1
|
Godbole AM, Chen A, Vuong AM. Associations between neonicotinoids and liver function measures in US adults: National Health and Nutrition Examination Survey 2015-2016. Environ Epidemiol 2024; 8:e310. [PMID: 38799264 PMCID: PMC11115984 DOI: 10.1097/ee9.0000000000000310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background Toxicological studies indicate that neonicotinoids may be associated with disruptions in liver function due to an increase in oxidative stress. There are scant epidemiological studies investigating the chronic hepatotoxic effects of neonicotinoids. Objective To examine the association between detectable concentrations of parent neonicotinoids and neonicotinoid metabolites with liver function markers among US adults, and whether sex modifies this association. Methods National Health and Nutrition Examination Survey 2015-2016 data were used to estimate associations between detectable neonicotinoids and serum alkaline phosphatase (ALP), alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transaminase (GGT), albumin, total bilirubin, total protein, and Hepatic Steatosis Index (HSI) using multiple linear regression. Results Detectable levels of N-desmethyl-acetamiprid were associated with a decrease in GGT (β = -3.54 unit/l; 95% confidence interval [CI] = -6.48, -0.61) and detectable levels of 5-hydroxy-imidacloprid were associated with a decrease in HSI (β = -1.11; 95% CI = -2.14, -0.07). Sex modified the association between any parent neonicotinoid and ALP (Pint = 0.064) and the association between clothianidin and ALP (Pint = 0.019), with a pattern of positive associations in males and inverse associations in females, though stratified associations did not reach statistical significance. Sex also modified the association between 5-hydroxy-imidacloprid and total protein (Pint = 0.062), with a significant positive association in females (β = 0.14 g/dl; 95% CI = 0.03, 0.25) and a null association in males. Conclusion Detectable concentrations of neonicotinoid metabolites were inversely associated with GGT and HSI in US adults. Evidence suggests neonicotinoids may influence liver function differently depending on sex. Future research is recommended to replicate the findings as the study was limited in its cross-sectional nature and inability to examine continuous neonicotinoid concentrations with liver function.
Collapse
Affiliation(s)
- Amruta M. Godbole
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, University of Nevada Las Vegas, School of Public Health, Las Vegas, Nevada
| |
Collapse
|
2
|
Rymuszka A, Sieroslawska A. Comparative evaluation of neonicotinoids and their metabolites-induced oxidative stress in carp primary leukocytes and CLC cells. Sci Rep 2024; 14:8291. [PMID: 38594566 PMCID: PMC11004018 DOI: 10.1038/s41598-024-59067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 μM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.
Collapse
Affiliation(s)
- Anna Rymuszka
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland.
| | - Anna Sieroslawska
- Department of Animal Physiology and Toxicology, Faculty of Medicine, The John Paul II Catholic University of Lublin, 1I Konstantynów Str., 20-708, Lublin, Poland
| |
Collapse
|
3
|
Zhang S, Yang R, Zhao M, Li S, Yin N, Zhang A, Faiola F. Typical neonicotinoids and organophosphate esters, but not their metabolites, adversely impact early human development by activating BMP4 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133028. [PMID: 38006857 DOI: 10.1016/j.jhazmat.2023.133028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Recent studies have highlighted the presence of potentially harmful chemicals, such as neonicotinoids (NEOs) and organophosphate esters (OPEs), in everyday items. Despite their potential threats to human health, these dangers are often overlooked. In a previous study, we discovered that NEOs and OPEs can negatively impact development, but liver metabolism can help mitigate their harmful effects. In our current research, our objective was to investigate the toxicity mechanisms associated with NEOs, OPEs, and their liver metabolites using a human embryonic stem cell-based differentiation model that mimics early embryonic development. Our transcriptomics data revealed that NEOs and OPEs significantly influenced the expression of hundreds of genes, disrupted around 100 biological processes, and affected two signaling pathways. Notably, the BMP4 signaling pathway emerged as a key player in the disruption caused by exposure to these pollutants. Both NEOs and OPEs activated BMP4 signaling, potentially impacting early embryonic development. Interestingly, we observed that treatment with a human liver S9 fraction, which mimics liver metabolism, effectively reduced the toxic effects of these pollutants. Most importantly, it reversed the adverse effects dependent on the BMP4 pathway. These findings suggest that normal liver function plays a crucial role in detoxifying environmental pollutants and provides valuable experimental insights for addressing this issue.
Collapse
Affiliation(s)
- Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang A, Wan Y, Qi W, Mahai G, Qian X, Zheng T, Li Y, Xu S, Xiao H, Xia W. Urinary biomarkers of exposure to organophosphate, pyrethroid, neonicotinoid insecticides and oxidative stress: A repeated measurement analysis among pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169565. [PMID: 38145670 DOI: 10.1016/j.scitotenv.2023.169565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Exposure to insecticides may be associated with increased oxidative stress (OS), but few studies have assessed the associations of OS biomarkers (OSBs) with exposure to multiple insecticides and their mixture, especially in pregnant women who are a vulnerable population. In the present study, 1,094 Chinese pregnant women were recruited and a total of 3,282 urine samples were collected at their three trimesters to measure eight metabolites of organophosphates, three metabolites of pyrethroids, nine typical neonicotinoids/their metabolites, and three OSBs of DNA damage (8-OHdG), RNA damage (8-OHG), and lipid peroxidation (HNE-MA). Among the twenty target insecticide metabolites, sixteen of them were frequently detected; thirteen of them were detected in over 86% of all the urine samples except for imidacloprid (IMI, detection frequency: 72.9%), desnitro-imidacloprid (DN-IMI, 70.0%), and clothianidin (CLO, 79.6%). The reproducibility of their concentrations across the three trimesters was poor to fair (intraclass correlation coefficients <0.50). Multiparity and warm season were related to higher urinary levels of some insecticide metabolites, while higher education level and inadequate weight gain during pregnancy were significantly associated with lower concentrations of certain insecticide metabolites. Linear mixed model analyses suggested that almost all the frequently detected insecticide metabolites [other than 3-phenoxybenzoic acid (3-PBA)] were significantly associated with elevated levels of the three OSBs (8-OHdG, 8-OHG, and HNE-MA), where the percent change (Δ%) ranged 8.10-36.0% for 8-OHdG, 8.49-34.7% for 8-OHG, and 5.92-182% for HNE-MA, respectively, with each interquartile ratio (IQR)-fold increase in the concentrations of the individual exposure biomarkers. Weighted quantile sum models demonstrated that the insecticide metabolite mixture was positively associated with the three OSBs. Overall, urinary desmethyl-clothianidin (DM-CLO) and 3,5,6-trichloro-2-pyridinol (TCPy) were the top insecticide exposure biomarkers contributing to the association with 8-OHdG and 8-OHG levels, while PNP contributed the most to the association with HNE-MA levels. These findings suggested that gestational exposure to organophosphates, pyrethroids, neonicotinoids, their transformation products, and their mixture may increase oxidative damage to lipids, RNA, and DNA during pregnancy.
Collapse
Affiliation(s)
- Aizhen Wang
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China.
| | - Wei Qi
- Wuhan Jinyintan Hospital, Wuhan, Hubei 430040, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China.
| | - Wei Xia
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University and Technology, Wuhan, Hubei 430016, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
5
|
Yang Z, Wang Y, Tang C, Han M, Wang Y, Zhao K, Liu J, Tian J, Wang H, Chen Y, Jiang Q. Urinary neonicotinoids and metabolites are associated with obesity risk in Chinese school children. ENVIRONMENT INTERNATIONAL 2024; 183:108366. [PMID: 38061247 DOI: 10.1016/j.envint.2023.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Neonicotinoids are the most widely used insecticides. Laboratory studies have suggested that neonicotinoids are one potential obesogen, but relevant data are limited in human. OBJECTIVE To examine the association between exposure to neonicotinoids and childhood obesity. METHODS We investigated 442 children in Shanghai, East China and measured eight neonicotinoids (thiamethoxam, clothianidin, acetamiprid, imidacloprid, thiacloprid, nitenpyram, dinotefuran, and imidaclothiz) and four metabolites (N-desmethyl-thiamethoxam, N-desmethyl-clothianidin, N-desmethyl-acetamiprid, and 5-OH-imidacloprid) in urine. Body mass index (BMI) and waist circumference (WC) were used to identify general overweight/obesity and central obesity, respectively. Linear and logistic regression models based on generalized estimating equations were used to investigate the associations of urinary neonicotinoids and metabolites with BMI z-score, WC z-score, general overweight/obesity, and central obesity. RESULTS Children with a positive detection of clothianidin and its metabolite had a marginally higher BMI z-score (regression coefficient (β): 0.08, 95% confidence interval (95% CI): 0.01, 0.14) after adjusted for relevant covariates. After creatinine-adjusted concentration was trichotomized, compared to children with a negative detection, children in the high urinary concentration of acetamiprid and its metabolite had a low BMI z-score (β: -0.19, 95%CI: -0.30, -0.08), children in the medium urinary concentration of neonicotinoids and metabolites other than thiamethoxam, clothianidin, acetamiprid, and their metabolites had a marginally higher BMI z-score (β: 0.25, 95%CI: 0.03, 0.46), a higher WC z-score (β: 0.24, 95%CI: 0.14, 0.33), and a higher odds of central obesity (odds ratio (OR): 2.16, 95% CI: 1.28, 3.63), and children in the medium urinary concentration of all neonicotinoids and metabolites had a higher odds of central obesity (OR: 1.55, 95%CI: 1.04, 2.33). Some associations showed sex- and age- related differences. CONCLUSION Urinary neonicotinoids and metabolites were found to be differently associated with obesity-related indexes, which suggested that exposure to neonicotinoids might have a mixed effect on childhood obesity.
Collapse
Affiliation(s)
- Zichen Yang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yuanping Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Chuanxi Tang
- Changning District Center for Disease Control and Prevention, Changning District, Shanghai 200051, China
| | - Minghui Han
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yi Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Ke Zhao
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiaqi Liu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jiacheng Tian
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hexing Wang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada.
| | - Qingwu Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Wang C, Yao X, Li X, Wang Q, Jiang N, Hu X, Lv H, Mu B, Wang J. Fosthiazate, a soil-applied nematicide, induces oxidative stress, neurotoxicity and transcriptome aberrations in earthworm (Eisenia fetida). JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132865. [PMID: 39491983 DOI: 10.1016/j.jhazmat.2023.132865] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Fosthiazate is a widely used organophosphorus nematicide that resides in the soil and controls soil root-knot nematodes. However, whether it has toxic effects on non-target soil organisms such as earthworms is unclear. Therefore, in this study, a 28-day experiment of fosthiazate exposure was conducted using the Eisenia fetida as the model organism. The results showed that fosthiazate stress caused excessive production of reactive oxygen species (ROS), increased the levels of malondialdehyde (MDA) and 8-hydroxy-2-deoxyguanosine (8-OHdG), and decreased the activities of superoxide dismutase (SOD) and catalase (CAT), suggesting that fosthiazate induced oxidative stress and DNA damage in E. fetida. Acetylcholinesterase (AChE) activity was significantly reduced, and the expression of its related functional genes was also altered, demonstrating that fosthiazate damaged the nervous system of E. fetida, which was further confirmed by AlphaFold2 modeling and molecular docking simulations. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that fosthiazate exposure may induce apoptosis, inflammation, and viral infection in E. fetida, which adversely affect the organism. This study provides reference data for the ecotoxicity of fosthiazate.
Collapse
Affiliation(s)
- Can Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Xue Hu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huijuan Lv
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Baoyan Mu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
7
|
Sun J, He P, Wang R, Zhang ZY, Dai YQ, Li XY, Duan SY, Liu CP, Hu H, Wang GJ, Zhang YP, Xu F, Zhang R, Zhao Y, Yang HF. Association between urinary neonicotinoid insecticide levels and dyslipidemia risk: A cross-sectional study in Chinese community-dwelling elderly. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132159. [PMID: 37531759 DOI: 10.1016/j.jhazmat.2023.132159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Experimental evidence has demonstrated that neonicotinoids (NEOs) exposure can cause lipid accumulation and increased leptin levels. However, the relationship between NEOs exposure and dyslipidemia in humans remains unclear, and the interactive effects of NEOs and their characteristic metabolites on dyslipidemia remain unknown. We detected 14 NEOs and their metabolites in urine samples of 500 individuals (236 and 264 with and without dyslipidemia, respectively) randomly selected from the baseline of the Yinchuan community-dwelling elderly cohort (Ningxia, China). The NEOs and their metabolites were widely detected in urine (87.2-99.6 %) samples, and the median levels ranged within 0.06-0.55 μg/g creatinine. The positive associations and dose-dependent relationships of thiacloprid, imidacloprid-olefin, and imidacloprid-equivalent total with dyslipidemia were validated using restricted cubic spline analysis. Mixture models revealed a positive association between the NEOs mixture and dyslipidemia risk, with urine desnitro-imidacloprid ranked as the top contributor. The Bayesian Kernel Machine Regression models showed that the NEOs mixtures were associated with increased dyslipidemia when the chemical mixtures were ≥ 25th percentile compared to their medians, and desnitro-imidacloprid and imidacloprid-olefin were the major contributors to the combined effect. Given the widespread use of NEOs and the dyslipidemia pandemic, further investigations are urgently needed to confirm our findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Pei He
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Zhong-Yuan Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Yu-Qing Dai
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Xiao-Yu Li
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Si-Yu Duan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China
| | - Cai-Ping Liu
- Yinchuan Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, PR China
| | - Hao Hu
- Yinchuan Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, PR China
| | - Guang-Jun Wang
- Yinchuan Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, PR China
| | - Yan-Ping Zhang
- Yinchuan Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, PR China
| | - Fei Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China; Ningxia Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, PR China
| | - Rui Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China.
| | - Yi Zhao
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China.
| | - Hui-Fang Yang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, PR China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia 750004, PR China.
| |
Collapse
|
8
|
Mahai G, Wan Y, Wang A, Qian X, Li J, Li Y, Zhang W, He Z, Li Y, Xia W, Xu S. Exposure to multiple neonicotinoid insecticides, oxidative stress, and gestational diabetes mellitus: Association and potential mediation analyses. ENVIRONMENT INTERNATIONAL 2023; 179:108173. [PMID: 37651928 DOI: 10.1016/j.envint.2023.108173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
As the most extensively used insecticides worldwide, neonicotinoid insecticides (NNIs) have received a growing global concern over their adverse health effects. This study aimed to assess the associations of urinary concentrations of NNIs in early pregnancy with gestational diabetes mellitus (GDM) and the mediation roles of oxidative DNA damage, RNA damage, and lipid peroxidation in the associations. With a prospective nested case-control study, 519 GDM cases and 519 controls were matched on the infant's sex and maternal age. Urinary biomarkers of NNIs exposure and oxidative stress were measured in early pregnancy. We estimated the associations of single and the mixture of NNIs and their metabolites with GDM by conditional logistic regression and quantile g-computation models, respectively. The mediating roles of oxidative stress were evaluated by the structural equation model. The odds of GDM significantly increased by 15 %, 18 %, 26 %, 42 %, 49 %, and 13 % in each unit increment of ln-transformed concentrations of urinary imidacloprid (IMI), imidacloprid-olefin (IMI-olefin), desnitro-imidacloprid (DN-IMI), thiamethoxam (THM), clothianidin, and desmethyl-clothianidin, respectively. Exposure to the mixture of NNIs was associated with increased odds of GDM (adjusted OR: 1.76; 95 %CI: 1.45, 2.13). Advanced maternal age enhanced the associations of 5-hydroxy-IMI, DN-IMI, and IMI-olefin with GDM (P < 0.05), and being overweight/obese before pregnancy strengthened the effects of IMI, IMI-olefin, and THM on GDM (P < 0.05). In the association of NNIs exposure and GDM, the proportions mediated by oxidative DNA damage, RNA damage, and overall oxidative stress were 9.8 %, 11.8 %, and 14.5 %, respectively (P < 0.05). Exposure to individual NNIs and a mixture of NNIs were associated with GDM, and maternal age and pre-pregnancy BMI may modify the association. The possible mechanism underlying the association between NNIs and GDM may involve oxidative damage to nucleic acids.
Collapse
Affiliation(s)
- Gaga Mahai
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Juxiao Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ying Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wenxin Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Shunqing Xu
- School of Life Sciences, Hainan University, Haikou, Hainan 570228, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
9
|
Lu Z, Hu Y, Tse LA, Yu J, Xia Z, Lei X, Zhang Y, Shi R, Tian Y, Gao Y. Urinary neonicotinoid insecticides and adiposity measures among 7-year-old children in northern China: A cross-sectional study. Int J Hyg Environ Health 2023; 251:114188. [PMID: 37229902 DOI: 10.1016/j.ijheh.2023.114188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Neonicotinoid insecticides (NEOs) are emerging synthetic insecticides used in various pest management regimens worldwide. Toxicology studies have indicated the obesogenic potential of NEOs, but their associations with adiposity measures are largely unknown. OBJECTIVES We aimed to assess urinary levels of NEOs/metabolites and their associations with children's adiposity measures, and to further investigate the potential role of oxidative stress. METHODS This study included 380 children who participated in the 7th year's follow-up of the Laizhou Wan Birth Cohort in northern China. Urinary levels of seven NEOs and two metabolites and a biomarker of lipid peroxidation named 8-iso-prostaglandin-F2α (8-iso-PGF2α) were detected. A total of nine indicators of adiposity were measured. Body mass index (BMI) z-score ≥85th percentile was defined as overweight/obesity, and waist-to-height ratio (WHtR) ≥0.5 was considered as abdominal obesity. Multiple linear regression, binary logistic regression and mediation analysis were performed. RESULTS Six NEOs [imidacloprid (IMI, 99.7%), clothianidin (CLO, 98.9%), dinotefuran (DIN, 97.6%), thiamethoxam (THM, 95.5%), acetamiprid (ACE, 82.9%), thiacloprid (THD, 77.6%)] and two metabolites [N-desmethyl-acetamiprid (N-DMA, 100.0%), 6-chloronicotinic acid (6-CINA, 97.9%)] exhibited high detection rates. Multiple linear regressions showed positive associations of waist circumference with urinary levels of IMI and THM, of WHtR with IMI and THM levels, and of body fat percentage with 6-CINA levels. In contrast, exposure to N-DMA was negatively associated with body fat percentage and fat mass index. Binary logistic regressions further revealed that higher IMI levels were associated with overweight/obesity (OR = 1.556, 95% CI: 1.100, 2.201) and abdominal obesity (OR = 1.478, 95% CI: 1.078, 2.026) in children. 8-iso-PGF2α demonstrated 27.92%, 69.52% and 35.37% mediating effects in the positive associations of IMI, THD and THM with WHtR, respectively. Sex modified the associations of DIN with body fat mass (pint = 0.032), body fat percentage (pint = 0.009), fat mass index (pint = 0.037) and the overweight/obesity rate (pint = 0.046), with negative associations in girls and nonsignificant positive associations in boys. CONCLUSIONS School-age children in northern China were widely exposed to NEOs/metabolites. Urinary levels of NEOs/metabolites were associated with adiposity measures through the mediating role of 8-iso-PGF2α. These associations were mixed, and a sex-specific effect might exist.
Collapse
Affiliation(s)
- Zhenping Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lap Ah Tse
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Jinxia Yu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
11
|
Zhang J, Liu J, Wang Y, Wang Y, Yang R, Zhou X. Simultaneous determination of ten neonicotinoid insecticides and a metabolite in human whole blood by QuEChERS coupled with UPLC-Q Exactive orbitrap high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123689. [PMID: 37059012 DOI: 10.1016/j.jchromb.2023.123689] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Since neonicotinoid insecticides are now the most extensively used insecticides worldwide, there are increasing cases of neonicotinoid poisoning. A rapid and sensitive method was developed for the determination of ten neonicotinoid insecticides and a metabolite 6-chloronicotinic acid in human whole blood. The types and amounts of extraction solvent, salting-out agent, and adsorbent in the QuEChERS method were optimized by comparing the absolute recoveries of 11 analytes. The separation was performed on an Agilent EC18 column with the gradient elution with 0.1% formic acid in water and acetonitrile as the mobile phase. The quantification was achieved by Q Exactive orbitrap high-resolution mass spectrometry under parallel reaction monitoring scan mode. The 11 analytes showed good linearity with R2 ≥ 0.9950, LODs ranging from 0.01 μg/L to 0.30 μg/L, and LOQs from 0.05 μg/L to 1.00 μg/L. The recoveries ranged from 78.3% to 119.9% at low, medium, and high spiked concentrations of blank blood, with matrix effects ranging from 80.9% to 117.8%, inter-day RSDs from 0.7% to 6.7%, and intra-day RSDs from 2.7% to 9.8%. The method was furthermore applied to a real case of neonicotinoid insecticide poisoning to demonstrate its feasibility. The proposed method is suitable for the rapid screening of neonicotinoid insecticides in poisoned human blood in the field of forensic science, as well as monitoring of neonicotinoid insecticide residues in humans in the field of environmental safety, compensating for a lack of studies on neonicotinoid insecticide determination in biological samples.
Collapse
|
12
|
Chen Y, Yu W, Zhang L, Cao L, Ling J, Liao K, Shen G, Du W, Chen K, Zhao M, Wu J, Jin H. First evidence of neonicotinoid insecticides in human bile and associated hepatotoxicity risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130715. [PMID: 36603418 DOI: 10.1016/j.jhazmat.2022.130715] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Neonicotinoids (NEOs) are widely applied in agricultural lands and are widespread in different environments, accelerating threats to ecosystems and human health. A number of in vitro/in vivo studies have reported adverse effects of NEOs on mammalian health, but the link between NEO exposure and toxic effects on human liver remains unclear. We randomly recruited 201 participants and quantified eight commercialized NEOs in bile. High frequency and concentration of detection indicate low degradation of human liver on NEOs. The main NEOs are nitenpyram and dinotefuran, which contribute to about 86% of the total residual levels of eight NEOs, due to the highest solubility in bile and are not degraded easily in liver. In contrast, imidacloprid and thiacloprid are major compounds in human blood, according to previous studies, suggesting that individual NEOs behave differently in blood and bile distribution. There was no statistical difference in NEO residues between cancer and non-cancer participants and among the different participant demographics (e.g., age, gender, and body mass index). The serum hematological parameters -bile acid, total bilirubin, cholesterol and alkaline phosphatase -were positively correlated with individual NEO concentrations, suggesting that NEO exposure affects liver metabolism and even enterohepatic circulation. The study first examined the NEO residues in human bile and provided new insights into their bioavailability and hepatoxicity risk.
Collapse
Affiliation(s)
- Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenfei Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Li Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Jun Ling
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Guofeng Shen
- Ministry of Education Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, PR China
| | - Kangjie Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
13
|
Yi L, Zhang S, Chen X, Wang T, Yi X, Yeerkenbieke G, Shi S, Lu X. Evaluation of the risk of human exposure to thiamethoxam by extrapolation from a toxicokinetic experiment in rats and literature data. ENVIRONMENT INTERNATIONAL 2023; 173:107823. [PMID: 36809708 DOI: 10.1016/j.envint.2023.107823] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Previous studies suggest that exposure to thiamethoxam (TMX) may cause adverse effects to human. However, the distribution of TMX in various organs of human body and the associated risk are little-known. This study aimed to explore the distribution of TMX in human organs by extrapolation from a toxicokinetic experiment in rats and to assess the associated risk based on literature data. The rat exposure experiment was performed using 6-week female SD rats. Five groups of rats were oral-exposed to 1 mg/kg TMX (water as solvent) and executed at 1 h, 2 h, 4 h, 8 h and 24 h after treatment, respectively. The concentrations of TMX and its metabolites in rat liver, kidney, blood, brain, muscle, uterus and urine were measured in different time points using LC-MS. Data on concentrations of TMX in food, human urine and blood as well as human cell-based in vitro toxicity of TMX were collected from the literature. After oral exposure, TMX and its metabolite clothianidin (CLO) were detected in all organs of the rats. The steady-state tissue-plasma partition coefficients of TMX for liver, kidney, brain, uterus and muscle were 0.96, 1.53, 0.47, 0.60 and 1.10, respectively. Based on literature analysis, the concentration of TMX in human urine and blood for general population were 0.06-0.5 ng/mL and 0.04-0.6 ng/mL, respectively. For some people, the concentration of TMX in human urine reached 222 ng/mL. By extraplation from rat experiment, the estimated concentrations of TMX in human liver, kidney, brain, uterus and muscle for general population were 0.038-0.58, 0.061-0.92, 0.019-0.28, 0.024-0.36 and 0.044-0.66 ng/g, respectively, well below the relevant concentrations for cytotoxic endpoints (HQs ≤ 0.012); however, for some people they could be up to 253.44, 403.92, 124.08, 158.40 and 290.40 ng/g, respectively, with very high developmental toxicity (HQ = 5.4). Therefore, the risk for highly exposed people should not be neglected.
Collapse
Affiliation(s)
- Lijin Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shuai Zhang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xuexia Chen
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Tao Wang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaolong Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Gulijiazi Yeerkenbieke
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Shuai Shi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
14
|
Zhang Q, Hu S, Dai W, Gu S, Ying Z, Wang R, Lu C. The partitioning and distribution of neonicotinoid insecticides in human blood. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121082. [PMID: 36681375 DOI: 10.1016/j.envpol.2023.121082] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The burden of neonicotinoid insecticides (neonics) in humans has attracted widespread attention in recent years due to the potential adverse effects. Nonetheless, information on the partitioning behavior and distribution in human blood is still limited. Herein, we obtained 115 adult whole blood and plasma specimens for analysis of eight neonics to better understand neonics' partitioning and distribution in human blood. At least one neonic was detected in 49.6% of the red blood cells and 55.7% of the plasma. In red blood cells, the highest detection rate and concentration was thiamethoxam (THI) with 19.1% and 3832 ng/L, respectively. Imidacloprid had the highest detection rate with 26.1% in the plasma. The mass fraction (Fp) of neonics detected indicates that thiacloprid, imidacloprid, and dinotefuran are mostly resided in plasma upon entering into human blood, while thiamethoxam is mostly present in red blood cells. The distribution of clothianidin and acetamiprid between plasma and red blood cells is similar. The mass fraction (Fp) values for THI were significantly different compared to other neonics, and the effect of age and gender on THI partitioning concluded that there may not be significant variability in the distribution of THI in the sampled population. Overall, this study was the first to investigate neonics residuals in red blood cells and provided fundamental information on the partitioning and distribution of neonics in human blood.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Zeteng Ying
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Rui Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Chensheng Lu
- College of Resources and Environment, Southwest University, Chongqing, 400716, PR China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, WA 98195, USA.
| |
Collapse
|
15
|
Zhang H, Bai X, Zhang T, Song S, Zhu H, Lu S, Kannan K, Sun H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17143-17152. [PMID: 36441562 DOI: 10.1021/acs.est.2c06091] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Studies on neonicotinoid (NEO) exposure in pregnant women and fetuses are scarce, and transplacental transfer of these insecticides is unknown. In this study, parent NEOs (p-NEOs) and their metabolites (m-NEOs) were determined in 95 paired maternal (MS) and cord serum (CS) samples collected in southern China. Imidacloprid was the predominant p-NEO in both CS and MS samples, found at median concentrations of 1.84 and 0.79 ng/mL, respectively, whereas N-desmethyl-acetamiprid was the most abundant m-NEO in CS (median: 0.083 ng/mL) and MS (0.13 ng/mL). The median transplacental transfer efficiencies (TTEs) of p-NEOs and m-NEOs were high, ranging from 0.81 (thiamethoxam, THM) to 1.61 (olefin-imidacloprid, of-IMI), indicating efficient placental transfer of these insecticides. Moreover, transplacental transport of NEOs appears to be passive and structure-dependent: cyanoamidine NEOs such as acetamiprid and thiacloprid had higher TTE values than the nitroguanidine NEOs, namely, clothianidin and THM. Multilinear regression analysis revealed that the concentrations of several NEOs in MS were associated significantly with hematological parameters related to hepatotoxicity and renal toxicity. To our knowledge, this is the first analysis of the occurrence and distribution of NEOs in paired maternal-fetal serum samples.
Collapse
Affiliation(s)
- Henglin Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Xueyuan Bai
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510275, P.R. China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
16
|
Li X, He S, Xiao H, He TT, Zhang JD, Luo ZR, Ma JZ, Yin YL, Luo L, Cao LY. Neonicotinoid insecticides promote breast cancer progression via G protein-coupled estrogen receptor: In vivo, in vitro and in silico studies. ENVIRONMENT INTERNATIONAL 2022; 170:107568. [PMID: 36240625 DOI: 10.1016/j.envint.2022.107568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoid insecticides (NIs) have been widely detected in environmental media and human body with concentrations reaching hundreds of nanomolar to micromolar levels. However, the information about their human health toxicology and mechanism is deficient. Previous studies have implied that NIs might exert estrogenic disruption and promote breast cancer progression, but the molecular mechanism is unclear, especially the molecular initiating event. G protein-coupled estrogen receptor (GPER), as a candidate therapeutic target, plays vital roles in the development of breast cancer. This work aimed to reveal the potential mechanism through GPER pathway. Firstly, we screened the activities of seven most common NIs on GPER signal pathway by calcium mobilization assay. Clothianidin, acetamiprid (ACE), and dinotefuran activated GPER most potently and ACE displayed the highest agonistic activity with the lowest observed effective concentration (LOEC) of 1 μM. The molecular docking and dynamics simulation showed favored interaction trend between the NIs and GPER. The three NIs with GPER activity induced 4T1 breast cancer cells migration and ACE showed the highest potency with LOEC of 100 nM. ACE also induced 4T1 cells proliferation at high concentration of 50 μM and up-regulated GPER expression in a dose-dependent manner. We speculated that both the induction effects of ACE on 4T1 cells proliferation and migration might be owing to the activation and up-regulation of GPER. By using 4T1-Luc cells injected orthotopic tumor model, we found that ACE also promoted in-situ breast cancer growth and lung metastasis in normal mouse dependent on GPER. However, ACE only promoted in-situ breast cancer growth through GPER but not lung metastasis in ovariectomized mice, implying that the ACE-induced lung metastasis should be related to endogenous estrogen from ovary. Overall, we demonstrated that NIs promoted breast cancer progression via GPER pathway at human related exposure levels and their female health risks need urgent concerns.
Collapse
Affiliation(s)
- Xin Li
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Sen He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Han Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ting-Ting He
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jia-Da Zhang
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Zi-Rui Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Jie-Zhi Ma
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha 410013, China
| | - Yu-Long Yin
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China
| | - Lin-Ying Cao
- College of Resources and Environment, Hunan Agricultural University, 1, Nongda Road, Furong District, Changsha 410128, China.
| |
Collapse
|
17
|
Marín-Sáez J, López-Ruiz R, Sobral M, Romero-González R, Garrido Frenich A, Ferreira IM. Analytical methods for biomonitoring organic chemical hazards in saliva: A systematic review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
18
|
Zhang H, Zhang R, Zeng X, Wang X, Wang D, Jia H, Xu W, Gao Y. Exposure to neonicotinoid insecticides and their characteristic metabolites: Association with human liver cancer. ENVIRONMENTAL RESEARCH 2022; 208:112703. [PMID: 35016862 DOI: 10.1016/j.envres.2022.112703] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides (NEOs) are commonly applied for pest control in China and around the world. Previous studies reported that NEOs are hepatotoxic to mammals. However, limited studies have explored the associations between NEOs exposure and liver disease. In the present study, we detected six parent NEOs (p-NEOs), including acetamiprid, thiacloprid, dinotefuran, clothianidin, imidacloprid, and thiamethoxam, and five characteristic metabolites (m-NEOs), including 5-hydroxy-imidacloprid, olefin-imidacloprid, N-desmethyl-acetamiprid, 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine and 1-methyl-3-(tetrahydro-3-furyl methyl) urea, in blood samples collected from healthy donors (n = 100; females vs. males: 45 vs. 55; age: 22-91 years) and liver cancer patients (n = 274; females vs. males: 118 vs. 156; age: 11-88 years) in one hospital from Guangzhou city, South China. NEOs were frequently detected (61%-94%) in blood samples, with median concentrations ranging from 0.19 ng/mL to 1.28 ng/mL and 0.20 ng/mL to 2.03 ng/mL for healthy and liver cancer populations, respectively. olefin-imidacloprid was the most abundant NEOs in healthy and liver cancer populations, accounting for 23.4% and 20.7%, respectively. Significant positive correlations among most m-NEOs concentrations were found, and associations between m-NEOs and their corresponding p-NEOs were positively correlated. These findings indicated that the sources of m-NEOs were both endogenous and exogeneous. Females had higher median concentrations of NEOs and their metabolites than males. Moreover, the α-fetoprotein values and blood concentrations of target analytes (r = 0.428-0.601, p < 0.05) were positively correlated. Meanwhile, associations between the concentrations of p-NEOs and m-NEOs and liver cancer were found (odds ratio = 2.33-9.02, 95% confidence interval = 0.31-22.7, p < 0.05), indicating that human exposure to NEOs and their metabolites might increase the odds of liver cancer prevalence. Our work provided a new insight into the hepatotoxicity of NEOs and their metabolites, and human health risks of exposure to these pollutants warranted further studies.
Collapse
Affiliation(s)
- Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Renwen Zhang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, PR China
| | - Xujia Zeng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Xiao Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, PR China.
| | - Weiguo Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.
| | - Yunfei Gao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
19
|
Zhang D, Lu S. Human exposure to neonicotinoids and the associated health risks: A review. ENVIRONMENT INTERNATIONAL 2022; 163:107201. [PMID: 35344909 DOI: 10.1016/j.envint.2022.107201] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids (NEOs) are a class of broad-spectrum insecticides dominant in the global market. They were distributed extensively in the environment and occurred frequently in humans. Potential health effects of NEOs, such as neurological toxicity and diabetes to non-targeted mammals, have raised concerns. This review summarizes analytical methods of NEOs in human samples, their internal exposure levels and composition profiles in urine, blood, hair, breast milk, saliva and tooth samples with global comparisons, and daily NEOs exposure dose and relative health risks.Urinary NEOs levels in Asian populations were substantially higher than those in the U.S. and Europe, which may be due to different dietary patterns and insecticide applications across regions. N-desmethyl acetamiprid, 5-hydroxy-imidacloprid and olefin-imidacloprid were dominant among detected NEOs. NEO metabolites exhibited higher detection frequencies and levels than their parent compounds in humans, while investigations on NEO metabolites remain much limited. Current exposure assessments mainly focused on short-term urine analysis, while biomaterials for long-term monitoring, such as hair, nail and other alternatives, should also be considered. Large-scale epidemiological studies are critically needed to elucidate potential health outcomes associated with NEOs exposure.
Collapse
Affiliation(s)
- Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
Pan C, Yu J, Yao Q, Lin N, Lu Z, Zhang Y, Zhao S, Wang Z, Lei X, Tian Y, Gao Y. Prenatal neonicotinoid insecticides Exposure, oxidative Stress, and birth outcomes. ENVIRONMENT INTERNATIONAL 2022; 163:107180. [PMID: 35303529 DOI: 10.1016/j.envint.2022.107180] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND An increasing number of studies have reported neonicotinoid insecticides (NEOs), the emerging alternatives to conventional insecticides, may increase oxidative stress and cause adverse health effects, but limited is known about the prenatal NEOs exposures and their impact on birth outcomes. OBJECTIVES We investigated the levels of prenatal exposure to NEOs/metabolites, to assess their associations with birth outcomes, and investigate whether these associations could be mediated by oxidative stress using 8-OHdG as the biomarker. METHODS We studied 296 mother-infant pairs recruited from Laizhou Wan Birth Cohort in 2010 - 2013. Two NEOs (IMI and ACE), three metabolites (6-CN, ND-ACE, and 2CTCA), and 8-OHdG were measured in maternal urine collected before delivery. Birth outcomes including birth weight, birth length, ponderal index (PI), head circumference, and gestational age, were acquired. We examined the associations between NEOs/metabolites and birth outcomes using multivariable linear regression. Mediation analysis was conducted to clarify the role of 8-OHdG on the association of NEOs/metabolites exposure and birth outcomes. RESULTS Highest detection rate was observed for ACE (100.0%), followed by IMI (98.3%) and 6-CN (98.0%), suggesting the common exposure of pregnant women. The highest median concentration was observed for 6-CN with creatinine-adjusted median levels of 9.58 μg/g creatinine. A decrease in newborns' head circumference was observed with a 10-fold increase in IMI (β = -1.83; 95% CI = -3.04, -0.62) and ACE (β = -2.27; 95% CI = -3.56, -0.98). An increase in newborns' PI was observed with a 10-fold increase in IMI (β = 0.40; 95% CI = 0.03, 0.75). Maternal 8-OHdG demonstrated 38.5-65.5% mediating effects in the negative association of IMI, ACE, 2-CTCA with head circumference. These associations might differ between boys and girls. CONCLUSIONS Pregnant women were widely exposed to NEOs/metabolites in China. Results suggested the potential impacts of prenatal exposure to certain neonicotinoid insecticides on head circumference. Urinary 8-OHdG may partly mediate these associations.
Collapse
Affiliation(s)
- Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinxia Yu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China (USTC), Anhui, China
| | - Qian Yao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenping Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Wang A, Wan Y, Zhou L, Xia W, Guo Y, Mahai G, Yang Z, Xu S, Zhang R. Neonicotinoid insecticide metabolites in seminal plasma: Associations with semen quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151407. [PMID: 34808154 DOI: 10.1016/j.scitotenv.2021.151407] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Animal studies have revealed that exposure to neonicotinoid insecticides (NNIs) could compromise male reproductive function; however, related data on the occurrence of NNIs and their specific metabolites in human seminal plasma are scarce. To explore the potential effects of NNI exposure on male semen quality, we determined the concentrations of NNIs and some of their metabolites (collectively defined as mNNIs) in seminal plasma samples collected from men (n = 191) who visited a fertility clinic in Shijiazhuang, North China from 2018 to 2019. Associations between the mNNI concentrations and semen quality parameters were assessed using linear regression models, adjusting for important covariates. In the seminal plasma samples, desmethyl-acetamiprid (DM-ACE, detection frequency: 98.4%), imidacloprid-olefin (IMI-olefin, detection frequency: 86.5%), and desmethyl-clothianidin (DM-CLO, detection frequency: 70.8%) were frequently detected at median concentrations of 0.052, 0.003, and 0.007 ng/mL, respectively; meanwhile other compounds were detected at less than the method detection limits. In the single-mNNI models, the IMI-olefin concentration was associated with decreased progressive motility [IMI-olefin concentration: percent change (%Δ) = -17.0; 95% confidence interval (CI) = -30.3, -0.92; the highest tertile compared with the lowest tertile: %Δ = -21.1; 95% CI = -37.5, -0.23]. Similar results were found in the multiple-mNNIs models. No other inverse associations were found between the other mNNI concentrations and semen quality parameters. This is the first study to identify the occurrence of mNNIs in the seminal plasma and the potential associations of their concentrations with human semen quality parameters. These findings imply an inverse association between the IMI-olefin concentration and semen quality.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Lixiao Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yinsheng Guo
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | | | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
22
|
Zhang H, Zhu K, Du J, Ou M, Hou J, Wang D, Wang J, Zhang W, Sun G. Serum concentrations of neonicotinoids and their characteristic metabolites in elderly population from South China: Association with osteoporosis. ENVIRONMENTAL RESEARCH 2022; 203:111772. [PMID: 34324851 DOI: 10.1016/j.envres.2021.111772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) are extensively applied in global agricultural production for pest control but have adverse effects on human health. In this study, the concentrations of six NEOs and three characteristic metabolites were investigated by collecting 200 serum samples from an elderly population in China. Results showed that the NEOs and their metabolites were widely detected (89%-98 %) in the serum samples from the osteoporosis (OP) (n = 120) and non-OP (n = 80) population, and their median concentrations ranged from 0.04 ng/mL to 5.99 ng/mL and 0.01 ng/mL to 2.02 ng/mL, respectively. N-desmethyl-acetamiprid (ACE-dm) was the most abundant NEOs in the serum samples. Gender-related differences were found in concentrations of most NEOs and their metabolites in serum, with males having higher target analytes than females. Significantly (p < 0.05) positive correlations were observed among most NEO concentrations, suggesting that exposure source of these substances is common or related. However, associations between the concentrations of characteristic metabolites and their corresponding NEOs were insignificant, probably because the exogenous intake are the primary sources of metabolites of NEOs instead of the internal biotransformation. The associations between NEO concentrations (i.e., ACE-dm, dinotefuran, and olefin-imidacloprid) and OP (OR = 2.33-6.92, 95 % CI = 0.37-16.9, p-trend < 0.05) indicate that NEO exposure is correlated with increased odds of prevalent OP. This study is the first to document the profiles of NEOs and their metabolites in serum samples collected from an elderly population in South China and examine the relationships between NEO exposure and OP.
Collapse
Affiliation(s)
- Hua Zhang
- The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Kairui Zhu
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Jiang Du
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Maota Ou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Junlong Hou
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Wang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital) Jinan University, Heyuan, 517000, China; Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Human metabolism and urinary excretion of seven neonicotinoids and neonicotinoid-like compounds after controlled oral dosages. Arch Toxicol 2021; 96:121-134. [PMID: 34642770 PMCID: PMC8748328 DOI: 10.1007/s00204-021-03159-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Few human data on exposure and toxicity are available on neonicotinoids and neonicotinoid-like compounds (NNIs), an important group of insecticides worldwide. Specifically, exposure assessment of humans by biomonitoring remains a challenge due to the lack of appropriate biomarkers. We investigated the human metabolism and metabolite excretion in urine of acetamiprid (ACE), clothianidin (CLO), flupyradifurone (FLUP), imidacloprid (IMI), sulfoxaflor (SULF), thiacloprid (THIAC) and thiamethoxam (THIAM) after single oral dosages at the currently acceptable daily intake levels of the European Food Safety Authority. Consecutive post-dose urine samples were collected up to 48 h. Suspect screening of tentative metabolites was carried out by liquid chromatography–high-resolution mass spectrometry. Screening hits were identified based on their accurate mass, isotope signal masses and ratios, product ion spectra, and excretion kinetics. We found, with the exception of SULF, extensive metabolization of NNIs to specific metabolites which were excreted next to the parent compounds. Overall, 24 metabolites were detected with signal intensities indicative of high metabolic relevance. Phase-I metabolites were predominantly derived by mono-oxidation (such as hydroxy-FLUP, -IMI, and -THIAC) and by oxidative N-desalkylation (such as N-desdifluoroethyl-FLUP and N-desmethyl-ACE, -CLO and -THIAM). IMI-olefin, obtained by dehydration of hydroxylated IMI, was identified as a major metabolite of IMI. SULF was excreted unchanged in urine. Previously reported metabolites of NNIs such as 6-chloronicotinic acid or 2-chlorothiazole-4-carboxylic acid and their glycine derivatives were detected either at low signal intensities or not at all and seem less relevant for human biomonitoring. Our highly controlled approach provides specific insight into the human metabolism of NNIs and suggests suitable biomarkers for future exposure assessment at environmentally relevant exposures.
Collapse
|
24
|
Sun S, Zhou J, Jiang J, Dai Y, Sheng M. Nitrile Hydratases: From Industrial Application to Acetamiprid and Thiacloprid Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10440-10449. [PMID: 34469128 DOI: 10.1021/acs.jafc.1c03496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application of neonicotinoid insecticides (NEOs) in agriculture causes a series of environmental and ecological problems. Microbial remediation is a popular approach to relieve these negative impacts, but the associated molecular mechanisms are rarely explored. Nitrile hydratase (NHase), an enzyme commonly used in industry for amide production, was discovered to be responsible for the degradation of acetamiprid (ACE) and thiacloprid (THI) by microbes. Since then, research into NHases in NEO degradation has attracted increasing attention. In this review, microbial degradation of ACE and THI is briefly described. We then focus on NHase evolution, gene composition, maturation mechanisms, expression, and biochemical properties with regard to application of NHases in NEO degradation for bioremediation.
Collapse
Affiliation(s)
- Shilei Sun
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jiangsheng Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Miaomiao Sheng
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|