1
|
Yan J, Fang L, Ni A, Xi M, Li J, Zhou X, Qian Q, Wang ZJ, Wang X, Wang H. Long-Term Neurotoxic Effects and Alzheimer's Disease Risk of Early EHDPP Exposure in Zebrafish: Insights from Molecular Mechanisms to Adult Pathology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19152-19164. [PMID: 39417326 DOI: 10.1021/acs.est.4c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP), ubiquitously monitored in environmental media, is highly bioaccumulative and may pose long-term risks, even after short-term exposure. In this investigation, larval zebrafish were exposed to 0.05, 0.5, and 5.0 μg/L EHDPP from 4 to 120 h postfertilization (hpf) to examine the long-term neurotoxicity effects of early exposure. Exposure to 5.0 μg/L EHDPP yielded hyperactive locomotor behavior, which was characterized by increased swimming speed, larger turning angles, and heightened sensitivity to light-dark stimulation. The predicted targets of EHDPP (top 100 potential macromolecules) were primarily associated with brain diseases like Alzheimer's disease (AD). Comparisons of differentially expressed genes (DEGs) from AD patients (GSE48350) and RNA-seq data from EHDPP-exposed zebrafish confirmed consistently abnormal regulatory pathways. EHDPP's interaction with M1 and M5 muscarinic acetylcholine receptors likely disrupted calcium homeostasis, leading to mitochondrial dysfunction and neurotransmitter imbalance as well as abnormal locomotor behavior. Especially, 5.0 μg/L EHDPP exposure during early development (4-120 hpf) triggered early- and midstage AD-like symptoms in adulthood (180 dpf), characterized by cognitive confusion, aggression, blood-brain barrier disruption, and mitochondrial damage in brains. These findings provide deep insights into the long-term neurotoxicity effects and Alzheimer's disease risks of early EHDPP exposure at extremely low dosages.
Collapse
Affiliation(s)
- Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Fang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Anyu Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Miaocui Xi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinyun Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ze-Jun Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
2
|
Feng J, Ma X, Liu Y, Shi X, Jin L, Le Y, Zhang Q, Wang C. The Role of Human Adiponectin Receptor 1 in 2-Ethylhexyl Diphenyl Phosphate Induced Lipid Metabolic Disruption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18190-18201. [PMID: 39364562 DOI: 10.1021/acs.est.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Epidemiological evidence links exposure to 2-ethylhexyl diphenyl phosphate (EHDPP) with lipid metabolic disruption, typically attributed to nuclear receptors, while the role of membrane receptors remains underexplored. This study explored the role of adiponectin receptor 1 (AdipoR1) in EHDPP-induced lipid metabolic disturbances. We examined EHDPP's binding affinity and transcriptional impact on AdipoR1. AdipoR1 knockdown (AdipoR1kd) human liver cells and coculture experiments with AdipoR1 activator (AdipoRon) were used to investigate the effect and the mechanism. EHDPP disrupted triglyceride and phospholipid synthesis and altered corresponding gene expression, mirroring effects in AdipoR1kd cells but diminishing in EHDPP-treated AdipoR1kd cells. RNA sequencing revealed that EHDPP primarily disrupted oxidative phosphorylation and insulin signaling dependent on AdipoR1. Mechanistically, EHDPP interacted with AdipoR1 and reduced AdipoR1 protein levels at 10-7 mol/L or higher, weakening the activation of the calmodulin dependent protein kinase β (CaMKKβ)/AMPK/acetyl CoA carboxylase pathway. Furthermore, EHDPP pretreatment blocked the increase in Ca2+ flux and the corresponding kinase CaMKKβ, as well as liver kinase B1 (LKB1) activation induced by AdipoRon, which is necessary for AMPK activation. Collectively, these findings demonstrate that EHDPP-induced lipid imbalance is partially dependent on AdipoR1, expanding the understanding of environmental metabolic disruptors beyond nuclear receptors.
Collapse
Affiliation(s)
- Jiafan Feng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaochun Ma
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xiaoliu Shi
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lingbing Jin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
3
|
Li T, Zhu F, Dai L, Hogstrand C, Li B, Yue X, Wang J, Yu L, Li D. Effects of 2-ethylhexyl diphenyl phosphate (EHDPP) on glycolipid metabolism in male adult zebrafish revealed by targeted lipidomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174248. [PMID: 38936724 DOI: 10.1016/j.scitotenv.2024.174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The present study aims to evaluate the effects of 2-ethylhexyldiphenyl phosphate (EHDPP) on glycolipid metabolism in vivo. Adult male zebrafish were exposed to various concentrations (0, 1, 10, 100 and 250 μg/L) of EHDPP for 28 days, and changes in lipid and glucose levels were measured. Results indicated significant liver damages in the 100 and 250 μg/L EHDPP groups, which both exhibited significant decreases in hepatic somatic index (HSI), elevated activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and liver, as well as hepatocyte vacuolation and nuclear pyknosis. Exposure to 100 and 250 μg/L EHDPP led to significant reductions in serum and liver cholesterol (TC), triglycerides (TGs), and lipid droplet deposition, indicating a significant inhibition of EHDPP on hepatic lipid accumulation. Lipidomic analyses manifested that 250 μg/L EHDPP reduced the levels of 103 lipid metabolites which belong to glycerides (TGs, diglycerides, and monoglycerides), fatty acyles (fatty acids), sterol lipids (cholesterol, bile acids), sphingolipids, and glycerophospholipids, and downregulated genes involved in de novo synthesis of fatty acids (fas, acc, srebp1, and dagt2), while upregulated genes involved in fatty acid β-oxidation (pparα and cpt1). KEGG analyses revealed that EHDPP significantly disrupted glycerolipid metabolism, steroid biosynthesis and fatty acid biosynthesis pathways. Collectively, the results showed that EHDPP induced lipid reduction in zebrafish liver, possibly through inhibiting lipid synthesis and disrupting glycerolipid metabolism. Our findings provide a theoretical basis for evaluating the ecological hazards and health effects of EHDPP on glycolipid metabolism.
Collapse
Affiliation(s)
- Tao Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengyue Zhu
- National Agricultural Science Observing and Experimental Station of Chongqing, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430073, China
| | - Christer Hogstrand
- King's College London, Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, United Kingdom
| | - Boqun Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xikai Yue
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China; Engineering Research Center of Green development for Conventional Aquatic, Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
4
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
Zhang W, Giesy JP, Wang P. Organophosphate esters in agro-foods: Occurrence, sources and emerging challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154271. [PMID: 35245542 DOI: 10.1016/j.scitotenv.2022.154271] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Safety and sustainable agro-food production is important for food and nutrition security. Agro-foods safety is challenged by various emerging environmental contaminants. Organophosphate esters (OPEs) have been reported to occur in various agro-food items worldwide, which has resulted in increasing concerns for effects on health of humans and wildlife, including through agriculture. However, information on presence, sources and transfer routes of OPEs in agro-foods, and consequent health risks remains scant. This review critically evaluates available information on concentrations of OPEs in various agro-foods, and discusses potential sources of OPEs in agro-foods, which are closely related to the ambient agri-environment, agricultural inputs, and agro-foods processing. Some directions for future research are suggested. First, since food is an important exposure pathway to OPEs, systematic monitoring of concentrations of OPEs in various categories of agro-foods is recommended. Second, surveillance of concentrations and characteristics of OPEs in agro-foods and ambient agri-environments, agricultural inputs or processing in the agro-food chain is needed to obtain a more complete description of exposure and transmission behavior of OPEs in agro-foods. Third, future comprehensive studies of transmission, metabolism and accumulation of OPEs in animals or plants, are required. Finally, measures to control emissions of OPEs as sources to agriculture should be taken.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, PR China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
6
|
Yu M, Li X, Liu B, Li Y, Liu L, Wang L, Song L, Wang Y, Hu L, Mei S. Organophosphate esters in children and adolescents in Liuzhou city, China: concentrations, exposure assessment, and predictors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39310-39322. [PMID: 35098472 DOI: 10.1007/s11356-021-18334-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Dermal contact with dust is commonly considered an important pathway of exposure to organophosphate esters (OPEs), but the importance of OPE uptake from diet is unclear. Herein, we used hand wipes to estimate OPE exposure from indoor dust and examined whether urinary OPE metabolite concentrations were influenced by sociodemographic characteristics, OPE amount in hand wipes, and dietary factors. OPEs were measured in urine and hand wipes from 6 to 18-year-old children and adolescents (n=929) in Liuzhou, China. Sociodemographic and dietary factors were obtained from questionnaire. Six OPE metabolites were detected in >70% of the urine samples, and seven OPEs were detected in >50% of the hand wipes. Estimated daily intakes (EDIs) were calculated using urinary OPE metabolites to investigate the total daily intake of OPEs, in which 0.36-10.1% of the total intake was attributed to the exposure from dermal absorption. In multivariate linear regression models, sex, age, and maternal education were significant predictors of urinary OPE metabolite concentrations. Urinary diphenyl phosphate (DPHP) is positively associated with its parent compounds 2-ethylhexyl-diphenyl phosphate (EHDPP) and triphenyl phosphate (TPHP) in hand wipes. High versus low vegetable intake was associated with a 23.7% higher DPHP (95% confidence interval (CI): 0.51%, 52.1%). Barreled water drinking was associated with a 30.4% (95% CI: 11.8%, 52.0%) increase in bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP) compared to tap water drinking. Our results suggested the widespread exposure to OPEs in children and adolescents. In addition to dermal absorption, dietary intake may be an important exposure source of certain OPEs.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Bingqing Liu
- Department of Women's Healthcare, Women's Hospital, Zhejiang University School of Medicine, #1 Xueshi Road, Hangzhou, 310006, Zhejiang, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Liu Y, Zhu T, Xie Z, Deng C, Qi X, Hu R, Wang J, Chen J. Human Exposure to Chlorinated Organophosphate Ester Flame Retardants and Plasticizers in an Industrial Area of Shenzhen, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053126. [PMID: 35270815 PMCID: PMC8910577 DOI: 10.3390/ijerph19053126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022]
Abstract
Human exposure to organophosphate esters (OPEs) is more pervasive in industrial areas manufacturing OPE-related products. OPE exposure is of great concern due to its associations with adverse health effects, while studies on OPE exposure in industrial districts are scarce. This study aimed to assess human exposure to OPEs in a typical industrial area producing large amounts of OPE-related products in Shenzhen, China. Tris (2-chloroethyl)-phosphate (TCEP), tris (2-chloroisopropyl) phosphate (TCPP) and other common OPEs were analyzed in urine (n = 30) and plasma (n = 21) samples. Moreover, we measured five OPE metabolites (mOPEs) in plasma samples (n = 21). The results show that TCPP and TCEP are dominant compounds, with moderate to high levels compared with those reported in urine and plasma samples from other regions. In addition, di-n-butyl phosphate (DnBP) and diethyl phosphite (DEP) were frequently detected in plasma samples and could be considered as biomarkers. Risk assessment revealed a moderate to high potential health risk from TCEP exposure. Our results provide basic data for human exposure to OPEs in industrial areas and call for the prevention and mitigation of industrial chlorinated OPE pollution.
Collapse
Affiliation(s)
- Yunlang Liu
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
- Correspondence: (T.Z.); (Z.X.)
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
- Correspondence: (T.Z.); (Z.X.)
| | - Chen Deng
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
| | - Xiujuan Qi
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
| | - Rong Hu
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
| | - Jinglin Wang
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
| | - Jianyi Chen
- State Environmental Protection Key Laboratory of Managing Technology of Drinking Water Source, Shenzhen Key Laboratory of Emerging Contaminants Detection & Control in Water Environment, Shenzhen Academy of Environmental Science, Shenzhen 518001, China; (C.D.); (X.Q.); (R.H.); (J.W.); (J.C.)
| |
Collapse
|
8
|
Ji X, Li N, Ma M, Li X, Zhu K, Rao K, Wang Z, Wang J, Fang Y. Comparison of the mechanisms of estrogen disrupting effects between triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113069. [PMID: 34890987 DOI: 10.1016/j.ecoenv.2021.113069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
As the typical aryl-organophosphate flame retardants (OPFRs), triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to be estrogen disruptors. However, estrogen receptor α (ERα) binding experiments could not explain their biological effects. In this study, their action on ERα, G protein-coupled estrogen receptor (GPER) and the synthesis of 17β-estradiol (E2) were investigated using in vitro assays and molecular docking. The results showed that TPhP acted as an ERα agonist and recruited steroid receptor co-activator 1 (SRC1) and 3 (SRC3), which was found for the first time. Unlike TPhP, TDCIPP acted as an ERα antagonist. However, both TPhP and TDCIPP activated the estrogen pathway by GPER in SKBR3 cells which were lack of ERα. Although molecular docking results revealed that both TPhP and TDCIPP could dock into ERα and GPER, their substituent groups and combination mode might affect the receptor activation. In addition, by using estrogen biosynthesis assay in H295R cells, both of TPhP and TDCIPP were found to promote E2 synthesis and E2/T ratio involving their different alteration on levels of progesterone, testosterone and estrone, and expression of various key genes. Our data proposed estrogen-disrupting mechanism frameworks of TPhP and TDCIPP. Moreover, our results will contribute to future construction of adverse outcome pathway (AOP) framework of endocrine disruptors.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266000, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinyan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| |
Collapse
|
9
|
Jia LL, Zhang YJ, Gao CJ, Guo Y. Parabens and bisphenol A and its structural analogues in over-the-counter medicines from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45266-45275. [PMID: 33860894 DOI: 10.1007/s11356-021-13931-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceuticals, such as over-the-counter (OTC) medicines, may be an important source of human exposure to several endocrine disruptors, though unnoticed to date. In the present study, we investigated the presence of six parabens and nine bisphenol A (BPA) and its analogues in OTC medicines manufactured in China. Parabens and bisphenols were present in more than 90% of the samples. The total measured concentrations of parabens and bisphenols were in the range of non-detectable (ND) to 213 ng/g and ND to 415 ng/g, respectively. Regarding parabens, methyl paraben (MeP) was the predominant analog, accounting for 43 ± 36% of the total amount, followed by ethyl paraben (EtP) (39 ± 35%), and others (< 10%). Bisphenol F and BPA were the predominant bisphenols, accounting for 24 ± 28% and 22 ± 26% of the total amount, respectively. The median values of estimated daily intakes (EDIs) of parabens and bisphenols were the highest for infants (2.96 and 3.14 ng/kg_bw/day, respectively) and the lowest for adults (0.69 and 0.25 ng/kg_bw/day, respectively); moreover, the EDIs of parabens and bisphenols were higher in Chinese patent medicines than in western pediatric medicines. The hazard quotient (HQ) for sum of MeP and EtP (∑(MeP + EtP)) and BPA in three age groups were within the safe zone (HQ < 0.0004). Monte Carlo simulation was applied to predict the human exposure risk of parabens and bisphenols. The predicted ranges of EDIs of parabens and bisphenols were much wider, and the extreme predicted values were observed in all four age groups, which were higher than the acceptable daily intake. The extreme predicted values of ∑(MeP + EtP) and BPA were indicative of carcinogenic risk in toddlers. These results implied potential risks for the Chinese people existed. Considering the huge export of Chinese traditional medicines and western medicines worldwide, and easy access to OTC medicines for the general population, the presence of parabens, bisphenols, and other environmental contaminants in medicines still need to be monitored.
Collapse
Affiliation(s)
- Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Chong-Jing Gao
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Garí M, Moos R, Bury D, Kasper-Sonnenberg M, Jankowska A, Andysz A, Hanke W, Nowak D, Bose-O’Reilly S, Koch HM, Polanska K. Human-Biomonitoring derived exposure and Daily Intakes of Bisphenol A and their associations with neurodevelopmental outcomes among children of the Polish Mother and Child Cohort Study. Environ Health 2021; 20:95. [PMID: 34433458 PMCID: PMC8390261 DOI: 10.1186/s12940-021-00777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is an industrial chemical mostly used in the manufacture of plastics, resins and thermal paper. Several studies have reported adverse health effects with BPA exposures, namely metabolic disorders and altered neurodevelopment in children, among others. The aim of this study was to explore BPA exposure, its socio-demographic and life-style related determinants, and its association with neurodevelopmental outcomes in early school age children from Poland. METHODS A total of 250 urine samples of 7 year-old children from the Polish Mother and Child Cohort Study (REPRO_PL) were analyzed for BPA concentrations using high performance liquid chromatography with online sample clean-up coupled to tandem mass spectrometry (online-SPE-LC-MS/MS). Socio-demographic and lifestyle-related data was collected by questionnaires or additional biomarker measurements. Emotional and behavioral symptoms in children were assessed using mother-reported Strengths and Difficulties Questionnaire (SDQ). Cognitive and psychomotor development was evaluated by Polish adaptation of the Intelligence and Development Scales (IDS) performed by trained psychologists. RESULTS Urinary BPA concentrations and back-calculated daily intakes (medians of 1.8 μg/l and 46.3 ng/kg bw/day, respectively) were similar to other European studies. Urinary cotinine levels and body mass index, together with maternal educational level and socio-economic status, were the main determinants of BPA levels in Polish children. After adjusting for confounding factors, BPA has been found to be positively associated with emotional symptoms (β: 0.14, 95% CI: 0.022; 0.27). Cognitive and psychomotor development were not found to be related to BPA levels. CONCLUSIONS This study represents the first report of BPA levels and their determinants in school age children in Poland. The exposure level was found to be related to child emotional condition, which can have long-term consequences including social functioning and scholastic achievements. Further monitoring of this population in terms of overall chemical exposure is required.
Collapse
Affiliation(s)
- Mercè Garí
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich. Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Rebecca Moos
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Agnieszka Jankowska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Aleksandra Andysz
- Department of Health and Work Psychology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Wojciech Hanke
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Stephan Bose-O’Reilly
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Holger M. Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bochum, Germany
| | - Kinga Polanska
- Department of Environmental and Occupational Health Hazards, Nofer Institute of Occupational Medicine (NIOM), Lodz, Poland
| |
Collapse
|
11
|
Choi Y, Kim SD. Identification and Toxicity Prediction of Biotransformation Molecules of Organophosphate Flame Retardants by Microbial Reactions in a Wastewater Treatment Plant. Int J Mol Sci 2021; 22:ijms22105376. [PMID: 34065337 PMCID: PMC8160787 DOI: 10.3390/ijms22105376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Organophosphate flame retardants (OPFRs) are substances added to plastics, textiles, and furniture, and are used as alternatives to brominated flame retardants. As the use of OPFRs increases in the manufacturing industry, the concentration in the aquatic environment is also increasing. In this study, OPFRs introduced into a wastewater treatment plant (WWTP) were identified, and the toxicity of biotransformation molecules generated by the biological reaction was predicted. Tris(2-butoxyethyl) phosphate, tris(2-butoxyethyl) phosphate, and triphenyl phosphate were selected as research analytes. Chemicals were analyzed using high-resolution mass spectrometry, and toxicity was predicted according to the structure. As a result, tris(1-chloro-2-propyl) phosphate showed the highest concentration, and the removal rate of OPFRs in the WWTP was 0–57%. A total of 15 biotransformation products were produced by microorganisms in the WWTP. Most of the biotransformation products were predicted to be less toxic than the parent compound, but some were highly toxic. These biotransformation products, as well as OPFRs, could flow into the water from the WWTP and affect the aquatic ecosystem.
Collapse
Affiliation(s)
- Yeowool Choi
- Convergence Technology Research Center, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Center for Chemicals Risk Assessment, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
- Correspondence:
| |
Collapse
|
12
|
Zhong X, Yu Y, Wang C, Zhu Q, Wu J, Ke W, Ji D, Niu C, Yang X, Wei Y. Hippocampal proteomic analysis reveals the disturbance of synaptogenesis and neurotransmission induced by developmental exposure to organophosphate flame retardant triphenyl phosphate. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124111. [PMID: 33189059 DOI: 10.1016/j.jhazmat.2020.124111] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
With the spread of organophosphorus flame retardants (OPFRs), the environmental and health risks they induce are attracting attention. Triphenyl phosphate (TPHP) is a popular alternative to brominated flame retardant and halogenated OPFRs. Neurodevelopmental toxicity is TPHP's primary adverse effect, whereas the biomarkers and the modes of action have yet to be elucidated. In the present study, 0.5, 5, and 50 mg/kg of TPHP were orally administered to mice from postnatal day 10 (P10) to P70. The behavioral tests showed a compromised learning and memory capability. Proteomic analysis of the hippocampus exposed to 0.5 or 50 mg/kg of TPHP identified 531 differentially expressed proteins that were mainly involved in axon guidance, synaptic function, neurotransmitter transport, exocytosis, and energy metabolism. Immunoblot and immunofluorescence analysis showed that exposure to TPHP reduced the protein levels of TUBB3 and SYP in the synapses of hippocampal neurons. TPHP exposure also downregulated the gene expression of neurotransmitter receptors including Grins, Htr1α, and Adra1α in a dose-dependent fashion. Moreover, the calcium-dependent synaptic exocytosis governed by synaptic vesicle proteins STX1A and SYT1 was inhibited in the TPHP-treated hippocampus. Our results reveal that TPHP exposure causes abnormal learning and memory behaviors by disturbing synaptogenesis and neurotransmission.
Collapse
Affiliation(s)
- Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuejin Yu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Can Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qicheng Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingwei Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Ke
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Congying Niu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Subject of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518172, China
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Li N, Ying GG, Hong H, Tsang EPK, Deng WJ. Plasticizer contamination in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116394. [PMID: 33388685 DOI: 10.1016/j.envpol.2020.116394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Common plasticizers and their alternatives are environmentally ubiquitous and have become a global problem. In this study, common plasticizers (phthalates and metabolites) and new alternatives [bisphenol analogs, t-butylphenyl diphenyl phosphate (BPDP), and bisphenol A bis(diphenyl phosphate) (BDP)] were quantified in urine and hair samples from children in Hong Kong, drinking water (tap water/bottled water) samples, and airborne particle samples from 17 kindergartens in Hong Kong. The results suggested that locally, children were exposed to various plasticizers and their alternatives. High concentrations of BPDP and BDP were present in urine, hair, tap water, bottled water, and air particulate samples. The geometric mean (GM) concentrations of phthalate metabolites in urine samples (126-2140 ng/L, detection frequencies < 81%) were lower than those detected in Japanese and German children in previous studies. However, a comparison of the estimated daily intake values for phthalates in tap water [median: 10.7-115 ng/kg body weight bw/day] and air particles (median: 1.23-7.39 ng/kg bw/day) with the corresponding reference doses indicated no risk. Bisphenol analogs were detected in 15-64% of urine samples at GM concentrations of 5.26-98.1 ng/L, in 7-74% of hair samples at GM concentrations of 57.5-2390 pg/g, in 59-100% of kindergarten air samples at GM concentrations of 43.1-222 pg/m3, and in 33-100% of tap water samples at GM concentrations of 0.90-3.70 ng/L. A significant correlation was detected between the concentrations of bisphenol F in hair and urine samples (r = 0.489, p < .05). The estimated daily urinary excretion values of bisphenol analogs suggest that exposure among children via tap water intake and airborne particle inhalation in kindergartens cannot be ignored in Hong Kong.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, SAR, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Eric Po Keung Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, SAR, China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, SAR, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Li N, Ying GG, Hong H, Deng WJ. Perfluoroalkyl substances in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116219. [PMID: 33401204 DOI: 10.1016/j.envpol.2020.116219] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Seven perfluorinated and polyfluorinated substances (PFASs), namely perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoro-1,10-decanedicarboxylic acid (PFDDA), were evaluated in urine and hair samples from children (age: 4-6 years, N = 53), airborne particles sampled at 17 kindergartens, and tap water and bottled water samples. All samples were collected in Hong Kong. The analytical results suggested widespread PFAS contamination. All target PFASs were detected in at least 32% of urine samples, with geometric mean (GM) concentrations ranging from 0.18 to 2.97 ng/L, and in 100% of drinking water samples at GM concentrations of 0.18-21.1 ng/L. Although PFOS and PFDDA were not detected in hair or air samples, the other target PFASs were detected in 48-70% of hair samples (GM concentrations: 2.40-233 pg/g) and 100% of air samples (GM concentrations: 14.8-536.7 pg/m3). In summary, the highest PFAS concentrations were detected in airborne particles measured in kindergartens. PFOA was the major PFAS detected in hair, urine, and drinking water samples, while PFOA, PFDA, and PFHpA were dominant in airborne particles. Although a significant difference in PFAS concentrations in hair samples was observed between boys and girls (p < .05), no significant sex-related difference in urinary PFAS or paired PFAS (hair/urine) concentrations was observed.
Collapse
Affiliation(s)
- Na Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong SAR, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wen-Jing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong SAR, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|