1
|
Borisova G, Maleva M, Tripti, Voropaeva O, Chukina N, Tugbaeva A, Kumar A. Amalgamation of Metal Tolerant PGPR Buttiauxella sp. EA20 with Birch Wood Biochar Enhanced Growth and Biofortification of Rapeseed under Copper Action. Front Biosci (Elite Ed) 2024; 16:34. [PMID: 39736007 DOI: 10.31083/j.fbe1604034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed (Brassica napus L.) at copper action. METHODS The prepared BF was based on novel metal tolerant strain of PGPR Buttiauxella sp. EA20 isolated from the rhizosphere of orchid Epipactis atrorubens and birch wood biochar (BC). The pot-scale experiments included six treatments: peat-containing control substrate (CS); CS + 200Cu (200 mg Cu/kg of soil); CS + 5% BC (v/v); CS + 5% BC + 200Cu; CS + 5% BF (v/v); CS + 5% BF + 200Cu. RESULTS Single Cu treatment caused the decrease in rapeseed leaf area, shoot and root length, fresh and dry biomass, as well as an increase in water saturation deficit, possibly due to damage of cell membranes by lipid peroxidation. Addition of BF or BC alone mitigated these harmful effects of copper. Application of BF, regardless of Cu addition, increased the rapeseed leaf area (1.6 times on average), plant fresh and dry biomass (2.5 times on average), and photosynthetic pigment content (1.8 times on average). In addition, BF treatment along with Cu enhanced the antioxidant activity of B. napus due to the accumulation of non-enzymatic antioxidants such as carotenoids, free proline and soluble phenolic compounds, including flavonoids. Moreover, plant enrichment with copper and essential macronutrients such as nitrogen, phosphorus and potassium was observed. CONCLUSIONS The study concludes that application of complex biofertilizer based on metal tolerant PGPR strain Buttiauxella sp. EA20 and birch wood biochar mitigated the harmful effects of copper, enhanced the rapeseed growth and increased its biological value. Future perspective includes evaluation of the potential for using the resulting biofertilizer to improve the growth and biofortification of other crop species.
Collapse
Affiliation(s)
- Galina Borisova
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Maria Maleva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Tripti
- Laboratory of Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Olga Voropaeva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Nadezhda Chukina
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Anastasia Tugbaeva
- Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Adarsh Kumar
- Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
2
|
Xue C, Liu R, Xia Z, Jia J, Hu B, Rennenberg H. Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135612. [PMID: 39182290 DOI: 10.1016/j.jhazmat.2024.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
Collapse
Affiliation(s)
- Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jin Jia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Wang S, Liu J, Liu Y, Tian C. Application of rhizobium inoculation in regulating heavy metals in legumes: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173923. [PMID: 38880144 DOI: 10.1016/j.scitotenv.2024.173923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbiao Liu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163317, China
| | - Yalan Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| |
Collapse
|
4
|
Wang X, Ran C, Fu Y, Han L, Yang X, Zhu W, Zhang H, Zhang Y. Application of Exogenous Ascorbic Acid Enhances Cold Tolerance in Tomato Seedlings through Molecular and Physiological Responses. Int J Mol Sci 2024; 25:10093. [PMID: 39337579 PMCID: PMC11432314 DOI: 10.3390/ijms251810093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Ascorbic acid (AsA), an essential non-enzymatic antioxidant in plants, regulates development growth and responses to abiotic and biotic stresses. However, research on AsA's role in cold tolerance remains largely unknown. Here, our study uncovered the positive role of AsA in improving cold stress tolerance in tomato seedlings. Physiological analysis showed that AsA significantly enhanced the enzyme activity of the antioxidant defense system in tomato seedling leaves and increased the contents of proline, sugar, abscisic acid (ABA), and endogenous AsA. In addition, we found that AsA is able to protect the photosynthetic system of tomato seedlings, thereby relieving the declining rate of chlorophyll fluorescence parameters. qRT-PCR analysis indicated that AsA significantly increased the expression of genes encoding antioxidant enzymes and involved in AsA synthesis, ABA biosynthesis/signal transduction, and low-temperature responses in tomato. In conclusion, the application of exogenous AsA enhances cold stress tolerance in tomato seedlings through various molecular and physiological responses. This provides a theoretical foundation for exploring the regulatory mechanisms underlying cold tolerance in tomato and offers practical guidance for enhancing cold tolerance in tomato cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| | - Yingying Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.W.); (C.R.); (Y.F.); (L.H.); (X.Y.); (W.Z.)
| |
Collapse
|
5
|
Qin H, Wang Z, Sha W, Song S, Qin F, Zhang W. Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification. Microorganisms 2024; 12:700. [PMID: 38674644 PMCID: PMC11052264 DOI: 10.3390/microorganisms12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant-heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation.
Collapse
Affiliation(s)
| | | | | | | | - Fenju Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
6
|
Wang B, Sun M, Wang Y, Yan T, Li Y, Wu X, Wang Y, Zhuang W. Cadmium-Tolerant Bacterium Strain Cdb8-1 Contributed to the Remediation of Cadmium Pollution through Increasing the Growth and Cadmium Uptake of Chinese Milk Vetch ( Astragalus sinicus L.) in Cadmium-Polluted Soils. PLANTS (BASEL, SWITZERLAND) 2023; 13:76. [PMID: 38202384 PMCID: PMC10781172 DOI: 10.3390/plants13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd) pollution has attracted global attention because it not only jeopardizes soil microbial ecology and crop production, but also threatens human health. As of now, microbe-assisted phytoremediation has proven to be a promising approach for the revegetation of Cd-contaminated soil. Therefore, it is important to find such tolerant microorganisms. In the present study, we inoculated a bacteria strain tolerant to Cd, Cdb8-1, to Cd-contaminated soils and then explored the effects of Cdb8-1 inoculation on the performance of the Chinese milk vetch. The results showed plant height, root length, and fresh and dry weight of Chinese milk vetch grown in Cdb8-1-inoculated soils increased compared to the non-inoculated control group. The inoculation of Cd-contaminated soils with Cdb8-1 also enhanced their antioxidant defense system and decreased the H2O2 and malondialdehyde (MDA) contents, which alleviated the phytotoxicity of Cd. The inoculation of Cdb8-1 in Cd-contaminated soils attenuated the contents of total and available Cd in the soil and augmented the BCF and TF of Chinese milk vetch, indicating that the combined application of Cd-tolerant bacteria Cdb8-1 and Chinese milk vetch is a potential solution to Cd-contaminated soils.
Collapse
Affiliation(s)
- Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Minghui Sun
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Yuekai Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| | - Xinxin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Youbao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| |
Collapse
|
7
|
Goyal RK, Habtewold JZ. Evaluation of Legume-Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments. Microorganisms 2023; 11:1454. [PMID: 37374957 PMCID: PMC10302611 DOI: 10.3390/microorganisms11061454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Plants often experience unfavorable conditions during their life cycle that impact their growth and sometimes their survival. A temporary phase of such stress, which can result from heavy metals, drought, salinity, or extremes of temperature or pH, can cause mild to enormous damage to the plant depending on its duration and intensity. Besides environmental stress, plants are the target of many microbial pathogens, causing diseases of varying severity. In plants that harbor mutualistic bacteria, stress can affect the symbiotic interaction and its outcome. To achieve the full potential of a symbiotic relationship between the host and rhizobia, it is important that the host plant maintains good growth characteristics and stay healthy under challenging environmental conditions. The host plant cannot provide good accommodation for the symbiont if it is infested with diseases and prone to other predators. Because the bacterium relies on metabolites for survival and multiplication, it is in its best interests to keep the host plant as stress-free as possible and to keep the supply stable. Although plants have developed many mitigation strategies to cope with stress, the symbiotic bacterium has developed the capability to augment the plant's defense mechanisms against environmental stress. They also provide the host with protection against certain diseases. The protective features of rhizobial-host interaction along with nitrogen fixation appear to have played a significant role in legume diversification. When considering a legume-rhizobial symbiosis, extra benefits to the host are sometimes overlooked in favor of the symbionts' nitrogen fixation efficiency. This review examines all of those additional considerations of a symbiotic interaction that enable the host to withstand a wide range of stresses, enabling plant survival under hostile regimes. In addition, the review focuses on the rhizosphere microbiome, which has emerged as a strong pillar of evolutionary reserve to equip the symbiotic interaction in the interests of both the rhizobia and host. The evaluation would draw the researchers' attention to the symbiotic relationship as being advantageous to the host plant as a whole and the role it plays in the plant's adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, AB T4L 1W1, Canada
| | | |
Collapse
|
8
|
Zhou H, Zhou KH, Zhao G, Wang PP, Yang DG, Ma XF, Gao JS. Physiological and Biochemical Properties of Cotton Seedlings in Response to Cu 2+ Stress. Curr Issues Mol Biol 2023; 45:4050-4062. [PMID: 37232727 DOI: 10.3390/cimb45050258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Copper(II) (Cu2+) is essential for plant growth and development. However, high concentrations are extremely toxic to plants. We investigated the tolerance mechanism of cotton under Cu2+ stress in a hybrid cotton variety (Zhongmian 63) and two parent lines with different Cu2+ concentrations (0, 0.2, 50, and 100 μM). The stem height, root length, and leaf area of cotton seedlings had decreased growth rates in response to increasing Cu2+ concentrations. Increasing Cu2+ concentration promoted Cu2+ accumulation in all three cotton genotypes' roots, stems, and leaves. However, compared with the parent lines, the roots of Zhongmian 63 were richer in Cu2+ and had the least amount of Cu2+ transported to the shoots. Moreover, excess Cu2+ also induced changes in cellular redox homeostasis, causing accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Conversely, antioxidant enzyme activity increased, while photosynthetic pigment content decreased. Our findings indicated that the hybrid cotton variety fared well under Cu2+ stress. This creates a theoretical foundation for the further analysis of the molecular mechanism of cotton resistance to copper and suggests the potential of the large-scale planting of Zhongmian 63 in copper-contaminated soils.
Collapse
Affiliation(s)
- Hao Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ke-Hai Zhou
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Gang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Pei-Pei Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dai-Gang Yang
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Xiong-Feng Ma
- Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China
| | - Jun-Shan Gao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
9
|
Jiang D, Li Y, Wang J, Lv X, Jiang Z, Cao B, Qu J, Ma S, Zhang Y. Exogenous application of Bradyrhizobium japonicum AC20 enhances soybean tolerance to atrazine via regulating rhizosphere soil microbial community and amino acid, carbohydrate metabolism related genes expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:472-483. [PMID: 36764263 DOI: 10.1016/j.plaphy.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is used to control broad-leaved weeds in farmland and has negative impacts on soybean growth. Legume-rhizobium symbiosis plays an important role in regulating abiotic stress tolerance of plants, however, the mechanisms of rhizobia regulate the tolerance of soybean to atrazine based on the biochemical responses of the plant-soil system are limited. In this experiment, Glycine max (L.) Merr. Dongnong 252, planted in 20 mg kg-1 of atrazine-contaminated soil, was inoculated with Bradyrhizobium japonicum AC20, and the plant growth, rhizosphere soil microbial diversity and the expression of the genes related to soybean carbon and nitrogen metabolism were assessed. The results indicated that strain AC20 inoculation alleviated atrazine-induced growth inhibition via increasing the contents of leghemoglobin and total nitrogen in soybean seedlings. The psbA gene expression level of the soybean seedlings that inoculated strain AC20 was 1.4 times than that of no rhizobium inoculating treatments. Moreover, the inoculated AC20 increased the abundance of Acidobacteria and Actinobacteria in soybean rhizosphere. Transcriptome analysis demonstrated that strain AC20 regulated the genes expression of amino acid metabolism and carbohydrate metabolism of soybean seedlings. Correlation analysis between 16S rRNA and transcriptome showed that strain AC20 reduced Planctomycetes abundance so as to down-regulated the expression of genes Glyma. 13G087800, Glyma. 12G005100 and Glyma.12G098900 involved in starch synthesis pathway of soybean leaves. These results provide available information for the rhizobia application to enhance the atrazine tolerate in soybean seedlings.
Collapse
Affiliation(s)
- Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
10
|
Hussain A, Faizan S. Rhizobium induced modulation of growth and photosynthetic efficiency of Lens culinaris Medik. grown on fly ash amended soil by antioxidants regulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46295-46305. [PMID: 36719579 DOI: 10.1007/s11356-023-25616-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Rhizobium leguminosarum is a rhizospheres' nitrogen fixing microbe that improves plant growth and productivity by releasing sufficient nutrient sources from the root, by biological nitrogen fixation, solubilization of phosphorous, acquisition of iron, and enhancement of antioxidant activity in plants. On this account, a greenhouse experiment was carried out to assess the feasibility of growing lentil (Lens culinaris Medik.) on fly ash (FA) amended soil (0%, 10%, 20%, and 30%) in combination with R. leguminosarum inoculation. The data was recorded at 45 day after sowing to evaluate the plant growth characteristics, photosynthetic variables (total chlorophyll and carotenoid pigments, carbonic anhydrase activity, nitrate reductase activity), damage markers (ROS, MDA, and cell viability), and defensive factors (proline and antioxidants). Among the FA-proportions tested, 20% proved most favorable in all the mentioned attributes while 30% concentration had negative repercussions on all the variables. Rhizobium inoculation had synergistic effect on all the concentrations being maximum on 20% FA. Thus, Rhizobium and 20% FA caused a significant increase on growth characteristics, photosynthetic pigments; stomatal behavior (aperture shape, size, and frequency of stomata); and activity of CA and NR, and cell viability. Application of Rhizobium on 20% FA was corroborated with decline in MDA and ROS contents and a coordinated enhancement of the activity of SOD, CAT, and POX. Therefore, 20% FA with fly ash-tolerant strain of Rhizobium in Lens culinaris may be utilized as an integrated approach towards sustainable agriculture and an impulse of management of fly-ash.
Collapse
Affiliation(s)
- Alisha Hussain
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, U.P, India.
| |
Collapse
|
11
|
Seregin IV, Kozhevnikova AD. Phytochelatins: Sulfur-Containing Metal(loid)-Chelating Ligands in Plants. Int J Mol Sci 2023; 24:2430. [PMID: 36768751 PMCID: PMC9917255 DOI: 10.3390/ijms24032430] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Phytochelatins (PCs) are small cysteine-rich peptides capable of binding metal(loid)s via SH-groups. Although the biosynthesis of PCs can be induced in vivo by various metal(loid)s, PCs are mainly involved in the detoxification of cadmium and arsenic (III), as well as mercury, zinc, lead, and copper ions, which have high affinities for S-containing ligands. The present review provides a comprehensive account of the recent data on PC biosynthesis, structure, and role in metal(loid) transport and sequestration in the vacuoles of plant cells. A comparative analysis of PC accumulation in hyperaccumulator plants, which accumulate metal(loid)s in their shoots, and in the excluders, which accumulate metal(loid)s in their roots, investigates the question of whether the endogenous PC concentration determines a plant's tolerance to metal(loid)s. Summarizing the available data, it can be concluded that PCs are not involved in metal(loid) hyperaccumulation machinery, though they play a key role in metal(loid) homeostasis. Unraveling the physiological role of metal(loid)-binding ligands is a fundamental problem of modern molecular biology, plant physiology, ionomics, and toxicology, and is important for the development of technologies used in phytoremediation, biofortification, and phytomining.
Collapse
Affiliation(s)
- Ilya V. Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | | |
Collapse
|
12
|
Zhang S, Li Y, Wang P, Zhang H, Ali EF, Li R, Shaheen SM, Zhang Z. Lactic acid bacteria promoted soil quality and enhanced phytoextraction of Cd and Zn by mustard: A trial for bioengineering of toxic metal contaminated mining soils. ENVIRONMENTAL RESEARCH 2023; 216:114646. [PMID: 36332671 DOI: 10.1016/j.envres.2022.114646] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Microbial-assisted phytoremediation provides a green approach for remediation of metal contaminated soils. However, the impacts of mono and co-applications of lactic acid bacteria (LAB) on soil biochemical properties and phytoavailability of toxic metals in contaminated mining soils have not yet been sufficiently examined. Consequently, here we studied the effects of Lactobacillus plantarum (P), Lactobacillus acidophilus (A), and Lactobacillus rhamnosus (R) applications alone and in combination on soil enzyme activities and bioavailability and uptake of Cd and Zn by mustard (Brassica juncea) in a smelter-contaminated soil under greenhouse conditions. Among the studied bacteria, P was the most tolerant to Cd-and-Zn contamination. As compared to control, R increased the fresh and dry weight of mustard plants by 53.5% and 63.2%, respectively. Co-application of P + A increased the chlorophyll content by 28.6%, as compared to control. Addition of LAB to soil increased the activity of soil urease, alkaline phosphatase and β-D glucosidase increased by 1.86-fold (P + R), 1.80-fold (R) and 55.16% (P + R), respectively. Application of P + A + R enhanced catalase activity (19.3%) and superoxide dismutase activity (51.2%), while addition of A alone increased peroxidase activity (POD: 15.7%). Addition of P alone and together with A (P + A) enhanced Cd and Zn phytoextraction by mustard shoots up to 51.5% and 52.5%, respectively. We conclude that the single and/or co-application of LAB decreased soil pH, promoted plant growth, antioxidant and enzyme activities, and enhanced the phytoavailability of Cd and Zn in the studied contaminated soil. These findings might be an aid for enhancing the phytoremediation of Cd and Zn using LAB and mustard as a bioenergy crop, which may offer new ideas for field treatment of toxic metals contaminated soils.
Collapse
Affiliation(s)
- Shuqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Han Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
14
|
Zhang J, Chen XF, Huang WL, Chen HH, Huang ZR, Ye X, Chen LS. High pH Alleviated Sweet Orange ( Citrus sinensis) Copper Toxicity by Enhancing the Capacity to Maintain a Balance between Formation and Removal of Reactive Oxygen Species and Methylglyoxal in Leaves and Roots. Int J Mol Sci 2022; 23:13896. [PMID: 36430374 PMCID: PMC9698688 DOI: 10.3390/ijms232213896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The contribution of reactive oxygen species (ROS) and methylglyoxal (MG) formation and removal in high-pH-mediated alleviation of plant copper (Cu)-toxicity remains to be elucidated. Seedlings of sweet orange (Citrus sinensis) were treated with 0.5 (non-Cu-toxicity) or 300 (Cu-toxicity) μM CuCl2 × pH 4.8, 4.0, or 3.0 for 17 weeks. Thereafter, superoxide anion production rate; H2O2 production rate; the concentrations of MG, malondialdehyde (MDA), and antioxidant metabolites (reduced glutathione, ascorbate, phytochelatins, metallothioneins, total non-protein thiols); and the activities of enzymes (antioxidant enzymes, glyoxalases, and sulfur metabolism-related enzymes) in leaves and roots were determined. High pH mitigated oxidative damage in Cu-toxic leaves and roots, thereby conferring sweet orange Cu tolerance. The alleviation of oxidative damage involved enhanced ability to maintain the balance between ROS and MG formation and removal through the downregulation of ROS and MG formation and the coordinated actions of ROS and MG detoxification systems. Low pH (pH 3.0) impaired the balance between ROS and MG formation and removal, thereby causing oxidative damage in Cu-toxic leaves and roots but not in non-Cu-toxic ones. Cu toxicity and low pH had obvious synergistic impacts on ROS and MG generation and removal in leaves and roots. Additionally, 21 (4) parameters in leaves were positively (negatively) related to the corresponding root parameters, implying that there were some similarities and differences in the responses of ROS and MG metabolisms to Cu-pH interactions between leaves and roots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Lin XY, Zhang NN, Yao BH, Zhang X, Liu WY, Zhang WQ, Zhang JH, Wei GH, Chen J. Interactions between hydrogen sulphide and rhizobia modulate the physiological and metabolism process during water deficiency-induced oxidative defense in soybean. PLANT, CELL & ENVIRONMENT 2022; 45:3249-3274. [PMID: 36043459 DOI: 10.1111/pce.14431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulphide (H2 S), a new gas signal molecule, participates in the regulation of various abiotic stresses in plants. However, how the tandem working of H2 S and rhizobia affects the adaptation of soybean to water deficiency is still unclear. In this study, we investigated the adaptation mechanism of H2 S and rhizobia in soybean to water deficiency. Our results revealed that H2 S and rhizobia jointly enhanced the leaf chlorophyll content and relative water content in plants, and caused an increase in the biomass of soybean seedlings under water deficiency. Besides, in the absence of water, H2 S enhanced the biomass by affecting the number of nodules and nitrogenase activity during vegetative growth. The expression of nodulation marker genes including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN) and nodulation inception genes (GmNIN1a, GmNIN2a and GmNIN2b) were upregulated by H2 S and rhizobia in the nodules. Moreover, the combined effect of H2 S and rhizobia was proved to affect the enzyme activities and gene expression level of antioxidants, as well as osmotic protective substance content and related gene expression levels under water deficiency in soybean seedlings. In addition, the metabolomic results suggested that the combined effect of H2 S and rhizobia remarkably promoted the contents of lipids and lipid-like molecules. Our results indicated that H2 S and rhizobia synergistically reduced the oxidative damage caused by water deficiency through increasing the accumulation of metabolites and strengthening the plant antioxidant capacity.
Collapse
Affiliation(s)
- Xue-Yuan Lin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ni-Na Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bai-Hui Yao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wu-Yu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wei-Qin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jian-Hua Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ge-Hong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
16
|
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant-Rhizosphere Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2554. [PMID: 36235420 PMCID: PMC9572132 DOI: 10.3390/plants11192554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.
Collapse
Affiliation(s)
- Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lana Zorić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Dunja Karanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Jadranka Luković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
17
|
Jócsák I, Knolmajer B, Szarvas M, Rabnecz G, Pál-Fám F. Literature Review on the Effects of Heavy Metal Stress and Alleviating Possibilities through Exogenously Applied Agents in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2161. [PMID: 36015464 PMCID: PMC9414348 DOI: 10.3390/plants11162161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) are among the most important toxic agents since they reach the soil through various routes and accumulate in the food chain. Therefore, HMs induce problems in soil integrity and in plant, animal, and human health. Alfalfa (Medicago sativa L.) is a significant crop worldwide, utilized in animal production. Furthermore, because of its nitrogen-absorbing ability via symbiotic strains of bacteria, it increases soil productivity. However, there are relatively few studies investigating the effects of HMs and their alleviation possibilities on alfalfa plants. Therefore, the goal of this review is to clarify the current state of research into HM-induced alterations in alfalfa and to determine the extent to which externally applied microorganisms and chemical compounds can mitigate the negative effects. The aim is to indicate areas of development towards further understanding of HM detoxification in alfalfa and to identify future research directions.
Collapse
Affiliation(s)
- Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| | - Bence Knolmajer
- Institute of Plant Protection, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Deák Ferenc Street 16, H-8360 Keszthely, Hungary
| | - Miklós Szarvas
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| | - Gyula Rabnecz
- Zorvet Ltd., Wlassics Gyula Street 58, H-1181 Budapest, Hungary
| | - Ferenc Pál-Fám
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Street 40, H-7400 Kaposvár, Hungary
| |
Collapse
|
18
|
Li Y, Lin H, Gao P, Yang N, Xu R, Sun X, Li B, Xu F, Wang X, Song B, Sun W. Synergistic Impacts of Arsenic and Antimony Co-contamination on Diazotrophic Communities. MICROBIAL ECOLOGY 2022; 84:44-58. [PMID: 34398256 DOI: 10.1007/s00248-021-01824-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) shortage poses a great challenge to the implementation of in situ bioremediation practices in mining-contaminated sites. Diazotrophs can fix atmospheric N2 into a bioavailable form to plants and microorganisms inhabiting adverse habitats. Increasing numbers of studies mainly focused on the diazotrophic communities in the agroecosystems, while those communities in mining areas are still not well understood. This study compared the variations of diazotrophic communities in composition and interactions in the mining areas with different extents of arsenic (As) and antimony (Sb) contamination. As and Sb co-contamination increased alpha diversities and the abundance of nifH encoding the dinitrogenase reductase, while inhibited the diazotrophic interactions and substantially changed the composition of communities. Based on the multiple lines of evidence (e.g., the enrichment analysis of diazotrophs, microbe-microbe network, and random forest regression), six diazotrophs (e.g., Sinorhizobium, Dechloromonas, Trichormus, Herbaspirillum, Desmonostoc, and Klebsiella) were identified as keystone taxa. Environment-microbe network and random forest prediction demonstrated that these keystone taxa were highly correlated with the As and Sb contamination fractions. All these results imply that the above-mentioned diazotrophs may be resistant to metal(loid)s.
Collapse
Affiliation(s)
- Yongbin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Fuqing Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Xiaoyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Benru Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, 510650, Guangdong, China.
- School of Environment, Henan Normal University, Xinxiang, China.
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
| |
Collapse
|
19
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
20
|
Wang X, Fernandes de Souza M, Mench MJ, Li H, Ok YS, Tack FMG, Meers E. Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118627. [PMID: 34871647 DOI: 10.1016/j.envpol.2021.118627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg-1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N'-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg-1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg-1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg-1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg-1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | - Haichao Li
- Department of Environment, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
21
|
Duan C, Mei Y, Wang Q, Wang Y, Li Q, Hong M, Hu S, Li S, Fang L. Rhizobium Inoculation Enhances the Resistance of Alfalfa and Microbial Characteristics in Copper-Contaminated Soil. Front Microbiol 2022; 12:781831. [PMID: 35095795 PMCID: PMC8791600 DOI: 10.3389/fmicb.2021.781831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/17/2021] [Indexed: 01/30/2023] Open
Abstract
Some studies have reported the importance of rhizobium in mitigating heavy metal toxicity, however, the regulatory mechanism of the alfalfa-rhizobium symbiosis to resist copper (Cu) stress in the plant-soil system through biochemical reactions is still unclear. This study assessed the effects of rhizobium (Sinorhizobium meliloti CCNWSX0020) inoculation on the growth of alfalfa and soil microbial characteristics under Cu-stress. Further, we determined the regulatory mechanism of rhizobium inoculation to alleviate Cu-stress in alfalfa through plant-soil system. The results showed that rhizobium inoculation markedly alleviated Cu-induced growth inhibition in alfalfa by increasing the chlorophyll content, height, and biomass, in addition to nitrogen and phosphorus contents. Furthermore, rhizobium application alleviated Cu-induced phytotoxicity by increasing the antioxidant enzyme activities and soluble protein content in tissues, and inhibiting the lipid peroxidation levels (i.e., malondialdehyde content). In addition, rhizobium inoculation improved soil nutrient cycling, which increased soil enzyme activities (i.e., β-glucosidase activity and alkaline phosphatase) and microbial biomass nitrogen. Both Pearson correlation coefficient analysis and partial least squares path modeling (PLS-PM) identified that the interactions between soil nutrient content, enzyme activity, microbial biomass, plant antioxidant enzymes, and oxidative damage could jointly regulate plant growth. This study provides comprehensive insights into the mechanism of action of the legume-rhizobium symbiotic system to mitigate Cu stress and provide an efficient strategy for phytoremediation of Cu-contaminated soils.
Collapse
Affiliation(s)
- Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Qi Li
- College of Urban and Environmental Sciences, Central China Normal University, Wuhan, China
| | - Maojun Hong
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Sheng Hu
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Yangling, China.,Chinese Academy of Sciences (CAS), Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| |
Collapse
|
22
|
Li Y, Ali A, Jeyasundar PGSA, Azeem M, Tabassum A, Guo D, Li R, Mian IA, Zhang Z. Bacillus subtilis and saponin shifted the availability of heavy metals, health indicators of smelter contaminated soil, and the physiological indicators of Symphytum officinale. CHEMOSPHERE 2021; 285:131454. [PMID: 34271464 DOI: 10.1016/j.chemosphere.2021.131454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Bacillus subtilis and saponin were tested for the uptake of heavy metals (HMs) by Symphytum officinale grown in a smelter-contaminated soil in completely randomized design. Soil pH and electrical conductivity increased by 0.11 unit (T3) and 754 mS cm-1 (T2), respectively. The bioavailable Zn decreased by 5.80% (T2); Cd and Pb increased by 6.21% (T2) and 13.46% (T3), respectively. Soil urease increased by 24% (T3) and alkaline phosphatase, β-glucosidase, and dehydrogenase decreased by 20% (T2), 27.70% (T2), and 21% (T1), respectively. Soil amendments altered the microbial diversity. Fourier-transform infrared spectroscopy and X-ray diffraction reported no obvious changes, except saponin application, which led to possible release of HMs in soil. The fresh weight of Symphytum officinale increased by 21.3 and 5.50% in T2 and T3, respectively. Chlorophyll (a) and carotenoid decreased by the sole application of B. subtilis and saponin and vice-versa for chlorophyll (b). Mono-application of B. subtilis efficiently increased the peroxidase (POD: 27%) and polyphenol oxidase (PPO: 13.56%), whereas, co-application enhanced the phenylalanine ammonia-lyase (PAL: 6.50%) level in shoots. Zn concentration in the shoots and roots declined by 12.75 and 27.32% in T1, respectively. Cd increased (3.92%, T3) in shoots and decreased (39.25%, T1) in roots; Pb concentration remained below detection in shoots and increased by 40% (T3) in roots due to accumulation in dead cells and cell vacuoles. Overall, B. subtilis and saponin influenced the bioavailability of HMs, enzymatic activities, and bacterial abundance in the soil; plant growth indicators, antioxidants activities, and metal uptake in shoots and roots.
Collapse
Affiliation(s)
- Yiman Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Amjad Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, Xian, 715000, China.
| | | | - Muhammad Azeem
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Anum Tabassum
- Department of Microbiology, Women University, Mardan, 23200, Pakistan
| | - Di Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Ishaq Ahmad Mian
- Department of Soil and Environmental Sciences, The University of Agriculture, Peshawar, 2500, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
23
|
Drozdova M, Pozdnyakova A, Osintseva M, Burova N, Minina V. The microorganism-plant system for remediation of soil exposed to coal mining. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-406-418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Coal mining causes a radical transformation of the soil cover. Research is required into modern methods and complementary technologies for monitoring technogenic landscapes and their remediation. Our study aimed to assess soil and rhizosphere microorganisms and their potential uses for the remediation of technogenic soils in Russian coal regions.
Study objects and methods. We reviewed scientific articles published over the past five years, as well as those cited in Scopus and Web of Science.
Results and discussion. Areas lying in the vicinity of coal mines and coal transportation lines are exposed to heavy metal contamination. We studied the application of soil remediation technologies that use sorbents from environmentally friendly natural materials as immobilizers of toxic elements and compounds. Mycorrhizal symbionts are used for soil decontamination, such as arbuscular mycorrhiza with characteristic morphological structures in root cortex cells and some mycotallia in the form of arbuscules or vesicles. Highly important are Gram-negative proteobacteria (Agrobacterium, Azospirillum, Azotobacter, Burkholderia, Bradyrizobium, Enterobacter, Pseudomonas, Klebsiella, Rizobium), Gram-positive bacteria (Bacillus, Brevibacillus, Paenibacillus), and Grampositive actinomycetes (Rhodococcus, Streptomyces, Arhtrobacter). They produce phytohormones, vitamins, and bioactive substances, stimulating plant growth. Also, they reduce the phytopathogenicity of dangerous diseases and harmfulness of insects. Finally, they increase the soil’s tolerance to salinity, drought, and oxidative stress. Mycorrhizal chains enable the transport and exchange of various substances, including mineral forms of nitrogen, phosphorus, and organic forms of C3 and C4 plants. Microorganisms contribute to the removal of toxic elements by absorbing, precipitating or accumulating them both inside the cells and in the extracellular space.
Conclusion. Our review of scientific literature identified the sources of pollution of natural, agrogenic, and technogenic landscapes. We revealed the effects of toxic pollutants on the state and functioning of living systems: plants, animals, and microorganisms. Finally, we gave examples of modern methods used to remediate degraded landscapes and reclaim disturbed lands, including the latest technologies based on the integration of plants and microorganisms.
Collapse
|
24
|
Jeyasundar PGSA, Ali A, Azeem M, Li Y, Guo D, Sikdar A, Abdelrahman H, Kwon E, Antoniadis V, Mani VM, Shaheen SM, Rinklebe J, Zhang Z. Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116789. [PMID: 33640810 DOI: 10.1016/j.envpol.2021.116789] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 05/19/2023]
Abstract
Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.
Collapse
Affiliation(s)
| | - Amjad Ali
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Azeem
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiman Li
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Di Guo
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ashim Sikdar
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Department, Giza, 12613 Egypt
| | - Eilhann Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Vellingiri Manon Mani
- Department of Biotechnology, RathnavelSubramaniam College of Arts and Science, Coimbatore, 641402, India
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil-and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea.
| | - Zengqiang Zhang
- College of Natural Resources & Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
25
|
Redha A, Al-Hasan R, Afzal M. Synergistic and concentration-dependent toxicity of multiple heavy metals compared with single heavy metals in Conocarpus lancifolius. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23258-23272. [PMID: 33443733 PMCID: PMC8113142 DOI: 10.1007/s11356-020-12271-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/28/2020] [Indexed: 05/30/2023]
Abstract
While heavy metals (HMs) naturally occur in soil, anthropogenic activities can increase the level of these toxic elements. Conocarpus lancifolius Engl. (Combretaceae) was investigated as a potential phytoremediator of soils contaminated with HM containing crude oil. This study assessed the potential of C. lancifolius (CL), a locally available plant species in Kuwait, for resolving local issues of the HM-contaminated soils. The absorption, accumulation, and distribution of three toxic HMs (Cd, Ni, and Pb) and essential metals (Fe, Mg, and metalloid Se) were examined, and their role in plant toxicity and tolerance was evaluated. Conocarpus lancifolius plants were exposed to two different concentrations of single and mixed HMs for 30 days. The accumulation of HMs was determined in the roots, leaves, stems, and the soil using ICP/MS. Biomass, soil pH, proline and protein content, and bioaccumulation, extraction, and translocation factors were measured. The bioaccumulation, extraction, and transcription factors were all >1, indicating CC is a hyperaccumulator of HM. The HM accumulation in CL was concentration-dependent and depended on whether the plants were exposed to individual or mixed HMs. The C.C leaves, stems, and roots showed a significant accumulation of antioxidant constituents, such as proline, protein, Fe, Mg, and Se. There was an insignificant increase in the soil pH, and a decrease in plant biomass and a significant increase in protein, and osmoprotective-proline as a result of the interaction of mixed heavy metals that are more toxic than single heavy metals. This study indicates that C. lancifolius is a good candidate for phytoremediation of multiple HM-contaminated soils. Further studies to establish the phyto-physiological effect of multiple heavy metals are warranted.
Collapse
Affiliation(s)
- Amina Redha
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Redha Al-Hasan
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Afzal
- Department of Biological Studies, Faculty of Science, Kuwait University, Kuwait City, Kuwait.
- , Gainesville, USA.
| |
Collapse
|
26
|
Li Q, Xing Y, Fu X, Ji L, Li T, Wang J, Chen G, Qi Z, Zhang Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress - Microbial diversity and metabolomics analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112016. [PMID: 33550079 DOI: 10.1016/j.ecoenv.2021.112016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 05/27/2023]
Abstract
The effects of Bacillus subtilis inoculation on the growth and Cd uptake of alfalfa were evaluated in this research using pot experiments, and the relevant biochemical mechanisms were first investigated by combined microbial diversity and nontarget metabolomics analyses. The results indicated that inoculation with alfalfa significantly decreased the amount of plant malondialdehyde (MDA) and improved the activities of plant antioxidant enzymes and soil nutrient cycling-involved enzymes, thereby promoting biomass by 29.4%. Inoculation also increased Cd bioavailability in rhizosphere soil by 12.0% and Cd removal efficiency by 139.3%. The biochemical mechanisms included enhanced bacterial diversity, transformed microbial community composition, regulated amounts of amino acids, fatty acids, carbohydrates, flavonoids and phenols in rhizosphere soil metabolites, and modulations of the corresponding Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These responses were beneficial to microbial activity, nutrient cycling, and Cd mobilization, detoxification, and decontamination by alfalfa in soil. This study, especially the newly identified differential metabolites and metabolic pathways, provides new insights into mechanism revelation and strategy development in microbe-assisted phytomanagement of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Qi Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Yingna Xing
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| | - Xiaowen Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lei Ji
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Tianyuan Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Guanhong Chen
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
| |
Collapse
|
27
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
28
|
Beiyuan J, Fang L, Chen H, Li M, Liu D, Wang Y. Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115719. [PMID: 33007598 DOI: 10.1016/j.envpol.2020.115719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
(S,S)-ethylenediaminedisuccinic acid (EDDS) has a strong capacity to mobilize potentially toxic elements (PTEs) in phytoextraction. It can release NH4+-N via biodegradation, which can enhance N supply to soil thereafter promote plant growth and plant resistance to PTEs. However, the advanced feature of released N in the EDDS-enhanced phytoextraction remains unclear. In the current study, the effects of N supply released from EDDS on ryegrass phytoextraction and plant resistance to PTEs were investigated in detail by a comparison with urea. Our results supported that the addition of both EDDS and urea increased N concentration in soil solution, yet EDDS needed more time to release available N for plant uptake and transported more N from root to shoot. Additionally, EDDS significantly increased the concentration of all targeted PTEs, i.e. Cu, Zn, Cd, and Pb, in the soil solution, which results in higher levels of their occurrence in plant biomass compared with urea. By contrast, the supply of N slightly enhanced the ryegrass uptake of micro-nutrients, i.e. Cu and Zn, yet it caused negligible effects on nonessential elements, i.e. Cd and Pb. The mobilized PTEs by EDDS lead to elevated oxidative stress because higher levels of malondialdehyde and O2•- were observed. The supply of N attenuated oxidative stress caused by O2•- and H2O2, which was associated with enhanced activities of superoxide dismutase and peroxidase. Our results advanced the understanding of the exogenous N supply and metal resistance mechanisms in the EDDS-enhanced phytoextraction. This study also highlighted that EDDS can serve as a N source to ease N-deficient problems in PTEs-contaminated soils.
Collapse
Affiliation(s)
- Jingzi Beiyuan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Hansong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China; College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Mengdi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Dongdong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment CAS, Xi'an, 710061, China; Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
29
|
Cota-Ruiz K, Ye Y, Valdes C, Deng C, Wang Y, Hernández-Viezcas JA, Duarte-Gardea M, Gardea-Torresdey JL. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140572. [PMID: 32623177 DOI: 10.1016/j.scitotenv.2020.140572] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 05/20/2023]
Abstract
The recent application of nano copper (Cu) compounds in the agrosystem has shown potential to improve the physiological performance and agronomical parameters of crops. We grew alfalfa (Medicago sativa) in potting mix amended with bulk, nano, and ionic Cu compounds at 80 and 280 mg Cu/kg; then, we evaluated plant performance at physiological and molecular levels. Plants treated with bulk/nano Cu presented better agronomical responses. The P and S content was reduced in bulk and ionic Cu-exposed plants, compared to controls (p ≤ .05). All Cu forms increased the content of Fe and Zn in roots and Fe in leaves, compared to controls (p ≤ .05). Leaf-superoxide dismutase expression was augmented ~27-fold and rubisco mRNA was unaffected in bulk/nano Cu-treated plants, compared to controls (p ≤ .05). Bulk/nano Cu incremented the relative abundance of microorganisms involved in the elemental uptake. These results indicate that nano Cu improved the physiology of alfalfa and can be considered as potential nanofertilizers.
Collapse
Affiliation(s)
- Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Yuqing Ye
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Carolina Valdes
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Chaoyi Deng
- Environmental Science and Engineering Ph.D. program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Yi Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - José A Hernández-Viezcas
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| | - Maria Duarte-Gardea
- The University of Texas at El Paso, College of Health Sciences, Department of Public Health Sciences, 500 W University Ave, El Paso, TX 79902, USA.
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; Environmental Science and Engineering Ph.D. program, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; UC Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
30
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
31
|
Wan H, Du J, He J, Lyu D, Li H. Copper accumulation, subcellular partitioning and physiological and molecular responses in relation to different copper tolerance in apple rootstocks. TREE PHYSIOLOGY 2019; 39:1215-1234. [PMID: 30977826 DOI: 10.1093/treephys/tpz042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/01/2019] [Indexed: 05/15/2023]
Abstract
To unravel the physiological and molecular regulation mechanisms underlying the variation in copper (Cu)accumulation, translocation and tolerance among five apple rootstocks, seedlings were exposed to either basal or excess Cu. Excess Cu suppressed plant biomass and root architecture, which was less pronounced in Malus prunifolia Borkh., indicating its relatively higher Cu tolerance. Among the five apple rootstocks, M. prunifolia exhibited the highest Cu concentration and bio-concentration factor in roots but the lowest translocation factor, indicating its greater ability to immobilize Cu and restrict translocation to the aerial parts. Higher Cu concentration in cell wall fraction but lower Cu proportion in membrane-containing and organelle-rich fractions were found in M. prunifolia. Compared with the other four apple rootstocks under excess Cu conditions, M. prunifolia had a lower increment of hydrogen peroxide in roots and leaves and malondialdehyde in roots, but higher concentrations of carbohydrates and enhanced antioxidants. Transcript levels of genes involved in Cu uptake, transport and detoxification revealed species-specific differences that are probably related to alterations in Cu tolerance. M. prunifolia had relatively higher gene transcript levels including copper transporters 2 (COPT2), COPT6 and zinc/iron-regulated transporter-related protein 2 (ZIP2), which probably took part in Cu uptake, and C-type ATP-binding cassette transporter 2 (ABCC2), copper chaperone for Cu/Zn superoxide dismutase (CCS), Cu/Zn superoxide dismutase 1 (CSD1) and metallothionein 2 (MT2) probably implicated in Cu detoxification, and relatively lower mRNA levels of yellow stripe-like transporter 3 (YSL3) and heavy metal ATPase 5 (HMA5) involved in transport of Cu to aerial parts. These results suggest that M. prunifolia is more tolerant to excess Cu than the other four apple rootstocks under the current experimental conditions, which is probably attributed to more Cu retention in roots, subcellular partitioning, well-coordinated antioxidant defense mechanisms and transcriptional expression of genes involved in Cu uptake, translocation and detoxification.
Collapse
Affiliation(s)
- Huixue Wan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiayi Du
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Jiali He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Deguo Lyu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, Liaoning, People's Republic of China
| | - Huifeng Li
- Institute of Pomology, Shandong Academy of Agricultural Sciences, Tai'an, People's Republic of China
| |
Collapse
|
32
|
Shen G, Ju W, Liu Y, Guo X, Zhao W, Fang L. Impact of Urea Addition and Rhizobium Inoculation on Plant Resistance in Metal Contaminated Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1955. [PMID: 31159445 PMCID: PMC6603927 DOI: 10.3390/ijerph16111955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Legume-rhizobium symbiosis has been heavily investigated for their potential to enhance plant metal resistance in contaminated soil. However, the extent to which plant resistance is associated with the nitrogen (N) supply in symbiont is still uncertain. This study investigates the effect of urea or/and rhizobium (Sinorhizobium meliloti) application on the growth of Medicago sativa and resistance in metals contaminated soil (mainly with Cu). The results show that Cu uptake in plant shoots increased by 41.7%, 69%, and 89.3% with urea treatment, rhizobium inoculation, and their combined treatment, respectively, compared to the control group level. In plant roots, the corresponding values were 1.9-, 1.7-, and 1.5-fold higher than the control group values, respectively. Statistical analysis identified that N content was the dominant variable contributing to Cu uptake in plants. Additionally, a negative correlation was observed between plant oxidative stress and N content, indicating that N plays a key role in plant resistance. Oxidative damage decreased after rhizobium inoculation as the activities of antioxidant enzymes (catalase and superoxide dismutase in roots and peroxidase in plant shoots) were stimulated, enhancing plant resistance and promoting plant growth. Our results suggest that individual rhizobium inoculation, without urea treatment, is the most recommended approach for effective phytoremediation of contaminated land.
Collapse
Affiliation(s)
- Guoting Shen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuqing Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Xiaobin Guo
- Agriculture Production and Research Division, Department of Fisheries and Land Resources, Government of Newfoundland and Labrador, Corner Brook, NL A2H 6J8, Canada.
| | - Wei Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
33
|
Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:218-226. [PMID: 30342354 DOI: 10.1016/j.ecoenv.2018.10.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 05/27/2023]
Abstract
The effects and regulatory mechanisms of co-inoculation of plant-growth-promoting rhizobacteria (PGPRs) and rhizobium in plant-soil systems remain unclear, despite numerous reports that PGPRs or rhizobium can alleviate metal toxicity. We used the co-inoculation of the PGPR Paenibacillus mucilaginosus and the metal-resistant rhizobium Sinorhizobium meliloti for exploring the physiological and biochemical responses of the plant-soil system in metal-contaminated soil. The co-inoculation with the PGPR and rhizobium significantly increased the nutrient (N, P, and K) contents in plant tissues and promoted plant growth in soil contaminated with copper (Cu). Stress from Cu-induced reactive oxygen species and lipid peroxidation were largely attenuated by the co-inoculation by increasing the activities of antioxidant enzymes. The contents and uptake of Cu in plant tissues increased significantly in the co-inoculation treatment compared with the uninoculated control and individual inoculation treatment. Co-inoculation with PGPR and rhizobium significantly increased soil microbial biomass, enzymatic activities, total nitrogen, available phosphorus, and soil organic matter contents compared with the uninoculated control. Interestingly, co-inoculation also affected the composition of the rhizospheric microbial community, and slightly increased rhizospheric microbial diversity. These improvements of the soil fertility and biological activity also had a beneficial impact on plant growth under Cu stress. Our results suggested that alfalfa co-inoculated with PGPR and rhizobium could increase plant growth and Cu uptake in metal-contaminated soil by alleviating plant Cu stress and improving soil biochemical properties. These results indicate that the co-application of PGPR and rhizobium can have a positive effect on the biochemical responses of alfalfa-soil systems in soil contaminated by heavy metals and can provide an efficient strategy for the phytomanagement of metal-contaminated land.
Collapse
Affiliation(s)
- Wenliang Ju
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Insti tute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Insti tute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Insti tute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| | - Yongxing Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjiao Duan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Fagorzi C, Checcucci A, diCenzo GC, Debiec-Andrzejewska K, Dziewit L, Pini F, Mengoni A. Harnessing Rhizobia to Improve Heavy-Metal Phytoremediation by Legumes. Genes (Basel) 2018; 9:genes9110542. [PMID: 30413093 PMCID: PMC6266702 DOI: 10.3390/genes9110542] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.
Collapse
Affiliation(s)
- Camilla Fagorzi
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Alice Checcucci
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - George C diCenzo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| | - Klaudia Debiec-Andrzejewska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Francesco Pini
- Department of Agri-food Production and Environmental Science, University of Florence, 50144 Florence, Italy.
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|