1
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
2
|
Khoshmanesh M, Sanati AM, Ramavandi B. Influence of cephalexin on cadmium adsorption onto microplastic particles in water: Human health risk evaluation. Heliyon 2024; 10:e37775. [PMID: 39309868 PMCID: PMC11416549 DOI: 10.1016/j.heliyon.2024.e37775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
This paper explores the impact of environmental factors on the adsorption of cadmium (Cd) and cephalexin (CEX) onto polyethylene (PE) microplastics. The study focused on Cd adsorption behavior on microplastics (MPs) of various sizes, revealing that particles sized 30-63 μm exhibited the highest adsorption capacity compared to other sizes. Cd sorption was significantly influenced by initial pH and salinity levels. Experimental data closely matched both the Langmuir (R2 > 0.91) and Freundlich (R2 > 0.92) isotherms. Cd adsorption onto PE particles was greater than CEX adsorption, with the maximum Cd uptake capacity measured at 1.8 mg/g. FTIR analysis indicated that Cd and CEX adsorption onto MPs was likely governed by physical interactions, as no new functional groups were detected post-uptake. The desorption rates of Cd and CEX from PE microplastics were evaluated in various liquids, including aqueous solution, tap water, seawater, and synthetic gastric juice. The health risks associated with Cd, in combination with MPs and CEX, for both children and adults were assessed in groundwater and aqueous solutions. This study offers scientific insights and guidelines for examining the environmental behavior, migration, and transformation of microplastics and their related ecological risks in scenarios of combined pollution.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
3
|
Adamu H, Haruna A, Zango ZU, Garba ZN, Musa SG, Yahaya SM, IbrahimTafida U, Bello U, Danmallam UN, Akinpelu AA, Ibrahim AS, Sabo A, Aljunid Merican ZM, Qamar M. Microplastics and Co-pollutants in soil and marine environments: Sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. CHEMOSPHERE 2024; 362:142630. [PMID: 38897321 DOI: 10.1016/j.chemosphere.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) and their co-pollutants pose significant threats to soil and marine environments, necessitating understanding of their colonization processes to combat the plastic pandemic and protect ecosystems. MPs can act as invisible carriers, concentrating and transporting pollutants, leading to a more widespread and potentially toxic impact than the presence of either MPs or the pollutants alone. Analyzing the sorption and desorption dynamics of MPs is crucial for understanding pollutants amplification and predicting the fate and transport of pollutants in soil and marine environments. This review provides an in-depth analysis of the sorption and desorption dynamics of MPs, highlighting the importance of considering these dynamics in ecotoxicological risk assessment of MPs pollution. The review identifies limitations of current frameworks that neglect these interactions and proposes incorporating sorption and desorption data into robust frameworks to improve the ability to predict ecological risks posed by MPs and co-pollutants in soil and marine environments. However, failure to address the interplay between sorption and desorption can result in underestimation of the true impact of MPs and co-pollutants, affecting livelihoods and agro-employments, and exacerbate poverty and community disputes (SDGs 1, 2, 3, 8, 9, and 16). It can also affect food production and security (SDG 2), life below water and life on land (DSGs 14 and 15), cultural practices, and natural heritage (SDG 11.4). Hence, it is necessary to develop new approaches to ecotoxicological risk assessment that consider sorption and desorption processes in the interactions between the components in the framework to address the identified limitations.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Zaharadden N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria
| | - Suleiman Gani Musa
- Department of Chemistry, Al-Qalam University, 2137, Katsina, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | | | - Adeola Akeem Akinpelu
- Center of Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Sadiq Ibrahim
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Ahmed Sabo
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Chen R, Hu M, Cheng N, Shi R, Ma T, Wang W, Huang W. Prediction of the bioaccessibility and accumulation of cadmium in the soil-rice-human system based on optimized DGT and BCR coupled models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116509. [PMID: 38833979 DOI: 10.1016/j.ecoenv.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cadmium, as a typical heavy metal, has the potential to induce soil pollution and threaten human health through the soil-plant-human pathway. The conventional evaluation method based on the total content in soil cannot accurately represent the content migrated from the food chain to plants and the human body. Previous studies focused on the process of plant enrichment of heavy metals in soil, and very few studies directly predicted human exposure or risk through the labile state of Cd in soil. Hence, a relatively accurate and convenient prediction model of Cd release and translocation in the soil-rice-human system was developed. This model utilizes available Cd and soil parameters to predict the bioavailability of Cd in soil, as well as the in vitro bioaccessibility of Cd in cooked rice. The bioavailability of Cd was determined by the Diffusive Gradients in Thin-films technology and BCR sequential extraction procedure, offering in-situ quantification, which presents a significant advantage over traditional monitoring methods and aligns closely with the actual uptake of heavy metals by plants. The experimental results show that the prediction model based on the concentration of heavy metal forms measured by BCR sequential extraction procedure and diffusive gradients in thin-films technique can accurately predict the Cd uptake in rice grains, gastric and gastrointestinal phase (R2=0.712, 0.600 and 0.629). This model accurately predicts Cd bioavailability and bioaccessibility across the soil-rice-human pathway, informing actual human Cd intake, offering scientific support for developing more effective risk assessment methods.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Miaomiao Hu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Nuo Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wensheng Wang
- Bao Gang Group Environmental Engineering Research Institute, Baotou 014000, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
5
|
Wang WM, Lu TH, Chen CY, Liao CM. Assessing microplastics-antibiotics coexistence induced ciprofloxacin-resistant Pseudomonas aeruginosa at a water region scale. WATER RESEARCH 2024; 257:121721. [PMID: 38728782 DOI: 10.1016/j.watres.2024.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) waste is widespread globally in water systems. The opportunistic human pathogen Pseudomonas aeruginosa can cause serious acute and chronic infections that are notoriously difficult to treat. Ciprofloxacin (CIP) is broadly applied as an anti-P. aeruginosa drug. A growing evidence reveals that antibiotic-resistance genes-carrying Pseudomonas aeruginosa were detected on MPs forming plastisphere due to their adsorbability along with high occurrence of CIP in water environments. The MPs-niched CIP-resistant P. aeruginosa has been likely to emerge as an unignorable public health issue. Here, we offered a novel approach to assess the development of CIP-resistant P. aeruginosa under MPs-antibiotic coexistence at a water region scale. By combing the adsorption isotherm models used to estimate CIP condensation around MPs and a pharmacokinetic/pharmacodynamic-based microbial population dynamic model, we predicted the P. aeruginosa development on CIP-adsorbed MPs in waters. Our assessment revealed a high antibiotic resistance in the P. aeruginosa populations (∼50 %) with a wider range of waterborne total cell counts (∼10-2-104 cfu mL-1) among water regions in that the resistance proportion was primarily determined by CIP pollution level and relative abundance of various polymer type of MPs. We implicate that water region-specific MPs were highly likely to provide media for P. aeruginosa propagation. Our results highlight the importance of antibiotic-resistant pathogen colonization-emerging environmental medium interactions when addressing global threat from MPs pollution, in the context of MPs-antibiotics co-contamination assessment and for the continued provision of water system management.
Collapse
Affiliation(s)
- Wei-Min Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China
| | - Tien-Hsuan Lu
- Department of Science Education and Application, National Taichung University of Education, Taichung 403514, China
| | - Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 106319, China.
| |
Collapse
|
6
|
Zhang Y, Xu X, Xu J, Li Z, Cheng L, Fu J, Sun W, Dang C. When antibiotics encounter microplastics in aquatic environments: Interaction, combined toxicity, and risk assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172455. [PMID: 38636871 DOI: 10.1016/j.scitotenv.2024.172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Antibiotics and microplastics (MPs), known as emerging pollutants, are bound to coexist in aquatic environments due to their widespread distribution and prolonged persistence. To date, few systematic summaries are available for the interaction between MPs and antibiotics in aquatic ecosystems, and a comprehensive reanalysis of their combined toxicity is also needed. Based on the collected published data, we have analyzed the source and distribution of MPs and antibiotics in global aquatic environments, finding their coexistence occurs in a lot of study sites. Accordingly, the presence of MPs can directly alter the environmental behavior of antibiotics. The main influencing factors of interaction between antibiotics and MPs have been summarized in terms of the characteristics of MPs and antibiotics, as well as the environmental factors. Then, we have conducted a meta-analysis to evaluate the combined toxicity of antibiotics and MPs on aquatic organisms and the related toxicity indicators, suggesting a significant adverse effect on algae, and inapparent on fish and daphnia. Finally, the environmental risk assessments for antibiotics and MPs were discussed, but unfortunately the standardized methodology for the risk assessment of MPs is still challenging, let alone assessment for their combined toxicity. This review provides insights into the interactions and environment risks of antibiotics and MPs in the aquatic environment, and suggests perspectives for future research.
Collapse
Affiliation(s)
- Yibo Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Xin Xu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jing Xu
- Dezhou Eco-environment Monitoring Center of Shandong Province, Dezhou, 253000, China
| | - Zhang Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Long Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jie Fu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chenyuan Dang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
7
|
Gao M, Peng H, Zhao X, Xiao Z, Qiu W, Song Z. Effect of cadmium on polystyrene transport in parsley roots planted in a split-root system and assessment of the combined toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171633. [PMID: 38471591 DOI: 10.1016/j.scitotenv.2024.171633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.
Collapse
Affiliation(s)
- Minling Gao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Hongchang Peng
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Xuesong Zhao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Zhengzhen Xiao
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- College of Chemistry and Chemical Engineering (College of Carbon Neutrality Future Technology), Shantou University, No. 243 Daxue Road, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
8
|
Gao X, Chang S, Liu F, Wei J, Yan B. Adsorption characteristics of ciprofloxacin hydrochloride on polystyrene microplastics in freshwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24139-24152. [PMID: 38436855 DOI: 10.1007/s11356-024-32750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
In order to reveal the adsorption mechanism of microplastics (MPs) on antibiotics, polystyrene (PS) was chosen as a typical microplastic, Fenton and high-temperature aging methods were used to obtain aged MPs particles. The adsorption behavior and mechanism of ciprofloxacin hydrochloride (CIP) on PS before and after aging were studied by batch adsorption experiments, and other influencing environmental conditions were evaluated concurrently. The results showed that the adsorption of CIP on PS was an exothermic reaction, the pseudo-second-order model and Freundlich isothermal models could fit the adsorption of CIP on PS. Aging treatment enhanced the adsorption capacity of PS to CIP, and Fenton aging for 7 days had the best effect. The highest adsorption was observed when the solution pH was 6. The adsorption capacity of microplastics gradually decreased with increasing ionic strength and the concentration of fulvic acid, while the aging microplastics changed little with the concentration of fulvic acid. The presence of both Cu (II) and CIP inhibits the adsorption of each other on microplastics. Based on the above findings, the adsorption of CIP on PS is dominated by physical adsorption, and electrostatic interactions and hydrogen bonding interactions are also important mechanisms for the adsorption of CIP on microplastics.
Collapse
Affiliation(s)
- Xi Gao
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Silu Chang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Fengxu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiayu Wei
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin, 300457, People's Republic of China.
- Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin, 300457, People's Republic of China.
- Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
9
|
Guo Q, Wang M, Jin S, Ni H, Wang S, Chen J, Zhao W, Fang Z, Li Z, Liu H. Photoaged microplastics enhanced the antibiotic resistance dissemination in WWTPs by altering the adsorption behavior of antibiotic resistance plasmids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170824. [PMID: 38340861 DOI: 10.1016/j.scitotenv.2024.170824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.
Collapse
Affiliation(s)
- Qian Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Mengjun Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Siyuan Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Shuping Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
10
|
Dailianis S, Rouni M, Ainali NM, Vlastos D, Kyzas GZ, Lambropoulou DA, Bikiaris DN. New insights into the size-independent bioactive potential of pristine and UV-B aged polyethylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170616. [PMID: 38311086 DOI: 10.1016/j.scitotenv.2024.170616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
The present study investigates the morphological, physicochemical, and structural changes occurred by the UV-B aging process of low-density polyethylene microplastics (LDPE MPs), as well as the bioactive potential of both pristine and UVaged MPs towards healthy peripheral blood lymphocytes. Specifically, LDPE MPs (100-180 μm) prepared by mechanical milling of LDPE pellets, were UV-B irradiated for 120 days (wavelength 280 nm; temperature 25 °C; relative humidity 50 %) and further examined for alterations in their particle size and surface, their functional groups, thermal stability, and crystallinity (by means of SEM, FTIR spectroscopy, XRD patterns, and TGA measurements, respectively). In parallel, isolated human peripheral blood lymphocytes were treated with different concentrations (25-500 μg mL-1) of either pristine or aged MPs (UVfree and UV120d LDPE MPs) for assessing the cytogenotoxic (by means of trypan blue exclusion test and the cytokinesis-block micronucleus assay using cytochalasin-B) and oxidative effects (using the DCFH-DA staining) in both cases. According to the results, UVfree and UV120d-LDPE MPs, with a size ranging from 100 to 180 μm, can differentially promote cytogenotoxic and oxidative alterations in human lymphocytes. In fact, UVfree LDPE MPs not being able to be internalized by cells due to their size, could indirectly promote the onset of mild oxidative and cytogenotoxic damage in human peripheral lymphocytes, via a dose-dependent but size-independent manner. The latter is more profound in case of the irregular-shaped UV120d-LDPE MPs, bearing improved dispersibility and sharp edges (by means of cracks and holes), as well as oxygen-containing and carbonyl groups. To our knowledge, the present findings provide new data regarding the bioactive behavior of pristine and UV-B aged LDPE MPs, at least in the in vitro biological model tested, thus giving new evidence for their size-independent and/or indirect mode of action.
Collapse
Affiliation(s)
- Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| | - Maria Rouni
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, GR-65404 Kavala, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Gao Q, Lu X, Li J, Wang P, Li M. Impact of microplastics on nicosulfuron accumulation and bacteria community in soil-earthworms system. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133414. [PMID: 38181595 DOI: 10.1016/j.jhazmat.2023.133414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Microplastics (MPs) widely co-occur with various pollutants in soils. However, the data related to the impacts of MPs on terrestrial animal and microbial properties in pesticide-contaminated soils are few. In this study, the influence of MPs (0.01%, 0.1%, and 1%) on nicosulfuron concentrations in soil (10 µg/g) and earthworms were investigated, moreover, microbial community structure and diversity in soil and earthworm gut were also measured. After 30 days, the concentration of nicosulfuron in soil decreased to 1.27 µg/g, moreover, the residual concentration of nicosulfuron in soil (1%MPs and nicosulfuron) was only 44.8% of that in the single nicosulfuron treatment group. The accumulation of nicosulfuron in earthworms (1%MPs and nicosulfuron) was 7.37 µg/g, which was 1.82 times of that in the single nicosulfuron treatment group. In addition, 1% MPs decreased the richness and diversity of the soil and gut bacterial community in earthworms as well as altered microbial community composition, leading to the enrichment of specific microbial community. Our findings imply that MPs may change the migration of pesticides to terrestrial animal and as well as microbial diversity in earthworms and soil.
Collapse
Affiliation(s)
- Qingchuan Gao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Xiaohui Lu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jinfeng Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ping Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Feng S, Wang H, Wang Y, Cheng Q. A review of the occurrence and degradation of biodegradable microplastics in soil environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166855. [PMID: 37683869 DOI: 10.1016/j.scitotenv.2023.166855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
The use of plastics for manufacturing of products and packaging has become ubiquitous. This is because plastics are cheap, pliable, and durable. However, these characteristics of plastics have also led to their disposal in landfill, where they persist. To overcome the environmental challenge posed by conventional plastics (CPs), biodegradable plastics (BDPs) are increasingly being used. However, BDPs form residual microplastics (MPs) at a rate that far exceeds that of CPs, and MPs have negative impacts on the soil environment. This review aimed to evaluate whether the move away from CPs to BDPs is having an overall positive impact on the environment considering the formation of MPs. Topics focused on in this review include the degradation of BDPs in the soil environment and the impacts of MPs originating from BDPs on soil physical and chemical properties, microbial communities, animals, and plants. The information collated in this review can provide scientific guidance for sustainable development of the BDPs industry.
Collapse
Affiliation(s)
- Shanshan Feng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Haodong Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yan Wang
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Quanguo Cheng
- Key Lab of Eco-Restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang 110044, China.
| |
Collapse
|
13
|
Abdurahman A, Li S, Li Y, Song X, Gao R. Ecotoxicological effects of antibiotic adsorption behavior of microplastics and its management measures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125370-125387. [PMID: 38006478 DOI: 10.1007/s11356-023-30970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023]
Abstract
Microplastics adsorb heavy metals and organic pollutants to produce combined pollution. Recently, the adsorption behavior of antibiotics on microplastics has received increasing attention. Exploring the sorption behavior of pollutants on microplastics is an important reference in understanding their ecological and environmental risk studies. In this paper, by reviewing the academic literature in recent years, we clarified the current status of research on the adsorption behavior of antibiotics on microplastics, discussed its potential hazards to ecological environment and human health, and summarized the influence of factors on the adsorption mechanisms. The results show that the adsorption behavior of antibiotics on microplastics is controlled by the physical and chemical properties of antibiotics, microplastics, and water environment. Antibiotics are adsorbed on microplastics through physical and chemical interactions, which include hydrophobic interaction, partitioning, electrostatic interaction, and other non-covalent interactions. Intensity of adsorption between them is mainly determined by their physicochemical properties. The basic physicochemical properties of the aqueous environment (e.g., pH, salinity, ionic strength, soluble organic matter content, and temperature) will affect the physicochemical properties of microplastics and antibiotics (e.g., particle size, state of dispersibility, and morphology), leading to differences in the type and strength of their interactions. This paper work is expected to provide a meaningful perspective for better understanding the potential impacts of antibiotic adsorption behavior of microplastics on aquatic ecology and human health. In the meantime, some indications for future related research are provided.
Collapse
Affiliation(s)
- Abliz Abdurahman
- Chemistry Department, College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China.
| | - Shuocong Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Yangjie Li
- Guangdong Institute for Drug Control, Guangzhou, 510663, China
| | - Xiaofei Song
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Rui Gao
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
14
|
Zhuang S, Wang J. Interaction between antibiotics and microplastics: Recent advances and perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165414. [PMID: 37429470 DOI: 10.1016/j.scitotenv.2023.165414] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Both microplastics and antibiotics are emerging pollutants, which are ubiquitous in aquatic environments. With small size, high specific surface area, and attached biofilm, microplastics are capable of adsorbing or biodegrading antibiotic pollutants across aquatic environments. However, the interactions between them are poorly understood, especially factors that affect microplastics' chemical vector effects and the mechanisms driving these interactions. In this review, the properties of microplastics and their interaction behavior and mechanisms towards antibiotics were comprehensively summarized. Particularly, the impact of weathering properties of microplastics and the growth of attached biofilm was highlighted. We concluded that compared with virgin microplastics, aged microplastics usually adsorb more types and quantities of antibiotics from aquatic environments, whilst the attached biofilm could further enhance the adsorption capacities and biodegrade some antibiotics. This review can answer the knowledge gaps of the interaction between microplastics and antibiotics (or other pollutants), offer basic information for evaluating their combined toxicity, provide insights into the distribution of both emerging pollutants in the global water chemical cycle, and inform measures to remove microplastic-antibiotic pollution.
Collapse
Affiliation(s)
- Shuting Zhuang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
15
|
Zhai M, Fu B, Zhai Y, Wang W, Maroney A, Keller AA, Wang H, Chovelon JM. Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. WATER RESEARCH 2023; 236:119924. [PMID: 37030197 DOI: 10.1016/j.watres.2023.119924] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
The coexistence of pharmaceuticals and heavy metals is regarded as a serious threat to aquatic environments. Adsorbents have been widely applied to the simultaneous removal of pharmaceuticals and metals from aqueous phase. Through a comprehensive review, behaviors that promote, inhibit, or have no effect on simultaneous adsorption of pharmaceuticals and heavy metals were found to depend on the system of contaminants and adsorbents and their environmental conditions, such as: characteristics of adsorbent and pollutant, temperature, pH, inorganic ions, and natural organic matter. Bridging and competition effects are the main reasons for promoting and inhibiting adsorption in coexisting systems, respectively. The promotion is more significant in neutral or alkaline conditions. After simultaneous adsorption, a solvent elution approach was most commonly used for regeneration of saturated adsorbents. To conclude, this work could help to sort out the theoretical knowledge in this field, and may provide new insights into the prevention and control of pharmaceuticals and heavy metals coexisting in wastewater.
Collapse
Affiliation(s)
- Mudi Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Bomin Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Macao Environmental Research Institute, Macau University of Science and Technology, Macao 999078, China
| | - Yuhui Zhai
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Weijie Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China
| | - Amy Maroney
- College of Engineering and Science, Louisiana Tech University, 201 Mayfield Ave. Ruston, LA 71272, United States
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, United States
| | - Hongtao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Rd 1239, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, UNEP-TONGJI Institute of Environment for Sustainable Development, Shanghai 200092, China.
| | - Jean-Marc Chovelon
- IRCELYON, CNRS UMR 5256, Université Claude Bernard Lyon 1, 2 Avenue Albert-Einstein, Villeurbanne F-69626, France
| |
Collapse
|
16
|
Chen Z, Yang J, Huang D, Wang S, Jiang K, Sun W, Chen Z, Cao Z, Ren Y, Wang Q, Liu H, Zhang X, Sun X. Adsorption behavior of aniline pollutant on polystyrene microplastics. CHEMOSPHERE 2023; 323:138187. [PMID: 36806808 DOI: 10.1016/j.chemosphere.2023.138187] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Microplastic contamination is ubiquitous in aquatic environments. As global plastic production increases, the abundance of microplastic contaminants released into the environment has also continued to soar. The hydrophobic surfaces of plastic particles can adsorb a variety of chemical pollutants, and could therefore facilitate toxin accumulation through the food chain. In this study, the adsorption behavior of aniline, a priority environmental pollutant from industrial production, on the surface of polystyrene microplastics (mPS) was investigated. The results showed that the maximum adsorption capacity of mPS was 0.060 mg/g. Adsorption equilibrium was reached after 24 h, and the pseudo-second-order model was employed to explain the adsorption kinetics of aniline on the mPS particles. The Freundlich models could describe the adsorption isotherms. The potential adsorption mechanisms may include π-π interactions and hydrophobic interactions. pH, ionic strength, and ambient temperature of the solution played important roles in the adsorption process.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jinchan Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Shuni Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Jiang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Weimin Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhihua Chen
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China
| | - Youhua Ren
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoxu Sun
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, 453007, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Garo-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Stapleton MJ, Ansari AJ, Hai FI. Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications. WATER RESEARCH 2023; 233:119790. [PMID: 36870107 DOI: 10.1016/j.watres.2023.119790] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics as vectors for contaminants in the environment is becoming a topic of public interest. Microplastics have been found to actively adsorb heavy metals, per-fluorinated alkyl substances (PFAS), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), pharmaceuticals and personal care products (PPCPs) and polybrominated diethers (PBDs) onto their surface. Particular interest in microplastics capacity to adsorb antibiotics needs further attention due to the potential role this interaction plays on antibiotic resistance. Antibiotic sorption experiments have been documented in the literature, but the data has not yet been critically reviewed. This review aims to comprehensively assess the factors that affect antibiotic sorption onto microplastics. It is recognised that the physico- chemical properties of the polymers, the antibiotic chemical properties, and the properties of the solution all play a crucial role in the antibiotic sorption capacity of microplastics. Weathering of microplastics was found to increase the antibiotic sorption capacity by up to 171%. An increase in solution salinity was found to decrease the sorption of antibiotics onto microplastics, in some instances by 100%. pH also has a substantial effect on sorption capacity, illustrating the significance of electrostatic interactions on the sorption of antibiotics onto microplastics. The need for a uniform experimental design when testing antibiotic sorption is highlighted to remove inconsistencies in the data currently presented. Current literature examines the link between antibiotic sorption and antibiotic resistance, however, further studies are still required to fully understand this emerging global crisis.
Collapse
Affiliation(s)
- Michael J Stapleton
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashley J Ansari
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
18
|
Zhang J, Zhan S, Zhong LB, Wang X, Qiu Z, Zheng YM. Adsorption of typical natural organic matter on microplastics in aqueous solution: Kinetics, isotherm, influence factors and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130130. [PMID: 36265379 DOI: 10.1016/j.jhazmat.2022.130130] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
With rapid urbanization, microplastics and natural organic matters (NOMs) are ubiquitous in aquatic environment, and microplastics could act as carriers for organic matters in the aqueous solution and may pose a potential risk. In this study, the adsorption behaviors and mechanism of typical NOM, humic acid (HA), on polyvinyl chloride (PVC) and polystyrene (PS) microplastics were investigated. Various influence factors such as solution pH, ions species and concentrations, particle size, and coexisting surfactants were studied. The results suggested that HA adsorption onto PVC and PS was low pH-dependent, and ion species and concentrations have a significant impact on the adsorption capacity. In addition, the particle size of PVC and PS microplastics exhibited a significant correlation with HA adsorption, and the adsorption process was influenced by the surfactant species and concentrations. Moreover, the adsorption behaviors of HA in different real water environments were tested, and UV aging exhibited the opposite effects on adsorption capacity of PVC and PS. Furthermore, the adsorption mechanisms of HA onto PVC and PS were explored, indicating halogen bonding, hydrogen bonding, and π-π interaction play important roles in the adsorption process.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Siyan Zhan
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Lu-Bin Zhong
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Ximo Wang
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Zumin Qiu
- School of Resources Environmental and Chemical Engineering, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China.
| | - Yu-Ming Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Lv M, Zhang T, Ya H, Xing Y, Wang X, Jiang B. Effects of heavy metals on the adsorption of ciprofloxacin on polyethylene microplastics: Mechanism and toxicity evaluation. CHEMOSPHERE 2023; 315:137745. [PMID: 36608883 DOI: 10.1016/j.chemosphere.2023.137745] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are plastic particles less than 5 mm in diameter and are widely present in water environments. Their unique surface structures can adsorb coexisting pollutants in the surrounding environment, such as antibiotics and metal ions, leading to compound pollution. The adsorption of ciprofloxacin on polyethylene microplastics under different environmental conditions (pH and salinity) was investigated. The Freundlich model fitted well at 25 °C, indicating that the adsorption of ciprofloxacin by polyethylene microplastics was multilayered, and Fourier Transform infrared spectroscopy (FTIR) analysis indicated that the adsorption of ciprofloxacin by polyethylene microplastics was physical. The kinetic adsorption of ciprofloxacin on polyethylene microplastics followed a pseudo-second-order mode. Heavy metals (Cu2+, Cr3+, Cr6+, Cd2+, and Pb2+) affected the adsorption of ciprofloxacin by microplastics, which was related to the type and concentration of metal ions and the valence state of the ions. The acute toxicity of microplastics and the microplastic-ciprofloxacin-Cu2+ complex were evaluated using luminescent Photobacterium phosphoreum, demonstrating the polyethylene toxicity microplastic-ciprofloxacin-Cu2+ complex was mainly caused by Cu2+ and ciprofloxacin rather than microplastics. This study provides theoretical support for the environmental behavior and ecological effects of microplastics in aqueous environments.
Collapse
Affiliation(s)
- Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Zhejiang Development & Planning Institute, Hangzhou, 310030, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, PR China.
| |
Collapse
|
20
|
Dilxat D, Liang T, Wang Y, Habibul N. Insights into the interaction mechanism of ofloxacin and functionalized nano-polystyrene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121792. [PMID: 36088742 DOI: 10.1016/j.saa.2022.121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Nano-plastics (NPs), an emerging contaminant in the environment, have a larger specific surface area and can act as a carrier of other contaminants. Thus, insights into the interaction mechanisms between NPs and other pollutants are crucial for the assessment of environmental impacts of NPs in the ecosystems. In this study, the interaction mechanism between NPs and ofloxacin (OFL) were investigated via kinetics, fluorescence quenching, and two-dimensional correlation spectroscopy (2DCOS). The adsorption kinetics of OFL on carboxyl-modified polystyrene (PS-COOH) and amine modified polystyrene (PS-NH2) closely fitted the pseudo-second-order kinetics model (R2 = 0.99). Adsorption kinetics indicated that chemical adsorption is dominant mechanism, and the Fourier Transform Infrared Spectrometer (FT-IR) and X-ray photoelectron spectroscopy (XPS) results showed that the electronic interaction, π-π, and H-binding were also involved in the adsorption process. OFL showed strong fluorescence quenching in the presence of NPs. Stern-Volmer quenching was negatively related with the temperature, which was dominated by the static type of quenching. 2DCOS indicated that the π-π conjugation was dominant in the interaction process, and the interaction process was dependent on the solution pH and salinity. Overall, this work provides new insights into the interaction mechanism of NPs and antibiotics in the aquatic ecosystems.
Collapse
Affiliation(s)
- Dilnur Dilxat
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| | - Ting Liang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China
| | - Nuzahat Habibul
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China; Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, Urumqi 830054, China.
| |
Collapse
|
21
|
Tong F, Liu D, Zhang Z, Chen W, Fan G, Gao Y, Gu X, Gu C. Heavy metal-mediated adsorption of antibiotic tetracycline and ciprofloxacin on two microplastics: Insights into the role of complexation. ENVIRONMENTAL RESEARCH 2023; 216:114716. [PMID: 36336092 DOI: 10.1016/j.envres.2022.114716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) have recently become an emerging environmental concern. Nevertheless, limited information is known about the adsorption of MPs for organic contaminants under combined heavy metals pollution, with an emphasis on the role of complexation. Thus, this study aims to comprehensively compare and investigate the adsorption performance of antibiotic tetracycline (TC) and ciprofloxacin (CIP) on two polar MPs (polyamide (PA) and polyvinyl chloride (PVC)) affected by Cu(II) and Cd(II) with contrasting complexation abilities. Batch adsorption experiments were used in combination with speciation calculation, zeta potential determination, FTIR spectroscopy characterization and investigation of the affinity of MPs for heavy metals. Results showed that the sorption kinetics and isotherms of TC and CIP on PA and PVC could be well fitted to pseudo-second-order and Langmuir models, respectively, both in the absence and presence of Cu and Cd, suggesting that multiple interactions and monolayer adsorption played an important role in the adsorption process. The presence of Cu substantially improved TC and CIP adsorption and obviously changed the pH dependence of their adsorption onto both MPs, which may result from the Cu-induced strong complexation with TC and CIP. The presence of Cd slightly enhanced TC adsorption on both MPs while reduced CIP adsorption especially on PVC, which may be ascribed to the Cd-induced cationic bridging effects in TC adsorption and the competitive adsorption of Cd in CIP adsorption. Therefore, the heavy metal-mediated complexation effects may play a dominant role in antibiotic adsorption by MPs only in the presence of heavy metals with strong complexation ability while the adsorption performance in the presence of heavy metals with negligible complexation capacity may be influenced by effects other than complexation. This study helps further understand the heavy metal-mediated adsorption behavior of organic contaminants on polar MPs and the role of complexation reactions therein.
Collapse
Affiliation(s)
- Fei Tong
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Di Liu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhenhua Zhang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia.
| | - Wei Chen
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Guangping Fan
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Yan Gao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Shang C, Wang B, Guo W, Huang J, Zhang Q, Xie H, Gao H, Feng Y. The weathering process of polyethylene microplastics in the paddy soil system: Does the coexistence of pyrochar or hydrochar matter? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120421. [PMID: 36252884 DOI: 10.1016/j.envpol.2022.120421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study is based on a particular test site to simulate the weathering process of microplastics (MPs) in paddy soil. A substantial amount of plastic waste, especially MPs, inevitably accumulates in agricultural soil due to the high consumption and short average use of plastics. Recently, MP pollution has become a global environmental concern. However, insight into the soil weathering process of MPs in paddy soil, particularly in the presence of biochar, is lacking. In this study, the physicochemical properties of polyethylene (PE) MPs were determined through a 24-week weathering system conducted in paddy soil, paddy soil with pyrochar, or hydrochar. Moreover, the sorption of original and weathered PE MPs toward three typical pollutants (cadmium/Cd, bisphenol A/BPA, and dimethyl phthalate/DMP) was investigated. The surface of PE MPs was fractured, 1.1-fold rougher, yellow-colored (11.7 units), and 1.8-fold more oxidized after paddy soil weathering. In addition, the crystallinity, negative charge, and stronger hydrophilicity of weathered PE MPs increased compared to original PE MPs. Weathering in a pyrochar or hydrochar system caused fissures, extensive destruction of amorphous areas, and accelerated chemical or bio-oxidation processes for PE MPs, resulting in a more noticeable change in roughness (1.4-2.2-fold), yellow color (12.7-13.7), crystallinity (1.2-1.5-fold), and oxygen content (2.5-3.6-fold). Weathered PE MPs facilitated the sorption with Cd and BPA, attributed to larger specific surface area, abundant polar functional groups, and increased negatively charged sites. However, sorption of DMP to PE MPs was highly influenced by their hydrophobicity, resulting in decreased hydrophobic partition sorption on weathered PE MPs. Overall, paddy soil weathering affected the properties of PE MPs and enhanced sorption of Cd and BPA but reduced sorption of DMP. The coexistence of biochar exacerbated the paddy soil weathering effect. The insight gained from this study assists in better understanding the weathering process of PE MPs in agricultural soils.
Collapse
Affiliation(s)
- Cenyao Shang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wenzhen Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiuyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hailong Gao
- Jiangsu Provincial Ecological Assessment Center, Nanjing, 210036, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|
23
|
Highly enhanced adsorption of antibiotics on aged polyamide microplastics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
24
|
Sun A, Xu L, Zhou G, Yin E, Chen T, Wang Y, Li X. Roles of polystyrene micro/nano-plastics as carriers on the toxicity of Pb 2+ to Chlamydomonas reinhardtii. CHEMOSPHERE 2022; 309:136676. [PMID: 36191764 DOI: 10.1016/j.chemosphere.2022.136676] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Little information could be consulted on the impacts of micro-plastics as carriers on toxicity of heavy metals, especially for micro-plastics of different sizes. Therefore, this study investigated the adsorption and desorption of Pb2+ on polystyrene plastics with nano- and micro-size (NPs and MPs), and further evaluated the roles of NPs and MPs as carriers on the toxicity of Pb2+ to Chlamydomonas reinhardtii (C. reinhardtii). The results showed that NPs showed higher adsorption capacities and a lower desorption rate for Pb2+ than MPs. The growth inhibitory rates (IR) of mixed and loaded Pb2+ with MPs to C. reinhardtii were 18.29% and 15.76%, respectively, which were lower than that of Pb2+ (22.28%). The presence of MPs decreased the bioavailability of Pb2+ to C. reinhardtii by a competitive adsorption for Pb2+ between MPs and algal cells, and suppressed membrane damage and oxidative stress caused by Pb2+. Maximum IR was observed for the mixture of NPs with Pb2+ (35.64%), followed by Pb2+ loaded on NPs (30.13%), single NPs (26.71%) and Pb2+ (21.01%). The internalization of NPs with absorbed Pb2+ intensified lipid peroxidation. The mixed and loaded microplastics with Pb2+ had more negative effects on C. reinhardtii than the single microplastics. The size-dependent effect was observed in the capacity of heavy metal ions carried by microplastics and the roles of microplastics as carriers on the toxicity of Pb2+. The results showed that the indirect risk of microplastics as 'carriers' could not be ignored, especially for NPs.
Collapse
Affiliation(s)
- Aoxue Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Limei Xu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Erqin Yin
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiantian Chen
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
25
|
Wang Q, He X, Xiong H, Chen Y, Huang L. Structure, mechanism, and toxicity in antibiotics metal complexation: Recent advances and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157778. [PMID: 35926602 DOI: 10.1016/j.scitotenv.2022.157778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic-metal complexes (AMCs) formed by antibiotics and metal ions have attracted considerable attentions in recent years. Although different removal methods for AMCs have been reported in the literature, very few investigations have focused on the mechanisms and toxic effects of antibiotic-metal coordination. This review briefly describes the structural characteristics of various commonly used antibiotics and the coordination mechanisms with metal ions. Considering the complexity of the real environment, various environmental factors affecting AMC formation are highlighted. The effects of AMCs on microbial community structure and the role of metal ions in influencing resistant genes from the molecular perspective are of interest within this work. The toxicities and mechanisms of AMCs on different species of biota are also discussed. These findings underline the need for more targeted detection and analysis methods and more suitable toxicity markers to verify the combination of antibiotics with metal ions and reveal environmental toxicities in future. This review presents an innovative idea that antibiotics combined with metal ions will change the toxicity and environmental behavior of antibiotics.
Collapse
Affiliation(s)
- Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Haifeng Xiong
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, PR China.
| |
Collapse
|
26
|
Chen X, Liang J, Bao L, Gu X, Zha S, Chen X. Competitive and cooperative sorption between triclosan and methyl triclosan on microplastics and soil. ENVIRONMENTAL RESEARCH 2022; 212:113548. [PMID: 35613630 DOI: 10.1016/j.envres.2022.113548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The sorption behavior of single contaminant on microplastics (MPs) has been extensively studied; however, little is known about that in the more actual scenario containing multiple contaminants. In this study, the interaction between triclosan (TCS) and its primary metabolite, methyl triclosan (MTCS) on polyethylene (PE), polystyrene (PS), and soil was investigated. Results indicate that the more hydrophobic MTCS had much higher sorption capacity and affinity than TCS. Competitive sorption between them occurred in most cases and appeared to be concentration-dependent (in the range of 0.1-5 mg TCS/L and 0.01-≤0.05 mg MTCS/L of primary solutes, respectively): more pronounced at low concentrations of primary solute, while progressively weaker with the increase of concentrations. Among the sorbents, MTCS exhibited strong antagonistic effect on TCS sorption for MPs, especially PS, while significant suppression of MTCS sorption by TCS took place for soil and PS rather than PE. Additionally, it is interesting to observe that the presence of TCS substantially facilitated the sorption of MTCS exclusively at high concentrations on both PS and soil, presumably attributed to the solute-multilayer formation. Furthermore, the magnitude of the two effects varied with solution pH: TCS sorption at alkaline pH was the most suppressed by MTCS because the less hydrophobic dissociated TCS tended to be displaced, and the highest cooperative sorption of MTCS with TCS occurred at acidic pH because neutral TCS preferentially adsorbed on sorbent surface could provide additional sorption sites for MTCS. Both competitive and cooperative effects between multiple contaminants may affect their fate and transport, thereby these findings are helpful for assessing the environmental risk of MPs and TCS in soil.
Collapse
Affiliation(s)
- Xian Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Jingcheng Liang
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Lijing Bao
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xuanning Gu
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Simin Zha
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| | - Xingming Chen
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, 213001, China.
| |
Collapse
|
27
|
Adsorption of Tannic Acid and Macromolecular Humic/Fulvic Acid onto Polystyrene Microplastics: A Comparison Study. WATER 2022. [DOI: 10.3390/w14142201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dissolved organic matter (DOM) has been widely reported to influence the environmental behavior of microplastics (MPs), but little is known about the properties and mechanisms of interaction between specific DOM components and MPs. Here, we studied the adsorption of three representative DOM components (humic acid, HA; fulvic acid, FA; and tannic acid, TA) on polystyrene (PS) MPs in batch adsorption experiments. Results revealed that HA/FA adsorption was greater under acidic conditions, while higher TA adsorption on PS was found at pH 4 and 6. The divalent cation (Ca2+) exerted a more prominent role in enhancing HA, FA, and TA adsorption on PS than did monovalent ones (K+ and Na+). The adsorption process fitted well with the Freundlich isotherm model and the pseudo-second-order kinetics model. The adsorption site heterogeneity was evaluated using the site energy distribution analysis based on the Freundlich model. The greater binding ability of HA on the PS surface caused a more negatively charged surface than FA/TA, as reflected by Zeta potential values. The findings of this study not only provide valuable information about the adsorption behavior and interaction processes of various DOM components on PS MPs, but also aid our efforts to evaluate the environmental behaviors of MPs.
Collapse
|
28
|
Ge J, Zhang Z, Ouyang Z, Shang M, Liu P, Li H, Guo X. Photocatalytic degradation of (micro)plastics using TiO 2-based and other catalysts: Properties, influencing factor, and mechanism. ENVIRONMENTAL RESEARCH 2022; 209:112729. [PMID: 35065068 DOI: 10.1016/j.envres.2022.112729] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 05/26/2023]
Abstract
(Micro)plastics pollution has raised global concern because of its potential threat to the biota. The review on recent developments of photocatalytic degradation of (micro)plastics is still insufficient. In this study, we have discussed various bare and composites photocatalysts involved in the photocatalytic degradation of (micro)plastics. The photocatalytic mechanisms and factors affecting the degradation were also discussed. To improve the performance of photocatalysts, their surface is modified with metal or non-metal dopants. These doped photocatalysts are then compounded with a variety of environmentally friendly and nontoxic polymers to prepare multifunctional composites. The generation of reactive oxygen species (ROS) plays an important role in the photocatalytic degradation of (micro)plastics, and superoxide ions (O2-) and hydroxyl radicals (OH) participate in the photocatalytic degradation, leading to the breaking of the polymer chain and the production of some intermediates. Although satisfactory progress has been achieved in the photodegradation of (micro)plastics, most photocatalytic degradation technologies investigated to date cannot realize the complete mineralization of (micro)plastics. Furthermore, based on the current challenges of the existing photocatalytic degradation technologies, perspectives for future research directions have been proposed. This review presents a systematic summary of the progress made in the photocatalytic degradation of (micro)plastics and offers a comprehensive reference for future research on improving the (micro)plastics photocatalytic degradation efficiency.
Collapse
Affiliation(s)
- Jianhua Ge
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, Anhui Province, 232001, China
| | - Zhiping Zhang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, Anhui Province, 232001, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| | - Mengxin Shang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, Anhui Province, 232001, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huang Li
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, Anhui Province, 232001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Yu X, Xu Y, Lang M, Huang D, Guo X, Zhu L. New insights on metal ions accelerating the aging behavior of polystyrene microplastics: Effects of different excess reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153457. [PMID: 35092773 DOI: 10.1016/j.scitotenv.2022.153457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) will coexist with various pollutants in the environment, but it is not clear whether these pollutants will affect the aging process of MPs. The aging process of polystyrene microplastics (PS-MPs) mediated by Cu2+ and Pb2+ was investigated in this study. The results showed that the aging rate of PS-MPs mediated by Cu2+ and Pb2+ were significantly higher than that of ultrapure water (After 7 days of light irradiation, the CI values of aging PS-MPs mediated by ultrapure water, Cu2+ and Pb2+ increased from 0.030 of original PS-MPs to 0.034, 0.048 and 0.086 respectively). This process may be related to the generation of a large amount of reactive oxygen species, because OH were detected in PS-MPs suspension mediated by Cu2+, which were significantly higher than those in ultrapure water, while 1O2 mediated by Pb2+ were more. However, these photo-aging effects were significantly inhibited by reactive oxygen species (ROS) quencher, which indicated that excessive ROS production was the main reason for metal ions to promote the photo-aging of PS-MPs. In addition, this study reported that excessive ROS will accelerate the formation of carbonyl group on the surface of PS-MPs, and lead to the change of physical and chemical properties of PS-MPs. This study provides new insights for the environmental behavior of MPs under the condition of combined pollution.
Collapse
Affiliation(s)
- Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yibo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengfan Lang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
30
|
Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16830-16859. [PMID: 35001283 DOI: 10.1007/s11356-022-18504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Microplastics, as emerging pollutants, have received great attention in the past few decades due to its adverse effects on the environment. Microplastics are ubiquitous in the atmosphere, soil, and water bodies, and mostly reported in aqueous environment. This paper summarizes the abundance and types of microplastics in different aqueous environments and discusses the interactions of microplastics with other contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), antibiotics, and heavy metals. The toxicity of microplastics to aquatic organisms and microorganisms is addressed. Particularly, the combined toxic effects of microplastics and other pollutants are discussed, demonstrating either synergetic or antagonistic effects. Future prospectives should be focused on the characterization of different types and shapes of microplastics, the standardization of microplastic units, exploring the interaction and toxicity of microplastics with other pollutants, and the degradation of microplastics, for a better understanding of the ecological risks of microplastics.
Collapse
Affiliation(s)
- Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
31
|
Yu X, Lang M, Huang D, Yang C, Ouyang Z, Guo X. Photo-transformation of microplastics and its toxicity to Caco-2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150954. [PMID: 34656578 DOI: 10.1016/j.scitotenv.2021.150954] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
In recent years, microplastics (MPs) pollution, as a global environmental problem, has been widely concerned by countries all over the world. However, the research on the impact of MPs on human health is still limited. In this study, we studied the photo-transformation behavior of polystyrene microplastics (PS-MPs) under ultraviolet light and its toxicity to Caco-2 cells. Our results showed that the surface of PS-MPs was roughened by light, and cracks and pits appeared. UV-vis spectra showed that the opening of phenyl ring and the formation of carbonyl group might exist in this process. Based on FTIR and 2D-COS analysis, we observed the formation of carbonyl group and hydroxyl group, and preliminarily determined that the order of photo-transformation of PS-MPs was 698 (CH) > 752 (CH) > 1030 (CO) > 3645 (OH/OOH) > 1740 (CO). XPS showed that the photo-transformation of PS-MPs was a process in which carbon-containing functional groups were gradually partially transformed into oxygen-containing functional groups. Finally, the toxicity results showed that with the increase of PS-MPs concentration and the extension of light irradiation time, the survival rate of Caco-2 cells gradually decreased and the integrity of cell membrane was destroyed. The increased cytotoxicity can be explained at least in part by the fact that the toxicity of oxygen-containing functional groups is greater than that of carbon-containing functional groups, but how these functional groups affect the cytotoxicity of cells still needs sustained research in the future. This study can provide new insights for understanding the environmental behavior and ecological effects of PS-MPs in the environment.
Collapse
Affiliation(s)
- Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengfan Lang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengfang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
32
|
Liu S, Huang J, Zhang W, Shi L, Yi K, Yu H, Zhang C, Li S, Li J. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113995. [PMID: 34700080 DOI: 10.1016/j.jenvman.2021.113995] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) have recently attracted much attention due to their widespread distribution in the aquatic environment. Microplastics can act as a vector of heavy metals in the aquatic environment, causing a potential threat to aquatic organisms and human health. This review mainly summarized the occurrence of microplastics in the aquatic environment and their interaction with heavy metals. Then, we considered the adsorption mechanisms of MPs and heavy metals, and further critically discussed the effects of microplastics properties and environmental factors (e.g., pH, DOM, and salinity) on the adsorption of heavy metals. Finally, the potential risks of combined exposure of MPs and heavy metals to aquatic biota were briefly evaluated. This work aims to provide a theoretical summary of the interaction between MPs and heavy metals, and is expected to serve as a reference for the accurate assessment of their potential risks in future studies.
Collapse
Affiliation(s)
- Si Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - JinHui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - LiXiu Shi
- College of Chemical and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - KaiXin Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - HanBo Yu
- College of Chemical and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - ChenYu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - SuZhou Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - JiaoNi Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
33
|
Wang Y, Yang Y, Liu X, Zhao J, Liu R, Xing B. Interaction of Microplastics with Antibiotics in Aquatic Environment: Distribution, Adsorption, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15579-15595. [PMID: 34747589 DOI: 10.1021/acs.est.1c04509] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As two major types of pollutants of emerging concerns, microplastics (MPs) and antibiotics (ATs) coexist in aquatic environments, and their interactions are a source of increasing concern. Therefore, this work examines the interaction mechanisms of MPs and ATs, and the effect of MPs on ATs bioavailability and antibiotic resistance genes (ARGs) abundance in aquatic environments. First, the mechanisms for ATs adsorption on MPs are summarized, mainly including hydrophobic, hydrogen-bonding, and electrostatic interactions. But other possible mechanisms, such as halogen bonding, CH/π interaction, cation-π interaction, and negative charge-assisted hydrogen bonds, are newly proposed to explain the observed ATs adsorption. Additionally, environmental factors (such as pH, ionic strength, dissolved organic matters, minerals, and aging conditions) affecting ATs adsorption by MPs are specifically discussed. Moreover, MPs could change the bioaccumulation and toxicity of ATs to aquatic organisms, and the related mechanisms on the joint effect are reviewed and analyzed. Furthermore, MPs can enrich ARGs from the surrounding environment, and the effect of MPs on ARGs abundance is evaluated. Finally, research challenges and perspectives for MPs-ATs interactions and related environmental implications are presented. This review will facilitate a better understanding of the environmental fate and risk of both MPs and ATs.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Yanni Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, P. R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, P. R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, P. R. China
| | - Ruihan Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Yin L, Wen X, Huang D, Du C, Deng R, Zhou Z, Tao J, Li R, Zhou W, Wang Z, Chen H. Interactions between microplastics/nanoplastics and vascular plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117999. [PMID: 34500397 DOI: 10.1016/j.envpol.2021.117999] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 05/06/2023]
Abstract
Microplastics and nanoplastics are distributed in the environments universally. The interrelationship between vascular plants and micro/nanoplastics began to attract attention in recent years. Based on the relevant literatures collected from various databases, this review focuses on two topics: 1) the effect of vascular plants on the fate of micro/nanoplastics; 2) the effects of micro/nanoplastics on vascular plants. The review of the available studies reveals that vascular plants can act as sinks for microplastics and nanoplastics as their surfaces can adsorb these plastics; moreover, nanoplastics can be internalized by plants. Plastics on the surfaces and in the interiors of vascular plants can cause various phytotoxicity effects, including impacts on growth, photosynthesis, and oxidative stress. Furthermore, the results and mechanisms of phytotoxicity effects caused by microplastics or nanoplastics can be very different. However, knowledge gaps still exist in the relationships between micro/nanoplastics and vascular plants based on the analysis of available studies; thus, potential subjects for future studies were proposed, including the fates, analysis methods, influencing factors, mechanisms of phytotoxicity, and further influences of microplastics and nanoplastics in the vascular plant ecosystems. This study presents a review of micro/nanoplastics-vascular plant research and reaches a basis for future research.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaofeng Wen
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhenyu Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zeyu Wang
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
35
|
Lin L, Tang S, Wang X, Sun X, Liu Y. Sorption of tetracycline onto hexabromocyclododecane/polystyrene composite and polystyrene microplastics: Statistical physics models, influencing factors, and interaction mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117164. [PMID: 33894538 DOI: 10.1016/j.envpol.2021.117164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) are becoming a major concern due to their great potential to sorb and transport pollutants in the aquatic environment; hexabromocyclododecane (HBCD) is a common chemical additive in polystyrene (PS) MPs. However, the underlying mechanisms for the interaction of tetracycline (TC) onto HBCD-PS composites MPs (HBCD-PS MPs) are still not well documented. Our findings showed that the addition of HBCD resulted in a relatively higher hydrophobicity of PS MPs, and significantly enhanced the sorption ability of HBCD-PS MPs for TC. The kinetic models suggested that the sorption of TC onto PS and HBCD-PS MPs were mainly controlled by film diffusion and intra-particle diffusion, respectively. The statistical physics models were used to elucidate the sorption of TC onto PS and HBCD-PS MPs was associated with the formation of the monolayer, and the results indicated the TC was sorbed onto the two MPs by both multi-molecular and non-parallel processes. The TC sorption was solution pH-dependent while the effect of NaCl content on TC sorption was negligible. The presence of Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ), and Zn(Ⅱ) ions had different influences on the TC sorption onto both the MPs. Overall, various mechanisms including π-π and hydrophobic interactions jointly regulated the sorption of TC onto both the MPs. Our results provided new insights into the sorption behavior and interaction mechanisms of TC onto both the MPs and highlighted that the addition of HBCD likely increased the enrichment capacity of MPs for pollutants in the environment.
Collapse
Affiliation(s)
- Lujian Lin
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Shuai Tang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Xuesong Wang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China.
| | - Xuan Sun
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| | - Ying Liu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, China
| |
Collapse
|