1
|
Wang T, Cui R, Yu HF, Yang D, Zhang S, Nie Y, Teng CB. The impact of aflatoxin B1 on animal health: Metabolic processes, detection methods, and preventive measures. Toxicon 2025; 255:108262. [PMID: 39855607 DOI: 10.1016/j.toxicon.2025.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Aflatoxin (AF) is a toxic metabolite produced by the fungus Aspergillus. The various subtypes of AFs include B1, B2, G1, G2, M1, and M2, with Aflatoxin B1 (AFB1) being the most toxic. These AFs are widespread in the environment, particularly in soil and food crops. The World Health Organization (WHO) has classified AFB1 as a highly potent natural Class 1A carcinogen. Excessive exposure to AFB1 can lead to poisoning in both humans and animals, posing substantial risks to food safety and livestock breeding industries. This review provides an overview of the metabolic processes, detection methods, and the detrimental impacts of AFB1 on animal reproduction, immunity, nerves, intestines, and metabolism. Furthermore, it explores the preventive and control capacities of natural active substances, trace elements, and microorganisms against AFB1. Ultimately, this paper serves as a reference for further research on the pathogenic mechanism of AFB1, the development of preventive drugs, and the selection of effective detoxification measures for AFB1 in animal feed.
Collapse
Affiliation(s)
- Tianyang Wang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Runzi Cui
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dian Yang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuting Zhang
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuzhe Nie
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Chun-Bo Teng
- Laboratory of Animal Developmental Biology, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Ye D, Hao Z, Tang S, Velkov T, Dai C. Aflatoxin Exposure-Caused Male Reproductive Toxicity: Molecular Mechanisms, Detoxification, and Future Directions. Biomolecules 2024; 14:1460. [PMID: 39595635 PMCID: PMC11592228 DOI: 10.3390/biom14111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Widespread endocrine disorders and infertility caused by environmental and food pollutants have drawn considerable global attention. Aflatoxins (AFTs), a prominent class of mycotoxins, are recognized as one of the key contributors to environmental and food contamination. Aflatoxin B1 (AFB1) is the most potent and toxic pollutant among them and is known to cause multiple toxic effects, including neuro-, nephro-, hepato-, immune-, and genotoxicity. Recently, concerns have been raised regarding AFB1-induced infertility in both animals and humans. Exposure to AFB1 can disrupt the structure and functionality of reproductive organs, leading to gametogenesis impairment in males, subsequently reducing fertility. The potential molecular mechanisms have been demonstrated to involve oxidative stress, cell cycle arrest, apoptosis, inflammatory responses, and autophagy. Furthermore, several signaling pathways, including nuclear factor erythroid 2-related factor 2; NOD-, LRR-, and pyrin domain-containing protein 3; nuclear factor kappa-B; p53; p21; phosphoinositide 3-kinase/protein kinase B; the mammalian target of rapamycin; adenosine 5'-monophosphate-activated protein kinase; and mitochondrial apoptotic pathways, are implicated in these processes. Various interventions, including the use of small molecules, Chinese herbal extracts, probiotic supplementation, and camel milk, have shown efficacy in ameliorating AFB1-induced male reproductive toxicity, by targeting these signaling pathways. This review provides a comprehensive summary of the harmful impacts of AFB1 exposure on male reproductive organs in mammals, highlighting the potential molecular mechanisms and protective agents.
Collapse
Affiliation(s)
- Dongyun Ye
- Department of Obstetrics and Gynecology, Ezhou Central Hospital, Hubei University of Science and Technology, Ezhou 436000, China
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
3
|
Ma J, Huang R, Zhang H, Liu D, Dong X, Xiong Y, Xiong X, Lan D, Fu W, He H, Li J, Yin S. The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells. Int J Mol Sci 2024; 25:8764. [PMID: 39201451 PMCID: PMC11355056 DOI: 10.3390/ijms25168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium species, is prevalent in crops and animal feed, posing significant health risks to livestock and humans. FB1 induces oxidative stress in Sertoli cells, destroys testicular structure, and affects spermatogenesis. However, methods to mitigate the reproductive toxicity of FB1 in testes remain unknown. Quercetin, a natural flavonoid antioxidant, may offer protective benefits. This study investigated the protective effects and mechanisms of quercetin against FB1-induced reproductive toxicity in TM4 cells (a Sertoli cell line). The results indicated that 40 μM quercetin improved cell viability, reduced apoptosis, and preserved cell functions. Quercetin also decreased reactive oxygen species (ROS) levels in TM4 cells exposed to FB1, enhanced the expression of antioxidant genes, and improved mitochondrial membrane potential. Compared with FB1 alone, the combination of quercetin and FB1 increased ATP levels, as well as pyruvate and lactic acid, the key glycolysis products. Furthermore, this combination elevated the mRNA and protein expression of glycolysis-related genes, including glucose-6-phosphate isomerase 1 (Gpi1), hexokinase 2 (Hk2), aldolase (Aldoa), pyruvate kinase, muscle (Pkm), lactate dehydrogenase A (Ldha) and phosphofructokinase, liver, B-type (Pfkl). Quercetin also boosted the activity of PKM and LDHA, two crucial glycolytic enzymes. In summary, quercetin mitigates FB1-induced toxicity in TM4 cells by reducing ROS levels and enhancing glycolysis. This study offers new insights into preventing and treating FB1-induced toxic damage to the male reproductive system and highlights the potential application of quercetin.
Collapse
Affiliation(s)
- Jun Ma
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Ruixue Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Huai Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dongju Liu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xiaodong Dong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
4
|
Qiu Z, Wang H, Li G, Liu Y, Wang X, Yang J, Wang X, He D. Lactobacillus salivarius Ameliorates AFB1-induced hepatotoxicity via PINK1/Parkin-mediated mitophagy in Geese. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116574. [PMID: 38875822 DOI: 10.1016/j.ecoenv.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Aflatoxin B1 (AFB1) is commonly found in feed ingredients and foods all over the world, posing a significant threat to food safety and public health in animals and humans. Lactobacillus salivarius (L. salivarius) was recorded to improve the intestinal health and performance of chickens. However, whether L. salivarius can alleviate AFB1-induced hepatotoxicity in geese was unknown. A total of 300 Lande geese were randomly assigned to five groups: control group, AFB1 low-dose group (L), L. salivarius+AFB1 low-dose group (LL), AFB1 high dosage groups (H), L. salivarius+AFB1 high dosage groups (LH), respectively. The results showed that the concentrations of ALT, AST, and GGT significantly increased after exposure to AFB1. Similarly, severe damage of hepatic morphology was observed including the hepatic structure injury and inflammatory cell infiltration. The oxidative stress was evidenced by the elevated concentrations of MDA, and decreased activities of GSH-Px, GSH and SOD. The observation of immunofluorescence, real-time PCR, and western blotting showed that the expression of PINK1 and the value of LC3II/LC3I were increased, but that of p62 significantly decreased after AFB1 exposure. Moreover, the supplementation of L. salivarius effectively improved the geese performance, ameliorated AFB1-induced oxidative stress, inhibited mitochondrial mitophagy and enhanced the liver restoration to normal level. The present study demonstrated that L. salivarius ameliorated AFB1-induced the hepatotoxicity by decreasing the oxidative stress, and regulating the expression of PINK1/Parkin-mediated mitophagy in the mitochondria of the geese liver. Furthermore, this investigation suggested that L. salivarius might serve as a novel and safe additive for preventing AFB1 contamination in poultry feed.
Collapse
Affiliation(s)
- Zhi Qiu
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China; Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Guangquan Li
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China
| | - Xianze Wang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Junhua Yang
- Institute for Agri-Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University,Hefei, Anhui 230036, China.
| | - Daqian He
- Institute of Agricultural Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201100, China.
| |
Collapse
|
5
|
Yang D, Zhang S, Cao H, Wu H, Liang Y, Teng CB, Yu HF. Detoxification of Aflatoxin B 1 by Phytochemicals in Agriculture and Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14481-14497. [PMID: 38897919 DOI: 10.1021/acs.jafc.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Aflatoxin B1 (AFB1), the most toxic and harmful mycotoxin, has a high likelihood of occurring in animal feed and human food, which seriously affects agriculture and food safety and endangers animal and human health. Recently, natural plant products have attracted widespread attention due to their low toxicity, high biocompatibility, and simple composition, indicating significant potential for resisting AFB1. The mechanisms by which these phytochemicals resist toxins mainly involve antioxidative, anti-inflammatory, and antiapoptotic pathways. Moreover, these substances also inhibit the genotoxicity of AFB1 by directly influencing its metabolism in vivo, which contributes to its elimination. Here, we review various phytochemicals that resist AFB1 and their anti-AFB1 mechanisms in different animals, as well as the common characteristics of phytochemicals with anti-AFB1 function. Additionally, the shortcomings of current research and future research directions will be discussed. Overall, this comprehensive summary contributes to the better application of phytochemicals in agriculture and food safety.
Collapse
Affiliation(s)
- Dian Yang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sihua Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hongda Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huan Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yang Liang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chun-Bo Teng
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hai-Fan Yu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Jalili C, Ranjbar Shamsi R, Amiri B, Kakebaraie S, Jalili F, Nasta TZ. Genotoxic and cytotoxic effects of aflatoxin on the reproductive system: Focus on cell cycle dynamics and apoptosis in testicular tissue. Toxicology 2024; 504:153773. [PMID: 38484789 DOI: 10.1016/j.tox.2024.153773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Aflatoxins (AFs) are inevitable environmental contaminants that are detrimental to human and animal health. AFs interfere with metabolic processes, metabolizing into different hydroxylated derivatives in the liver, as well as mechanistically induce ROS accumulation, S-phase arrest, DNA damage, and cell apoptosis. Chronic consumption of aflatoxin-contaminated foods can adversely affect the male reproductive system, cause testicular damage, prevent testosterone synthesis, decline sperm quality, and cause infertility. Oxidative stress is the fundamental pathogenesis of aflatoxin-induced reproductive toxicity. The overproduction of reactive oxygen substances can cause testicular failure and disturb the process of spermatogenesis. Mitochondria are susceptible to being impaired by oxidative stress, and its damage is associated with infertility. AFs also disturb the process of spermatogenesis by disrupting the regulation of genes related to the progression of the cell cycle such as cyclins and inducing genes related to apoptosis, thereby weakening fertility and negatively affecting the testicular endocrine potential by suppressing androgen synthesis. Additionally, AFs downregulate ERα expression, potentially negatively impacting spermatogenesis by enhancing the apoptotic mechanism. In this review, we provide new insights into the genotoxic and cytotoxic effects of AFB1 on the male reproductive system with a focus on the cell cycle and apoptosis destruction of testicular tissue.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Rahele Ranjbar Shamsi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Tabriz, Islamic Republic of Iran
| | - Bita Amiri
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Faramarz Jalili
- School of Health Administration, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
7
|
Mondal S, Bandyopadhyay A. Glucose transporters (GLUTs): Underreported yet crucial molecules in unraveling testicular toxicity. Biochimie 2024; 219:55-62. [PMID: 37967737 DOI: 10.1016/j.biochi.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Glucose transporters (GLUTs) are crucial in maintaining glucose homeostasis and supporting energy production in various tissues, including the testes. This review article delves into the distribution and function of GLUTs in distinct testicular cell types, namely Leydig cells, Sertoli cells, germ cells, and spermatozoa, shedding light on their significance in the context of male reproductive health-an issue of mounting global concern. Furthermore, this article examines the implications of GLUT dysregulation in testicular dysfunction. Altered GLUT expression has been associated with impaired steroidogenesis, spermatogenesis, sperm count, and motility in various animal models. Lastly, the article underscores the potential therapeutic implications of targeting GLUTs concerning testicular toxicity. Insights gleaned from studies in diabetes and cancer suggest that modulating GLUT expression and translocation could present novel strategies for mitigating testicular dysfunction and safeguarding male fertility. In summary, the intricate interplay between GLUTs, glucose metabolism, and testicular health underscores the significance of sustaining testicular glucose homeostasis for male reproductive health. Manipulating GLUTs presents an innovative avenue to address testicular dysfunction, potentially revolutionizing therapeutic strategies to restore male fertility and overall reproductive well-being. Future research in this field holds great promise for advancing male fertility treatments and reproductive health interventions.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt. College Dhimarkheda (Rani Durgavati Vishwavidyalaya), Katni, 483 332, Madhya Pradesh, India.
| | - Arindam Bandyopadhyay
- Department of Zoology, University of Allahabad, Prayagraj, 211 002, Uttar Pradesh, India.
| |
Collapse
|