1
|
Montiel-Mora JR, Méndez-Rivera M, Ramírez-Morales D, Cambronero-Heinrichs JC, Rodríguez-Rodríguez CE. Toxicity of selected pharmaceuticals and their mixtures to the aquatic indicators Daphnia magna and Aliivibrio fischeri. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1047-1061. [PMID: 39264549 DOI: 10.1007/s10646-024-02798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Despite the benefits derived from the use of pharmaceuticals, these compounds are currently considered contaminants of emerging concern because of their presence and persistence in the environment. This study aimed to determine the toxicity of 27 pharmaceuticals and the interaction effects of binary mixtures of selected compounds towards two model organisms: the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri (Microtox test). Six compounds, namely polymyxin B, polymyxin E, fluoxetine, diphenhydramine, clenbuterol and ketoprofen exhibited moderate toxicity towards D. magna. Additionally, three compounds (cefotaxime, polymyxin B, polymyxin E) also showed a moderate toxic effect on A. fischeri. The comparison of such results with model estimations showed inaccuracy in the predicted data, highlighting the relevance of experimental ecotoxicological assays. The assayed mixtures contained four selected drugs of high-hazard according to their reported concentrations in wastewater and surface water (diphenhydramine, trimethoprim, ketoprofen, and fluoxetine); data revealed interactions only in the fluoxetine-containing mixtures for D. magna, while all mixtures showed interactions (mostly synergistic) for Microtox. Chronic effects on the reproduction of D. magna were observed after exposure to fluoxetine and diphenhydramine, although higher sensitivity was determined for the latter, while the mixture of these compounds (which showed acute synergy in both models) also affected the reproduction patterns. Nonetheless, all the effects described at the acute or chronic level (for individual compounds or mixtures) were determined at concentrations higher than commonly reported at environmental levels. This work provides valuable ecotoxicological information for the risk assessment of pharmaceuticals and their mixtures in the environment.
Collapse
Affiliation(s)
- José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università, Legnaro, PD, 35020, Italy
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, Montes de Oca, San José, 11501-2060, Costa Rica.
| |
Collapse
|
2
|
Dos Santos CR, Rosa E Silva GO, Valias CDF, Santos LVDS, Amaral MCS. Ecotoxicological study of seven pharmaceutically active compounds: Mixture effects and environmental risk assessment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107068. [PMID: 39217790 DOI: 10.1016/j.aquatox.2024.107068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pharmaceutically active compounds (PhACs) have been detected in several aquatic compartments, which has been of environmental concern since PhACs can cause adverse effects on the aquatic ecosystem at low concentrations. Despite the variety of PhACs detected in surface water, ecotoxicological studies are non-existent for many of them, mainly regarding their mixture. In addition, water bodies can continuously receive the discharge of raw or treated wastewater with micropollutants. Thus, PhACs are subject to mixture and interactions, potentiating or reducing their toxicity. Therefore, the present study evaluated the toxicity on Aliivibrio fischeri of seven PhACs, which still needs to be explored in the literature. The effects were evaluated for the PhACs individually and for their binary and tertiary mixture. Also, the experimental effects were compared with the concentration addition (CA) and independent action (IA) models. Finally, an environmental risk assessment was carried out. Fenofibrate (FEN), loratadine (LOR), and ketoprofen (KET) were the most toxic, with EC50 of 0.32 mg L-1, 6.15 mg L-1 and 36.8 mg L-1, respectively. Synergistic effects were observed for FEN + LOR, KET + LOR, and KET + FEN + LOR, showing that the CA and IA may underestimate the toxicity. Environmental risks for KET concerning algae, and LOR e 17α-ethynylestradiol (EE2) for crustaceans and fish were high for several locations. Besides, high removals by wastewater treatment technologies are required to achieve the concentrations necessary for reducing KET and LOR risk quotients. Thus, this study contributed to a better understanding of the toxic interactions and environmental risks of PhACs.
Collapse
Affiliation(s)
- Carolina Rodrigues Dos Santos
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Guilherme Otávio Rosa E Silva
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Camila de Figueiredo Valias
- Pontifícia Universidade Católica de Minas Gerais - Engineering School, Building 03, Rua Dom José Gaspar,500 - Coração Eucarístico, 30.535-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais, 6627, Antônio Carlos Avenue, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Álvarez-Escalante I, Martínez-Páramo S, Irusta-Mata R. Bacterial toxicity of Acetaminophen and Edaravone, and their binary mixtures: experimental and predicted values using traditional and novel Van Laar-based models. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:722-736. [PMID: 38949723 PMCID: PMC11358354 DOI: 10.1007/s10646-024-02772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
In recent years, the presence of Pharmaceutical Active Compounds (PhACs) in ecosystems has become a serious environmental problem due to their capacity to induce harmful effects at extremely low concentrations in both humans and wildlife. Water treatment plants have not been designed to remove these types of compounds efficiently. Thus, the detection of these pollutants is essential to evaluate their negative impacts and is one of the emerging issues in environmental chemistry. The main objective of this study is to determine the bacterial toxicity of two PhACs (both individually and as a mixture) through the quantification of bioluminescence inhibition in the marine bacteria Aliivibrio fischeri, a commonly used method in short-term toxicity tests. In this work, Acetaminophen and Edaravone, two drugs approved by the Food and Drug Administration, have been studied. The acute toxicity of these PhACs has been tested at two exposure times (5 and 15 min) and different concentrations, by estimation of the median effective concentration (EC50) for each individual compound or in combination at different concentrations. Moreover, the EC50 of the binary mixtures Acetaminophen/Edaravone have been forecast using two traditional predictive models, Concentration Addition and Independent Action. The results show that toxicity decreases with exposure time and depends on the concentration tested. Furthermore, a novel semi-empirical Van Laar-based model has been proposed and validated with the experimental data from this study and literature data, obtaining satisfactory estimations of the EC50 for binary mixtures.
Collapse
Affiliation(s)
- Iván Álvarez-Escalante
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
| | - Sonia Martínez-Páramo
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
| | - Rubén Irusta-Mata
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain.
| |
Collapse
|
4
|
Arreguin-Rebolledo U, Morales-Romero LA, Arzate-Cárdenas MA, Páez-Osuna F, Betancourt-Lozano M, Rico-Martínez R. Contrasting toxicity response to a mixture of azithromycin and ivermectin between a freshwater and a euryhaline rotifer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49905-49915. [PMID: 39085690 DOI: 10.1007/s11356-024-34406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
Organisms are usually exposed to mixtures of emerging pollutants in aquatic environments. Due to their widespread use and environmental relevance, the individual and combined effects of the drugs azithromycin (AZT) and ivermectin (IVM) on the freshwater rotifer Lecane papuana and the euryhaline rotifer Proales similis were investigated. Rotifers showed greater sensitivity to IVM compared to AZT. The LC50 values of IVM and AZT for L. papuana and P. similis were 0.163 and 0.172 mg/L, and 13.52 and 20.00 mg/L, respectively. Population growth rates, assessed in chronic toxicity assays, responded negatively to increasing concentrations of both toxicants, either individually or in combination. Our results revealed two distinct combined toxicity responses: a strong synergistic effect in the freshwater rotifer and a marked antagonistic impact of the AZT-IVM mixtures in the euryhaline rotifer.
Collapse
Affiliation(s)
- Uriel Arreguin-Rebolledo
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mazatlán, Mexico
| | - Levi Asher Morales-Romero
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México
| | - Mario Alberto Arzate-Cárdenas
- Investigadoras E Investigadores Por México, CONAHCYT, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20100, Aguascalientes, Ags, México
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Unidad Académica Mazatlán, Mazatlán, Mexico
| | | | - Roberto Rico-Martínez
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, C.P. 20130, Aguascalientes, Ags, México.
| |
Collapse
|
5
|
Wang Y, Fan J, Guo F, Yu S, Yan Z. An artificial intelligence-based model for predicting reproductive toxicity of bisphenol analogues mixtures to the rotifer Brachionus calyciflorus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172537. [PMID: 38636855 DOI: 10.1016/j.scitotenv.2024.172537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated the following models to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA), independent action (IA), and two deep neural network (DNN) models. One applied mixture molecular descriptors as input variables (DNN-QSAR), while the other applied the ratios of chemicals in the mixtures (DNN-Ratio). Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and - 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and - 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou 510006, China
| | - Songyan Yu
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
6
|
Daghighi A, Casanola-Martin GM, Iduoku K, Kusic H, González-Díaz H, Rasulev B. Multi-Endpoint Acute Toxicity Assessment of Organic Compounds Using Large-Scale Machine Learning Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10116-10127. [PMID: 38797941 DOI: 10.1021/acs.est.4c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In recent years, alternative animal testing methods such as computational and machine learning approaches have become increasingly crucial for toxicity testing. However, the complexity and scarcity of available biomedical data challenge the development of predictive models. Combining nonlinear machine learning together with multicondition descriptors offers a solution for using data from various assays to create a robust model. This work applies multicondition descriptors (MCDs) to develop a QSTR (Quantitative Structure-Toxicity Relationship) model based on a large toxicity data set comprising more than 80,000 compounds and 59 different end points (122,572 data points). The prediction capabilities of developed single-task multi-end point machine learning models as well as a novel data analysis approach with the use of Convolutional Neural Networks (CNN) are discussed. The results show that using MCDs significantly improves the model and using them with CNN-1D yields the best result (R2train = 0.93, R2ext = 0.70). Several structural features showed a high level of contribution to the toxicity, including van der Waals surface area (VSA), number of nitrogen-containing fragments (nN+), presence of S-P fragments, ionization potential, and presence of C-N fragments. The developed models can be very useful tools to predict the toxicity of various compounds under different conditions, enabling quick toxicity assessment of new compounds.
Collapse
Affiliation(s)
- Amirreza Daghighi
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kweeni Iduoku
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hrvoje Kusic
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulicev Trg 19, Zagreb 10000, Croatia
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa 48940, Spain
- BIOFISIKA, Basque Center for Biophysics CSIC-UPVEH, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science,Bilbao, Biscay 48011, Spain
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
7
|
Liu JY, Sayes CM. Modeling mixtures interactions in environmental toxicology. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104380. [PMID: 38309542 DOI: 10.1016/j.etap.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In the environment, organisms are exposed to mixtures of different toxicants, which may interact in ways that are difficult to predict when only considering each component individually. Adapting and expanding tools from pharmacology, the toxicology field uses analytical, graphical, and computational methods to identify and quantify interactions in multi-component mixtures. The two general frameworks are concentration addition, where components have similar modes of action and their effects sum together, or independent action, where components have dissimilar modes of action and do not interact. Other interaction behaviors include synergism and antagonism, where the combined effects are more or less than the additive sum of individual effects. This review covers foundational theory, methods, an in-depth survey of original research from the past 20 years, current trends, and future directions. As humans and ecosystems are exposed to increasingly complex mixtures of environmental contaminants, analyzing mixtures interactions will continue to become a more critical aspect of toxicological research.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
8
|
Xu Y, Wang X, Gu Y, Liang C, Guo W, Ngo HH, Peng L. Optimizing ciprofloxacin removal through regulations of trophic modes and FNA levels in a moving bed biofilm reactor performing sidestream partial nitritation. WATER RESEARCH X 2024; 22:100216. [PMID: 38831973 PMCID: PMC11144728 DOI: 10.1016/j.wroa.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
The performance of partial nitritation (PN)-moving bed biofilm reactor (MBBR) in removal of antibiotics in the sidestream wastewater has not been investigated so far. In this work, the removal of ciprofloxacin was assessed under varying free nitrous acid (FNA) levels and different trophic modes. For the first time, a positive correlation was observed between ciprofloxacin removal and FNA levels, either in the autotrophic PN-MBBR or in the mixotrophic PN-MBBR, mainly ascribed to the FNA-stimulating effect on heterotrophic bacteria (HB)-induced biodegradation. The maximum ciprofloxacin removal efficiency (∼98 %) and removal rate constant (0.021 L g-1 SS h-1) were obtained in the mixotrophic PN-MBBR at an average FNA level of 0.056 mg-N L-1, which were 5.8 and 51.2 times higher than the corresponding values in the autotrophic PN-MBBR at 0 mg FNA-N L-1. Increasing FNA from 0.006 to 0.056 mg-N L-1 would inhibit ammonia oxidizing bacteria (AOB)-induced cometabolism and metabolism from 10.2 % and 6.9 % to 6.2 % and 6.4 %, respectively, while HB-induced cometabolism and metabolism increased from 31.2 % and 22.7 % to 41.9 % and 34.5 %, respectively. HB-induced cometabolism became the predominant biodegradation pathway (75.9 %-85.8 %) in the mixotrophic mode. Less antimicrobial biotransformation products without the piperazine or fluorine were newly identified to propose potential degradation pathways, corresponding to microbial-induced metabolic types and FNA levels. This work shed light on enhancing antibiotic removal via regulating both FNA accumulation and organic carbon addition in the PN-MBBR process treating sidestream wastewater.
Collapse
Affiliation(s)
- Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xi Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Ying Gu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
9
|
Diem-Tran PT, Ho TT, Tuan NV, Bao LQ, Phuong HT, Chau TTG, Minh HTB, Nguyen CT, Smanova Z, Casanola-Martin GM, Rasulev B, Pham-The H, Cuong LCV. Stability Constant and Potentiometric Sensitivity of Heavy Metal-Organic Fluorescent Compound Complexes: QSPR Models for Prediction and Design of Novel Coumarin-like Ligands. TOXICS 2023; 11:595. [PMID: 37505560 PMCID: PMC10383909 DOI: 10.3390/toxics11070595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely harmful to the environment. Heavy metals are toxic chemicals and considered one of the major hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of the methods to detect heavy metals in wastewaters. In this work, the quantitative structure-property relationship (QSPR) was applied using a range of machine learning techniques to predict the stability constant (logβML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy metal ions Cu2+, Cd2+, and Pb2+. In result, the logβML models developed for four ions showed good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2 of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological profiling were performed to investigate their metal-binding ability and developability of the designed sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency from simple resources. The three coumarins designed clearly demonstrated capability to be suitable as good florescent chemosensors towards heavy metals. Overall, the computational methods applied in this study showed a very good performance as useful tools for designing novel fluorescent probes and assessing their sensing abilities.
Collapse
Affiliation(s)
- Phan Thi Diem-Tran
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Tue-Tam Ho
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Nguyen-Van Tuan
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Le-Quang Bao
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Ha Tran Phuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Trinh Thi Giao Chau
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Hoang Thi Binh Minh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| | - Cong-Truong Nguyen
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Zulayho Smanova
- Department of Chemistry, National University of Uzbekistan after Mirzo Ulugbek, Tashkent 100012, Uzbekistan
| | | | - Bakhtiyor Rasulev
- Department of Chemistry, National University of Uzbekistan after Mirzo Ulugbek, Tashkent 100012, Uzbekistan
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | - Hai Pham-The
- Faculty of Pharmaceutical Chemistry and Technology, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi 10000, Vietnam
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hue 53000, Vietnam
| |
Collapse
|
10
|
Castro-Campoy D, Vargas-Hernández D, Sánchez-Cruz M, Hernández-Huesca R. Photodegradation of acetaminophen and ibuprofen in iron supported in SBA-15 under UV irradiation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Daghighi A, Casanola-Martin GM, Timmerman T, Milenković D, Lučić B, Rasulev B. In Silico Prediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach. TOXICS 2022; 10:toxics10120746. [PMID: 36548579 PMCID: PMC9786026 DOI: 10.3390/toxics10120746] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 06/02/2023]
Abstract
In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative Structure-Activity Relationship (QSAR) models for the estimation of in vivo toxicity based on 50% lethal dose to rats (LD50). An initial set of 4885 molecular descriptors was generated and applied to build Support Vector Regression (SVR) models. The best two SVR models, SVR_A and SVR_B, were selected to build an Ensemble Model by means of Multiple Linear Regression (MLR). The obtained Ensemble Model showed improved performance over the base SVR models in the training set (R2 = 0.88), validation set (R2 = 0.95), and true external test set (R2 = 0.92). The models were also internally validated by 5-fold cross-validation and Y-scrambling experiments, showing that the models have high levels of goodness-of-fit, robustness and predictivity. The contribution of descriptors to the toxicity in the models was assessed using the Accumulated Local Effect (ALE) technique. The proposed approach provides an important tool to assess toxicity of nitroaromatic compounds, based on the ensemble QSAR model and the structural relationship to toxicity by analyzed contribution of the involved descriptors.
Collapse
Affiliation(s)
- Amirreza Daghighi
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| | | | - Troy Timmerman
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
- Department of Computer Science, North Dakota State University, Fargo, ND 58105, USA
| | - Dejan Milenković
- Department of Science, Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bono Lučić
- NMR Centre, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Bakhtiyor Rasulev
- Biomedical Engineering Program, North Dakota State University, Fargo, ND 58105, USA
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
12
|
Xin X, Chen B, Péquin B, Song P, Yang M, Song X, Zhang B. Binary toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers to Arctic Cyanobacteria under ambient and future climates. WATER RESEARCH 2022; 226:119188. [PMID: 36323199 DOI: 10.1016/j.watres.2022.119188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are the predominant biota in the Arctic. Interactive effects on Arctic cyanobacteria between climate-change-shifting parameters and anthropogenic contaminants are largely unknown. We utilized a fractional factorial experiment and Arctic cyanobacteria Pseudanabaena biceps Strain PCCC_O-153 to capture the complexity of interacting climate factors, nano-polystyrene (nano-PS) and 2,2´,4,4´-tetrabromodipenyl ether (BDE-47). The short-term binary toxicity of nano-PS and BDE-47 was then examined through experiments, toxicity units, and reference models. The toxic mechanism was further revealed through biochemical analyses and multivariate statistics. We found that BDE-47 and nano-PS had more hazardous effects than changing climate conditions. The mixture had antagonistic effects on PCCC_O-153, attributing to the aggregation of nano-PS, the adsorption of BDE-47, and the wrapping of both contaminants by released extracellular polymeric substances. Binary toxicity was caused by the chain reactions triggered by combining individual contaminants. Total protein was a sensitive target and positively correlated to chlorophyll pigment. Oxidative stress for the mixture mainly resulted from the presence of nano-PS. This is the first study to access the hazardous effects of a mixture of anthropogenic contaminants on Arctic cyanobacteria under ambient and future climates.
Collapse
Affiliation(s)
- Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Bérangère Péquin
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9×3V9, Canada
| | - Pei Song
- Institute of Green and Low-Carbon Eco-Environment Technology, CNCEC Lang, Zheng Environmental Protection Technology Co., Ltd, Xi'an, Shannxi 710065, China
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3×5, Canada.
| |
Collapse
|
13
|
Chormare R, Kumar MA. Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and biomagnification of environmental pollutants. CHEMOSPHERE 2022; 302:134836. [PMID: 35525441 DOI: 10.1016/j.chemosphere.2022.134836] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The environment pollutants, which are landed up in environment because of human activities like urbanization, mining and industrializations, affects human health, plants and animals. The living organisms present in environment are constantly affected by the toxic pollutants through direct contact or bioaccumulation of chemicals from the environment. The toxic and hazardous pollutants are easily transferred to different environmental matrices like land, air and water bodies such as surface and ground waters. This comprehensive review deeply discusses the routes and causes of different environmental pollutants along with their toxicity, impact, occurrences and fate in the environment. Environment health and risk assessment tools that are used to evaluate the harmfulness, exposure of living organisms to pollutants and the amount of pollutant accumulated are explained with help of bio-kinetic models. Biotransfer, toxicity factor, biomagnification and bioaccumulation of different pollutants in the air, water and marine ecosystems are critically addressed. Thus, the presented survey would be collection of correlations those addresses the factors involved in assessing the environmental health and risk impacts of distinct environmental pollutants.
Collapse
Affiliation(s)
- Rishikesh Chormare
- Process Design and Engineering Cell, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Madhava Anil Kumar
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India; Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
| |
Collapse
|
14
|
Białk-Bielińska A, Grabarczyk Ł, Mulkiewicz E, Puckowski A, Stolte S, Stepnowski P. Mixture toxicity of six pharmaceuticals towards Aliivibrio fischeri, Daphnia magna, and Lemna minor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26977-26991. [PMID: 34907475 PMCID: PMC8989911 DOI: 10.1007/s11356-021-17928-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
As the knowledge on the joint effects of pharmaceuticals towards different non-target organisms is still limited, the aim of our study was to evaluate the toxicity of mixtures of pharmaceuticals, as well as their baseline toxicity towards three selected organisms, namely the bioluminescent bacteria Aliivibrio fischeri, the crustacean Daphnia magna, and the duckweed Lemna minor. Different mixtures composed of three up to five pharmaceuticals having the same or different mechanisms of action in terms of their therapeutic activity (non-steroidal anti-inflammatory drugs, opioid analgesic, antibacterial and anti-epileptic drugs) were investigated. The observed EC50s were compared with those predicted using the concentration addition (CA) and independent action (IA) models. In general, the EC50 values for mixtures predicted with the CA model were lower than those obtained with the IA model, although, in some cases, test predictions of these two models were almost identical. Most of the experimentally determined EC50 values for the specific mixtures were slightly higher than those predicted with the CA model; hence, a less than additive effect was noted. Based on the obtained results, it might be concluded that the CA model assumes the worst-case scenario and gives overall closer predictions; therefore, it should be recommended also for modeling the mixture toxicity of pharmaceuticals with different modes of action.
Collapse
Affiliation(s)
- Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Łukasz Grabarczyk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
15
|
Wang J, Su G, Yan X, Zhang W, Jia J, Yan B. Predicting cytotoxicity of binary pollutants towards a human cell panel in environmental water by experimentation and deep learning methods. CHEMOSPHERE 2022; 287:132324. [PMID: 34563777 DOI: 10.1016/j.chemosphere.2021.132324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Biological assays are useful in water quality evaluation by providing the overall toxicity of chemical mixtures in environmental waters. However, it is impossible to elucidate the source of toxicity and some lethal combination of pollutants simply using biological assays. As facile and cost-effective methods, computation model-based toxicity assessments are complementary technologies. Herein, we predicted the human health risk of binary pollutant mixtures (i.e., binary combinations of As(III), Cd(II), Cr(VI), Pb(II) and F(I)) in water using in vitro biological assays and deep learning methods. By employing a human cell panel containing human stomach, colon, liver, and kidney cell lines, we assessed the human health risk mimicking cellular responses after oral exposures of environmental water containing pollutants. Based on the experimental cytotoxicity data in pure water, multi-task deep learning was applied to predict cellular response of binary pollutant mixtures in environmental water. Using additive descriptors and single pollutant toxicity data in pure water, the established deep learning model could predict the toxicity of most binary mixtures in environmental water, with coefficient of determination (R2) > 0.65 and root mean squared error (RMSE) < 0.22. Further combining the experimental data on synergistic and antagonistic effects of pollutant mixtures, deep learning helped improve the predictive ability of the model (R2 > 0.74 and RMSE <0.17). Moreover, predictive models allowed us identify a number of toxicity source-related physiochemical properties. This study illustrates the combination of experimental findings and deep learning methods in the water quality evaluation.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| | - Xiliang Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| | - Wei Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Sigurnjak Bureš M, Ukić Š, Cvetnić M, Prevarić V, Markić M, Rogošić M, Kušić H, Bolanča T. Toxicity of binary mixtures of pesticides and pharmaceuticals toward Vibrio fischeri: Assessment by quantitative structure-activity relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:115885. [PMID: 33581639 DOI: 10.1016/j.envpol.2020.115885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Pollutants in real aquatic systems commonly occur as chemical mixtures. Yet, the corresponding risk assessment is still mostly based on information on single-pollutant toxicity, accepting the assumption that pollutant mixtures exhibit additive toxicity effect which is often not the case. Therefore, it is still better to use the experimental approach. Unfortunately, experimental determination of toxicity for each mixture is practically unfeasible. In this study, quantitative structure-activity relationship (QSAR) models for the prediction of toxicity of binary mixtures towards bioluminescent bacteria Vibrio fischeri were developed at three toxicity levels (EC10, EC30 and EC50). For model development, experimentally determined toxicity values of 14 pollutants (pharmaceuticals and pesticides) were correlated with their structural features, applying multiple linear regression together with genetic algorithm. Statistical analysis, internal validation and external validation of the models were carried out. The toxicity is accurately predicted by all three models. EC30 and EC50 values are mostly influenced by geometrical distances between nitrogen and sulfur atoms. Furthermore, the simultaneous presence of oxygen and chlorine atoms in mixture can induce the increase in toxicity. At lower effect levels (EC10), nitrogen atom bonded to different groups has the highest impact on mixture toxicity. Thus, the analysis of the descriptors involved in the developed models can give insight into toxic mechanisms of the binary systems.
Collapse
Affiliation(s)
- M Sigurnjak Bureš
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - Š Ukić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia.
| | - M Cvetnić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - V Prevarić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - M Markić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - M Rogošić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - H Kušić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia
| | - T Bolanča
- University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev Trg 19, 10000, Zagreb, Croatia; University North, Trg dr. Žarka Dolinara 1, 48000, Koprivnica, Croatia
| |
Collapse
|
17
|
Turek M, Różycka-Sokołowska E, Owsianik K, Marciniak B, Bałczewski P. Modification of the Microtox® Basic Solid Phase Test: A new application for the ecotoxicological studies on poorly soluble antihypertensive drugs. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122839. [PMID: 32526424 DOI: 10.1016/j.jhazmat.2020.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Increasing consumption of angiotensin II receptor blockers (ARBs: valsartan, losartan potassium, telmisartan) is inevitably associated with their appearance in the environment and impact on aquatic and terrestrial organisms. Since the pharmaceuticals do not occur as pure substances in the environment, but as complex mixtures with other active pharmaceutical ingredients (APIs) and excipients used in pharmaceutical formulations, we compared the ecotoxicity of ARBs in various forms: as pure APIs, in pharmaceutical formulations and in mixtures with hydrochlorothiazide (HCT). Because the studied APIs are poorly water-soluble, the Microtox® Basic Solid Phase Test, utilizing bacteria Aliivibrio fischeri, has been modified by using a neutral matrix. Thus, this test, which is correlated with other tests for higher aquatic organisms, may be applied for the ecotoxicological evaluation of poorly soluble APIs. This is the first study reflecting the real situation in the environment, where non-target species are exposed to the pharmaceuticals, which can be dissolved/suspended in the liquid medium or adsorbed on the solid matrix. The results obtained indicate that the excipients are not inert substances and their presence in the environment may cause an increased risk to non-target organisms. Moreover, antagonistic effects were observed for two-component drug-drug (ARBs-HCT) mixtures.
Collapse
Affiliation(s)
- Marika Turek
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland.
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland
| | - Bernard Marciniak
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland
| | - Piotr Bałczewski
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, Częstochowa, 42-201, Poland; Division of Organic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Łódź, 90-363, Poland.
| |
Collapse
|
18
|
Jacob RS, de Souza Santos LV, d'Auriol M, Lebron YAR, Moreira VR, Lange LC. Diazepam, metformin, omeprazole and simvastatin: a full discussion of individual and mixture acute toxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1062-1071. [PMID: 32588236 DOI: 10.1007/s10646-020-02239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
High consumption of drugs, combined with their presence in the environment, raises concerns about its consequences. Even though researches are often engaged in analyzing substances separately, that is not the environmental reality. Therefore, the aim of this study was to investigate the acute toxicity of the pharmaceuticals simvastatin, metformin, omeprazole and diazepam, and all possible mixtures between them, to the organism Aliivibrio fischeri, verifying possible synergistic or antagonistic effects and assessing byproducts formation. In terms of individual toxicity, omeprazole is the most toxic of the active ingredients, followed by simvastatin, diazepam and, finally, metformin. When the toxicity of mixtures was tested, synergism, antagonism and hormesis were perceived, most probably generated due to byproducts formation. Moreover, it was observed that even when compounds are at concentrations below the non-observed effect concentration (NOEC), there may be toxicity to the mixture. Hence, this work points to the urgent need for more studies involving mixtures, since chemicals are subject to interactions and modifications, can mix, and potentiate or nullify the toxic effect of each other.
Collapse
Affiliation(s)
- Raquel Sampaio Jacob
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil.
- Civil Engineering Department, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, ZIP 30.535-901, Brazil.
| | - Lucilaine Valéria de Souza Santos
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
- Chemical Engineering Department, Pontifical Catholic University of Minas Gerais, Belo Horizonte, MG, ZIP 30.535-901, Brazil
| | - Mirna d'Auriol
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Yuri Abner Rocha Lebron
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Victor Rezende Moreira
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| | - Liséte Celina Lange
- Sanitation and Environmental Engineering Department, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, MG, Brazil
| |
Collapse
|