1
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
2
|
Guo Q, Cheng Y, Li T, Huang J, Li J, Zhang Z, Qu Y. The Gut Microbiota Contributes to the Development of LPS-Induced Orchitis by Disrupting the Blood-Testosterone Barrier in Mice. Reprod Sci 2024; 31:3379-3390. [PMID: 38858330 DOI: 10.1007/s43032-024-01613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Orchitis is a frequent inflammatory reproductive disease that causes male infertility and a decline in sperm quality. Gut microbiota can regulate systemic and local inflammation, spermatogenesis and blood-testosterone barrier (BTB). In this study, we investigated correlation between gut microbiota and orchitis by establishing a mouse gut microbiota imbalance model induced by antibiotics (ABX) treatment and orchitis model induced by lipopolysaccharide (LPS) infection. Based on these two models, 16s rRNA sequencing and feces microbiota transplantation (FMT) experiments were combined to examine the function and regulatory mechanisms of the gut microbiota in host defense against orchitis. Compared with control mice, gut microbiota imbalance resulted in increasing inflammatory responses, modulating oxidative stress related enzyme activity, testosterone levels and the permeability of blood testosterone barrier, which are restored after FMT. Subsequently, we tested the relationship between the gut microbiota imbalance and testicular inflammation severity in orchitis. It was found that the ABX and LPS co-treated mice had more severe inflammatory responses, lower testosterone levels and greater permeability of the BTB than the LPS-treated mice, but these changes could be partially recovered by gut microbiota transplantation. In conclusion, these above results proved for the first time that gut microbiota is involved in the pathogenesis of orchitis, which laid a good foundation for the subsequent development of anti-orchitis drugs and probiotic targeting intestinal flora.
Collapse
Affiliation(s)
- Qing Guo
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Ye Cheng
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Tianfeng Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jiang Huang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Jinchun Li
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Zecai Zhang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| | - Yongli Qu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Heilongjiang Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
3
|
Huang X, Fu Y, Wang S, Guo Q, Wu Y, Zheng X, Wang J, Wu S, Shen L, Wei G. 2,2',4,4'-Tetrabromodiphenyl ether exposure disrupts blood-testis barrier integrity through CMA-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174738. [PMID: 39009145 DOI: 10.1016/j.scitotenv.2024.174738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47), being the most prevalent congener of polybrominated diphenyl ethers (PBDEs), has been found to accumulate greatly in the environment and induce spermatogenesis dysfunction. However, the specific underlying factors and mechanisms have not been elucidated. Herein, male Sprague-Dawley (SD) rats were exposed to corn oil, 10 mg/kg body weight (bw) PBDE-47 or 20 mg/kg bw PBDE-47 by gavage for 30 days. PBDE-47 exposure led to blood-testis barrier (BTB) integrity disruption and aberrant spermatogenesis. Given that Sertoli cells are the main toxicant target, to explore the potential mechanism involved, we performed RNA sequencing (RNA-seq) in Sertoli cells, and the differentially expressed genes were shown to be enriched in ferroptosis and lysosomal pathways. We subsequently demonstrated that ferroptosis was obviously increased in testes and Sertoli cells upon exposure to PBDE-47, and the junctional function of Sertoli cells was restored after treatment with the ferroptosis inhibitor ferrostatin-1. Since glutathione peroxidase 4 (GPX4) was dramatically reduced in PBDE-47-exposed testes and Sertoli cells and considering the RNA-sequencing results, we examined the activity of chaperone-mediated autophagy (CMA) and verified that the expression of LAMP2a and HSC70 was upregulated significantly after PBDE-47 exposure. Notably, Lamp2a knockdown not only inhibited ferroptosis by suppressing GPX4 degradation but also restored the impaired junctional function induced by PBDE-47. These collective findings strongly indicate that PBDE-47 induces Sertoli cell ferroptosis through CMA-mediated GPX4 degradation, resulting in decreased BTB-associated protein expression and eventually leading to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Xu Huang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Siyuan Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Yuhao Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Junke Wang
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China
| | - Lianju Shen
- Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, China; Pediatric Research Institute, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, China.
| |
Collapse
|
4
|
Qi HY, Zhao Z, Wei BH, Li ZF, Tan FQ, Yang WX. ERK/CREB and p38 MAPK/MMP14 Signaling Pathway Influences Spermatogenesis through Regulating the Expression of Junctional Proteins in Eriocheir sinensis Testis. Int J Mol Sci 2024; 25:7361. [PMID: 39000467 PMCID: PMC11242087 DOI: 10.3390/ijms25137361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
The hemolymph-testis barrier (HTB) is a reproduction barrier in Crustacea, guaranteeing the safe and smooth process of spermatogenesis, which is similar to the blood-testis barrier (BTB) in mammals. The MAPK signaling pathway plays an essential role in spermatogenesis and maintenance of the BTB. However, only a few studies have focused on the influence of MAPK on crustacean reproduction. In the present study, we knocked down and inhibited MAPK in Eriocheir sinensis. Increased defects in spermatogenesis were observed, concurrently with a damaged HTB. Further research revealed that es-MMP14 functions downstream of ERK and p38 MAPK and degrades junctional proteins (Pinin and ZO-1); es-CREB functions in the ERK cascade as a transcription factor of ZO-1. In addition, when es-MMP14 and es-CREB were deleted, the defects in HTB and spermatogenesis aligned with abnormalities in the MAPK. However, JNK impacts the integrity of the HTB by changing the distribution of intercellular junctions. In summary, the MAPK signaling pathway maintains HTB integrity and spermatogenesis through es-MMP14 and es-CREB, which provides insights into the evolution of gene function during barrier evolution.
Collapse
Affiliation(s)
- Hong-Yu Qi
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Zhan Zhao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Zhen-Fang Li
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| | - Fu-Qing Tan
- School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.-Y.Q.)
| |
Collapse
|
5
|
Hong Y, Zhou X, Li Q, Chen J, Wei Y, Long C, Shen L, Zheng X, Li D, Wang X, Yu C, Wu S, Wei G. X-box binding protein 1 caused an imbalance in pyroptosis and mitophagy in immature rats with di-(2-ethylhexyl) phthalate-induced testis toxicity. Genes Dis 2024; 11:935-951. [PMID: 37692514 PMCID: PMC10491871 DOI: 10.1016/j.gendis.2023.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
As a widely used plasticizer, di-(2-ethylhexyl) phthalate (DEHP) is known to induce significant testicular injury. However, the potential mechanism and effects of pubertal exposure to DEHP on testis development remain unclear. In vivo, postnatal day (PND) 21 male rats were gavaged with 0, 250, and 500 mg/kg DEHP for ten days. Damage to the seminiferous epithelium and disturbed spermatogenesis were observed after DEHP exposure. Meanwhile, oxidative stress-induced injury and pyroptosis were activated. Both endoplasmic reticulum (ER) stress and mitophagy were involved in this process. Monoethylhexyl phthalate (MEHP) was used as the biometabolite of DEHP in vitro. The GC-1 and GC-2 cell lines were exposed to 0, 100 μM, 200 μM, and 400 μM MEHP for 24 h. Reactive oxygen species (ROS) generation, oxidative stress damage, ER stress, mitophagy, and pyroptosis were significantly increased after MEHP exposure. The ultrastructure of the ER and mitochondria was destroyed. X-box binding protein 1 (XBP1) was observed to be activated and translocated into the nucleus. ROS generation was inhibited by acetylcysteine. The levels of antioxidative stress, ER stress, mitophagy, and pyroptosis were decreased as well. After the administration of the ER stress inhibitor 4-phenyl-butyric acid, both mitophagy and pyroptosis were inhibited. Toyocamycin-induced XBP1 down-regulation decreased the levels of mitophagy and pyroptosis. The equilibrium between pyroptosis and mitophagy was disturbed by XBP1 accumulation. In summary, our findings confirmed that DEHP induced a ROS-mediated imbalance in pyroptosis and mitophagy in immature rat testes via XBP1. Moreover, XBP1 might be the key target in DEHP-related testis dysfunction.
Collapse
Affiliation(s)
- Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiazhu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qi Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xiangqin Zheng
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Dinggang Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xia Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chenjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
6
|
Ma Y, Hu C, Cai G, Xia Q, Fan D, Cao Y, Pan F. Associations of exposure to ambient fine particulate matter constituents from different pollution sources with semen quality: Evidence from a prospective cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123200. [PMID: 38135136 DOI: 10.1016/j.envpol.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) exposure and semen quality remains inconclusive, possibly due to variations in pollution sources and PM2.5 compositions. Studies investigating the constituents of PM2.5 have been hindered by small sample sizes, and research exploring the relationships between PM2.5 pollution sources and semen quality is lacking. To address this gap, we conducted a comprehensive study based on the Anhui prospective assisted reproduction cohort to evaluate the associations between semen quality and the constituents and pollution sources of PM2.5. This study included 9013 semen samples from 4417 males in the urban districts of Hefei. The median concentrations of PM2.5 constituents, including eight metals and four water-soluble ions (WSIs), were measured for seven days per month at two monitoring stations during the 0-90-day exposure window. A linear mixed-effects model, weighted quantile sum regression, and positive matrix factorisation were used to evaluate the associations of the constituents and pollution sources of PM2.5 with semen quality. The results showed that exposure to PM2.5-bound metals (antimony, arsenic, cadmium, lead, and thallium) and WSIs (sulphate and chloride) were negatively associated with semen quality parameters. Moreover, mixtures of PM2.5-bound metals and WSIs were negatively associated with semen quality. Additionally, PM2.5 derived from traffic emissions was negatively associated with semen quality. In summary, our study revealed that ambient PM2.5 and its constituents, especially metals, were negatively associated with semen quality. Antimony, lead, and thallium emerged as the primary contributors to toxicity, and PM2.5 from traffic emissions was associated with decreased semen quality. These findings have important public health implications for the management of PM2.5 pollution in the context of male reproductive health.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
7
|
Yang Y, Mei G, Yang L, Luo T, Wu R, Peng S, Peng Z, Cui J, Cheng Y. PCB126 impairs human sperm functions by affecting post-translational modifications and mitochondrial functions. CHEMOSPHERE 2024; 346:140532. [PMID: 37918541 DOI: 10.1016/j.chemosphere.2023.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Over the past few decades, there has been a consistent decline in semen quality across the globe, with environmental pollution being identified as the primary cause. Among the various contaminants present in the environment, persistent organic pollutants (POPs) have garnered significant attention due to their high toxicity, slow degradation, bio-accumulation, and long-range migration. PCBs, which include 210 congeners, are a crucial type of POPs that are known to have harmful effects on the environment and human health. Among the various PCB congeners, 3,3',4,4',5-pentachlorobiphenyl (PCB126) is a typical environmental endocrine-disrupting chemical that is widely distributed and has been associated with several health hazards. However, the impact and mechanism of PCB126 on human sperm function has not been fully elucidated. We aimed to investigate the effects of different concentrations of PCB126 (0.01, 0.1, 1, 10 μg/mL) on sperm motility, viability, hyperactivation, and acrosome reaction after incubation for different periods (1 and 2 h), delving deeper into the molecular mechanism of human sperm dysfunction caused by PCB126. First, we investigated the link between PCB126 treatment and the occurrence of protein modifications that are critical to sperm function regulation, such as tyrosine phosphorylation and lysine glutarylation. Second, we examined the potential impact of PCB126 on different parameters related to mitochondrial function, including reactive oxygen species, malondialdehyde levels, mitochondrial membrane potential, mitochondria respiration and adenosine triphosphate generation. Our findings indicate that exposure to environmental pollutants such as PCB126 in vitro may have a negative impact on human sperm functions by interfering with post-translational modifications and mitochondrial functions.
Collapse
Affiliation(s)
- Yebin Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Guangquan Mei
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, Yichun University, Yichun, China
| | - Liu Yang
- College of Chemistry and Biological Engineering, Yichun University, Yichun, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Runwen Wu
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Shenglin Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Zhen Peng
- Yichun People's Hospital, Jiangxi Province, Yichun, China
| | - Jiajun Cui
- Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China
| | - Yimin Cheng
- Jiangxi Provincial Key Laboratory of Natural Active Pharmaceutical Constituents, Department of Chemistry and Bioengineering, Yichun University, Yichun, China; Center for Translational Medicine, Department of Medicine, Yichun University, Yichun, China.
| |
Collapse
|
8
|
Omolaoye TS, Skosana BT, Ferguson LM, Ramsunder Y, Ayad BM, Du Plessis SS. Implications of Exposure to Air Pollution on Male Reproduction: The Role of Oxidative Stress. Antioxidants (Basel) 2024; 13:64. [PMID: 38247488 PMCID: PMC10812603 DOI: 10.3390/antiox13010064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024] Open
Abstract
Air pollution, either from indoor (household) or outdoor (ambient) sources, occurs when there is presence of respirable particles in the form of chemical, physical, or biological agents that modify the natural features of the atmosphere or environment. Today, almost 2.4 billion people are exposed to hazardous levels of indoor pollution, while 99% of the global population breathes air pollutants that exceed the World Health Organization guideline limits. It is not surprising that air pollution is the world's leading environmental cause of diseases and contributes greatly to the global burden of diseases. Upon entry, air pollutants can cause an increase in reactive oxygen species (ROS) production by undergoing oxidation to generate quinones, which further act as oxidizing agents to yield more ROS. Excessive production of ROS can cause oxidative stress, induce lipid peroxidation, enhance the binding of polycyclic aromatic hydrocarbons (PAHs) to their receptors, or bind to PAH to cause DNA strand breaks. The continuous and prolonged exposure to air pollutants is associated with the development or exacerbation of pathologies such as acute or chronic respiratory and cardiovascular diseases, neurodegenerative and skin diseases, and even reduced fertility potential. Males and females contribute to infertility equally, and exposure to air pollutants can negatively affect reproduction. In this review, emphasis will be placed on the implications of exposure to air pollutants on male fertility potential, bringing to light its effects on semen parameters (basic and advanced) and male sexual health. This study will also touch on the clinical implications of air pollution on male reproduction while highlighting the role of oxidative stress.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Lisa Marie Ferguson
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| | - Bashir M. Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misratah P.O. Box 2478, Libya;
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates;
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7602, South Africa; (B.T.S.); (L.M.F.); (Y.R.)
| |
Collapse
|
9
|
Wang J, Gao Y, Ren S, Li J, Chen S, Feng J, He B, Zhou Y, Xuan R. Gut microbiota-derived trimethylamine N-Oxide: a novel target for the treatment of preeclampsia. Gut Microbes 2024; 16:2311888. [PMID: 38351748 PMCID: PMC10868535 DOI: 10.1080/19490976.2024.2311888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Pre-eclampsia (PE) is the most common complication of pregnancy and seriously threatens the health and safety of the mother and child. Studies have shown that an imbalance in gut microbiota can affect the progression of PE. Trimethylamine N-oxide (TMAO) is an intestinal microbiota-derived metabolite that is thought to be involved in the occurrence of PE; however, its causal relationship and mechanism remain unclear. In this clinical cohort study, including 28 patients with eclampsia and 39 matched healthy controls, fecal samples were collected for 16S rRNA gene sequencing, and serum was collected for targeted metabolomics research. The results showed that the level of TMAO and the abundance of its source bacteria had significantly increased in patients with PE, and were positively correlated with the clinical progression of PE. Fecal microbiota transplantation (FMT) was applied to an antibiotic-depleted-treated mouse model and targeted inhibition of TMAO. The results of the FMT experiment revealed that mice that received fecal microbiota transplantation from patients with PE developed typical PE symptoms and increased oxidative stress and inflammatory damage, both of which were reversed by 3,3-Dimethyl-1-butanol (DMB), a TMAO inhibitor, which also improved pregnancy outcomes in the model mice. Similar results were obtained in the classical NG-Nitroarginine methyl ester (L-NAME) induced PE mouse model. Mechanistically, TMAO promotes the progression of PE by regulating inflammatory and oxidative stress-related signaling pathways, affecting the migration and angiogenesis of vascular endothelial cells, as well as the migration and invasion of trophoblast cells. Our results reveal the role and mechanism of gut microbiota and TMAO in the progression of PE, provides new ideas for exploring the pathogenesis and therapeutic targets of PE, and determines the potential application value of TMAO as a target for PE intervention.
Collapse
Affiliation(s)
- Jiayi Wang
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yajie Gao
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Shuaijun Ren
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jialin Li
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Siqian Chen
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiating Feng
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Bing He
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Gynaecology and obstetrics, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Liu X, Ai Y, Xiao M, Wang C, Shu Z, Yin J, Chu Y, Xiao Q, Liu B. PM 2.5 juvenile exposure-induced spermatogenesis dysfunction by triggering testes ferroptosis and antioxidative vitamins intervention in adult male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111051-111061. [PMID: 37801247 PMCID: PMC10625507 DOI: 10.1007/s11356-023-30150-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
PM2.5 derived from automobile exhaust can cause reproductive impairment in adult males, but the toxic effects of PM2.5 exposure on reproductive function in juvenile male rats and its relationship with ferroptosis have not been reported. In this paper, 30-day-old juvenile male Sprague-Dawley (SD) rats were divided into four groups (blank control, vitamin control, PM2.5, and PM2.5+Vitamin). The blank control group was fed normally, and the vitamin control group was given intragastric administration of vitamins in addition to normal feeding. PM2.5 was administered via tracheal intubation. When the rats were treated for 4 weeks until reaching the period of sexual maturity. A mating test was performed first, and then their testicular and epididymal tissues were studied. Compared with control rats, juvenile male rats exposed to PM2.5 showed a decreased sperm count and fertility rate, redox imbalance, damaged mitochondria, a metabolic disorder of intracellular iron ions, and a significant rise in ferroptosis during the period of sexual maturity. After antioxidative vitamins intervention, the redox imbalance, metabolic disorder of intracellular iron ions, and ferroptosis were all alleviated, leading to the following conclusions: after being exposed to PM2.5 from automobile exhaust, male juvenile rats during the period of sexual maturity have significantly decreased reproductive function. The reproductive toxicity of PM2.5 is closely related to oxidative stress and ferroptosis. In addition, ferroptosis decreases and reproductive function is recovered to some degree after antioxidative vitamins intervention.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Yaya Ai
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Mingchen Xiao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Cao Wang
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Zhen Shu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Jia Yin
- Suining Central Hospital, Suining, Sichuan Province, China
| | - Yu Chu
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Qing Xiao
- Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China
| | - Bin Liu
- Department of Pediatric Surgery, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, Guangdong Province, 518100, China.
- Department of Pediatric Surgery, Longgang Maternity and Child Institute of Shantou University Medical College, Shenzhen, Guangdong Province, 518100, China.
| |
Collapse
|
11
|
Gu HJ, Ahn JS, Ahn GJ, Shin SH, Ryu BY. Restoration of PM2.5-induced spermatogonia GC-1 cellular damage by parthenolide via suppression of autophagy and inflammation: An in vitro study. Toxicology 2023; 499:153651. [PMID: 37858773 DOI: 10.1016/j.tox.2023.153651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Particulate matter (PM) generated by environmental and air pollution is known to have detrimental effects on human health. Among these, PM2.5 particles (diameter < 2.5 µm) can breach the alveolar-capillary barrier and disseminate to other organs, posing significant health risks. Numerous studies have shown that PMs can harm various organs, including the reproductive system. Therefore, this study aimed to investigate the harmful effects of PM2.5 on mouse GC-1 spermatogonia cells (GC-1 spg cells) and to verify the ameliorative effects of parthenolide (PTL) treatment on damaged GC-1 spg cells. We observed a significant dose-dependent reduction in cell proliferation after PM2.5 concentration of 2.5 μg/cm2. Additionally, treatment with 20 μg/cm2 PM2.5 concentration significantly increased the expression of autophagy-related proteins ATG7, the ratio of LC3-II/LC3-I, and decreased phosphorylation of PI3K and AKT. Furthermore, PM2.5 exposure augmented inflammation mediator gene expressions, the phosphorylation of the inflammation-related transcription factor NF-κB p65 at Ser536, and ubiquitination. Treatment of PM2.5-exposed GC-1 spg cells with PTL significantly reduced NF-κB p65 phosphorylation and the expression of autophagy-related proteins ATG7 and LC3-II, leading to a statistically significant recovery in cell proliferation. Together, our findings elucidated the detrimental effects of PM2.5 exposure on male germ cells, and the restorative properties of PTL against air pollutants.
Collapse
Affiliation(s)
- Hyo Jin Gu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Jin Seop Ahn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| | - Gi Jeong Ahn
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea.
| |
Collapse
|
12
|
Zhang W, Tian Z, Qi X, Chen P, Yang Q, Guan Q, Ye J, Yu C. Switching from high-fat diet to normal diet ameliorate BTB integrity and improve fertility potential in obese male mice. Sci Rep 2023; 13:14152. [PMID: 37644200 PMCID: PMC10465505 DOI: 10.1038/s41598-023-41291-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity is a prominent risk factor for male infertility, and a high-fat diet is an important cause of obesity. Therefore, diet control can reduce body weight and regulate blood glucose and lipids, but it remains unclear whether it can improve male fertility and its mechanism. This study explores the effects of switching from a high-fat diet (HFD) to a normal diet (ND) on the fertility potential of obese male mice and its related mechanisms. In our study, male mice were separated into three groups: normal diet group (NN), continuous high-fat diet group (HH), and return to normal diet group (HN). The reproductive potential of mice was tested through cohabitation. Enzymatic methods and ELISA assays were used to measure metabolic indicators, follicle-stimulating hormone (FSH) levels and intratesticular testosterone levels. Transmission electron microscopy and immunofluorescence with biotin tracers assessed the integrity of the blood-testis barrier (BTB). Malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were inspected for the assessment of oxidative stress. The expression and localization of BTB-related proteins were detected through the immunoblot and immunofluorescence. The mice in the high-fat diet group indicated increased body weight and epididymal fat weight, elevated serum TC, HDL, LDL, and glucose, decreased serum FSH, and dramatic lipid deposition in the testicular interstitium. Analysis of fertility potential revealed that the fertility rate of female mice and the number of pups per litter in the HH group were significantly reduced. After the fat intake was controlled by switching to a normal diet, body weight and epididymal fat weight were significantly reduced, serum glucose and lipid levels were lowered, serum FSH level was elevated and the deposition of interstitial lipids in the testicles was also decreased. Most significantly, the number of offspring of male mice returning to a normal diet was significantly increased. Following further mechanistic analysis, the mice in the sustained high-fat diet group had disrupted testicular BTB integrity, elevated levels of oxidative stress, and abnormal expression of BTB-related proteins, whereas the restoration of the normal diet significantly ameliorated the above indicators in the mice. Our study confirms diet control by switching from a high-fat diet to a normal diet can effectively reduce body weight, ameliorate testicular lipotoxicity and BTB integrity in male mice, and improve fertility potential, providing an effective treatment option for obese male infertility.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Zhenhua Tian
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Xiangyu Qi
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Pengcheng Chen
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qian Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Jifeng Ye
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Department of Endocrinology and Metabolism, The Second People's Hospital of Liaocheng, Shandong, 252601, China.
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Key Laboratory of Endocrine Glucose and Lipids Metabolism and Brain Aging (Shandong First Medical University), Ministry of Education, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
13
|
Xu G, Zhao Y, Tao Y, Xiong C, Lv M, Gao Q, Zhang F, An Z, Wu W. Lias overexpression alleviates pulmonary injury induced by fine particulate matter in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6585-6603. [PMID: 37341891 DOI: 10.1007/s10653-023-01651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Oxidative stress and inflammation are mechanisms underlying toxicity induced by fine particulate matter (PM2.5). The antioxidant baseline of the human body modulates the intensity of oxidative stress in vivo. This present study aimed to evaluate the role of endogenous antioxidants in alleviating PM2.5-induced pulmonary injury using a novel mouse model (LiasH/H) with an endogenous antioxidant capacity of approximately 150% of its wild-type counterpart (Lias+/+). LiasH/H and wild-type (Lias+/+) mice were randomly divided into control and PM2.5 exposure groups (n = 10), respectively. Mice in the PM2.5 group and the control group were intratracheally instilled with PM2.5 suspension and saline, respectively, once a day for 7 consecutive days. The metal content, major pathological changes in the lung, and levels of oxidative stress and inflammation biomarkers were examined. The results showed that PM2.5 exposure induced oxidative stress in mice. Overexpression of the Lias gene significantly increased the antioxidant levels and decreased inflammatory responses induced by PM2.5. Further study found that LiasH/H mice exerted their antioxidant function by activating the ROS-p38MAPK-Nrf2 pathway. Therefore, the novel mouse model is useful for the elucidation of the mechanisms of pulmonary injury induced by PM2.5.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Mengdi Lv
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
14
|
Wei Y, Geng W, Zhang T, He H, Zhai J. N-acetylcysteine rescues meiotic arrest during spermatogenesis in mice exposed to BDE-209. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50952-50968. [PMID: 36807852 DOI: 10.1007/s11356-023-25874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 04/16/2023]
Abstract
Deca-bromodiphenyl ethers (BDE-209) has been widely used in electronic devices and textiles as additives to flame retardants. Growing evidence showed that BDE-209 exposure leads to poorer sperm quality and male reproductive dysfunction. However, the underlying mechanisms of BDE-209 exposure caused a decline in sperm quality remains unclear. This study aimed to evaluate the protective effects of N-acetylcysteine (NAC) on meiotic arrest in spermatocytes and decreased sperm quality in BDE-209-exposed mice. In the study, mice were treated with NAC (150 mg/kg BW) 2 h before administrated with BDE-209 (80 mg/kg BW) for 2 weeks. For the in vitro studies, spermatocyte cell line GC-2spd cells were pretreated with NAC (5 mM) 2 h before treated with BDE-209 (50 μM) for 24 h. We found that pretreatment with NAC attenuated the oxidative stress status induced by BDE-209 in vivo and in vitro. Moreover, pretreatment with NAC rescued the testicular histology impairment and decreased the testicular organ coefficient in BDE-209-exposed mice. In addition, NAC supplement partially promoted meiotic prophase and improved sperm quality in BDE-209-exposed mice. Furthermore, NAC pretreatment effectively improved DNA damage repair by recovering DMC1, RAD51, and MLH1. In conclusion, BDE-209 caused spermatogenesis dysfunction related to the meiotic arrest medicated by oxidative stress, decreasing sperm quality.
Collapse
Affiliation(s)
- Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
- Department of Health Supervision, Administrative Committee of Hefei Xinzhan High-Tech Industrial Development Zone, Wenzhong Rd 999, Hefei, 230000, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
15
|
Han L, Wang J, Zhang L, Jing J, Zhang W, Liu Z, Gao A. The role of N 6-methyladenosine modification in benzene-induced testicular damage and the protective effect of melatonin. CHEMOSPHERE 2023; 319:138035. [PMID: 36736484 DOI: 10.1016/j.chemosphere.2023.138035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Benzene is a universal ambient pollutant. Population-based studies have shown that benzene exposure affects male fertility. However, the mechanism of benzene-induced reproductive toxicity is unknown. Here, we established a dynamic inhalation model and exposed C57BL/6J mice to 0, 10, and 50 ppm benzene (6 h/day, 6 days/week, 7 weeks). Our study revealed that benzene exposure caused testicular injury, including structural damage to spermatogenic tubules, reduced semen quality, and decreased testosterone levels. In addition, the decrease in the global level of N6-Methyladenosine (m6A) and the change of m6A important regulatory enzymes in mice testes suggested that m6A was involved in the benzene-induced testicular injury. Further genome-wide m6A methylation analysis showed that 1469 differential m6A peaks were present in the testes of control and benzene groups, indicating that benzene exposure modulated m6A methylation in testes. Furthermore, the comprehensive analysis of m6A-sequencing and transcriptome revealed that hypermethylated Rara and its consequent reduced expression impaired the sperm production process. In particular, melatonin alleviated benzene-induced testicular injury by modulating m6A-related genes. Overall, our research provides a new idea and fundamental knowledge into the possible mechanisms of m6A modifications in benzene-induced testicular impairment, as well as a new experimental basis for benzene-induced male fertility therapy.
Collapse
Affiliation(s)
- Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
16
|
Zhao T, Shen L, Ye X, Bai G, Liao C, Chen Z, Peng T, Li X, Kang X, An G. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130544. [PMID: 36493639 DOI: 10.1016/j.jhazmat.2022.130544] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene microplastics (PS-MPs) can threaten human health, especially male fertility. However, most existing studies have focused on the adulthood stage of male reproduction toxicity caused by relatively short-term PS-MP exposure. This study aimed to investigate the toxic effect of PS-MPs on testicular development and reproductive function upon prenatal and postnatal exposure. Pregnant mice and their offspring were exposed to 0, 0.5 mg/L, 5 mg/L, and 50 mg/L PS-MPs through their daily drinking water from gestational day 1 to postnatal day (PND) 35 or PND70. We found that PS-MP exposure induced testis development disorder by PND35 and spermatogenesis dysfunction by PND70. By combining RNA sequencing results and bioinformatics analysis, the hormone-mediated signaling pathway, G1/S transition of the mitotic cell cycle, coregulation of androgen receptor activity, and Hippo signaling pathway were shown to be involved in testis development on PND35. The meiotic cell cycle, regulation of the immune effector process, neutrophil degranulation, and inflammation mediated by chemokine and cytokine signaling pathways were associated with disturbed spermatogenesis on PND70. These findings show that prenatal and postnatal exposure to PS-MPs resulted in testis development disorder and male subfertility, which may be regulated by the Hippo signaling pathway and involve an immune reaction.
Collapse
Affiliation(s)
- Tianxin Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaochen Bai
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Chen Liao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhicong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianwen Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjin Kang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Santibáñez-Andrade M, Quezada-Maldonado EM, Rivera-Pineda A, Chirino YI, García-Cuellar CM, Sánchez-Pérez Y. The Road to Malignant Cell Transformation after Particulate Matter Exposure: From Oxidative Stress to Genotoxicity. Int J Mol Sci 2023; 24:ijms24021782. [PMID: 36675297 PMCID: PMC9860989 DOI: 10.3390/ijms24021782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
In cells, oxidative stress is an imbalance between the production/accumulation of oxidants and the ability of the antioxidant system to detoxify these reactive products. Reactive oxygen species (ROS), cause multiple cellular damages through their interaction with biomolecules such as lipids, proteins, and DNA. Genotoxic damage caused by oxidative stress has become relevant since it can lead to mutation and play a central role in malignant transformation. The evidence describes chronic oxidative stress as an important factor implicated in all stages of the multistep carcinogenic process: initiation, promotion, and progression. In recent years, ambient air pollution by particulate matter (PM) has been cataloged as a cancer risk factor, increasing the incidence of different types of tumors. Epidemiological and toxicological evidence shows how PM-induced oxidative stress could mediate multiple events oriented to carcinogenesis, such as proliferative signaling, evasion of growth suppressors, resistance to cell death, induction of angiogenesis, and activation of invasion/metastasis pathways. In this review, we summarize the findings regarding the involvement of oxidative and genotoxic mechanisms generated by PM in malignant cell transformation. We also discuss the importance of new approaches oriented to studying the development of tumors associated with PM with more accuracy, pursuing the goal of weighing the impact of oxidative stress and genotoxicity as one of the main mechanisms associated with its carcinogenic potential.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
| | - Andrea Rivera-Pineda
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Av. IPN No. 2508 Col. San Pedro Zacatenco, México City CP 07360, Mexico
| | - Yolanda I. Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP 54090, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, México City CP 14080, Mexico
- Correspondence: (C.M.G.-C.); (Y.S.-P.); Tel.: +52-(55)-3693-5200 (ext. 209) (Y.S.-P.)
| |
Collapse
|
18
|
Kim WI, Lim JO, Pak SW, Lee SJ, Shin IS, Moon C, Heo JD, Kim JC. Exposure to China dust exacerbates testicular toxicity induced by cyclophosphamide in mice. Toxicol Res 2023; 39:115-125. [PMID: 36726831 PMCID: PMC9839921 DOI: 10.1007/s43188-022-00149-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the potential effects of China dust (CD) exposure on cyclophosphamide (CP)-induced testicular toxicity in mice, focusing on spermatogenesis and oxidative damage. CP treatment reduced testicular and epididymal weight and sperm motility and enhanced sperm abnormality. Histopathological examination presented various morphological alterations in the testis, including increased exfoliation of spermatogenic cells, degeneration of early spermatogenic cells, vacuolation of Sertoli cells, a decreased number of spermatogonia/spermatocytes/spermatids, along with a high number of apoptotic cells. In addition, the testis exhibited reduced glutathione (GSH) levels and glutathione reductase (GR) activity and enhanced malondialdehyde (MDA) concentration. Meanwhile, CD exposure exacerbated testicular histopathological alterations induced by CP. CD exposure also aggravated oxidative damage by increasing the lipid peroxidative product MDA and decreasing GSH levels and antioxidant enzyme activities in the testis. These results suggest that CD exposure exacerbates CP-induced testicular toxicity in mice, which might be attributed to the induction of lipid peroxidation and reduced antioxidant activity.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Je-Oh Lim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| | - Jeong-Doo Heo
- Bioenvironmental Science & Technology Division, Korea Institute of Toxicology, 52834 Jinju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, 77 Yongbong-ro, Buk-gu, 61186 Gwangju, Republic of Korea
| |
Collapse
|
19
|
Han L, Zhang W, Wang J, Jing J, Zhang L, Liu Z, Gao A. Shikonin targets to m6A-modified oxidative damage pathway to alleviate benzene-induced testicular injury. Food Chem Toxicol 2022; 170:113496. [DOI: 10.1016/j.fct.2022.113496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
20
|
Deng Y, Meng X, Ling C, Lu T, Chang H, Li L, Yang Y, Song G, Ding Y. Nanosized Titanium Dioxide Induced Apoptosis and Abnormal Expression of Blood-Testis Barrier Junction Proteins Through JNK Signaling Pathway in TM4 Cells. Biol Trace Elem Res 2022; 200:5172-5187. [PMID: 35013891 DOI: 10.1007/s12011-022-03099-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Nanosized titanium dioxide (nano-TiO2) has been widely used in consumer products. It can cross the blood-testis barrier (BTB), and it has adverse effects on the male reproductive system. However, the specific mechanism has not been fully elucidated. The purpose of this study was to understand the role of the JNK signaling pathway in the apoptosis and abnormal expression of BTB junction proteins induced by nano-TiO2 in TM4 cells. After different concentration of nano-TiO2 treatments, the cell viability, apoptosis, mitochondrial membrane potential (Δψm), BTB junction proteins (Claudin-11, ZO-1, β-catenin), apoptosis-related proteins (Bax, Bcl-2, cleaved caspase-9, cleaved caspase-3), and phosphorylated (p)-JNK protein were examined. The results showed that cell viability, apoptosis rates, Δψm, and apoptosis-related protein levels changed in a concentration-dependent manner. Cell viability decreased significantly from 100 μg/mL nano-TiO2 group. Apoptosis rates increased significantly from 150 μg/mL nano-TiO2 group, and Δψm decreased significantly from 150 μg/mL nano-TiO2 group. The protein levels of Bax, cleaved caspase-9, and cleaved caspase-3 increased significantly from 150 μg/mL nano-TiO2 group, and the protein level of Bcl-2 decreased significantly from 100 μg/mL nano-TiO2 group. The protein level of p-JNK increased significantly from 100 μg/mL nano-TiO2 group. Abnormal expression of ZO-1 and β-catenin started from 150 μg/mL nano-TiO2 group, and abnormal expression of Claudin-11 started from 100 μg/mL nano-TiO2 group. Cells were treated with JNK inhibitor SP100625 to determine whether the changes of the above indicators in the concentration of 150 μg/mL nano-TiO2 group can be reversed. We found that SP100625 at 20 μM significantly reversed these effects. These results highlighted that nano-TiO2 could activate the JNK signaling pathway to induce mitochondria-mediated apoptosis and abnormal expression of BTB junction proteins in TM4 cells.
Collapse
Affiliation(s)
- Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Chunmei Ling
- The Third People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830091, Xinjiang, China
| | - Tianjiao Lu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Yusong Ding
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
21
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
22
|
Maternal exposure to PM2.5 decreases ovarian reserve in neonatal offspring mice through activating PI3K/AKT/FoxO3a pathway and ROS-dependent NF-κB pathway. Toxicology 2022; 481:153352. [DOI: 10.1016/j.tox.2022.153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
|
23
|
Diesel particulate matter aggravates cyclophosphamide-induced testicular toxicity in mice via elevating oxidative damage. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Wang C, Liu X, Shu Z, Yin J, Xiao M, Ai Y, Zhao P, Luo Z, Liu B. Exposure to automobile exhaust-derived PM2.5 induces spermatogenesis dysfunction by damaging UPR mt of prepubertal rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114087. [PMID: 36122457 DOI: 10.1016/j.ecoenv.2022.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Automobile exhaust-derived particulate matter 2.5 (PM2.5) can cause spermatogenic cell damage, potentially resulting in male infertility. This study uses male prepubertal Sprague Dawley (SD) rats to explore the molecular mechanisms by which automobile exhaust-derived PM2.5 causes spermatogenic cell damage and induces spermatogenesis dysfunction during sexual maturity by disrupting the mitochondrial unfolded protein response (UPRmt) in spermatogenic cells. Male prepubertal SD rats were randomly divided into four groups: control (intratracheal instillation of normal saline), low-dose PM2.5 (5 mg/kg), high-dose PM2.5 (10 mg/kg), and PM2.5 10 mg/kg +Vit (100 mg/kg of vitamin C and 50 mg/kg of vitamin E). The rats were treated for four weeks, with five consecutive treatment days and two non-treatment days, followed by cohabitation. Testicular and epididymal tissues were harvested for analysis. The mitochondria in spermatogenic cells were observed under an electron microscope. UPRmt-, oxidative stress-, and apoptosis-related markers in spermatogenic cells were examined. Spermatogenic cell numbers and conception rate declined significantly with increasing PM2.5 dose, with their mitochondria becoming vacuolated, swollen, and degenerated to varying degrees. The apoptosis of spermatogenic cells was abnormally enhanced in PM2.5 exposed groups compared to the control group. Spermatogenic cell numbers of conception rate gradually recovered, mitochondrial damage in spermatogenic cells was alleviated, and spermatogenic cell apoptosis was significantly reduced after vitamin intervention. In addition, protein levels of superoxide dismutase 1 (Sod1), nuclear factor erythroid 2-related factor 2 (Nrf2), and B-cell lymphoma 2 (Bcl-2) were significantly lower, while those of Bcl2-associated X apoptosis regulator (Bax), cleaved caspase 3 (Casp3), and cytochrome c (Cyt-c) and malondialdehyde (MDA) levels were significantly higher in the high-dose PM2.5 group than in the control group. The levels of UPRmt-related proteins C/EBP homologous protein (Chop), heat shock protein 60 (Hsp60), and activating transcription factors 4 (Atf4) and 5 (Atf5) were higher in the low-dose PM2.5 group, lower in the high-dose PM2.5 group, and gradually recovered in PM2.5 10 mg/kg +Vit group. Our results show that exposure to automobile exhaust-derived PM2.5 induces oxidative stress responses, leads to post-sexual maturation UPRmt dysfunction and mitochondrial impairment, and abnormally enhances spermatogenic cell apoptosis in prepubertal rats, resulting in male infertility.
Collapse
Affiliation(s)
- Cao Wang
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xiang Liu
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhen Shu
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jia Yin
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Mingchen Xiao
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yaya Ai
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Peng Zhao
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhen Luo
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Bin Liu
- Guizhou Children's Hospital, Zunyi, Guizhou Province, China; Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
25
|
Role of p38 MAPK Signalling in Testis Development and Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891897. [PMID: 36092154 PMCID: PMC9453003 DOI: 10.1155/2022/6891897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
The testis is an important male reproductive organ, which ensures reproductive function via the secretion of testosterone and the generation of spermatozoa. Testis development begins in the embryonic period, continues after birth, and generally reaches functional maturation at puberty. The stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), regulates multiple cell processes including proliferation, differentiation, apoptosis, and cellular stress responses. p38 MAPK signalling plays a crucial role in testis development by regulating spermatogenesis, the fate determination of pre-Sertoli, and primordial germ cells during embryogenesis, the proliferation of testicular cells in the postnatal period, and the functions of mature Sertoli and Leydig cells. In addition, p38 MAPK signalling is involved in decreased male fertility when exposed to various harmful stimuli. This review will describe in detail the biological functions of p38 MAPK signalling in testis development and male reproduction, together with its pathological role in male infertility.
Collapse
|
26
|
Dietary Intervention with Blackcurrant Pomace Protects Rats from Testicular Oxidative Stress Induced by Exposition to Biodiesel Exhaust. Antioxidants (Basel) 2022; 11:antiox11081562. [PMID: 36009280 PMCID: PMC9404818 DOI: 10.3390/antiox11081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.
Collapse
|
27
|
Ma Y, Zhang J, Cai G, Xia Q, Xu S, Hu C, Cao Y, Pan F. Inverse association between ambient particulate matter and semen quality in Central China: Evidence from a prospective cohort study of 15,112 participants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155252. [PMID: 35427605 DOI: 10.1016/j.scitotenv.2022.155252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Emerging evidence indicates that ambient particulate matter (PM) is harmful to male fertility, but the associations between ambient PM exposure and semen quality were inconsistent. This study aimed to quantitatively evaluate the association between ambient PM exposure and semen quality based on a large prospective cohort. Using data from the prospective assisted reproduction cohort in Anhui province, China, we included 15,112 males with 28,267 semen tests, whose partner has undergone assisted reproductive technology from September 1, 2015 to September, 22 2020. Individual ambient PM, gaseous air pollutants, and temperature exposures of the participants during 0-90, 0-9, 10-14, and 70-90 days before semen quality tests were evaluated using inverse distance weighting interpolation. Linear mixed-effects models were conducted to evaluate the relationship between PM2.5 and PM10 exposures and standardized semen quality parameters. Models were adjusted for age, body mass index, smoking, drinking, education attainment, occupation type, sampling month, temperature and the principal component of gaseous air pollutants. PM2.5 and PM10 were inversely associated with sperm concentration, total sperm count, total motility, progressive motility, total motile sperm count, and progressively motile sperm count during 0-90, 0-9, and 70-90 days period (all p < 0.05), but not 10-14 days period. The regression coefficients of PM2.5 exposure on semen quality parameters during 0-90 days period were larger than 0-9 and 70-90 days periods, and the effects of PM2.5 on semen quality parameters were stronger than PM10. Our results showed that ambient PM2.5 and PM10 exposures were associated with semen quality, during 70-90 days and 0-9 days before sampling, and the entire spermatogenesis process. The effects of PM2.5 on semen quality parameters were stronger than PM10, and the long-term effects of PM2.5 and PM10, throughout spermatogenesis, were stronger than the short-term effects.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Qing Xia
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, Hobart 7000, Tasmania, Australia
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
28
|
Ren J, Liang J, Wang J, Yin B, Zhang F, Li X, Zhu S, Tian H, Cui Q, Song J, Liu G, Ling W, Ma Y. Vascular benefits of vitamin C supplementation against fine particulate air pollution in healthy adults: A double-blind randomised crossover trial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113735. [PMID: 35689890 DOI: 10.1016/j.ecoenv.2022.113735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Evidence on the health benefits of vitamin C supplementation in highly polluted areas has not been evaluated. We aimed to evaluate whether dietary vitamin C supplementation can improve vascular health linked to particulate matter (PM) exposure. A randomised double-blind crossover trial involving 58 health young adults was performed in Shijiazhuang, China in 2018. All subjects were randomly assigned to the vitamin C supplementation group (2000 mg/d) or placebo group for a week alternating with a 2 week washout period. Fifteen circulating biomarkers were measured. Linear mixed-effect model was applied to evaluate the effect of vitamin C supplementation on health outcomes. The average concentrations of PM2.5 and PM10 were 164.91 and 327.05 μg/m3, respectively. Vitamin C supplementation was significantly associated with a 19.47% decrease in interleukin-6 (IL-6), 17.30% decrease in tumour necrosis factor-a (TNF-α), 34.01% decrease in C-reactive protein (CRP), 3.37% decrease in systolic blood pressure (SBP) and 6.03% decrease in pulse pressure (PP). Furthermore, glutathione peroxidase (GSH-Px) was significantly increased by 7.15%. Sex-subgroup analysis showed that vitamin C significantly reduced TNF-α by 27.85% in male participants and significantly increased APOB by 6.28% and GSH-Px by 14.47% only in female participants. This study indicated that vitamin C supplementation may protect vascular vessels against PM exposure among healthy young adults in China.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jufeng Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jiaqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Siqi Zhu
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Qiqi Cui
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianshi Song
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Heart Center, The First Hospital of Hebei Medical University, Shijiazhuang 050031, China
| | - Wenhua Ling
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China.
| |
Collapse
|
29
|
Shi F, Zhang Z, Cui H, Wang J, Wang Y, Tang Y, Yang W, Zou P, Ling X, Han F, Liu J, Chen Q, Liu C, Cao J, Ao L. Analysis by transcriptomics and metabolomics for the proliferation inhibition and dysfunction through redox imbalance-mediated DNA damage response and ferroptosis in male reproduction of mice and TM4 Sertoli cells exposed to PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113569. [PMID: 35512470 DOI: 10.1016/j.ecoenv.2022.113569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Sertoli cells play a pivotal role in the complex spermatogenesis process. This study aimed to investigate the effects of PM2.5 on Sertoli cells using the TM4 cell line and a real time whole-body PM2.5 exposure mouse model, and further explore the underlying mechanisms through the application of metabolomics and transcriptomics. The results in vivo and in vitro showed that PM2.5 reduced Sertoli cells number in seminiferous tubules and inhibited cell proliferation. PM2.5 exposure also induced Sertoli cell dysfunction by increasing androgen binding protein (ABP) concentration, reducing the blood-testis barrier (BTB)-related protein expression, and decreasing glycolysis capacity and lactate production. The results of transcriptomics, metabolomics, and integrative analysis of multi-omics in the TM4 Sertoli cells revealed the activation of xenobiotic metabolism, and the disturbance of glutathione and purine metabolism after PM2.5 exposure. Further tests verified the reduced GSH/GSSG ratio and the elevation of xanthine oxidase (XO) activity in the PM2.5-exposed TM4 cells, indicating that excessive reactive oxygen species (ROS) was generated via metabolic disorder caused by PM2.5. Moreover, the redox imbalance was proved by the increase in the mitochondrial ROS level, superoxide dismutase (SOD) and catalase (CAT) activity, as well as the activation of the Nrf2 antioxidative pathway. Further study found that the redox imbalance caused by PM2.5 induced DNA damage response and cell cycle arrest. Additionally, PM2.5 induced ferroptosis through iron overload and lipid peroxidation. Taken all together, our study provided new insights for understanding proliferation inhibition and dysfunction of TM4 Sertoli cells exposed to PM2.5 via metabolic disorder and redox imbalance-mediated DNA damage response and ferroptosis.
Collapse
Affiliation(s)
- Fuquan Shi
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhonghao Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Haonan Cui
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiankang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Tang
- Institution of Health and Family Planning Supervision of Wei'yang District of Xi'an City, Xi'an 710016, China
| | - Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fei Han
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
30
|
Transcriptome Revealed Exposure to the Environmental Ammonia Induced Oxidative Stress and Inflammatory Injury in Spleen of Fattening Pigs. Animals (Basel) 2022; 12:ani12091204. [PMID: 35565630 PMCID: PMC9101760 DOI: 10.3390/ani12091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Ammonia is a major environmental pollutant. Previous estimates of ammonia emissions have focused on livestock sources in agricultural systems. Livestock continues to be the main source of ammonia emissions. Exposure to high concentrations of ammonia can cause varying degrees of damage to tissues and organs. However, the damage of ammonia exposure to the spleen of pigs in the fattening pigs is unknown. Therefore, the aim of this study was to explore the mechanism at the gene level of exogenous ammonia-induced spleen toxicity by enzyme-linked immunosorbent assay (ELISA), spleen histomorphological observation, and transcriptome technology. The results showed that ammonia exposure led to oxidative stress, activation of inflammatory pathways, and splenic injury. In addition, the genes that encode histone methyltransferase were found to be significantly upregulated. Therefore, histone methylation may be the epigenetic mechanism of splenic poisoning induced by ammonia. Our findings provide a novel direction for exploring the underlying molecular mechanisms of ammonia toxicity. Abstract Ammonia is one of the major environmental pollutants that seriously threaten human health. Although many studies have shown that ammonia causes oxidative stress and inflammation in spleen tissue, the mechanism of action is still unclear. In this study, the ammonia poisoning model of fattening pigs was successfully established. We examined the morphological changes and antioxidant functions of fattening pig spleen after 30-day exposure to ammonia. Effects of ammonia in the fattening pig spleen were analyzed from the perspective of oxidative stress, inflammation, and histone methylation via transcriptome sequencing technology (RNA-seq) and real-time quantitative PCR validation (qRT-PCR). We obtained 340 differential expression genes (DEGs) by RNA-seq. Compared with the control group, 244 genes were significantly upregulated, and 96 genes were significantly downregulated in the ammonia gas group. Some genes in Gene Ontology (GO) terms were verified and showed significant differences by qRT-PCR. The KEGG pathway revealed significant changes in the MAPK signaling pathway, which is strongly associated with inflammatory injury. To sum up, the results indicated that ammonia induces oxidative stress in pig spleen, activates the MAPK signaling pathway, and causes spleen necrosis and injury. In addition, some differential genes encoding epigenetic factors were found, which may be involved in the response mechanism of spleen tissue oxidative damage. The present study provides a transcriptome database of ammonia-induced spleen poisoning, providing a reference for risk assessment and comparative medicine of ammonia.
Collapse
|
31
|
Cano-Granda DV, Ramírez-Ramírez M, M. Gómez D, Hernandez JC. Effects of particulate matter on endothelial, epithelial and immune system cells. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particulate Matter (PM) is an air pollutant that is classified according to its aerodynamic diameter into particles with a diameter of less than 10 µm (PM10), a diameter of less than 2.5 µm (PM2.5), and particles ultra-fine with a diameter less than 0.1 µm (PM0.1). PM10 is housed in the respiratory system, while PM2.5 and 0.1 can pass into the circulation to generate systemic alterations. Although several diseases associated with PM exposure, such as respiratory, cardiovascular, and central nervous system, have been documented to cause 4.2 million premature deaths per year worldwide. Few reviews address cellular and molecular mechanisms in the epithelial and endothelial cells of the tissues exposed to PM, which can cause these diseases, this being the objective of the present review. For this, a search was carried out in the NCBI and Google Scholar databases focused on scientific publications that addressed the expression of pro-inflammatory molecules, adhesion molecules, and oxidative radicals, among others, and their relationship with the effects caused by the PM. The main findings include the increase in pro-inflammatory cytokines and dysfunction in the components of the immune response; the formation of reactive oxygen species; changes in epithelial and endothelial function, evidenced by altered expression of adhesion molecules; and the increase in molecules involved in coagulation. Complementary studies are required to understand the molecular effects of harmful health effects and the future approach to strategies to mitigate this response.
Collapse
Affiliation(s)
- Danna V. Cano-Granda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Mariana Ramírez-Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia 2 Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Diana M. Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| | - Juan C. Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia. Medellín, Colombia
| |
Collapse
|
32
|
Wang Z, Xie Y, Chen H, Yao J, Lv L, Li Y, Deng C, Zhang M, Sun X, Liu G. Guilingji Protects Against Spermatogenesis Dysfunction From Oxidative Stress via Regulation of MAPK and Apoptotic Signaling Pathways in Immp2l Mutant Mice. Front Pharmacol 2022; 12:771161. [PMID: 35095490 PMCID: PMC8793631 DOI: 10.3389/fphar.2021.771161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Male infertility is a major health issue with an estimated prevalence of 4.2% of male infertility worldwide. Oxidative stress (OS) is one of the main causes of male infertility, which is characterized by excessive reactive oxygen species (ROS) or lack of antioxidants. Meanwhile, it is reported that oxidative stress plays an important role in the spermatogenic impairment in Inner mitochondrial membrane peptidase 2-like (Immp2l) mutant mice. In this study, we focused on the potential mechanism of Guilingji in protecting the spermatogenic functions in Immp2l mutant mice. The results revealed that Immp2l mutant mice exhibit impaired spermatogenesis and histology shows seminiferous tubules with reduced spermatogenic cells. After administration of Guilingji [150 mg/kg per day intragastric gavage], however, alleviated spermatogenesis impairment and reversed testis histopathological damage and reduced apoptosis. What’s more, western blotting and the levels of redox classic markers revealed that Guilingji can markedly reduce reactive oxygen species. Moreover, Guilingji treatment led to inhibition of the phosphorylation of mitogen-activated protein kinase (MAPK), regulated apoptosis in the cells. In summary, Guilingji can improve spermatogenesis in Immp2l mutant mice by regulating oxidation-antioxidant balance and MAPK pathway. Our data suggests that Guilingji may be a promising and effective antioxidant candidate for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhenqing Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yun Xie
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haicheng Chen
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linyan Lv
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanqing Li
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangzhou Sun
- Department of Urology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guihua Liu
- Reproductive Centre, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Qi Z, Liu Y, Yang H, Yang X, Wang H, Liu B, Yuan Y, Wang G, Xu B, Liu W, Xu Z, Deng Y. Protective role of m 6A binding protein YTHDC2 on CCNB2 in manganese-induced spermatogenesis dysfunction. Chem Biol Interact 2022; 351:109754. [PMID: 34822792 DOI: 10.1016/j.cbi.2021.109754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023]
Abstract
Human infertility has become the third largest serious disease in the world, seriously affecting the quality of human fertility. Studies have shown that manganese (Mn) can accumulate in the testis through the blood-testicular barrier and damage the male reproductive system. However, the mechanism has not been explored clearly. Recent studies have reported that YTH domain-containing 2 (YTHDC2) can regulate reproductive function. However, none has explored the role of YTHDC2 in Mn-induced reproductive toxicity. The present study investigated whether YTHDC2/CyclinB2 (CCNB2) pathway participates in Mn-induced reproductive toxicity using Kunming mice, spermatogonia, and the seminal plasma of male workers. The mice were received intraperitoneal (i.p.) injections of 0, 12.5, 25, and 50 mg/kg MnCl2 once daily for 2 weeks. The cells were treated with 0, 100, 200 and 400 μM MnCl2 for 24 h. Here, we found that occupational Mn exposure significantly increased Mn levels in the seminal plasma of male workers, while decreased sperm density, semen quality, and the levels of YTHDC2, CCNB1, and CCNB2. We found that Mn can inhibit the YTHDC2/CCNB2 signaling pathway and block the G2/M phase of the cell cycle. Moreover, the morphology of cells and the histomorphology of mice testis were injured. Notably, over-expression (OE) of YTHDC2 increased CCNB2 levels, reduced cell cycle arrest, and improved reproductive toxicity after Mn exposure. These findings suggest that the YTHDC2/CCNB2 signaling pathway participates in Mn-induced reproductive toxicity, and OE of YTHDC2 can mitigate the toxicity of Mn.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Preventive Health, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, People's Republic of China.
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Shandong, People's Republic of China.
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Haiying Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bingchen Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yuan Yuan
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Gang Wang
- Center of Experiment, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
34
|
Wei Y, Zhou Y, Long C, Wu H, Hong Y, Fu Y, Wang J, Wu Y, Shen L, Wei G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117904. [PMID: 34371264 DOI: 10.1016/j.envpol.2021.117904] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
It has been found that polystyrene microplastics (PS-MPs) exposure leads to decreased sperm quality and quantity, and we aim to explore the underlying mechanisms. Therefore, we gave 20 mg/kg body weight (bw) and 40 mg/kg bw 4 μm and 10 μm PS-MPs to male Balb/c mice by gavage. RNA sequencing of testes was performed. After PS-MPs exposure, blood-testis barrier (BTB) integrity was impaired. Since cytoskeleton was closely related to BTB integrity maintenance, and cytoskeleton disorganization could be induced by PS-MPs exposure in the testis, which resulted in the truncation of actin filaments and disruption of BTB integrity. Such processes were attributed to the differential expression of Arp3 and Eps8 (two of the most important actin-binding proteins). According to the transcriptome sequencing results, we examined the oxidative stress level in the testes and Sertoli cells. We found that PS-MPs exposure induced increased reactive oxygen species (ROS) level, which destroyed the balance between mTORC1 and mTORC2 (the mTORC1 activity was increased, while the mTORC2 activity was decreased). In conclusion, PS-MPs induced the imbalance of mTORC1 and mTORC2 via the ROS burst, and altered the expression profile of actin-binding proteins, resulting in F-actin disorganization and reduced expression of junctional proteins in the BTB. Eventually PS-MPs led to BTB integrity disruption and spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
35
|
Li Z, Wang S, Gong C, Hu Y, Liu J, Wang W, Chen Y, Liao Q, He B, Huang Y, Luo Q, Zhao Y, Xiao Y. Effects of Environmental and Pathological Hypoxia on Male Fertility. Front Cell Dev Biol 2021; 9:725933. [PMID: 34589489 PMCID: PMC8473802 DOI: 10.3389/fcell.2021.725933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Male infertility is a widespread health problem affecting approximately 6%-8% of the male population, and hypoxia may be a causative factor. In mammals, two types of hypoxia are known, including environmental and pathological hypoxia. Studies looking at the effects of hypoxia on male infertility have linked both types of hypoxia to poor sperm quality and pregnancy outcomes. Hypoxia damages testicular seminiferous tubule directly, leading to the disorder of seminiferous epithelium and shedding of spermatogenic cells. Hypoxia can also disrupt the balance between oxidative phosphorylation and glycolysis of spermatogenic cells, resulting in impaired self-renewal and differentiation of spermatogonia, and failure of meiosis. In addition, hypoxia disrupts the secretion of reproductive hormones, causing spermatogenic arrest and erectile dysfunction. The possible mechanisms involved in hypoxia on male reproductive toxicity mainly include excessive ROS mediated oxidative stress, HIF-1α mediated germ cell apoptosis and proliferation inhibition, systematic inflammation and epigenetic changes. In this review, we discuss the correlations between hypoxia and male infertility based on epidemiological, clinical and animal studies and enumerate the hypoxic factors causing male infertility in detail. Demonstration of the causal association between hypoxia and male infertility will provide more options for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, Liaoning, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongbing Zhao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
36
|
Fu Y, Wei Y, Zhou Y, Wu H, Hong Y, Long C, Wang J, Wu Y, Wu S, Shen L, Wei G. Wnt5a Regulates Junctional Function of Sertoli cells Through PCP-mediated Effects on mTORC1 and mTORC2. Endocrinology 2021; 162:6334711. [PMID: 34338758 DOI: 10.1210/endocr/bqab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Indexed: 12/14/2022]
Abstract
The blood-testis barrier (BTB) and apical ectoplasmic specialization (ES), which are synchronized through the crosstalk of Sertoli cells and Sertoli germ cells, are required for spermatogenesis and sperm release. Here, we show that Wnt5a, a noncanonical Wnt signaling pathway ligand, is predominately expressed in both the BTB and apical ES and has a specific expression pattern during the seminiferous epithelium cycle. We employed siRNA to knockdown Wnt5a expression in testis and Sertoli cells, and then identified elongated spermatids that lost their polarity and were embedded in the seminiferous epithelium. Moreover, phagosomes were found near the tubule lumen. These defects were due to BTB and apical ES disruption. We also verified that the expression level and/or location of BTB-associated proteins, actin binding proteins (ABPs), and F-actin was changed after Wnt5a knockdown in vivo and in vitro. Additionally, we demonstrated that Wnt5a regulated actin dynamics through Ror2-mediated mTORC1 and mTORC2. This study clarified the molecular mechanism of Wnt5a in Sertoli cell junctions through the planar cell polarity (PCP) signaling pathway. Our findings could provide an experimental basis for the clinical diagnosis and treatment of male infertility caused by Sertoli cell junction impairment.
Collapse
Affiliation(s)
- Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering; Chongqing Key Laboratory of Pediatrics; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China
| |
Collapse
|
37
|
Wang Y, Ma Y, Yao Y, Liu Q, Pang Y, Tang M. Ambient particulate matter triggers defective autophagy and hijacks endothelial cell renewal through oxidative stress-independent lysosomal impairment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117295. [PMID: 34438478 DOI: 10.1016/j.envpol.2021.117295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Ambient particulate matter (APM) has been authenticated to exert hazards on human vascular endothelial cells, including abnormal autophagy. However, the potential reasons for autophagosome accumulation are still obscure. Since autophagy is a dynamic process, it is imperative to systemically consider the autophagic induction combined with its degradation to reflect realistic scenarios. Therefore, in the current study, different exposure durations were initially employed for the detection of autophagic marker proteins to assess the dynamic autophagic state preliminarily. Additionally, LC3 turn-over and autophagic flux assays were used to determine the specific cause of LC3II upregulation in EA.hy926 human vascular endothelial cells by a type of standard urban particulate matter, PM SRM1648a. As a result, PM SRM1648a stimulates excess autophagic vacuoles in EA. hy926 cells, in which the underlying causes are probably different at varying incubation endpoints. Intriguingly, LC3II upregulation was due to the intensifying autophagic initiation after 6 h of exposure, whereas as exposure period was extended to 24 h, overloaded autophagic vacuoles were attributed to the defective autophagy. Mechanistically, PM SRM1648a damages EA. hy926 cells by inducing lysosomal disequilibrium and resultant autophagic malfunction which are not directly mediated by oxidative stress. These data indicate that appropriate maintenance of lysosomal function and autophagic flux is probably a protective measure against APM-induced endothelial cell damage.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
38
|
Li S, Wang Q, Yu H, Yang L, Sun Y, Xu N, Wang N, Lei Z, Hou J, Jin Y, Zhang H, Li L, Xu F, Zhang L. Polystyrene microplastics induce blood-testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47921-47931. [PMID: 33895957 DOI: 10.1007/s11356-021-13911-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
As a persistent pollutant, microplastics (MPs) have been reported to induce sperm quantity decrease in mice. However, the related mechanism remains obscure. Therefore, this study is intended to explore the effects of polystyrene microplastics (PS-MPs) on male reproduction and its related mechanism of blood-testis barrier (BTB) impairment. Thirty-two adult male Wistar rats were divided randomly into four groups fed with PS-MPs for 90 days at doses of 0 mg/day (control group), 0.015 mg/day, 0.15 mg/day, and 1.5 mg/day, respectively. The present results have shown that PS-MP exposure led to the damage of seminiferous tubule, resulted in apoptosis of spermatogenic cells, and decreased the motility and concentration of sperm, while the abnormality of sperm was elevated. Meanwhile, PS-MPs could induce oxidative stress and activate the p38 MAPK pathway and thus deplete the nuclear factor erythroid-2 related factor 2 (Nrf2). Noteworthily, PS-MPs led to the BTB-related protein expression decrease. All these results demonstrated that PS-MP exposure may lead to the destruction of BTB integrity and the apoptosis of spermatogenic cells through the activation of the MAPK-Nrf2 pathway. The current study provided novelty evidence for elucidating the effects of PS-MPs on male reproductive toxicity and its potential mechanism.
Collapse
Affiliation(s)
- Shengda Li
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Qimeng Wang
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Hui Yu
- College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China
| | - Long Yang
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Yiqing Sun
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Ning Xu
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Nana Wang
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Zhimin Lei
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Junyu Hou
- College of Clinical Medicine, Binzhou Medical University, Yan Tai, People's Republic of China
| | - Yinchuan Jin
- Department of Medical Psychology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, People's Republic of China.
| | - Hongqin Zhang
- College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China
- Department of Histology and Embryology, Binzhou Medical University, Yantai, People's Republic of China
| | - Lianqin Li
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Feibo Xu
- College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China
- Department of Histology and Embryology, Binzhou Medical University, Yantai, People's Republic of China
| | - Lianshuang Zhang
- College of Basic Medicine & Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, People's Republic of China.
- Department of Histology and Embryology, Binzhou Medical University, Yantai, People's Republic of China.
| |
Collapse
|
39
|
Lu T, Ling C, Hu M, Meng X, Deng Y, An H, Li L, Hu Y, Wang H, Song G, Guo S. Effect of Nano-Titanium Dioxide on Blood-Testis Barrier and MAPK Signaling Pathway in Male Mice. Biol Trace Elem Res 2021; 199:2961-2971. [PMID: 32990870 DOI: 10.1007/s12011-020-02404-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Some studies have found that nano-sized titanium dioxide (nano-TiO2) has adverse effects on the male reproductive system. Blood-testis barrier (BTB), as one of the tightest blood-tissue restriction, is crucial to the male reproductive system. However, the potential effects on BTB and signaling pathway changes in testis tissue induced by nano-TiO2 remain poorly understood. Therefore, in this study, 60 Institute of Cancer Research mice were divided randomly into four groups (per group = 15). The mice of four groups were intragastrically administered with 0, 10, 50, and 100 mg/kg BW nano-TiO2 respectively for 30 days to analyze the changes of BTB structure, BTB-related proteins, and MAPK signal pathways. Besides, testosterone level, estradiol level, and sperm parameter (sperm count, sperm motility, and sperm malformation rate) changes were also studied in this research. The results indicated that nano-TiO2 could induce the BTB structural damage and accompanied by the BTB main protein (ZO-1, Claudin-11, and F-actin) elevation of irritability. Nano-TiO2 could also activate the MAPK signaling pathways (p38, JNK, and ERK) of mice testis tissue. The testosterone and estradiol levels in serum reduced. Besides when the mice were administered with nano-TiO2, we also found the sperm motility rate decreased, and sperm malformation increased. The above changes may be associated with BTB damage and the activation of MAPK signaling pathways, thereby causing male reproductive dysfunction.
Collapse
Affiliation(s)
- Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Mingjuan Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Xiaojia Meng
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yaxin Deng
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China.
| | - Shuxia Guo
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
40
|
Chen S, Yang W, Zhang X, Jin J, Liang C, Wang J, Zhang J. Melamine induces reproductive dysfunction via down-regulated the phosphorylation of p38 and downstream transcription factors Max and Sap1a in mice testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144727. [PMID: 33736362 DOI: 10.1016/j.scitotenv.2020.144727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Melamine poisoning incidents and potential health risks raise global attention. Recent studies imply that melamine exposure is related to male reproductive dysfunction, however, the underlying mechanisms are unclear. In this study, 32 male Kunming mice were administered with 0, 12.5, 25, and 50 mg/L melamine via drinking water for 13 weeks, respectively. Sperm quality, testicular morphology, and the mRNA expression levels of MAPK family members p38, ERK5, ERK1/2, JNK1/2/3 and their downstream transcription factors GADD153, MAX, MEF2C, CREB, c-Myc, JunD, c-JUN, Sap1a, p53, ATF-2, Elk1, and Nur77 in testes were investigated. The results revealed that low-dose melamine exposure reduced sperm quality, altered the testicular histological structure, and reduced the mRNA expression levels of p38, ERK1/2, MAX and Sap1a in the testes. The p38 and phosphorylated-p38 expressions analysis further suggested that the down-regulated phosphorylation of p38 and downstream transcription factors MAX and Sap1a play key roles in male reproductive dysfunction caused by melamine. Altogether, our study provides a new insight to elucidate the underlying mechanisms by which melamine induces male reproductive toxicity, and to evaluate the health risks of melamine.
Collapse
Affiliation(s)
- Shuming Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wei Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiaoyan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiyin Jin
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
41
|
Wang YL, Zheng CM, Lee YH, Cheng YY, Lin YF, Chiu HW. Micro- and Nanosized Substances Cause Different Autophagy-Related Responses. Int J Mol Sci 2021; 22:4787. [PMID: 33946416 PMCID: PMC8124422 DOI: 10.3390/ijms22094787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
With rapid industrialization, humans produce an increasing number of products. The composition of these products is usually decomposed. However, some substances are not easily broken down and gradually become environmental pollutants. In addition, these substances may cause bioaccumulation, since the substances can be fragmented into micro- and nanoparticles. These particles or their interactions with other toxic matter circulate in humans via the food chain or air. Whether these micro- and nanoparticles interfere with extracellular vesicles (EVs) due to their similar sizes is unclear. Micro- and nanoparticles (MSs and NSs) induce several cell responses and are engulfed by cells depending on their size, for example, particulate matter with a diameter ≤2.5 μm (PM2.5). Autophagy is a mechanism by which pathogens are destroyed in cells. Some artificial materials are not easily decomposed in organisms. How do these cells or tissues respond? In addition, autophagy operates through two pathways (increasing cell death or cell survival) in tumorigenesis. Many MSs and NSs have been found that induce autophagy in various cells and tissues. As a result, this review focuses on how these particles interfere with cells and tissues. Here, we review MSs, NSs, and PM2.5, which result in different autophagy-related responses in various tissues or cells.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 406040, Taiwan;
| | - Ya-Yun Cheng
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-L.W.); (Y.-F.L.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| |
Collapse
|
42
|
Characterization of Products from the Aqueous-Phase Photochemical Oxidation of Benzene-Diols. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical processing in atmospheric aqueous phases, including cloud and fog drops, might be significant in reconciling the gap between observed and modeled secondary organic aerosol (SOA) properties. In this work, we conducted a relatively comprehensive investigation of the reaction products generated from the aqueous-phase photochemical oxidation of three benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radical (·OH), triplet excited state (3C*) 3,4-dimethoxybenzaldehyde (3,4-DMB), and direct photolysis without any added oxidants. The results show that OH-initiated photo-degradation is the fastest of all the reaction systems. For the optical properties, the aqueous oxidation products generated under different reaction conditions all exhibited photo-enhancement upon illumination by simulated sunlight, and the light absorption was wavelength dependent on and increased as a function of the reaction time. The oxygen-to-carbon (O/C) ratio of the products also gradually increased against the irradiation time, indicating the persistent formation of highly oxygenated low-volatility products throughout the aging process. More importantly, aqueous-phase products from photochemical oxidation had an increased oxidative potential (OP) compared with its precursor, indicating they may more adversely impact health. The findings in this work highlight the importance of aqueous-phase photochemical oxidation, with implications for aqueous SOA formation and impacts on both the chemical properties and health effects of OA.
Collapse
|
43
|
Wu H, Wei Y, Zhou Y, Long C, Hong Y, Fu Y, Zhao T, Wang J, Wu Y, Wu S, Shen L, Wei G. Bisphenol S perturbs Sertoli cell junctions in male rats via alterations in cytoskeletal organization mediated by an imbalance between mTORC1 and mTORC2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:144059. [PMID: 33360459 DOI: 10.1016/j.scitotenv.2020.144059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol S (BPS) is now used as an alternative of bisphenol A (BPA), but has been implicated in male reproductive dysfunction-including diminished sperm number and quality and altered hormonal concentrations. However, the mechanisms of action subserving these effects remains unclear. In the present study, BPS at doses of 50 mg/kg bw and 100 mg/kg bw caused defects in the integrity of the blood-testis barrier (BTB) and apical ectoplasmic specialization (ES), and we also delineated an underlying molecular mechanism of action. BPS induced F-actin and α-tubulin disorganization in seminiferous tubules, which in turn led to the truncation of actin filaments and microtubules. Additionally, BPS was found to perturb the expression of the actin-binding proteins Arp3 and Eps8, which are critical for the organization of the actin filaments. mTORC1 and mTORC2 manifest opposing roles in Sertoli cell junctional function, and we demonstrated that mTORC1/rpS6/Akt/MMP9 signaling was increased and that mTORC2/rictor activity was also attenuated. In summary, we showed that BPS-induced disruption of the BTB and apical ES perturbed normal spermatogenic function that was mediated by mTORC1 and mTORC2. The imbalance in mTORC1 and mTORC2, in turn, altered the expression of actin-binding proteins, resulting in the impairment of F-actin and MT organization, and inhibited the expression of junctional proteins at the BTB and apical ES.
Collapse
Affiliation(s)
- Huan Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yuexin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yifan Hong
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yan Fu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Tianxin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Yuhao Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lianju Shen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
44
|
Shi F, Zhang Z, Wang J, Wang Y, Deng J, Zeng Y, Zou P, Ling X, Han F, Liu J, Ao L, Cao J. Analysis by Metabolomics and Transcriptomics for the Energy Metabolism Disorder and the Aryl Hydrocarbon Receptor Activation in Male Reproduction of Mice and GC-2spd Cells Exposed to PM 2.5. Front Endocrinol (Lausanne) 2021; 12:807374. [PMID: 35046903 PMCID: PMC8761788 DOI: 10.3389/fendo.2021.807374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Fine particulate matter (PM2.5)-induced male reproductive toxicity arouses global public health concerns. However, the mechanisms of toxicity remain unclear. This study aimed to further investigate toxicity pathways by exposure to PM2.5in vitro and in vivo through the application of metabolomics and transcriptomics. In vitro, spermatocyte-derived GC-2spd cells were treated with 0, 25, 50, 100 μg/mL PM2.5 for 48 h. In vivo, the real-world exposure of PM2.5 for mouse was established. Forty-five male C57BL/6 mice were exposed to filtered air, unfiltered air, and concentrated ambient PM2.5 in Tangshan of China for 8 weeks, respectively. The results in vitro and in vivo showed that PM2.5 exposure inhibited GC-2spd cell proliferation and reduced sperm motility. Mitochondrial damage was observed after PM2.5 treatment. Increased Humanin and MOTS-c levels and decreased mitochondrial respiratory indicated that mitochondrial function was disturbed. Furthermore, nontargeted metabolomics analysis revealed that PM2.5 exposure could disturb the citrate cycle (TCA cycle) and reduce amino acids and nucleotide synthesis. Mechanically, the aryl hydrocarbon receptor (AhR) pathway was activated after exposure to PM2.5, with a significant increase in CYP1A1 expression. Further studies showed that PM2.5 exposure significantly increased both intracellular and mitochondrial reactive oxygen species (ROS) and activated NRF2 antioxidative pathway. With the RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure were mainly enriched in the metabolism of xenobiotics by the cytochrome P450 pathway, of which Cyp1a1 was the most significantly changed gene. Our findings demonstrated that PM2.5 exposure could induce spermatocyte damage and energy metabolism disorder. The activation of the aryl hydrocarbon receptor might be involved in the mechanism of male reproductive toxicity.
Collapse
Affiliation(s)
- Fuquan Shi
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhonghao Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiankang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuyang Deng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yingfei Zeng
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Han
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| |
Collapse
|
45
|
Interplay between male reproductive system dysfunction and the therapeutic effect of flavonoids. Fitoterapia 2020; 147:104756. [PMID: 33069836 DOI: 10.1016/j.fitote.2020.104756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Male infertility has affected many families around the world. However, due to the mechanism underlying male reproductive system dysfunction are not completely elucidated, the use of drugs for male reproductive system dysfunction treatment only insignificant higher pregnancy outcomes, low-quality evidence suggests that clinical pregnancy rates may increase. Therefore, the focus in the future will be on developing more viable treatment options to prevent or treatment of male reproductive system dysfunction and achieve the purpose of improving fertility. Interestingly, natural products, as the potential inhibitors for the treatment of male reproductive system dysfunction, have shown a good therapeutic effect. Among many natural products, flavonoids have been extensively investigated for the treatment of male reproductive system dysfunction, such as testicular structural disruption, spermatogenesis disturbance and sperm quality decline. Flavonoids have been reported to have antioxidant, anti-inflammatory, immune stimulating, anti-apoptotic, anticarcinogenic, anti-allergic and antiviral activities, investigating for the treatment of male reproductive system dysfunction. In this review, we evaluate the therapeutic effects of flavonoids on male reproductive system dysfunction under different cellular scenarios and summarize the therapeutic strategies of flavonoids based on the aforementioned retrospective analysis. In the end, we describe some perspective research areas relevant to the application of flavonoids in the treatment of male reproductive system dysfunction.
Collapse
|
46
|
Yang W, Xu Y, Pan H, Tian F, Wang Y, Xia M, Hu J, Yang M, Tao S, Sun S, Kan H, Li R, Ying Z, Li W. Chronic exposure to diesel exhaust particulate matter impairs meiotic progression during spermatogenesis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110881. [PMID: 32574863 DOI: 10.1016/j.ecoenv.2020.110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Exposure to ambient PM2.5 may correlate with the decline of semen quality, and the underlying biological mechanism has not been fully understood. In the present study, mice were intratracheally instilled with diesel exhaust PM2.5 (DEP), and its effects on the spermatogenic process as well as the alterations of testicular gene expression profile were assessed. Our results showed that chronic exposure to DEP impaired the fertility of male mice without influencing their libido. Compared with Vehicle-exposed group, the sperm count and motility from DEP-exposed mice were significantly decreased. In addition, immunohistological staining of γH2AX and DMC1, biomarkers for meiotic double strand breaks (DSBs), demonstrated that chronic exposure to DEP comprised the repair of meiotic DSBs, thus disrupting the spermatogenesis. Deep RNA sequencing test showed altered expressions of testicular genes including the GnRH signaling pathway. In summary, our research demonstrated that chronic exposure to DEP may disrupt spermatogenesis through targeting the meiotic recombination, providing a new perspective for the research on the male reproductive system damage caused by air pollution.
Collapse
Affiliation(s)
- Wei Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Hongjie Pan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Fang Tian
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Yuzhu Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Minjie Xia
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Jingying Hu
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Mingjun Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Shimin Tao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Shenfei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China.
| | - Runsheng Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Weihua Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Zhao TX, Wei YX, Wang JK, Han LD, Sun M, Wu YH, Shen LJ, Long CL, Wu SD, Wei GH. The gut-microbiota-testis axis mediated by the activation of the Nrf2 antioxidant pathway is related to prepuberal steroidogenesis disorders induced by di-(2-ethylhexyl) phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35261-35271. [PMID: 32588312 DOI: 10.1007/s11356-020-09854-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a common plasticizer, which is known to be an environmental endocrine-disrupting chemical that can jeopardize the male reproductive system. Prepuberal exposure to DEHP leads to steroidogenesis disorders. However, the specific mechanism remains ambiguous. Therefore, Sprague Dawley (SD) rats underwent prepuberal DEHP exposure at a dose of 500 mg/kg per day through gavage. Additionally, the resulting testicular injury was evaluated to confirm the disturbed steroidogenesis. Changes in testicular histology, significant reduction of serum testosterone (P < 0.01) and luteinizing hormone (P < 0.001), and significantly decreased expressions of steroidogenic acute regulatory protein (P < 0.01) and 3-beta-hydroxysteroid dehydrogenase (P < 0.05) were found in DEHP-treated rats. DEHP exposure resulted in obvious intestinal damage and oxidative stress imbalance, primarily in the jejunum. Both the activation of the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway and alterations of microbiota profiles were observed in all three gut specimens, but were most notable in the jejunum. We hypothesize that the gut-microbiota-testis axis, which is mediated by the activation of the Nrf2 antioxidant pathway, could be involved in the dysfunction of prepuberal steroidogenesis induced by DEHP.
Collapse
Affiliation(s)
- Tian-Xin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yue-Xin Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
| | - Jun-Ke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Lin-Dong Han
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Mang Sun
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yu-Hao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Lian-Ju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Chun-Lan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Sheng-De Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| | - Guang-Hui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, People's Republic of China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, People's Republic of China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, People's Republic of China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, People's Republic of China.
- Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
48
|
Cao Z, Huang W, Sun Y, Li Y. Deoxynivalenol induced spermatogenesis disorder by blood-testis barrier disruption associated with testosterone deficiency and inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114748. [PMID: 32416428 DOI: 10.1016/j.envpol.2020.114748] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Deoxynivalenol (DON) is an unavoidable cereal crops contaminants and environmental pollutants, which seriously threated the health of human and animal. DON has been reported to exert significant toxicity effects on spermatogenesis, but the underlying mechanisms remain largely inconclusive. The blood-testis barrier (BTB) provides a specialized biochemical microenvironment for maintaining spermatogenesis. Thus, we hypothesized that DON could impair BTB and lead to spermatogenesis disorder. To confirm this hypothesis, sixty male mice were intragastrically administered with 0, 1.2, 2.4 and 4.8 mg/kg body weight DON for 28 days, and several important observations were obtained in present study. First, we found that DON induced spermatogenesis disorder, reflected by the declines of sperm concentration and quality, sperm ultrastructural damage as well as seminiferous tubular damage. Then, we proved that DON induced BTB disruption as well as decreased the expressions of BTB junction proteins, including Occludin, Connexin 43 and N-cadherin. Finally, the present study showed that DON induced inflammation and inhibited T biosynthesis in testis of mice. These results revealed that DON induced spermatogenesis disorder by BTB disruption associated with testosterone deficiency and inflammation in mice, which shed a new light on the potential mechanisms of reproductive toxicity induced by DON.
Collapse
Affiliation(s)
- Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yiran Sun
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Wang Y, Wu T, Tang M. Ambient particulate matter triggers dysfunction of subcellular structures and endothelial cell apoptosis through disruption of redox equilibrium and calcium homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122439. [PMID: 32200236 DOI: 10.1016/j.jhazmat.2020.122439] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/07/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Ambient particulate matter (APM) is becoming a global environmental problem that seriously jeopardizes public health. Previous evidence hinted that APM correlates to cardiovascular diseases. As a potential target, equilibrium of endothelial cell is a prerequisite for vascular health which could be vulnerably attacked by particles, but the specific mechanisms whereby APM damages endothelial cells have not been fully elucidated. In the current study, based on two classical mechanisms of oxidative stress and intracellular calcium overload, we aimed to explore their roles in APM-induced endothelial cell apoptosis from the perspective of subcellular levels, including endoplasmic reticulum (ER) stress and mitochondrial dysfunction. As a result, PM SRM1648a results in oxidative stress and calcium overload in EA.hy926 cells. Additionally, ERs and mitochondria could be severely disturbed by particles in morphology and function, characterized by swelling ERs, mitochondrial fission and disappearance of cristae, coupled with ER damage, mtROS overproduction and significant reduction in mitochondrial membrane potential (MMP). Adverse effects on these organelles are the prime culprits of following apoptosis in endothelial cells. Fortunately, additional antioxidants and calcium inhibitors could mitigate cellular lesion through improvement of subcellular function. Intriguingly, antioxidants relieve cell stress via both mitochondrial and ER stress-mediated pathways, whereas the role of calcium modulators in cell apoptosis is independent of the mitochondrial pathway but could be explained by amelioration of ER stress. In conclusion, our data basically revealed that internalized PM SRM1648a triggers oxidative stress and calcium influx in EA.hy926 endothelial cells, followed by multiple subcellular damage and eventually contributes to cell death, during which antioxidants and calcium inhibitors confer protective effects.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
50
|
Zhao TX, Wang JK, Shen LJ, Long CL, Liu B, Wei Y, Han LD, Wei YX, Wu SD, Wei GH. Increased m6A RNA modification is related to the inhibition of the Nrf2-mediated antioxidant response in di-(2-ethylhexyl) phthalate-induced prepubertal testicular injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113911. [PMID: 31923814 DOI: 10.1016/j.envpol.2020.113911] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/03/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a common environmental endocrine disrupting chemical that may induce male reproductive disorders. Exposure to DEHP at a prepubertal stage could lead to prepubertal testicular injury, but the underlying mechanisms remain unclear. In this study, we exposed Sprague-Dawley rats to 0, 250, and 500 mg DEHP per kg body weight per day at the prepuberty stage from postnatal day 22 (PND 22) to PND 35 by oral gavage. Testicular injury and oxidative stress were evaluated, and the levels of 6-methyladenosine (m6A) modification and expression of modulator genes for RNA methylation were measured in testes. Furthermore, m6A modification of the important antioxidant transcription factor Nrf2 was analyzed using methylated RNA immunoprecipitation qPCR. Our results show that DEHP worsened testicular histology, decreased testosterone concentrations, downregulated expression of spermatogenesis inducers, enhanced oxidative stress, inhibited the Nrf2-mediated antioxidant pathway, and increased apoptosis in testes. Additionally, DEHP increased global levels of m6A RNA modification and altered the expression of two important RNA methylation modulator genes, FTO and YTHDC2. Moreover, m6A modification of Nrf2 mRNA increased upon DEHP exposure. Overall, these findings link oxidative stress imbalance with epigenetic effects of DEHP toxicity and provide insight into the testicular toxicity of DEHP from the new perspective of m6A modification.
Collapse
Affiliation(s)
- Tian-Xin Zhao
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Jun-Ke Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Lian-Ju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Chun-Lan Long
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Bin Liu
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Yi Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Lin-Dong Han
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Yue-Xin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| | - Sheng-De Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China.
| | - Guang-Hui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, PR China
| |
Collapse
|