1
|
Lai C, Zhan J, Chai Q, Wang C, Yang X, He H, Huang B, Pan X. Dissolved carbon in biochar: Exploring its chemistry, iron complexing capability, toxicity in natural redox environment. J Environ Sci (China) 2025; 147:217-229. [PMID: 39003041 DOI: 10.1016/j.jes.2023.09.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 07/15/2024]
Abstract
Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.
Collapse
Affiliation(s)
- Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Qiuyun Chai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Changlu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Hemmat-Jou MH, Liu S, Liang Y, Chen G, Fang L, Li F. Microbial arsenic methylation in soil-water systems and its environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173873. [PMID: 38879035 DOI: 10.1016/j.scitotenv.2024.173873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
In this review, we have summarized the current knowledge about the environmental importance, relevance, and consequences of microbial arsenic (As) methylation in various ecosystems. In this regard, we have presented As biomethylation in terrestrial and aquatic ecosystems particularly in rice paddy soils and wetlands. The functions of As biomethylation by microbial consortia in anaerobic and aerobic conditions are extensively discussed. In addition, we have tried to explain the interconnections between As transformation and carbon (C), such as microbial degradation of organic compounds and methane (CH4) emission. These processes can cause As release because of the reduction of arsenate (As(V)) to the more mobile arsenite (As(III)) as well as As methylation and the formation of toxic trivalent methylated As species in anaerobic conditions. Furthermore, the sulfur (S) transformation can form highly toxic thiolated As species owing to its interference with As biomethylation. Besides, we have focused on many other mutual interlinks that remain elusive between As and C, including As biomethylation, thiolation, and CH4 emission, in the soil-water systems. Recent developments have clarified the significant and complex interactions between the coupled microbial process in anoxic and submerged soils. These processes, performed by little-known/unknown microbial taxa or well-known members of microbial communities with unrecognized metabolic pathways, conducted several concurrent reactions that contributed to global warming on our planet and have unfavorable impacts on water quality and human food resources. Finally, some environmental implications in rice production and arsenic removal from soil-water systems are discussed. Generally, our understanding of the ecological and metabolic evidence for the coupling and synchronous processes of As, C, and S are involved in environmental contamination-caused toxicity in human food, including high As content in rice grain, water resources, and global warming through methanogenesis elucidate combating global rice safety, drinking water, and climate changes.
Collapse
Affiliation(s)
- Mohammad Hossein Hemmat-Jou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Sujie Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yongmei Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Borda L, Bia G, Borgnino L, Chiaramonte N, García MG. Understanding arsenic-ulexite interactions in evaporite environments: Evidence from XRPD, micro-XRF, micro-FT-IR, and XPS studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134547. [PMID: 38772104 DOI: 10.1016/j.jhazmat.2024.134547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
World-class borate deposits often form from As-rich waters, this study addresses the understudied association of arsenic (As) species with evaporite borates, focusing on the Puna region's borate deposits (Central Andes of Argentina). The research aims to characterize the association between borate minerals and high As concentrations in brines and thermal waters. To achieve this, five borate samples were collected from the Olaroz salt flat nucleus and thermal springs, alongside associated water samples. Comprehensive analytical techniques, including ICP-MS, ICP-OES, synchrotron-based micro-XRF, XRPD, Rietveld analysis, micro-FT-IR, and XPS, were employed to determine bulk and surface chemical compositions, mineral identification, and solid speciation of As and boron. The study reveals that under oxidizing conditions and in absence of organic matter, aqueous arsenic species interact with ulexite through a stepwise process involving charge neutralization, cationic bridge formation, and surface complex formation with polyborate and As(V) oxyanions. However, in environments associated with microbial mats or organic-rich sediments, the dissolved As(V) is reduced to As(III), which forms complexes with functional groups of organic matter. The coexistence of As(III) and As(V) in specific layers suggests potential remediation strategies targeting organic matter for the removal of the more toxic As(III) in similar geological settings.
Collapse
Affiliation(s)
- L Borda
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - G Bia
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Borgnino
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - N Chiaramonte
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G García
- Centro de Investigaciones en Ciencias de la Tierra, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Schiavo M, Giambastiani BMS, Greggio N, Colombani N, Mastrocicco M. Geostatistical assessment of groundwater arsenic contamination in the Padana Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172998. [PMID: 38714254 DOI: 10.1016/j.scitotenv.2024.172998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Arsenic (As) in groundwater from natural and anthropogenic sources is one of the most common pollutants worldwide affecting people and ecosystems. A large dataset from >3600 wells is employed to spatially simulate the depth-averaged As concentration in phreatic and confined aquifers of the Padana Plain (Northern Italy). Results of in-depth geostatistical analysis via PCA and simulations within a Monte Carlo framework allow the understanding of the variability of As concentrations within the aquifers. The most probable As contaminated zones are located along the piedmont areas in the confined aquifers and in the lowland territories in the phreatic aquifers. The distribution of the As contaminated zones has been coupled with hydrogeological, geological, and geochemical information to unravel the sources and mechanisms of As release in groundwater. The reductive dissolution of Fe oxyhydroxides and organic matter mineralization under anoxic conditions resulted to be the major drivers of As release in groundwater. This phenomenon is less evident in phreatic aquifers, due to mixed oxic and reducing conditions. This large-scale study provides a probabilistic perspective on As contamination, e.g. quantifying the spatial probability of exceeding national regulatory limits, and to outline As major sources and drivers.
Collapse
Affiliation(s)
- Massimiliano Schiavo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, Via dell' Università 16, 35020 Legnaro, (PD), Italy
| | - Beatrice M S Giambastiani
- Department of Biological, Geological and Environmental Sciences (BiGeA) at Interdepartmental Centre for Environmental Sciences Research (CIRSA), Alma Mater Studiorum University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Nicolas Greggio
- Department of Biological, Geological and Environmental Sciences (BiGeA) at Interdepartmental Centre for Environmental Sciences Research (CIRSA), Alma Mater Studiorum University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Nicolò Colombani
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy.
| | - Micòl Mastrocicco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Campania University "Luigi Vanvitelli", Via A. Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
5
|
Zang S, Zhang Q, Hu B, Zhang Y, Pu JH, Lv M. Effective Technique and Mechanism for Simultaneous Adsorption of As(III/V) from Wastewater by Fe-ZIF-8@MXene. TOXICS 2024; 12:419. [PMID: 38922099 PMCID: PMC11209527 DOI: 10.3390/toxics12060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Arsenic (As) contamination of surface water has become a global concern, especially for the third world countries, and it is imperative to develop advanced materials and an effective treatment method to address the issue. In this paper, iron doped ZIF-8@MXene (Fe-ZIF-8@MXene) was prepared as a potential adsorbent to effectively and simultaneously remove As(III/V) from wastewater. To investigate this, Fe-ZIF-8@MXene was characterized before and after the removal of mixed As(III/V). The results of Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), specific surface area (BET) and point of zero charge (pHpzc) showed that Fe-ZIF-8@MXene was prepared successfully and kept a stable structure after As(III) and As(V) adsorption. The particle size of Fe-ZIF-8@MXene was in the range of 0.5 μm to 2.5 μm, where its BET was 531.7 m2/g. For both contaminants, adsorption was found to follow pseudo-second-order kinetics and was best-fitted by the Langmuir adsorption model with correlation coefficients (R2) of 0.998 and 0.997, for As(III) and As(V), respectively. The adsorbent was then applied to remove As from two actual water samples, giving maximum removal rates of 91.07% and 98.96% for As(III) and As(V), respectively. Finally, removal mechanisms for As(III/V) by Fe-ZIF-8@MXene were also explored. During the adsorption, multiple complexes were formed under the effect of its abundant surface functional groups involving multiple mechanisms, which included Van der Waals force, surface adsorption, chemical complexation and electrostatic interactions. In conclusion, this study demonstrated that Fe-ZIF-8@MXene was an advanced and reusable material for simultaneous removal of As(III/V) in wastewater.
Collapse
Affiliation(s)
- Shuyan Zang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK
| | - Qing Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Baoli Hu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Yaqian Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| | - Jaan H. Pu
- Faculty of Engineering and Digital Technologies, University of Bradford, Bradford BD7 1DP, UK
| | - Meiheng Lv
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; (S.Z.)
| |
Collapse
|
6
|
Wang H, Su Y, Liu Y, Xie F, Zhou X, Yu R, Lü C, He J. Water-soluble brown carbon in atmospheric aerosols from the resource-dependent cities: Optical properties, chemical compositions and sources. J Environ Sci (China) 2024; 138:74-87. [PMID: 38135435 DOI: 10.1016/j.jes.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 12/24/2023]
Abstract
As a vital type of light-absorbing aerosol, brown carbon (BrC) presents inherent associations with atmospheric photochemistry and climate change. However, the understanding of the chemical and optical properties of BrC is limited, especially in some resource-dependent cities with long heating periods in northwest China. This study showed that the annual average abundances of Water-soluble BrC (WS-BrC) were 9.33±7.42 and 8.69±6.29 µg/m3 in Baotou and Wuhai and the concentrations, absorption coefficient (Abs365), and mass absorption efficiency (MAE365) of WS-BrC presented significant seasonal patterns, with high values in the heating season and low values in the non-heating season; while showing opposite seasonal trends for the Absorption Ångström exponent (AAE300-400). Comparatively, the levels of WS-BrC in developing regions (such as cities in Asia) were higher than those in developed regions (such as cities in Europe and Australia), indicating the significant differences in energy consumption in these regions. By combining fluorescence excitation-emission matrix (EEM) spectra with the parallel factor (PARAFAC) model, humic-like (C1 and C2) and protein-like (C3) substances were identified, and accounted for 61.40%±4.66% and 38.6%±3.78% at Baotou, and 60.33%±6.29% and 39.67%±4.17% at Wuhai, respectively. The results of source apportionment suggested that the potential source regions of WS-BrC varied in heating vs. non-heating seasons and that the properties of WS-BrC significantly depended on primary emissions (e.g., combustion emissions) and secondary formation.
Collapse
Affiliation(s)
- Haoji Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China
| | - Yue Su
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| | - Yangzheng Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China
| | - Fei Xie
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Environmental Monitoring Center of Inner Mongolia, Hohhot 010011, China
| | - Xingjun Zhou
- Environmental Monitoring Center of Inner Mongolia, Hohhot 010011, China
| | - Ruihong Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
7
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Zhao Y, Zhang X, Jian Z, Gong Y, Meng X. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5032-5042. [PMID: 38148459 DOI: 10.1007/s11356-023-31629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic's migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhiqiang Jian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaping Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
9
|
Khan I, Khan MU, Umar R, Rai N. Occurrence, speciation, and controls on arsenic mobilization in the alluvial aquifer system of the Ghaghara basin, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7933-7956. [PMID: 37505348 DOI: 10.1007/s10653-023-01691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
High concentrations of arsenic (As) in groundwater are among the long-standing environmental problems on the planet. Due to adverse impacts on the human and aquatic system, characterization and quantification of individual inorganic As species are crucial in understanding the occurrence, environmental fate, behaviour, and toxicity in natural waters. This study presents As concentration and its speciation As(III) and As(V) data, including the interrelationship with other major and trace aqueous solutes from parts of the Ghaghara basin, India. More than half (57%) of the groundwater samples exhibited elevated As concentrations (> 10 μg/L), whereas 67.4% of samples have higher As(III) values relative to As(V), signifying a potential risk of As(III) toxicity. The elevated concentration of As was associated with higher Fe, Mn, and HCO3-, especially in samples from shallow well depth. PHREEQC modeling demonstrates the presence of mineral phases such as hematite, goethite, rhodochrosite, etc. Therefore, it is inferred that the release of As from sediment particles into pore water via microbially mediated Fe/Mn oxyhydroxides, and As(V) reduction processes mainly control high As concentrations. The heavy metal pollution indices (HPI) and (HEI) values revealed heavy metal pollution in low-lying areas deposited by relatively younger sediments along the Ghaghara River. Large-scale agricultural practices, overexploitation of groundwater, and indiscriminate sewage disposal, in addition to geogenic factors, cannot be ruled out as potential contributors to As mobilization in the region. This study recommends conducting seasonal hydrogeochemical monitoring and investigating regional natural background levels of As, to precisely understand the controlling mechanistic pathways of As release.
Collapse
Affiliation(s)
- Imran Khan
- Department of Geology, Aligarh Muslim University, Aligarh, UP, 202002, India.
| | - M U Khan
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Roorkee, 247 667, India
| | - Rashid Umar
- Department of Geology, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Nachiketa Rai
- Department of Earth Sciences, Indian Institute of Technology, Roorkee, Roorkee, 247 667, India
| |
Collapse
|
10
|
Liu W, Qian K, Xie X, Xiao Z, Xue X, Wang Y. Co-occurrence of arsenic and iodine in the middle-deep groundwater of the Datong Basin: From the perspective of optical properties and isotopic characteristics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121686. [PMID: 37105462 DOI: 10.1016/j.envpol.2023.121686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Redox processes can induce arsenic (As) and iodine (I) transformation and thus change As and I co-occurrence, yet there is no evidence that Fe-C-S coupled redox processes have such an impact on the co-occurrence of As and I. To fill this gap, middle-deep groundwater from the Datong Basin were samples for the purpose of exploring how dissolved organic matter (DOM) reactivity affects As and I enrichment and how iron reduction and sulfate reduction processes influence As and I co-occurrence. We identified three DOM components: reduced and oxidized quinone compounds (C1 and C3) and a labile DOM from terrestrial inputs (C2). Two pathways of DOM processing take place in the aquifer, including the degradation of labile DOM to HCO3- and the transformation of oxidized quinone compounds to reduced quinone compounds. Electrons transfer drives the reduction of the terminal electron acceptors. The supply of electrons promotes the reduction of iron and sulfate by microbes, enhancing As and I co-enrichment in groundwater. Thus, the reduction processes of iron and sulfate triggered by the dual roles of DOM affect dissolved As and I co-enrichment. As and I biogeochemical cycling interacts with C, Fe, and S cycling. These results provide isotopic and fluorescence evidence that explains the co-occurrence of arsenic and iodine in middle-deep aquifers.
Collapse
Affiliation(s)
- Wenjing Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Kun Qian
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China.
| | - Xianjun Xie
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Ziyi Xiao
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| | - Xiaobin Xue
- Hydrogeology and Engineering Geology Institute of Hubei Geological Bureau, Jingzhou, Hubei, 434020, China
| | - Yanxin Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, 430074, Wuhan, China
| |
Collapse
|
11
|
Chen J, Qu C, Lu M, Zhang M, Wu Y, Gao C, Huang Q, Cai P. Extracellular polymeric substances and mineral interfacial reactions control the simultaneous immobilization and reduction of arsenic (As(V)). JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131651. [PMID: 37245361 DOI: 10.1016/j.jhazmat.2023.131651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Extracellular polymeric substances (EPS) play a crucial role in controlling the mobility and bioavailability of heavy metal(loid)s in water, soils, and sediments. The formation of EPS-mineral complex changes the reactivity of the end-member materials. However, little is known about the adsorption and redox mechanisms of arsenate (As(V)) in EPS and EPS-mineral complexes. Here we examined the reaction sites, valence state, thermodynamic parameters and distribution of As in the complexes using potentiometric titration, isothermal titration calorimetry (ITC), FTIR, XPS, and SEM-EDS. The results showed that ∼54% of As(V) was reduced to As(III) by EPS, potentially driven by an enthalpy change (ΔH) of - 24.95 kJ/mol. The EPS coating on minerals clearly affected the reactivity to As(V). The strong masking of functional sites between EPS and goethite inhibited both the adsorption and reduction of As. In contrast, the weak binding of EPS onto montmorillonite retained more reactive sites for the reaction with As. Meanwhile, montmorillonite facilitated the immobilization of As to EPS through the formation of As-organic bounds. Our findings deepen the understanding of EPS-mineral interfacial reactions in controlling the redox and mobility of As, and the knowledge is important for predicting the behavior of As in natural environments.
Collapse
Affiliation(s)
- Jinzhao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| | - Man Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yichao Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhui Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Liu X, Cai X, Wang P, Yin N, Fan C, Chang X, Huang X, Du X, Wang S, Cui Y. Effect of manganese oxides on arsenic speciation and mobilization in different arsenic-adsorbed iron-minerals under microbially-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130602. [PMID: 37055999 DOI: 10.1016/j.jhazmat.2022.130602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/19/2023]
Abstract
The oxidation and immobilization of arsenic (As) by manganese oxides have been shown to reduce As toxicity and bioavailability under abiotic conditions. In this study, we investigate the impact of manganese oxide (δ-MnO2) on the fate of different Fe-minerals-adsorbed As in the presence of As(V)-reducing bacteria Bacillus sp. JQ. Results showed that in the absence of δ-MnO2, As release in goethite was much higher than in ferrihydrite and hematite during microbial reduction. Adding 3.1 mM Mn reduced As release by 0.3%, 46.3%, and 6.7% in the ferrihydrite, goethite, and hematite groups, respectively. However, aqueous As was dominated by As(III) in the end, because the oxidation effect of δ-MnO2 was limited and short-lived. Additionally, the fraction of solid-phase As(V) increased by 9.8% in ferrihydrite, 39.4% in goethite, and 7.4% in hematite in the high-Mn treatments, indicating that δ-MnO2 had the most significant oxidation and immobilization effect on goethite-adsorbed As. This was achieved because goethite particles were evenly distributed on δ-MnO2 surface, which supported As(III) oxidation by δ-MnO2; while ferrihydrite strongly aggregated, which hindered the oxidation of As(III). Our study shows that As-oxidation and immobilization by manganese oxides cannot easily be assessed without considering the mineral composition and microbial conditions of soils.
Collapse
Affiliation(s)
- Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chuanfang Fan
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xuhan Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xin Du
- CHINALCO Environmental protection and Energy Conservation Group Co. Ltd., Beijing 102209, PR China
| | - Shuping Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, PR China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
13
|
Xia X, Teng Y, Zhai Y. Influence of DOM and microbes on Fe biogeochemistry at a riverbank filtration site. ENVIRONMENTAL RESEARCH 2023; 216:114430. [PMID: 36181893 DOI: 10.1016/j.envres.2022.114430] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Riverbank filtration (RBF) constitutes an important part of the water cycle, which involves active natural filtration leading to pollution of river water being intercepted and retained. The RBF has the function of water purification, but retention of exogenous pollutants in the RBF system complicates biogeochemical processes due to the presence of primary active components. In this study, we verified the essential role of microbial mediation during the interactions between primary Fe minerals in the RBF system and dissolved organic matter (DOM) in river water based on lab-scale experiments. The results demonstrated that DOM from infiltration of river water increased the amount of iron (Fe) released from the sediment in RBF, leading to an increase in Fe concentration in groundwater by higher than one order of magnitude. In particular, the existence of Fe bacteria even made this effect more thorough and more complex. Abiotic reduction was shown to play a more significant role in increasing Fe release than microbe-mediated reduction. Increasing the amount of Fe released could change the distribution of Fe minerals at the sediment surface, thereby affecting the structure of the microbial community in the RBF system and decreasing the DOM concentration in the groundwater. Moreover, As and Mn were found to behave in a similar manner as Fe due to their close biochemical properties when interacting with primary minerals in sediment. This study not only provides mechanistic insight into the higher Fe concentrations encountered in the groundwater of nearby rivers but also has important practical implications for developing nature-based technologies for water pollution control and environmental remediation.
Collapse
Affiliation(s)
- Xuelian Xia
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
14
|
Venegas-García DJ, Wilson LD. Utilization of Bioflocculants from Flaxseed Gum and Fenugreek Gum for the Removal of Arsenicals from Water. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8691. [PMID: 36500187 PMCID: PMC9740097 DOI: 10.3390/ma15238691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 10/30/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Mucilage-based flocculants are an alternative to synthetic flocculants and their use in sustainable water treatment relates to their non-toxic and biodegradable nature. Mucilage extracted from flaxseed (FSG) and fenugreek seed (FGG) was evaluated as natural flocculants in a coagulation-flocculation (CF) process for arsenic removal, and were compared against a commercial xanthan gum (XG). Mucilage materials were characterized by spectroscopy (FT-IR, 13C NMR), point-of-zero charge (pHpzc) and thermogravimetric analysis (TGA). Box-Behnken design (BBD) with response surface methodology (RSM) was used to determine optimal conditions for arsenic removal for the CF process for three independent variables: coagulant dosage, flocculant dosage and settling time. Two anionic systems were tested: S1, roxarsone (organic arsenate 50 mg L-1) at pH 7 and S2 inorganic arsenate (inorganic arsenate 50 mg L-1) at pH 7.5. Variable arsenic removal (RE, %) was achieved: 92.0 (S1-FSG), 92.3 (S1-FGG), 92.8 (S1-XG), 77.0 (S2-FSG), 69.6 (S2-FGG) and 70.6 (S2-XG) based on the BBD optimization. An in situ kinetic method was used to investigate arsenic removal, where the pseudo-first-order model accounts for the kinetic process. The FSG and FGG materials offer a sustainable alternative for the controlled removal of arsenic in water using a facile CF treatment process with good efficiency, as compared with a commercial xanthan gum.
Collapse
|
15
|
Peel HR, Balogun FO, Bowers CA, Miller CT, Obeidy CS, Polizzotto ML, Tashnia SU, Vinson DS, Duckworth OW. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. WATER 2022; 14:3687. [PMID: 36420182 PMCID: PMC9681123 DOI: 10.3390/w14223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenic (As), chromium (Cr), and vanadium (V) are naturally occurring, redox-active elements that can become human health hazards when they are released from aquifer substrates into groundwater that may be used as domestic or irrigation source. As such, there is a need to develop incisive conceptual and quantitative models of the geochemistry and transport of potentially hazardous elements to assess risk and facilitate interventions. However, understanding the complexity and heterogeneous subsurface environment requires knowledge of solid-phase minerals, hydrologic movement, aerobic and anaerobic environments, microbial interactions, and complicated chemical kinetics. Here, we examine the relevant geochemical and hydrological information about the release and transport of potentially hazardous geogenic contaminants, specifically As, Cr, and V, as well as the potential challenges in developing a robust understanding of their behavior in the subsurface. We explore the development of geochemical models, illustrate how they can be utilized, and describe the gaps in knowledge that exist in translating subsurface conditions into numerical models, as well as provide an outlook on future research needs and developments.
Collapse
Affiliation(s)
- Hannah R. Peel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Fatai O. Balogun
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Christopher A. Bowers
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea S. Obeidy
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | | | - Sadeya U. Tashnia
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - David S. Vinson
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Owen W. Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
16
|
Yan S, Yang J, Si Y, Tang X, Ma Y, Ye W. Arsenic and cadmium bioavailability to rice (Oryza sativa L.) plant in paddy soil: Influence of sulfate application. CHEMOSPHERE 2022; 307:135641. [PMID: 35817182 DOI: 10.1016/j.chemosphere.2022.135641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) and cadmium (Cd) accumulate easily in rice grains that pose a non-negligible threat to human health worldwide. Sulfur fertilizer has been shown to affect the mobilization of As and Cd in paddy soil, but the effect of co-contamination by As and Cd has not been explored. This study selected three soils co-contaminated with As and Cd from Shangyu (SY), Tongling (TL) and Ma'anshan (MA). Incubation experiments and pot experiments were carried out to explore the effect of sulfate supply (100 mg kg-1) on the bioavailability of As and Cd in soil and the rice growth. The results showed that the exogenous sulfate decreased As concentrations in porewater of SY and TL by 51.1% and 29.2% through forming arsenic-sulfide minerals. The exchangeable Cd in soil also declined by 25.6% and 18.6% and transformed into Fe and Mn oxides-bound Cd. The relative abundance of Desulfotomaculum, Desulfurispora and dsr gene increased remarkably indicated that sulfate addition stimulated the activity of sulfate-reducing bacteria. In MA soil, sulfate addition immobilized Cd but had little effect on As solubility, which was speculated to be related to the high sulfate background of the soil. Further pot experiments showed that sulfate application significantly increased rice tillers, biomass, chlorophyll content in shoots, and decreased electrolyte leakage in root. Finally, sulfate significantly reduced As and Cd in SY rice shoots by 60.2% and 40.8%, respectively, while As decreased by 39.6% in TL rice shoots and Cd decreased by 23.0% in MA rice shoots. These results indicate that the application of sulfate can reduce the bioavailability of As and Cd in the soil-rice system and promote rice growth, and it is possible to reduce the accumulation of As and Cd in rice plants simultaneously.
Collapse
Affiliation(s)
- Shiwei Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Jianhao Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China
| | - Xianjin Tang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, 310058, China
| | - Youhua Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Key Laboratory of Agri-Food Safety of Anhui Province, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China.
| |
Collapse
|
17
|
Jat Baloch MY, Zhang W, Zhang D, Al Shoumik BA, Iqbal J, Li S, Chai J, Farooq MA, Parkash A. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13325. [PMID: 36293904 PMCID: PMC9603767 DOI: 10.3390/ijerph192013325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 05/25/2023]
Abstract
Arsenic (As) contamination in groundwater is a worldwide concern for drinking water safety. Environmental changes and anthropogenic activities are making groundwater vulnerable in Pakistan, especially in Southern Punjab. This study explores the distribution, hydrogeochemical behavior, and pathways of As enrichment in groundwater and discusses the corresponding evolution mechanism, mobilization capability, and health risks. In total, 510 groundwater samples were collected from three tehsils in the Punjab province of Pakistan to analyze As and other physiochemical parameters. Arsenic concentration averaged 14.0 μg/L in Vehari, 11.0 μg/L in Burewala, and 13.0 μg/L in Mailsi. Piper-plots indicated the dominance of Na+, SO42-, Ca2+, and Mg2+ ions in the groundwater and the geochemical modeling showed negative saturation indices with calcium carbonate and salt minerals, including aragonite (CaCO3), calcite (CaCO3), dolomite (CaMg(CO3)2), and halite (NaCl). The dissolution process hinted at their potential roles in As mobilization in groundwater. These results were further validated with an inverse model of the dissolution of calcium-bearing mineral, and the exchange of cations between Ca2+ and Na+ in the studied area. Risk assessment suggested potential carcinogenic risks (CR > 10-4) for both children and adults, whereas children had a significant non-carcinogenic risk hazard quotient (HQ > 1). Accordingly, children had higher overall health risks than adults. Groundwater in Vehari and Mailsi was at higher risk than in Burewala. Our findings provide important and baseline information for groundwater As assessment at a provincial level, which is essential for initiating As health risk reduction. The current study also recommends efficient management strategies for As-contaminated groundwater.
Collapse
Affiliation(s)
- Muhammad Yousuf Jat Baloch
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenjing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | | | - Javed Iqbal
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shuxin Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Juanfen Chai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Anand Parkash
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang’an West Street 620, Xi’an 710119, China
| |
Collapse
|
18
|
Wang Y, Zhang L, Guo C, Gao Y, Pan S, Liu Y, Li X, Wang Y. Arsenic removal performance and mechanism from water on iron hydroxide nanopetalines. Sci Rep 2022; 12:17264. [PMID: 36241687 PMCID: PMC9568553 DOI: 10.1038/s41598-022-21707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 01/06/2023] Open
Abstract
Human health has been seriously endangered by arsenic pollution in drinking water. In this paper, iron hydroxide nanopetalines were synthesized through a precipitation method using KBH4 and their performance and mechanism of As(V) and As(III) removal were investigated. The prepared material was characterized by SEM-EDX, XRD, BET, zeta potential and FTIR analyses. Batch experiments indicated that the iron hydroxide nanopetalines exhibited more excellent performance for As(V) and As(III) removal than ferrihydrite. The adsorption processes were very fast in the first stage, followed a relatively slower adsorption rate and reached equilibria after 24 h, and the reaction could be fitted best by the pseudo-second order model, followed by the Elovich model. The adsorption isotherm data followed to the Freundlich model, and the maximal adsorption capacities of As(V) and As(III) calculated by the Langmuir model were 217.76 and 91.74 mg/g at pH 4.0, respectively, whereas these values were 187.84 and 147.06 mg/g at pH 8.0, respectively. Thermodynamic studies indicated that the adsorption process was endothermic and spontaneous. The removal efficiencies of As(V) and As(III) were significantly affected by the solution pH and presence of PO43- and citrate. The reusability experiments showed that more than 67% of the removal efficiency of As(V) could be easily recovered after four cycles. The SEM and XRD analyses indicated that the surface morphology and crystal structure before and after arsenic removal were stable. Based on the analyses of FTIR, XRD and XPS, the predominant adsorption mechanism was the formation of inner-sphere surface complexes by the surface hydroxyl exchange reactions of Fe-OH groups with arsenic species. This research provides a new strategy for the development of arsenic immobilization materials and the results confirm that iron hydroxide nanopetalines could be considered as a promising material for removing arsenic from As-contaminated water for their highly efficient performance and stability.
Collapse
Affiliation(s)
- Yulong Wang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Lin Zhang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Chen Guo
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yali Gao
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Shanshan Pan
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yanhong Liu
- grid.256922.80000 0000 9139 560XCollege of Software, Henan University, Kaifeng, 475004 China
| | - Xuhui Li
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| | - Yangyang Wang
- grid.256922.80000 0000 9139 560XNational Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004 China ,grid.256922.80000 0000 9139 560XHenan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004 China
| |
Collapse
|
19
|
Park S, Kim SH, Chung H, An J, Nam K. Effect of organic substrate and Fe oxides transformation on the mobility of arsenic by biotic reductive dissolution under repetitive redox conditions. CHEMOSPHERE 2022; 305:135431. [PMID: 35738406 DOI: 10.1016/j.chemosphere.2022.135431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
The mobility of arsenic (As) in soil is highly affected by the change in the form of iron oxides present in the soil, which has a strong correlation with the change in redox potential. In this study, the altered mobility of As under repetitive redox conditions and the effect of organic substrates (i.e., glucose) on such change during four anoxic-oxic cycles were studied. During the 1st anoxic period, 37.1% of soil As was released into the soil solution, but the As in the soil solution decreased to 25.2% after the 1st oxic period. Moreover, the As in the soil solution further decreased during the 2nd to 4th oxic periods, indicating further re-adsorption of aqueous As. The analysis of As speciation revealed that inorganic arsenate (As(V)) increased under the redox-oscillating conditions, probably due to the depletion of electron donors. When glucose was re-spiked at the beginning of the 4th cycle, aqueous As increased to 47.3% again in the anoxic period and decreased to 27.6% in the subsequent oxic period, indicating inhibition of As re-adsorption. During the same period, the amount of highly sorptive As(V) in the solution decreased sharply to less than 3.3%. The X-ray absorption near edge structure analysis with linear combination fitting confirmed that the transformation of Fe oxides to poorly crystalline structures such as ferrihydrite occurred during repetitive cycles. These results imply that the mobility of As can be increased in As-contaminated redox transition zones by the introduction of rainfall with labile organics or by the fluctuation of organic-rich groundwater.
Collapse
Affiliation(s)
- Sujin Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Sang Hyun Kim
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyeonyong Chung
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jinsung An
- Department of Civil & Environmental Engineering, Hanyang University, Ansan 15588, South Korea
| | - Kyoungphile Nam
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
20
|
Cui JL, Yang J, Zhao Y, Chan T, Xiao T, Tsang DCW, Li X. Partitioning and (im)mobilization of arsenic associated with iron in arsenic-bearing deep subsoil profiles from Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119527. [PMID: 35623570 DOI: 10.1016/j.envpol.2022.119527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/21/2022] [Indexed: 05/25/2023]
Abstract
Understanding the arsenic (As) enrichment mechanisms in the subsurface environment relies on a systematic investigation of As valence species and their partitioning with the Fe (oxyhydr)oxide phases in the subsoil profile. The present study explored the distribution, speciation, partitioning, and (im)mobilization of As associated with Fe in four subsoil cores (∼30 m depth) from Hong Kong using sequential chemical extraction and X-ray absorption near edge spectroscopy. The subsoil profiles exhibited relatively high concentrations of As at 26.1-982 mg/kg (median of 112 mg/kg), and the As was dominated by As(V) (85-96%) and primarily associated with the residual fraction (50.7-94.7%). A small amount of As (0.002-13.2 mg/kg) was easily mobilized from the four subsoil profiles, and a concentration of water-soluble As higher than 100 μg/L was observed for only some subsoil layers. The molar ratios of As:Fe in the oxalate-extractable Fe fraction ranged from 1.2 to 76.5 mmol/mol (median of 11.1 mmol/mol), revealing the participation of poorly crystalline Fe (oxyhydr)oxides in immobilizing most of the high geogenic As. The primary phases of ferric (oxyhydr)oxides were characterized as ferrihydrite (16-53%), lepidocrocite (0-32%), and goethite (0-62%), and these phases contributed to the sufficient ability of the subsoil to sequester 45.3-100% (median of 98.8%) of the exogenous As(V) (1.0 mg/L) in adsorption experiments. In contrast to As(V), exogenous As(III) showed a lower removal percentage (3.9-79.1%, median of 45.1%). The study revealed that the chemical speciation of As and Fe in the subsoil profiles is useful for predicting the immobilization of high geogenic As in the region, which is also helpful for the safe utilization of As-containing soil during land development worldwide.
Collapse
Affiliation(s)
- Jin-Li Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Jinsu Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yanping Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), Guangzhou, 510070, China
| | - Tingshan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
21
|
Wang Y, Guo C, Zhang L, Lu X, Liu Y, Li X, Wang Y, Wang S. Arsenic Oxidation and Removal from Water via Core-Shell MnO 2@La(OH) 3 Nanocomposite Adsorption. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10649. [PMID: 36078364 PMCID: PMC9518204 DOI: 10.3390/ijerph191710649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As(III)), more toxic and with less affinity than arsenate (As(V)), is hard to remove from the aqueous phase due to the lack of efficient adsorbents. In this study, a core-shell structured MnO2@La(OH)3 nanocomposite was synthesized via a facile two-step precipitation method. Its removal performance and mechanisms for As(V) and As(III) were investigated through batch adsorption experiments and a series of analysis methods including the transformation kinetics of arsenic species in As(III) removal, FTIR, XRD and XPS. Solution pH could significantly influence the removal efficiencies of arsenic. The adsorption process of As(V) occurred rapidly in the first 5 h and then gradually decreased, whereas the As(III) removal rate was relatively slower. The maximum adsorption capacities of As(V) and As(III) were up to 138.9 and 139.9 mg/g at pH 4.0, respectively. For As(V) removal, the inner-sphere complexes of lanthanum arsenate were formed through the ligand exchange reactions and coprecipitation. The oxidation of As(III) to the less toxic As(V) by δ-MnO2 and subsequently the synergistic adsorption process by the lanthanum hydroxide on the MnO2@La(OH)3 nanocomposite to form lanthanum arsenate were the dominant mechanisms of As(III) removal. XPS analysis indicated that approximately 20.6% of Mn in the nanocomposite after As(III) removal were Mn(II). Furthermore, a small amount of Mn(II) and La(III) were released into solution during the process of As(III) removal. These results confirm its efficient performance in the arsenic-containing water treatment, such as As(III)-contaminated groundwater used for irrigation and As(V)-contaminated industrial wastewater.
Collapse
Affiliation(s)
- Yulong Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Chen Guo
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Lin Zhang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Xihao Lu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yanhong Liu
- College of Software, Henan University, Kaifeng 475004, China
| | - Xuhui Li
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Peng XX, Gai S, Cheng K, Yang F. Roles of humic substances redox activity on environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129070. [PMID: 35650747 DOI: 10.1016/j.jhazmat.2022.129070] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Humic substances (HS) as representative natural organic matters and the most common organic compounds existing in the environment, has been applied to the treatment and remediation of environmental pollution. This review systematically introduces and summarizes the redox activity of HS for the remediation of environmental pollutants. For inorganic pollutants (such as silver, chromium, mercury, and arsenic), the redox reaction of HS can reduce their toxicity and mobilization, thereby reducing the harm of these pollutants to the environment. The concentration and chemical composition of HS, environmental pH, ionic strength, and competing components affect the degree and rate of redox reactions between inorganic pollutants and HS significantly. With regards to organic pollutants, HS has photocatalytic activity and produces a large number of reactive oxygen species (ROS) under the light which reacts with organic pollutants to accelerate the degradation of organic pollutants. Under the affection of HS, the redox of Fe(III) and Fe(II) can enhance the efficiency of Fenton-like reaction to degrade organic pollutants. Finally, the research direction of HS redox remediation of environmental pollution is prospected.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
23
|
Xia X, Teng Y, Zhai Y, Zheng F, Cao X. Influencing factors and mechanism by which DOM in groundwater releases Fe from sediment. CHEMOSPHERE 2022; 300:134524. [PMID: 35398063 DOI: 10.1016/j.chemosphere.2022.134524] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The groundwater in many aquifers contains elevated concentrations of iron (Fe). Although much of this Fe is from its release from water-bearing sediments under natural environmental conditions, sufficient evidence is lacking to clarify whether anthropogenic pollutants, such as dissolved organic matter (DOM), can increase this natural release. In this time series and comparative analysis study, an Fe increasing effect was verified through laboratory leaching tests. The influences of the aqueous environmental conditions, such as pH, were also investigated. DOM can promote the release of Fe from sediments and increase the concentration of Fe in groundwater. In addition, lower or higher pH and temperature can enhance the release of Fe to some extent. Higher concentrations of DOM provided a more thorough release of Fe from the sediment; additional ions such as Cu also affected Fe release. It is possible that complexation between DOM and Fe occurs through ligand dissolution and reduction, thus promoting the release of Fe. The findings indicate that DOM imported through anthropogenic activities can increase the release of Fe from aquifer sediments into groundwater, thus worsening Fe pollution in groundwater. This study explored the mechanism by which different types of DOM release Fe from aquifer sediments and investigated the factors that influence this process. The findings provide insights into the geochemical processes of Fe in the groundwater.
Collapse
Affiliation(s)
- Xuelian Xia
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yuanzheng Zhai
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Fuxin Zheng
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xinyi Cao
- Engineering Research Center of Groundwater Pollution Control and Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
24
|
Aqueous Arsenic Speciation with Hydrogeochemical Modeling and Correlation with Fluorine in Groundwater in a Semiarid Region of Mexico. WATER 2022. [DOI: 10.3390/w14040519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In arid and semiarid regions, groundwater becomes the main source to meet the drinking water needs of large cities, food production, and industrial activities. For this reason, necessary studies must be carried out to estimate its quantity and quality, always seeking sustainable management, thus avoiding social conflicts or a decrease in the productive activities of humanity. This research explains the behavior of groundwater quality concerning arsenic speciation and its relationship with fluoride. The average total arsenic concentration of 19.95 µg/L and 20.29 µg/L is reported for the study period from 2015 to 2020, respectively, according to the Mexican standard. If the population drinks water directly, it is exposed to possible damage to health. The predominant arsenic species is As (V), with 95% and As (III) with 5%, this finding will allow us to define in greater detail the type of remediation that is required to reduce the content of this element in the water. Regarding the relationship between arsenic and fluorine, very small Pearson correlation coefficients of the order of 0.3241 and 0.3186 were found. The estimation of the space–time variation made it possible to identify the areas with the highest concentration of arsenic and fluorine, allowing the definition of the operating policies of these wells, thereby protecting the health of the inhabitants who consume this water.
Collapse
|
25
|
Aftabtalab A, Rinklebe J, Shaheen SM, Niazi NK, Moreno-Jiménez E, Schaller J, Knorr KH. Review on the interactions of arsenic, iron (oxy)(hydr)oxides, and dissolved organic matter in soils, sediments, and groundwater in a ternary system. CHEMOSPHERE 2022; 286:131790. [PMID: 34388870 DOI: 10.1016/j.chemosphere.2021.131790] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
High concentrations of arsenic (As) in groundwater threaten the environment and public health. Geogenically, groundwater As contamination predominantly occurs via its mobilization from underground As-rich sediments. In an aquatic ecosystem, As is typically driven by several underlying processes, such as redox transitions, microbially driven reduction of iron (Fe) oxide minerals, and release of associated As. Notably, dissolved As mobilized from soils and sediments exhibits high affinity for dissolved organic matter (DOM). Thus, high DOM concentrations can increase As mobility. Therefore, it is crucial to understand the complex interactions and biogeochemical cycling of As, DOM, and Fe oxides. This review collates knowledge regarding the fate of As in multicomponent As-DOM-Fe systems, including ternary complexes involving both Fe and DOM. Additionally, the release mechanisms of As from sediments into groundwater in the presence of both Fe and DOM have been discussed. The mechanisms of As mobilization/sorption at the solid-water interface can be affected by negatively charged DOM competing for sorption sites with As on Fe (oxy)(hydr)oxides and may be further modified by other anionic ubiquitous species such as phosphate, silicic acid, or sulfur. This review emphasizes the need for a comprehensive understanding of the impact of DOM, Fe oxides, and related biogeochemical processes on As mobilization to aquifers. The review identifies important knowledge gaps that may aid in developing applicable practices for preventing the spread of As contamination in aquatic resources and traditional soil management practices.
Collapse
Affiliation(s)
- Adeleh Aftabtalab
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589, Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374, Müncheberg, Germany.
| | - Klaus-Holger Knorr
- Ecohydrology & Biogeochemistry Group, Institute of Landscape Ecology, FB 14 Geosciences, University of Münster, Germany.
| |
Collapse
|
26
|
Li S, Lu F, Lv H, Zhou Y, Gomez MA, Yao S, Shi Z, Jia Y. Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1428-1434. [PMID: 34870539 DOI: 10.1080/10934529.2021.2006544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Natural organic matter (NOM) has been considered a critical substance in the transport and transformation of arsenic. NOM is a complex mixture of multifunctional organic components with a wide molecular weight (MW) distribution, and it is necessary to understand the complexation of arsenic with MW-dependent NOM fractions. In this study, humic acid (HA) was chosen as the representative fraction of NOM to investigate the complexation mechanism with arsenic. The bulk HA sample was fractionated to five fractions by ultrafiltration technology, and the complexing property of HA fractions with arsenic was analyzed by the dialysis method. We observed that the acidic and neutral conditions favor the complexation of HA fractions with arsenate (As(V)). The HA fractions with molecular weight > 100 kDa, 1-10 kDa, and <1 kDa have the stronger complexing capacity of As(V) than the other HA fractions. The bound As(V) percentage was positively associated with carboxyl content, phenolic content, and especially total acidity. A two-site ligand-binding model can describe the complexing capacity of arsenic onto HA fractions. The results can provide some fundamental information about the complexation of arsenic with MW-dependent HA fractions quantitatively.
Collapse
Affiliation(s)
- Shifeng Li
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Feng Lu
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongtao Lv
- Affairs Service Center of Ecological Environment of Liaoning Province, Shenyang, China
| | - Yang Zhou
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Mario A Gomez
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhongliang Shi
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Yongfeng Jia
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
27
|
Wang Y, Zhang G, Wang H, Cheng Y, Liu H, Jiang Z, Li P, Wang Y. Effects of different dissolved organic matter on microbial communities and arsenic mobilization in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125146. [PMID: 33485230 DOI: 10.1016/j.jhazmat.2021.125146] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) play key roles in the biotransformation of arsenic in groundwater systems. However, the effects of different types of DOM on arsenic biogeochemistry remain poorly understood. In this study, four typical DOM compounds (acetate, lactate, AQS and humic acid) were amended to high As aquifer sediments to investigate their effects on arsenic/iron biotransformation and microbial community response. Results demonstrated that different DOM drove different microbial community shifts and then enhanced microbially-mediated arsenic release and iron reduction. With labile DOM (acetate and lactate) amendment, the abundance of putative dissimilatory iron and sulfate reducers Desulfomicrobium and Clostridium sensu stricto increased within the first week, and subsequently the anaerobic fermentative bacterial genus Acetobacterium and arsenate/sulfate-reducing bacterial genus Fusibacter became predominant. In contrast, recalcitrant DOM (AQS and humic acid) mainly stimulated the abundances of sulfur compounds respiratory genus Desulfomicrobium and fermentative bacterial genus Alkalibacter in the whole incubation. Accompanied with the microbial community structure and function shifts, dissolved organic carbon concentration and oxidation-reduction potential changed and the arsenic/iron reduction increased, which resulted in the enhanced arsenic mobilization. Collectively, the present study linked DOM type to microbial community structure and explored the potential roles of different DOM on arsenic biotransformation in aquifers.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Guanglong Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Han Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
28
|
Popov M, Zemanová V, Sácký J, Pavlík M, Leonhardt T, Matoušek T, Kaňa A, Pavlíková D, Kotrba P. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112196. [PMID: 33848737 DOI: 10.1016/j.ecoenv.2021.112196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Pollution and poisoning with carcinogenic arsenic (As) is of major concern globally. Interestingly, there are ferns that can naturally tolerate remarkably high As concentrations in soils while hyperaccumulating this metalloid in their fronds. Besides Pteris vittata in which As-related traits and molecular determinants have been studied in detail, the As hyperaccumulation status has been attributed also to Pteris cretica. We thus inspected two P. cretica cultivars, Parkerii and Albo-lineata, for As hyperaccumulation traits. The cultivars were grown in soils supplemented with 20, 100, and 250 mg kg-1 of inorganic arsenate (iAsV). Unlike Parkerii, Albo-lineata was confirmed to be As tolerant and hyperaccumulating, with up to 1.3 and 6.4 g As kg-1 dry weight in roots and fronds, respectively, from soils amended with 250 mg iAsV kg-1. As speciation analyses rejected that organoarsenical species and binding with phytochelatins and other proteinaceous ligands would play any significant role in the biology of As in either cultivar. While in Parkerii, the dominating As species, particularly in roots, occurred as iAsV, in Albo-lineata the majority of the root and frond As was apparently converted to iAsIII. Parkerii markedly accumulated iAsIII in its fronds when grown on As spiked soils. Considering the roles iAsV reductase ACR2 and iAsIII transporter ACR3 may have in the handling of iAs, we isolated Albo-lineata PcACR2 and PcACR3 genes closely related to P. vittata PvACR2 and PvACR3. The gene expression analysis in Albo-lineata fronds revealed that the transcription of PcACR2 and PcACR3 was clearly As responsive (up to 6.5- and 45-times increase in transcript levels compared to control soil conditions, respectively). The tolerance and uptake assays in yeasts showed that PcACRs can complement corresponding As-sensitive mutations, indicating that PcACR2 and PcACR3 encode functional proteins that can perform, respectively, iAsV reduction and membrane iAsIII transport tasks in As-hyperaccumulating Albo-lineata.
Collapse
Affiliation(s)
- Marek Popov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic; Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Veronika Zemanová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry, The Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Pavel Kotrba
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic.
| |
Collapse
|
29
|
Herrera C, Moraga R, Bustamante B, Vilo C, Aguayo P, Valenzuela C, Smith CT, Yáñez J, Guzmán-Fierro V, Roeckel M, Campos VL. Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Rich Sediments, Atacama Desert, Chile. Microorganisms 2021; 9:microorganisms9030483. [PMID: 33668956 PMCID: PMC7996500 DOI: 10.3390/microorganisms9030483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022] Open
Abstract
Arsenic (As), a semimetal toxic for humans, is commonly associated with serious health problems. The most common form of massive and chronic exposure to As is through consumption of contaminated drinking water. This study aimed to isolate an As resistant bacterial strain to characterize its ability to oxidize As (III) when immobilized in an activated carbon batch bioreactor and to evaluate its potential to be used in biological treatments to remediate As contaminated waters. The diversity of bacterial communities from sediments of the As-rich Camarones River, Atacama Desert, Chile, was evaluated by Illumina sequencing. Dominant taxonomic groups (>1%) isolated were affiliated with Proteobacteria and Firmicutes. A high As-resistant bacterium was selected (Pseudomonas migulae VC-19 strain) and the presence of aio gene in it was investigated. Arsenite detoxification activity by this bacterial strain was determined by HPLC/HG/AAS. Particularly when immobilized on activated carbon, P. migulae VC-19 showed high rates of As(III) conversion (100% oxidized after 36 h of incubation). To the best of our knowledge, this is the first report of a P. migulae arsenite oxidizing strain that is promising for biotechnological application in the treatment of arsenic contaminated waters.
Collapse
Affiliation(s)
- Constanza Herrera
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Ruben Moraga
- Microbiology Laboratory, Faculty of Renewable Natural Resources, Arturo Prat University, Iquique 1100000, Chile
- Correspondence: (R.M.); (V.L.C.)
| | - Brian Bustamante
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Claudia Vilo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Paulina Aguayo
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Faculty of Environmental Sciences, EULA-Chile, Universidad de Concepcion, Concepcion 4070386, Chile
- Institute of Natural Resources, Faculty of Veterinary Medicine and Agronomy, Universidad de Las Américas, Sede Concepcion, Campus El Boldal, Av. Alessandri N°1160, Concepcion 4090940, Chile
| | - Cristian Valenzuela
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Carlos T. Smith
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
| | - Jorge Yáñez
- Faculty of Chemical Sciences, Department of Analytical and Inorganic Chemistry, University of Concepción, Concepción 4070386, Chile;
| | - Victor Guzmán-Fierro
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Marlene Roeckel
- Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepcion 4070386, Chile; (V.G.-F.); (M.R.)
| | - Víctor L. Campos
- Laboratory of Environmental Microbiology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepcion, Concepcion 4070386, Chile; (C.H.); (B.B.); (C.V.); (P.A.); (C.V.); (C.T.S.)
- Correspondence: (R.M.); (V.L.C.)
| |
Collapse
|
30
|
Occurrence, speciation analysis and health risk assessment of arsenic in Chinese mitten crabs (Eriocheir sinensis) collected from China. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Wang Y, Liu Y, Guo T, Liu H, Li J, Wang S, Li X, Wang X, Jia Y. Lanthanum hydroxide: a highly efficient and selective adsorbent for arsenate removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42868-42880. [PMID: 32725557 DOI: 10.1007/s11356-020-10240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
In the present work, a lanthanum hydroxide adsorbent was prepared by a simple precipitation process, and its arsenic removal performances and adsorption mechanisms were investigated by batch experiments and various techniques including field emission scanning electron microscopy with energy-dispersive X-ray spectrophotometry (FESEM-EDX), Brunauer-Emmett-Teller (BET) analysis, powder X-ray diffraction (p-XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The influence of pH on arsenic removal showed that the lanthanum hydroxide adsorbent can effectively remove As(V) from solution, whereas the As(III) removal was very low, indicating that the lanthanum hydroxide adsorbent can selectively remove As(V) but not As(III). The isotherm study showed that the maximum adsorption capacities of As(V) at pH 5.0 and 9.0 were 299.4 and 192.3 mg/g, respectively, much higher than those of the widely used ferrihydrite. Significant interference on As(V) removal was caused by the presence of phosphate and natural organic acids (NOAs), such as citric acid. Powder XRD, FTIR, and XPS analysis showed that the lanthanum hydroxide was almost transformed into lanthanum arsenate after As(V) adsorption at pH 4.0, while a portion of lanthanum hydroxide remained after As(V) adsorption at pH 6.0 and 9.0. Furthermore, ligand exchange between the hydroxyl groups of the adsorbent and As(V) and the formation of inner-sphere surface complexes could play a central role in arsenic removal which needs further investigation.
Collapse
Affiliation(s)
- Yulong Wang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China.
- Henan Engineering Research Center for Control and Remediation of Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Yanhong Liu
- College of Software, Henan University, Kaifeng, 475004, China
| | - Tianqi Guo
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Hupeng Liu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Jiale Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Shaofeng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China.
| | - Xuhui Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, College of Environment and Planning, Henan University, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control and Remediation of Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| | - Xin Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
32
|
Ho TO, Tsang DCW, Chen WB, Yin JH. Evaluating the environmental impact of contaminated sediment column stabilized by deep cement mixing. CHEMOSPHERE 2020; 261:127755. [PMID: 32721696 DOI: 10.1016/j.chemosphere.2020.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Deep cement mixing (DCM) method is a widely used geotechnical technique for increasing ground stabilization before construction works. However, the environmental influence of stabilized ground on the surrounding area remains a concern. A physical model experiment of DCM-treated sediment column was conducted to investigate both geotechnical and environmental effects on the surrounding sediment. The DCM column contained the cement-stabilized contaminated sediment and surrounded by uncontaminated sediment. The physical behaviour, including settlement, pore water pressure, and total pressure were measured under different loadings. Simultaneously, the migration of the major ions into seawater, and leaching of potentially toxic elements into the surrounding sediment were evaluated. The results revealed that the leaching of major ions from the DCM column followed the dissipation of excess pore water and migrated to the seawater above the sediment surface. Nevertheless, the leaching behaviour of potentially toxic elements into the surrounding sediment and variation of pH value after the DCM treatment were within an acceptable level. Therefore, the contaminated marine sediment could be effectively stabilized and solidified by in-situ remediation with minimal secondary pollution to the surrounding environment.
Collapse
Affiliation(s)
- Tsz-On Ho
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Wen-Bo Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jian-Hua Yin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
33
|
Adsorption of As(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. WATER 2020. [DOI: 10.3390/w12102720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arsenic has become a global concern in water environment, and it is essential to develop efficient remediation methods. In this study, a novel adsorbent by loading cerium and manganese oxide onto wheat straw-modified biochar (MBC) was manufactured successfully aiming to remove arsenic from polluted water. Through scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FT-IR), and other techniques, it was found the loading of cerium and manganese oxide on MBC played a significant role in As(V) adsorption. The results of the batch test showed that the adsorption of MBC followed the pseudo-second order kinetics and Langmuir equation. The adsorption capacity of MBC was 108.88 mg As(V)/g at pH = 5.0 (C0 = 100 mg/L, dosage = 0.5 g/L, T = 298 K) with considerable improvement compared to the original biochar. Moreover, MBC exhibited excellent performance over a wide pH range (2.0~11.0). Thermodynamics of the sorption reaction showed that the entropy (ΔS), changes of enthalpy (ΔH) and Gibbs free energy (ΔG), respectively, were 85.88 J/(moL·K), 22.54 kJ/mol and −1.33 to −5.20 kJ/mol at T = 278~323 K. During the adsorption, the formation of multiple complexes under the influence of its abundant surface M-OH (M represents the Ce/Mn) groups involving multiple mechanisms that included electrostatic interaction forces, surface adsorption, redox reaction, and surface complexation. This study indicated that MBC is a promising adsorbent to remove As(V) from polluted water and has great potential in remediating of arsenic contaminated environment.
Collapse
|
34
|
Luo T, Huang Z, Li X, Zhang Y. Anaerobic microbe mediated arsenic reduction and redistribution in coastal wetland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138630. [PMID: 32315908 DOI: 10.1016/j.scitotenv.2020.138630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic (As) pollution in coastal wetland soil has attracted attention. However, how anaerobic microbes impact the fate of As in coastal wetland environments remains poorly understood. To elucidate underlying mechanisms of anaerobic microbes mediated As mobilization, incubation experiments were performed in this study. The results demonstrate that the concentrations of total dissolved As and As(III) were higher in biotic incubations compared with abiotic controls. The dissolved As(III) concentrations increased and reached maximum values of 11.0 ± 1.2 and 12.0 ± 1.1 μg/L for biotic incubations with and without additional sulfate, respectively. Sulfate and Fe reduction induced by anaerobic microbes were evidenced by the detection of sulfide and Fe(II) in biotic incubations. The sequential extraction results indicated that the content of crystalline Fe mineral fraction of As (Ascry) increased and that of amorphous Fe mineral fraction of As (Asamo) decreased in the solid phase. Therefore, the released As was attributed to microbially mediated reductive dissolution of amorphous Fe mineral matter and, after 40 days of incubation, the decreased As might be immobilized via re-adsorption onto, or co-precipitation with, the newly formed crystalline Fe minerals. The 16S rRNA results indicated that Proteobacteria, Chloroflexi, Actinobacteria, and Firmicutes constituted the majority of the bacterial community in biotic incubations. The sulfate-reducing bacterium Desulfocapsa induced sulfate reduction and further promoted the reduction and release of As in soils. This study provides insights into the mechanism for As mobilization and redistribution in coastal wetland soils.
Collapse
Affiliation(s)
- Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China.
| | - Zhongli Huang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Xinyu Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| | - Yingying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Provincial Key Laboratory of Coastal Ecology and Pollution Control, Yancheng 224051, China
| |
Collapse
|
35
|
Wang N, Wang N, Tan L, Zhang R, Zhao Q, Wang H. Removal of aqueous As(III) Sb(III) by potassium ferrate (K 2FeO 4): The function of oxidation and flocculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138541. [PMID: 32315853 DOI: 10.1016/j.scitotenv.2020.138541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effects of potassium ferrate (K2FeO4) dosage, pH, and reaction time on the removal of aqueous As(III) and Sb(III), and revealed the oxidation and flocculation mechanism of K2FeO4. The results show that the removal efficiencies of As(III) and Sb(III) were highly related to the hydrolysate of K2FeO4 under acidic conditions, while the efficiencies were low under alkaline condition, owning to the electrostatic repulsion between iron nanoparticles and charged As/Sb species. The increased dosage and reaction time improved the adsorption performance. Based on the comparative experiments with FeCl3, the simultaneous removal of As(III) and Sb(III) by K2FeO4 suggested that As(III) was eliminated due to the processes of oxidation, flocculation, and chemical precipitation, while Sb(III) was removed mostly by oxidation and flocculation. The generated precipitates were characterized with surface analysis and the results support that the oxidization property of K2FeO4 was essential during the removal of As(III) and Sb(III), and removal mechanisms between both elements were different.
Collapse
Affiliation(s)
- Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Nannan Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Li Tan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Ru Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
36
|
Contrasting arsenic biogeochemical cycling in two Moroccan alkaline pit lakes. Res Microbiol 2020; 171:28-36. [DOI: 10.1016/j.resmic.2019.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
|