollution have not been fully elucidated. In this study, the effects of Cd, NP, and Cd-NP on the growth and physiology of Hydrocharis dubia (Bl.) Backer were studied. The results indicated that Cd-NP joint toxicity is concentration-dependent. The joint toxicity of Cd and NP on H. dubia was antagonistic when the concentrations of Cd + NP were 0.01 + 0.1/1 mg/L. At 0.5 + 0.1/1 mg/L, Cd and NP had a strong synergistic effect on H. dubia. In addition, plant growth was significantly inhibited, and the chlorophyll contents were significantly reduced under Cd, NP, or Cd-NP exposure. The plant's antioxidant enzyme system was destroyed. The activities of superoxide dismutase (SOD) and catalase (CAT) were significantly decreased under NP-only exposure. The activity of SOD was significantly decreased under Cd-only and under joint exposure. Compound pollution exceeded the oxidative defense capacity of the plants, so the H2O2 content increased significantly. Our results indicated that the ecotoxicity of NP combined with Cd may be exacerbated in aquatic environments and cause obvious damage to H. dubia.
Collapse
Affiliation(s)
- Zhen Ke
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Donghan Wang
- Huazhong Pharmaceutical Co., Ltd, Xiangyang, 441002, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
9
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
10
|
Sanaeifar A, Zhu F, Sha J, Li X, He Y, Zhan Z. Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149824. [PMID: 34454145 DOI: 10.1016/j.scitotenv.2021.149824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The problem of excessive lead content in tea has become more and more serious with the development of society and industry. This paper investigated the ability of visible and near-infrared (Vis-NIR) spectroscopy to evaluate foliar lead uptake by tea plants through simulating real air pollution. Lead content of tea leaves in different treatment groups during stress time was measured by inductively coupled plasma mass spectrometry (ICP-MS). It was determined that stomata can be a channel for lead particles in the air and most of the lead entering through the stomata accumulates in the leaves. The spectral variation of treated samples was measured, and it was found that a combination of partial least squares-discriminant analysis (PLS-DA) and spectral responses can perfectly classify the tea samples under different lead concentrations stress with an overall accuracy of 0.979. Then the Vis-NIR spectra were used for fast monitoring physiological and biochemical indicators in tea leaves under atmospheric deposition. Relevant spectra pretreatment methods and characteristic wavelength selection approaches were evaluated for quantitative analysis and then optimal prediction models to instantly detect quality indicators in tea samples were built. Among predictive models, PLS had the best results (RMSE = 0.139 mg/g, 0.663 mmol/g, and 1.494 μmol/g) for the prediction of chlorophyll a (Chl-a), ascorbic acid (ASA), and glutathione (GSH), respectively. Also, principal component regression (PCR) gave the best results (RMSE = 0.053 mg/g, 0.024 mg/g, and 0.011%) for prediction of chlorophyll b (Chl-b), carotenoid (Car) and moisture content (MC), respectively. Results of this study can be applied for developing an effective and reliable approach for monitoring atmospheric deposition in plants.
Collapse
Affiliation(s)
- Alireza Sanaeifar
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Fengle Zhu
- School of Computer & Computing Science, Zhejiang University City College, Hangzhou, China.
| | - Junjing Sha
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Zhihao Zhan
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
11
|
Redha A, Al-Hasan R, Afzal M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23258-23272. [PMID: 33443733 PMCID: PMC8113142 DOI: 10.1007/s11356-020-12271-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/28/2020] [Indexed: 05/30/2023]
Abstract
While heavy metals (HMs) naturally occur in soil, anthropogenic activities can increase the level of these toxic elements. Conocarpus lancifolius Engl. (Combretaceae) was investigated as a potential phytoremediator of soils contaminated with HM containing crude oil. This study assessed the potential of C. lancifolius (CL), a locally available plant species in Kuwait, for resolving local issues of the HM-contaminated soils. The absorption, accumulation, and distribution of three toxic HMs (Cd, Ni, and Pb) and essential metals (Fe, Mg, and metalloid Se) were examined, and their role in plant toxicity and tolerance was evaluated. Conocarpus lancifolius plants were exposed to two different concentrations of single and mixed HMs for 30 days. The accumulation of HMs was determined in the roots, leaves, stems, and the soil using ICP/MS. Biomass, soil pH, proline and protein content, and bioaccumulation, extraction, and translocation factors were measured. The bioaccumulation, extraction, and transcription factors were all >1, indicating CC is a hyperaccumulator of HM. The HM accumulation in CL was concentration-dependent and depended on whether the plants were exposed to individual or mixed HMs. The C.C leaves, stems, and roots showed a significant accumulation of antioxidant constituents, such as proline, protein, Fe, Mg, and Se. There was an insignificant increase in the soil pH, and a decrease in plant biomass and a significant increase in protein, and osmoprotective-proline as a result of the interaction of mixed heavy metals that are more toxic than single heavy metals. This study indicates that C. lancifolius is a good candidate for phytoremediation of multiple HM-contaminated soils. Further studies to establish the phyto-physiological effect of multiple heavy metals are warranted.
Collapse
Affiliation(s)
- Amina Redha
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Redha Al-Hasan
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Afzal
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait.
- , Gainesville, USA.
| |
Collapse
|
12
|
Enhanced tolerance and resistance characteristics of Scenedesmus obliquus FACHB-12 with K3 carrier in cadmium polluted water. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Ajitha V, Sreevidya CP, Sarasan M, Park JC, Mohandas A, Singh ISB, Puthumana J, Lee JS. Effects of zinc and mercury on ROS-mediated oxidative stress-induced physiological impairments and antioxidant responses in the microalga Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12950-6. [PMID: 33629160 DOI: 10.1007/s11356-021-12950-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The rapid growth of industrialization and urbanization results in deterioration of freshwater systems around the world, rescinding the ecological balance. Among many factors that lead to adverse effects in aquatic ecology, metals are frequently discharged into aquatic ecosystems from natural and anthropogenic sources. Metals are highly persistent and toxic substances in trace amounts and can potentially induce severe oxidative stress in aquatic organisms. In this study, adverse effects of the two metal elements zinc (maximum concentration of 167.25 mg/L) and mercury (104.2 mg/L) were examined using Chlorella vulgaris under acute and chronic exposure period (48 h and 7 days, respectively). The metal-induced adverse effects have been analyzed through photosynthetic pigment content, total protein content, reactive oxygen species (ROS) generation, antioxidant enzymatic activities, namely catalase and superoxide dismutase (SOD) along with morphological changes in C. vulgaris. Photosynthetic pigments were gradually reduced (~32-100% reduction) in a dose-dependent manner. Protein content was initially increased during acute (~8-12%) and chronic (~57-80%) exposure and decreased (~44-56%) at higher concentration of the two metals (80%). Under the two metal exposures, 5- to 7-fold increase in ROS generation indicated the induction of oxidative stress and subsequent modulations in antioxidant activities. SOD activity was varied with an initial increase (58-129%) followed by a gradual reduction (~3.7-79%), while ~1- to 12-fold difference in CAT activity was observed in all experimental condition (~83 to 1605%). A significant difference was observed in combined toxic exposure (Zn+Hg), while comparing the toxic endpoint data of individual metal exposure (Zn and Hg alone). Through this work, lethal effects caused by single and combined toxicity of zinc and mercury were assessed, representing the significance of appropriate monitoring system to trim down the release of metal contaminants into the aquatic ecosystems.
Collapse
Affiliation(s)
- Vayampully Ajitha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, Kerala, 22, India
| | | | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Ambat Mohandas
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Isaac Sarojini Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, 16, India.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
14
|
Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. EMERGING CONTAMINANTS VOL. 1 2021. [DOI: 10.1007/978-3-030-69079-3_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Yang W, Gao X, Wu Y, Wan L, Lu C, Huang J, Chen H, Yang Y, Ding H, Zhang W. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103517. [PMID: 33080356 DOI: 10.1016/j.etap.2020.103517] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
As typical endocrine disrupters, nonylphenol (NP) and octylphenol (OP) are emerging pollutants that have attracted wide attention. This study investigated the toxicity effects of NP and OP on microalgae Chlorella pyrenoidosa and Scenedesmus obliquus, particularly on their growth inhibition, photosynthetic pigment, chlorophyll fluorescence, and superoxide dismutase and malondialdehyde levels. Results showed that the 96 h EC50 of NP and OP was 2.89 and 5.21 mg/L on C. pyrenoidosa, respectively, and 1.54 and 8.48 mg/L on S. obliquus, respectively. NP exerted a stronger inhibitory effect on cell growth, photosynthesis, and PSII activity, and it contributed more oxidative stress on C. pyrenoidosa than on S. obliquus. By contrast, OP exerted a stronger inhibitory effect on S. obliquus than on C. pyrenoidosa. Furthermore, the toxicity of OP to the tested microalgae was lower than that of NP. Principal component analysis (PCA) and Pearson's correlation indicate that the accumulation of reactive oxygen species is the dominant mechanism of NP and OP cellular toxicity. The principal components of NP and OP affecting microalgae are distinct in the PCA plot, and different endocrine disrupters have varying chemical-specific influences on algal cells. This study confirmed that the toxicity of NP and OP to microalgae C. pyrenoidosa and S. obliquus is chemical- and species-specific. These findings should be considered when assessing the health risk of environmental pollution.
Collapse
Affiliation(s)
- Wenfeng Yang
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China; School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China
| | - Xinxin Gao
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Yixiao Wu
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Liang Wan
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Chongyang Lu
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Jiayi Huang
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Houjiang Chen
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Yuezhi Yang
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences, Nanchang, 330029, PR China
| | - Weihao Zhang
- College of Resource and Environmental Science, Wuhan University, Wuhan, 430072, PR China; School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, Hubei, 430079, PR China.
| |
Collapse
|
16
|
Ding N, Wang L, Kang Y, Luo K, Zeng D, Man YB, Zhang Q, Zeng L, Luo J, Jiang F. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2881-2894. [PMID: 32026273 DOI: 10.1007/s10653-020-00526-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) (Cd) and 4-n-nonylphenol (4-n-NP) was compared in the present study. Cd and 4-n-NP exposure showed a similar pattern of dys-regulated pathways. The photosystem was affected due to suppression of chlorophyll biosynthesis via down-regulation of Mg-protoporphyrin IX chelatase subunit ChlD (CHLD) and divinyl chlorophyllide a 8-vinyl-reductase (DVR) in Cd group and via down-regulation of DVR in 4-n-NP group. Furthermore, the reactive oxygen species (ROS) could be induced through down-regulation of solanesyl diphosphate synthase 1 (SPS1) and homogentisate phytyltransferase (HPT) in Cd group and via down-regulation of HPT in 4-n-NP group. Additionally, Cd and 4-n-NP would both cause the dys-regulation of carbohydrate metabolism and protein synthesis. On the other hand, there are some different responses or detoxification mechanism of C. sorokiniana to 4-n-NP stress compared to Cd exposure. The increased ROS would cause the DNA damage and protein destruction in Cd exposure group. Simultaneously, the RNA transcription was dys-regulated and a series of changes in gene expressions were observed. This included lipid metabolism, protein modification, and DNA repair, which involved in response of C. sorokiniana to Cd stress or detoxification of Cd. For 4-n-NP exposure, no effect on lipid metabolism and DNA repair was observed. The nucleotide metabolism including pyrimidine metabolism and purine metabolism was significantly up-regulated in the 4-n-NP exposure group, but not in the Cd exposure group. In addition, 4-n-NP would induce the ubiquitin-mediated proteolysis and proteasomal degradation to diminish the misfolded protein caused by ROS and down-regulation of heat shocking protein 40. In sum, the Cd and 4-n-NP could cause the same toxicological effects via the common pathways and possess similar detoxification mechanism. They also showed different responses in nucleotide metabolism, lipid metabolism, and DNA repair.
Collapse
Affiliation(s)
- Na Ding
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Lu Wang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yuan Kang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Kesong Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Diya Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, People's Republic of China.
| | - Qiuyun Zhang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Lixuan Zeng
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jiwen Luo
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Feng Jiang
- School of Environment, South China Normal University, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
17
|
Wei S, Cao J, Ma X, Ping J, Zhang C, Ke T, Zhang Y, Tao Y, Chen L. The simultaneous removal of the combined pollutants of hexavalent chromium and o-nitrophenol by Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110648. [PMID: 32388188 DOI: 10.1016/j.ecoenv.2020.110648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Microalgae have been used for the removal of heavy metals or synthetic organics; however, the simultaneous removal of both types of compounds is always technically difficult. In this study, a green algae, Chlamydomonas reinhardtii, was first used to simultaneously remove hexavalent chromium [Cr(VI)] and o-nitrophenol (ONP), and the balance among biomass, oxidative damage and removal rate was also investigated. The results showed that treatment with Cr(VI) or ONP decreased the photosynthetic and superoxide dismutase activities and increased the production of reactive oxygen species (ROS) and malondialdehyde content. However, combined treatment with Cr(VI) (≤4 mg/L) and ONP (≤15 mg/L) significantly decreased ROS generation and alleviated cell damage in C. reinhardtii. In addition, the removal rates of Cr(VI) and ONP by C. reinhardtii cells significantly increased from 37.4% to 54.9% and from 35.8% to 45.9%, respectively, and the cells could be reused at least four times. Moreover, the increased acidity in the medium and Cr(VI) reductase content in C. reinhardtii caused Cr(VI) to be reduced to Cr(III). The addition of an exogenous antioxidant decreased the removal rates of Cr(VI) and ONP. These results indicated that the presence of Cr(VI) could induce ROS generation in C. reinhardtii and enhance ONP degradation, which consumed ROS, alleviated cell damage, and thus benefited Cr(VI) reduction. As a result, C. reinhardtii could be used as a theoretical candidate for the simultaneous removal of combined Cr(VI) and ONP contamination.
Collapse
Affiliation(s)
- Sijie Wei
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Jun Cao
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China; College of Chemical & Environmental Engineering, Hanjiang Normarl University, Shiyan, 442000, PR China
| | - Xinyue Ma
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Jie Ping
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Tan Ke
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Yurui Zhang
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Yue Tao
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China
| | - Lanzhou Chen
- School of Resources and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
18
|
Cao X, Yan C, Wu X, Zhou L, Xiu G. Nonylphenol induced individual and population fluctuation of Caenorhabditis elegans: Disturbances on developmental and reproductive system. ENVIRONMENTAL RESEARCH 2020; 186:109486. [PMID: 32283338 DOI: 10.1016/j.envres.2020.109486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
The environmental risks that have arisen from endocrine disruption compounds (EDCs) have become global challenges, especially for persistent bio-accumulated xenobiotic chemicals, such as nonylphenol (NP). In the present study, the population dynamics of Caenorhabditis elegans (C. elegans) were systemically investigated by conducting developmental and reproductive bioassays under the exposure of NP, which has been widely detected in actual aquatic environments. The results revealed that under NP exposure (400 μg L-1 NP), developmental indictors of C. elegans, including the body length and width were significantly inhibited at different life stages of L1 and L4 larva, and the growth curves were further adversely affected. In addition, abnormalities in reproductive systems were also observed under NP exposure. Such abnormalities obeyed a dose-dependent relationship with NP levels, which were closely related to the delayed spawning time and decreased reproductive rates. Moreover, the results from global genome expression analysis for nematodes revealed that the most significant enriched GO terms could be predominantly responsible for the dysregulation of growth and reproductive system. The population's parameters, including age composition and intrinsic growth rate (rm d-1), displayed significant changes, with a suppressed potentiality of population growth. Those data elucidated that NP exhibited a profound impact on the dynamic stability of the population, even with no obvious effect on certain biochemical markers.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenzhi Yan
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuan Wu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
19
|
Zhu QL, Bao J, Liu J, Zheng JL. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105492. [PMID: 32361487 DOI: 10.1016/j.aquatox.2020.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we tested the hypothesis that high salinity acclimatization can mitigate cadmium (Cd) toxicity in the microalga Dunaliella salina. To this end, microalgal cells were subjected to high salinity (60 g/L) for 12 weeks until the growth rate remained stable between generations and were then exposed to 2.5 mg/L of Cd for 4 days. Acute Cd toxicity impaired cell growth by increasing Cd bioaccumulation and lipid peroxidation, which reduced cellular pigment, total protein, and glutathione content. It also significantly weakened photosynthetic efficiency and total antioxidant capacity. However, acclimatization to high salinity alleviated these negative effects under Cd stress. To understand the potential mechanisms behind this phenomenon, 12 cDNA libraries from control, Cd-exposed (Cd), high salinity-acclimated (Salinity), and high salinity-acclimated with Cd exposure (Salinity + Cd) cells were derived using RNA sequencing. A total of 2019, 1799, 2150 and 1256 differentially expressed genes (DEGs) were identified from sample groups Salinity / Control, Cd / Control, Salinity + Cd / Control, and Salinity + Cd / Cd, respectively. Some of these DEGs were significantly enriched in ribosome, photosynthesis, stress defense, and photosynthesis-antenna proteins. Among these genes, 82 ribosomal genes were up-regulated in Salinity / Control (corrected P = 3.8 × 10-28), while 81 were down-regulated in Cd / Control (corrected P = 1.1 × 10-24). Moreover, high salinity acclimatization up-regulated 8 photosynthesis genes and 18 stress defense genes compared with the control. Additionally, 3 photosynthesis genes, 11 stress defense genes and 11 genes encoding light harvesting proteins were up-regulated by high salinity acclimatization under Cd exposure. Overall, high salinity acclimatization mitigated Cd toxicity, possibly by up-regulating the transcription of photosynthesis, stress defense, and ribosomal genes. These results provide new insights on cross-tolerance in microalgae.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jingjing Bao
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China
| | - Jianhua Liu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
20
|
Yu X, Sun J, Li G, Huang Y, Li Y, Xia D, Jiang F. Integration of •SO 4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. WATER RESEARCH 2020; 174:115622. [PMID: 32145554 DOI: 10.1016/j.watres.2020.115622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The sulfate radical (•SO4-)-based advanced oxidation processes (AOPs) for the degradation of refractory organic pollutants consume a large amount of persulfate activators and often generate toxic organic by-products. In this study, we proposed a novel iron-cycling process integrating •SO4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II completely. The rusted waste iron particles (Fe0@FexOy), which contained FeII/FeIII oxides (FexOy) on the shell and zero-valent iron (Fe0) in the core, efficiently activated persulfate to produce •SO4- and hydroxyl radicals (•OH) to degrade over 95% of Orange II within 120 min. Both •SO4- and •OH destructed Orange II through a sequence of electron transfer, electrophilic addition and hydrogen abstraction reactions to generate several organic by-products (e.g., aromatic amines and phenol), which were more toxic than the untreated Orange II. The AOP-generated organic by-products were further mineralized and detoxified in a sulfidogenic bioreactor with sewage treatment together. In a 170-d trial, the organic carbon removal efficiency was up to 90%. The inhibition of the bioreactor effluents on the growth of Chlorella pyrenoidosa became negligible, due to the complete degradation and mineralization of toxic AOP-generated by-products by aromatic-degrading bacteria (e.g., Clostridium and Dechloromonas) and other bacteria. The sulfidogenic process also well recovered the used Fe0@FexOy particles through the reduction of surface FeIII back into FeII by hydrogen sulfide formed and iron-reducing bacteria (e.g., Sulfurospirillum and Paracoccus). The regenerated Fe0@FexOy particles had more reactive surface FeII sites and exhibited much better reactivity in activating persulfate in at least 20 reuse cycles. The findings demonstrate that the integrated process is a promising solution to the remediation of toxic and refractory organic pollutants because it reduces the chemical cost of persulfate activation and also completely detoxifies the toxic by-products.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guibiao Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Aronzon CM, Peluso J, Coll CP. Mixture toxicity of copper and nonylphenol on the embryo-larval development of Rhinella arenarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13985-13994. [PMID: 32036534 DOI: 10.1007/s11356-020-07857-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Copper and nonylphenol are two commonly found chemicals in the aquatic environment, particularly in the distribution area of the amphibian Rhinella arenarum. The current work evaluated the lethal toxicity of equitoxic and non-equitoxic binary mixtures of copper and nonylphenol on embryos and larvae of the South America toad by means of the standardized test, AMPHITOX. Joint toxicity of mixtures was assessed in several proportions of these compounds at different exposure times and was analyzed at different level of mortality effect (LC10, LC50 and LC90). Considering the LC50, the equitoxic mixture was always antagonistic independently of the exposure time and the developmental stage. Joint toxicity showed mainly an antagonistic pattern; nonetheless, some time-dependent additive interactions were observed. Regarding the LC10, synergistic interactions were found in embryos and larvae exposed to two different mixture proportions at several exposure times. This highlights the possible synergism of these chemicals at environmentally relevant concentrations. These results point out the relevance of assessing joint toxicity of environmental pollutants for environmental risk assessment.
Collapse
Affiliation(s)
- Carolina Mariel Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, Universidad Nacional de San Martín, CONICET, 3iA, Campus Miguelete, 25 de mayo y Francia (1650), San Martin, Provincia de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
22
|
He N, Liu Z, Sun X, Wang S, Liu W, Sun D, Duan S. Phytotoxicity, Bioaccumulation, and Degradation of Nonylphenol in Different Microalgal Species without Bacterial Influences. Int J Mol Sci 2020; 21:ijms21041338. [PMID: 32079213 PMCID: PMC7073002 DOI: 10.3390/ijms21041338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
Nonylphenol (NP) is a contaminant that has negative impacts on aquatic organisms. To investigate its phytotoxicity, bioaccumulation, and degradation in algae without associated bacteria, six freshwater microalgae—Ankistrodesmus acicularis, Chlorella vulgaris, Chroococcus minutus, Scenedesmus obliquus, Scenedesmus quadricauda, and Selenastrum bibraianum—in bacteria-free cultures were studied. When exposed to 0.5–3.0 mg L−1 NP for 4 days, cell growth and photosynthesis, including maximal photochemistry (Fv/Fm), were suppressed progressively. The antioxidant responses of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) showed species differences. While the antioxidant enzymes in C. vulgaris and S. obliquus were more active with the increase of NP (0–3 mg L−1), they dropped in the other four algae at concentrations of 1 and 1.5 mg L−1. Therefore, C. vulgaris and S. obliquus were designated as NP-tolerant species and showed more conspicuous and faster changes of antioxidant reactions compared with the four NP-sensitive species. All six species degraded NP, but A. acicularis was more reactive at low NP concentrations (<1 mg L−1), suggesting its possible application in sewage treatment for its potential for effective NP removal from water bodies in a suitable scope. Therefore, the conclusion is that biodegradation of NP by algae is species specific.
Collapse
Affiliation(s)
- Ning He
- College of Life Science and Resources and Environment, Yichun University, Yichun 336000, China;
| | - Zhiwei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
| | - Xian Sun
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Correspondence: ; Tel.: +86-756-7626350
| | - Shuangyao Wang
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia;
| | - Weijie Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment, NO.18 Ruihe RD., Guangzhou 510535, China;
| | - Dong Sun
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (D.S.); (S.D.)
| | - Shunshan Duan
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (D.S.); (S.D.)
| |
Collapse
|
23
|
López-Pacheco IY, Salinas-Salazar C, Silva-Núñez A, Rodas-Zuluaga LI, Donoso-Quezada J, Ayala-Mar S, Barceló D, Iqbal HMN, Parra-Saldívar R. Removal and biotransformation of 4-nonylphenol by Arthrospira maxima and Chlorella vulgaris consortium. ENVIRONMENTAL RESEARCH 2019; 179:108848. [PMID: 31678727 DOI: 10.1016/j.envres.2019.108848] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
4-Nonylphenol (4-NP) is an anthropogenic contaminant found in different environmental matrices that has an effect over the biotic and abiotic factors within the environment. Bioremediation by microorganisms can be used as a potential treatment to remove this pollutant. In this work, a consortium of two microorganisms, Arthrospira maxima and Chlorella vulgaris, was employed to remove 4-NP from water. The parameters analyzed included cell growth, removal of 4-NP, and 4-NP remnant in the biomass. In addition, the metabolites produced in the process by this consortium were identified. It was found that C. vulgaris is more resistant to 4-NP than A. maxima (cell growth inhibition by 4-NP of 99%). The consortium used in this study had an IC50 greater than any strain of microalgae or cyanobacteria reported for 4-NP removal (9.29 mg/L) and reduced up to 96% of 4-NP in water in the first 48 h of culture. It was also observed that there is a bio-transformation of 4-NP, comparable with the process carried out by another bacterium, in which three similar metabolites were found (4-(1-methyl-octyl)-4-hydroxy-cyclohex-2-enone, 4-nonyl-4-hydroxy-ciclohexa-2,5-dienone and 4-nonyl-4-hydroxy- ciclohex-2-enone) and one that is similar to plant metabolism (4-nonyl-(1-methyl,6,8-metoxy)-hydroxybenzene). These results indicate that microalgae and cyanobacteria consortium can be used to remove 4-NP from water.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Laura Isabel Rodas-Zuluaga
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Javier Donoso-Quezada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Sergio Ayala-Mar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona, 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona, 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico.
| |
Collapse
|
24
|
Wang C, Jiao X, Liu G. A toxic effect at molecular level can be expressed at community level: A case study on toxic hierarchy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133573. [PMID: 31374497 DOI: 10.1016/j.scitotenv.2019.07.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated hierarchical toxicity and addressed the relevance and differences of toxic effects at the molecular, individual, population, and community levels. Superoxide dismutase (SOD) activity, photosynthetic oxygen production, filtration rate, life span and densities of Platymonas helgolandica var. tsingtaoensis, Isochrysis galbana, and Brachionus plicatilis in single-species tests and customized community tests were examined in response to a concentration gradient of aniline ranging from 0 to 50.0 mg L-1. The SOD activity was the most sensitive endpoint with the fastest response to aniline according to the calculated no-detection of toxic effect concentration (NDEC) and the EC50. The individual- and population-level endpoints, showing a lower response to aniline, could be constructed from the SOD activity in a stepwise manner. A multi-scale hierarchical model with endpoints at 4 levels was used to characterize toxic effects, at the scales of time and size. Linkage of SOD activity to toxic effects at a community level was established level by level to express the change in the customized community with the concentration of aniline. The calculated threshold concentration of aniline for the customized community was nearly equal to the minimum NDEC, demonstrating as great an impact on interactions by the toxic effect at subpopulation-level as that at the community level. However, we identified a trend of higher sensitivities of measured endpoints at sub-population level, decreasing sensitivity at higher levels but a great variety of sensitivities at community level. Although the characteristics of toxic effects are different at different levels, the structure and process of endpoints at adjacent levels are related to and interact with each other. The resulted indirect effects, together with direct effect, determine the toxic effect at every levels of biological complexity. The toxic effects at adjacent levels should be studied at the same time to better understand the ecological risk of contaminants.
Collapse
Affiliation(s)
- Changyou Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinming Jiao
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Gang Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
25
|
Xu Y, Park SJ, Gye MC. Effects of nonylphenols on embryonic development and metamorphosis of Xenopus laevis: FETAX and amphibian metamorphosis toxicity test (OECD TG231). ENVIRONMENTAL RESEARCH 2019; 174:14-23. [PMID: 31022611 DOI: 10.1016/j.envres.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Nonylphenols (NPs) are a group of endocrine-disrupting surfactants that mimic estrogen. To determine the developmental toxicity and thyroid-disrupting effect of NPs, the effects of exposure to nonylphenol (NP), 4-nonylphenol (4-NP), and nonylphenol ethoxylate (NP-12) were examined according to the frog embryo teratogenesis assay-Xenopus (FETAX) and Organization for Economic Co-operation and Development test guidelines 231 (TG231). In FETAX, the LC50 values of NP, 4-NP, and NP-12 were 59.14 mg/L, 10.13 mg/L, and 14.60 mg/L, respectively. At 10.0 mg/L, NP, 4-NP, and NP-12 significantly decreased the total length of tadpoles, and NP and 4-NP increased gut malformation and bent tails. In surviving tadpoles, the EC50 values for malformation of NP, 4-NP, and NP-12 were 4.66, 6.51, and 13.08 mg/L, respectively. The teratogenic indices of NP, 4-NP, and NP-12 were 12.69, 1.56, and 1.08, respectively, suggesting the teratogenic potential of NP and 4-NP. In a range-finder assay for TG231, the 96-h LC50 values of NP, 4-NP, and NP-12 were 2.0, 2.0, and 10.57 mg/L, respectively. When NF stage 51 larvae were exposed for 21 days, larval growth was inhibited by NP, 4-NP, and NP-12 at 0.67, 0.07, and 0.37 mg/L, respectively. 4-NP at 0.07 mg/L accelerated the developmental stage and significantly increased hind limb length, while 0.67 mg/L 4-NP delayed the developmental stage and decreased hind limb length, suggesting a bimodal effect of 4-NP on metamorphosis. NP and NP-12 at test concentrations did not alter the larval stage, but NP-12 at 0.37 mg/L significantly decreased total length and tail length, suggesting growth inhibition in larvae. The total colloid area of thyroid follicles was significantly increased by 0.07 mg/L 4-NP but not by NP and NP-12, suggesting that 4-NP may interfere with thyroid function. Together, the developmental toxicity of NPs was in the following order: 4-NP, NP-12, and NP. 4-NP may alter metamorphosis driven by thyroid hormones in X. laevis.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Sun Jung Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
26
|
Yu Z, Zhang T, Hao R, Zhu Y. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1011-1020. [PMID: 31120077 DOI: 10.1039/c9em00013e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is a common hazardous pollutant to aquatic environments and it easily accumulates in living organisms. The roles of phototactic behavior in Cd tolerance in motile organisms are poorly explored. In this study, two Chlamydomonas reinhardtii strains, a wild type with positive phototaxis (CC125) and a negatively phototactic mutant (agg1), were used to assess the effects of phototaxis on Cd-induced toxicity to algae. Exposure to Cd inhibited the cell growth and photosynthetic activities, reduced the photosynthetic pigment content, and enhanced the intracellular oxidative stress of algae. Well buffered by EDTA in algae medium, the concentrations of Cd causing 50% growth inhibition (EC50) of CC125 and agg1 for 72 h of exposure were 55.96 and 77.20 μM L-1, respectively. Photosystem II activities in CC125 were more sensitive to Cd than agg1 at 60 μM L-1 Cd. In addition, agg1 accumulated less intracellular Cd than CC125. The changes of extracellular polymeric substances and intracellular response to Cd stress might be related to the different tolerances of the two algae to Cd. Taken together, phototaxis was demonstrated to be associated with Cd-induced toxicity to C. reinhardtii.
Collapse
Affiliation(s)
- Zhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | | | | | | |
Collapse
|
27
|
Gatidou G, Anastopoulou P, Aloupi M, Stasinakis AS. Growth inhibition and fate of benzotriazoles in Chlorella sorokiniana cultures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:580-586. [PMID: 30726766 DOI: 10.1016/j.scitotenv.2019.01.384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Benzotriazoles are among the most commonly found organic micropollutants in the aquatic environment. In this study, toxicity experiments were conducted in order to investigate the effects of different benzotriazoles on Chlorella sorokiniana growth. Four compounds were tested; 1H-benzotriazole (BTR), xylytriazole (XTR), 5-methyl-1H-benzotriazole (5TTR) and 5-chlorobenzotriazole (CBTR). The fate of these micropollutants was also studied under batch conditions and the effect of different mechanisms on their elimination was investigated. According to the results, the EC50 values in single-substance toxicity experiments were calculated to 8.3 mg L-1 for BTR, 22 mg L-1 for 5TTR and 38.7 mg L-1 for CBTR. A slight inhibition on microalgae growth was noted at the maximum tested concentration of XTR (77 mg L-1), while no inhibition was observed when a mixture of target BTRs was tested at 200 μg L-1. Calculation of the Risk Quotient (RQ) showed no possible ecological threat in the presence of 5TTR, XTR and CBTR, while RQ values close or higher than 1 were estimated for BTR. All target contaminants were significantly eliminated in microalgae experiments that lasted 16 days. Their removal efficiency ranged between 42.2 ± 3.1% (XTR) to 97.2 ± 0.9% (XTR), while their half-life values were estimated to 2.4 ± 0.5 days for 5TTR, 6.5 ± 0.6 days for BTR, 15.2 ± 1.4 days for CBTR and 20.7 ± 2.0 days for XTR. Photodegradation was the main mechanism affecting BTR, XTR and CBTR removal, while bioremoval processes enhanced 5TTR elimination. The addition of sodium acetate decreased the removal efficiency of BTRs possibly due to catabolite repression. This is the first study investigating the toxicity and fate of BTRs in microalgae cultures.
Collapse
Affiliation(s)
- Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece.
| | - Petra Anastopoulou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| | - Maria Aloupi
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
28
|
Zheng R, Zhang Y, Fang C, Chen M, Hong F, Bo J. Joint effects of chronic exposure to environmentally relevant levels of nonylphenol and cadmium on the reproductive functions in male rockfish Sebastiscus marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:25-32. [PMID: 30315922 DOI: 10.1016/j.cbpc.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 02/05/2023]
Abstract
Nonylphenol (NP) and Cadmium (Cd) are two common contaminants that can be detected in aquatic environments. Nevertheless, the combined toxicity of NP and Cd at environmentally relevant concentrations in aquatic organisms has not been thoroughly characterized to date. In the present study, the interactions between NP and Cd on male Sebastiscus marmoratus were studied. After 21 days of exposure, the brain aromatase activity was observed to be significantly induced by 100 ng/L NP and 40 μg/L Cd, whereas all of the concentrations of co-treatment resulted in an increase in brain aromatase activity. Additionally, NP could also reduce plasma testosterone concentration, while NP, Cd and their mixture could induce plasma 17β-estradiol (E2) concentration and VTG concentration. The interactions between NP and Cd on the reproductive physiology were antagonism. Our results also support the notion of using these indicators as biomarkers for exposure to EDCs and further extend the boundary of biomonitoring to environmental levels.
Collapse
Affiliation(s)
- Ronghui Zheng
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Yusheng Zhang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Chao Fang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Mengyun Chen
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Fukun Hong
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China
| | - Jun Bo
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian Province, PR China.
| |
Collapse
|
29
|
Ismaiel MMS, Said AA. Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: Role of antioxidants and biochemical contents in metal detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:704-712. [PMID: 30172207 DOI: 10.1016/j.ecoenv.2018.08.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
The tolerance and antioxidant response of the green alga P. pringsheimii to cadmium (Cd) and lead (Pb) was investigated. The algal biomass was constant at the relatively lower metal concentrations of Cd and Pb (5, 12 µM, and 2.5-200 µM, respectively), whereas higher concentrations severely inhibited the algal biomass yield. The pigment content of P. pringsheimii decreased due to the investigated metals, especially with Cd concentrations. However, the Pb concentrations of 2.5-200 µM enhanced the pigment content. The carotenoids content was highly repressed by the Cd concentrations. Nevertheless, Pb concentrations highly stimulated the carotenoids content, with the exception of 400 and 500 µM Pb. The biochemical contents of P. pringsheimii including phenolic, total soluble protein and carbohydrate contents responded variably to the investigated metals. The concentrations of Cd were found to be harmful to total soluble protein and carbohydrates, but not the phenolic contents. However, all biochemical contents were stimulated under relatively lower Pb concentrations. Markedly for Pb, the radical scavenging, reducing power, and chelating activities improved under the metals exposure excluding higher concentrations. The activities of the antioxidant enzymes (SOD, CAT, and POD) were highly stimulated with all treatments (except for CAT activities at the highest Cd and Pb concentrations, 300 and 500 µM, respectively). Remarkably, Cd treatments have higher antioxidant enzyme activities compared to that of Pb treatments. The antioxidants augmentation of P. pringsheimii under the metal stress may be exploited for future application in several fields.
Collapse
Affiliation(s)
- Mostafa M S Ismaiel
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Alaa A Said
- Botany Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
30
|
Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka-Szelewa E, Bralska M. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:535-546. [PMID: 30316163 DOI: 10.1016/j.plaphy.2018.09.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The effects of auxins (IAA, IBA, PAA) and cytokinins (tZ, Kin, DPU) on the growth, oxidative damage, level of antioxidants and the activity of antioxidant enzymes as well as the contents of proteins and photosynthetic pigments in green alga Acutodesmus obliquus were investigated under 100 μM lead (Pb) stress. Heavy metal induced oxidative damage as evidenced by a decrease in cell number and reduction in the contents of proteins and chlorophylls as a consequence of an increase in reactive oxygen species (ROS) formation and lipid peroxidation. The application of exogenous auxins and cytokinins modulated biosorption of Pb by algal cells significantly alleviated the growth inhibition and stimulated the accumulation of proteins, chlorophylls and carotenes. Phytohormones also activated the xanthophyll cycle which is extensively involved in the protection of the photosynthetic apparatus in adverse environmental conditions. The reduction in oxidative stress caused by the presence of toxic Pb was observed in algal cultures treated with phytohormones. Cytokinins were more effective in lowering hydrogen peroxide and lipid peroxidation levels in comparison with auxins. This improving effect of cytokinins seems to be mediated by a decrease in Pb accumulation by algal cells, whereas auxins promoted metal uptake. Importantly, auxins and cytokinins enhanced the redox status of algal cells inducing the increase in the content of antioxidants (ascorbate, glutathione, and proline) and in the activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) involved in ROS scavenging. The results of the present study strongly suggest that exogenous auxins and cytokinins enhanced the resistance of microalga A. obliquus against Pb toxicity through the activation of the antioxidant defence system.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland.
| | - Andrzej Bajguz
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Elżbieta Zambrzycka-Szelewa
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Chemistry, Department of Analytical Chemistry, Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - Monika Bralska
- University of Bialystok, Faculty of Biology and Chemistry, Institute of Biology, Department of Plant Biochemistry and Toxicology, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|