1
|
Chen Y, Zhao H, Zhang H, Wang B, Ma J. Cytokine profile of cerebrospinal fluid in pediatric patients with metastatic medulloblastoma. Heliyon 2024; 10:e38504. [PMID: 39524698 PMCID: PMC11546137 DOI: 10.1016/j.heliyon.2024.e38504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Medulloblastoma (MB) is a malignant pediatric central nervous system tumor that is prone to leptomeningeal metastasis. Currently, apart from magnetic resonance imaging and cerebrospinal fluid (CSF) cytology, there are no reliable biomarkers for MB progression. Cytokines are key proteins in signaling pathways in the tumor microenvironment and are closely related to tumor recurrence and progression. This study aimed to investigate the CSF cytokine profile in pediatric patients with MB to identify biomarkers of tumor progression and metastasis. Methods In total, 10 patients were recruited for this study. Five patients had nonmetastatic MB and five had metastatic MB. A cytokine antibody array was used to detect the expression of 120 cytokines in the CSF, and differentially expressed cytokines were screened by integrated bioinformatics analysis. Results Twenty-seven cytokines were upregulated in patients with MB compared to control individuals. Of these, eight were upregulated by > 1.5-fold (CCL2, BMP-4, beta-NGF, FGF-7, IL-12p40, eotaxin-2, M-CSF, and NT-4). Twelve cytokines were differentially expressed between patients with metastatic MB and nonmetastatic (nine cytokines were upregulated and three were downregulated). Among them, NAP-2, MIP-1α, MIP-1β, IGFBP-1, IGFBP-2 and IGFBP-3 were upregulated by more than two-fold. Gene Ontology analysis revealed that the upregulated cytokines were enriched mainly in "epithelial cell proliferation" and "chemotaxis," and the Kyoto Encyclopedia of Genes and Genomes analysis indicated the enrichment of the "MAPK," "PI3K-Akt," and "Ras" signaling pathways. Conclusions The present study investigated cytokine profiles in the CSF of pediatric patients with MB. Our results suggest that these differentially expressed cytokines may serve as novel markers for detecting MB, especially for assessing the risk of progression and metastasis.
Collapse
Affiliation(s)
| | | | | | - Baocheng Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Michaelsen GL, da Silva LDRE, de Lima DS, Jaeger MDC, Brunetto AT, Dalmolin RJS, Sinigaglia M. A Prognostic Methylation-Driven Two-Gene Signature in Medulloblastoma. J Mol Neurosci 2024; 74:47. [PMID: 38662144 DOI: 10.1007/s12031-024-02203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Medulloblastoma (MB) is one of the most common pediatric brain tumors and it is estimated that one-third of patients will not achieve long-term survival. Conventional prognostic parameters have limited and unreliable correlations with MB outcome, presenting a major challenge for patients' clinical improvement. Acknowledging this issue, our aim was to build a gene signature and evaluate its potential as a new prognostic model for patients with the disease. In this study, we used six datasets totaling 1679 samples including RNA gene expression and DNA methylation data from primary MB as well as control samples from healthy cerebellum. We identified methylation-driven genes (MDGs) in MB, genes whose expression is correlated with their methylation. We employed LASSO regression, incorporating the MDGs as a parameter to develop the prognostic model. Through this approach, we derived a two-gene signature (GS-2) of candidate prognostic biomarkers for MB (CEMIP and NCBP3). Using a risk score model, we confirmed the GS-2 impact on overall survival (OS) with Kaplan-Meier analysis. We evaluated its robustness and accuracy with receiver operating characteristic curves predicting OS at 1, 3, and 5 years in multiple independent datasets. The GS-2 showed highly significant results as an independent prognostic biomarker compared to traditional MB markers. The methylation-regulated GS-2 risk score model can effectively classify patients with MB into high and low-risk, reinforcing the importance of this epigenetic modification in the disease. Such genes stand out as promising prognostic biomarkers with potential application for MB treatment.
Collapse
Affiliation(s)
- Gustavo Lovatto Michaelsen
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Lívia Dos Reis Edinger da Silva
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, RS, Brazil
| | - Douglas Silva de Lima
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, 59064-741, RN, Brazil
| | - Marialva Sinigaglia
- Children's Cancer Institute, Porto Alegre, 90620-110, RS, Brazil.
- Bioinformatics Multidisciplinary Environment-BioME, Digital Metropole Institute, Federal University of Rio Grande do Norte, Natal, 59076-550, RN, Brazil.
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology - INCT BioOncoPed, Porto Alegre, 90035-003, RS, Brazil.
| |
Collapse
|
3
|
Messina S. The RAS oncogene in brain tumors and the involvement of let-7 microRNA. Mol Biol Rep 2024; 51:531. [PMID: 38637419 PMCID: PMC11026240 DOI: 10.1007/s11033-024-09439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024]
Abstract
RAS oncogenes are master regulator genes in many cancers. In general, RAS-driven cancers have an oncogenic RAS mutation that promotes disease progression (colon, lung, pancreas). In contrast, brain tumors are not necessarily RAS-driven cancers because RAS mutations are rarely observed. In particular, glioblastomas (the most lethal brain tumor) do not appear to have dominant genetic mutations that are suitable for targeted therapy. Standard treatment for most brain tumors continues to focus on maximal surgical resection, radiotherapy and chemotherapy. Yet the convergence of genomic aberrations such as EGFR, PDGFR and NF1 (some of which are clinically effective) with activation of the RAS/MAPK cascade is still considered a key point in gliomagenesis, and KRAS is undoubtedly a driving gene in gliomagenesis in mice. In cancer, microRNAs (miRNA) are small, non-coding RNAs that regulate carcinogenesis. However, the functional consequences of aberrant miRNA expression in cancer are still poorly understood. let-7 encodes an intergenic miRNA that is classified as a tumour suppressor, at least in lung cancer. Let-7 suppresses a plethora of oncogenes such as RAS, HMGA, c-Myc, cyclin-D and thus suppresses cancer development, differentiation and progression. let-7 family members are direct regulators of certain RAS family genes by binding to the sequences in their 3'untranslated region (3'UTR). let-7 miRNA is involved in the malignant behaviour in vitro-proliferation, migration and invasion-of gliomas and stem-like glioma cells as well as in vivo models of glioblastoma multiforme (GBM) via KRAS inhibition. It also increases resistance to certain chemotherapeutic agents and radiotherapy in GBM. Although let-7 therapy is not yet established, this review updates the current state of knowledge on the contribution of miRNA let-7 in interaction with KRAS to the oncogenesis of brain tumours.
Collapse
Affiliation(s)
- Samantha Messina
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
4
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
5
|
Ceccarelli M, D'Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, Papoff G, Tirone F. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1 +/-/Tis21 KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol 2021; 11:692053. [PMID: 34395258 PMCID: PMC8362831 DOI: 10.3389/fonc.2021.692053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously generated a mouse model (Ptch1+/−/Tis21KO), which displays high frequency spontaneous medulloblastoma, a pediatric tumor of the cerebellum. Early postnatal cerebellar granule cell precursors (GCPs) of this model show, in consequence of the deletion of Tis21, a defect of the Cxcl3-dependent migration. We asked whether this migration defect, which forces GCPs to remain in the proliferative area at the cerebellar surface, would be the only inducer of their high frequency transformation. In this report we show, by further bioinformatic analysis of our microarray data of Ptch1+/−/Tis21KO GCPs, that, in addition to the migration defect, they show activation of the PI3K/AKT/mTOR pathway, as the mRNA levels of several activators of this pathway (e.g., Lars, Rraga, Dgkq, Pdgfd) are up-regulated, while some inhibitors (e.g. Smg1) are down-regulated. No such change is observed in the Ptch1+/− or Tis21KO background alone, indicating a peculiar synergy between these two genotypes. Thus we investigated, by mRNA and protein analysis, the role of PI3K/AKT/mTOR signaling in MBs and in nodules from primary Ptch1+/−/Tis21KO MB allografted in the flanks of immunosuppressed mice. Activation of the PI3K/AKT/mTOR pathway is seen in full-blown Ptch1+/−/Tis21KO MBs, relative to Ptch1+/−/Tis21WT MBs. In Ptch1+/−/Tis21KO MBs we observe that the proliferation of neoplastic GCPs increases while apoptosis decreases, in parallel with hyper-phosphorylation of the mTOR target S6, and, to a lower extent, of AKT. In nodules derived from primary Ptch1+/−/Tis21KO MBs, treatment with MEN1611, a novel PI3K inhibitor, causes a dramatic reduction of tumor growth, inhibiting proliferation and, conversely, increasing apoptosis, also of tumor CD15+ stem cells, responsible for long-term relapses. Additionally, the phosphorylation of AKT, S6 and 4EBP1 was significantly inhibited, indicating inactivation of the PI3K/AKT/mTOR pathway. Thus, PI3K/AKT/mTOR pathway activation contributes to Ptch1+/−/Tis21KO MB development and to high frequency tumorigenesis, observed when the Tis21 gene is down-regulated. MEN1611 could provide a promising therapy for MB, especially for patient with down-regulation of Btg2 (human ortholog of the murine Tis21 gene), which is frequently deregulated in Shh-type MBs.
Collapse
Affiliation(s)
- Manuela Ceccarelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Giulia Gentile
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | | | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy
| |
Collapse
|
6
|
Visani M, Marucci G, de Biase D, Giangaspero F, Buttarelli FR, Brandes AA, Franceschi E, Acquaviva G, Ciarrocchi A, Rhoden KJ, Tallini G, Pession A. miR-196B-5P and miR-200B-3P Are Differentially Expressed in Medulloblastomas of Adults and Children. Diagnostics (Basel) 2020; 10:diagnostics10050265. [PMID: 32365560 PMCID: PMC7277606 DOI: 10.3390/diagnostics10050265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/05/2023] Open
Abstract
Medulloblastoma is a highly aggressive brain tumor that typically affects children, while in adults it represents ~1% of all brain tumors. Little is known about microRNA expression profile of the rare adult medulloblastoma. The main aim of this study was to identify peculiar differences in microRNA expression between childhood and adult medulloblastoma. Medulloblastomas were profiled for microRNA expression using the Exiqon Human miRNome panel (I + II) analyzing 752 microRNAs in a training set of six adult and six childhood cases. Then, the most differentially expressed microRNAs were validated in a total of 21 adult and 19 childhood cases. Eight microRNAs (miR-196b-5p, miR-183-5p, miR-200b-3p, miR-196a-5p, miR-193a-3p, miR-29c-3p, miR-33b-5p, and miR-200a-3p) were differentially expressed in medulloblastoma of adults and children. Analysis of the validation set confirmed that miR-196b-5p and miR-200b-3p were significantly overexpressed in medulloblastoma of adults as compared with those of children. We followed an in silico approach to investigate direct targets and the pathways involved for the two microRNAs (miR-196b and miR-200b) differently expressed between adult and childhood medulloblastoma. Adult and childhood medulloblastoma have different miRNA expression profiles. In particular, the differential dysregulation of miR-196b-5p and miR-200b-3p characterizes the miRNA profile of adult medulloblastoma and suggests potential targets for novel diagnostic, prognostic, or therapeutic strategies.
Collapse
Affiliation(s)
- Michela Visani
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
- Correspondence: (M.V.); (D.d.B.); Tel.: +39-051-214-4717 (M.V. & D.d.B.); Fax: +39-051-636-3682 (M.V. & D.d.B.)
| | - Gianluca Marucci
- Anatomic Pathology Unit, Ospedale Bellaria AUSL-IRCCS of Bologna, 40139 Bologna, Italy;
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
- Correspondence: (M.V.); (D.d.B.); Tel.: +39-051-214-4717 (M.V. & D.d.B.); Fax: +39-051-636-3682 (M.V. & D.d.B.)
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University School of Medicine, 00161 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli (Isernia), Italy
| | | | - Alba Ariela Brandes
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria–Maggiore Hospitals AUSL-IRCCS of Bologna, 40139 Bologna, Italy; (A.A.B.); (E.F.)
| | - Giorgia Acquaviva
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Arcispedale Santa Maria Nuova AUSL-IRCCS of Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Kerry Jane Rhoden
- Department of Medical and Surgical Sciences, Medical Genetics Unit, University of Bologna School of Medicine, 40138 Bologna, Italy;
| | - Giovanni Tallini
- Department of Specialized, Diagnostic and Experimental Medicine, Anatomic Pathology-Molecular Diagnostic Unit AUSL-IRCCS of Bologna, University of Bologna School of Medicine, 40138 Bologna, Italy; (G.A.); (G.T.)
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology (FaBiT), Molecular Diagnostic Unit AUSL of Bologna, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
7
|
Modzelewska K, Boer EF, Mosbruger TL, Picard D, Anderson D, Miles RR, Kroll M, Oslund W, Pysher TJ, Schiffman JD, Jensen R, Jette CA, Huang A, Stewart RA. MEK Inhibitors Reverse Growth of Embryonal Brain Tumors Derived from Oligoneural Precursor Cells. Cell Rep 2017; 17:1255-1264. [PMID: 27783941 DOI: 10.1016/j.celrep.2016.09.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are the leading cause of cancer-related deaths in children. Primitive neuroectodermal tumors of the CNS (CNS-PNETs) are particularly aggressive embryonal tumors of unknown cellular origin. Recent genomic studies have classified CNS-PNETs into molecularly distinct subgroups that promise to improve diagnosis and treatment; however, the lack of cell- or animal-based models for these subgroups prevents testing of rationally designed therapies. Here, we show that a subset of CNS-PNETs co-express oligoneural precursor cell (OPC) markers OLIG2 and SOX10 with coincident activation of the RAS/MAPK (mitogen-activated protein kinase) pathway. Modeling NRAS activation in embryonic OPCs generated malignant brain tumors in zebrafish that closely mimic the human oligoneural/NB-FOXR2 CNS-PNET subgroup by histology and comparative oncogenomics. The zebrafish CNS-PNET model was used to show that MEK inhibitors selectively eliminate Olig2+/Sox10+ CNS-PNET tumors in vivo without impacting normal brain development. Thus, MEK inhibitors represent a promising rationally designed therapy for children afflicted with oligoneural/NB-FOXR2 CNS-PNETs.
Collapse
Affiliation(s)
- Katarzyna Modzelewska
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Elena F Boer
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy L Mosbruger
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Daniel Picard
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M4N1X8, Canada
| | - Daniela Anderson
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Rodney R Miles
- Department of Pathology and ARUP Laboratories, University of Utah, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Mitchell Kroll
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - William Oslund
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Theodore J Pysher
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Primary Children's Hospital/Intermountain Healthcare, Salt Lake City, UT 84113, USA
| | - Joshua D Schiffman
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Randy Jensen
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Annie Huang
- Division of Hematology-Oncology, Arthur and Sonia Labatt Brain Tumour Research Centre, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M4N1X8, Canada
| | - Rodney A Stewart
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Grausam KB, Dooyema SDR, Bihannic L, Premathilake H, Morrissy AS, Forget A, Schaefer AM, Gundelach JH, Macura S, Maher DM, Wang X, Heglin AH, Ge X, Zeng E, Puget S, Chandrasekar I, Surendran K, Bram RJ, Schüller U, Talyor MD, Ayrault O, Zhao H. ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas. Cancer Res 2017; 77:3766-3777. [PMID: 28490517 PMCID: PMC5512702 DOI: 10.1158/0008-5472.can-16-1836] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
Abstract
Medulloblastoma arising from the cerebellum is the most common pediatric brain malignancy, with leptomeningeal metastases often present at diagnosis and recurrence associated with poor clinical outcome. In this study, we used mouse medulloblastoma models to explore the relationship of tumor pathophysiology and dysregulated expression of the NOTCH pathway transcription factor ATOH1, which is present in aggressive medulloblastoma subtypes driven by aberrant Sonic Hedgehog/Patched (SHH/PTCH) signaling. In experiments with conditional ATOH1 mouse mutants crossed to Ptch1+/- mice, which develop SHH-driven medulloblastoma, animals with Atoh1 transgene expression developed highly penetrant medulloblastoma at a young age with extensive leptomeningeal disease and metastasis to the spinal cord and brain, resembling xenografts of human SHH medulloblastoma. Metastatic tumors retained abnormal SHH signaling like tumor xenografts. Conversely, ATOH1 expression was detected consistently in recurrent and metastatic SHH medulloblastoma. Chromatin immunoprecipitation sequencing and gene expression profiling identified candidate ATOH1 targets in tumor cells involved in development and tumorigenesis. Among these targets specific to metastatic tumors, there was an enrichment in those implicated in extracellular matrix remodeling activity, cytoskeletal network and interaction with microenvironment, indicating a shift in transcriptomic and epigenomic landscapes during metastasis. Treatment with bone morphogenetic protein or SHH pathway inhibitors decreased tumor cell proliferation and suppressed metastatic tumor growth, respectively. Our work reveals a dynamic ATOH1-driven molecular cascade underlying medulloblastoma metastasis that offers possible therapeutic opportunities. Cancer Res; 77(14); 3766-77. ©2017 AACR.
Collapse
Affiliation(s)
- Katie B Grausam
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota
| | - Samuel D R Dooyema
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Laure Bihannic
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
| | | | - A Sorana Morrissy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
| | - Amanda M Schaefer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Justin H Gundelach
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Minnesota
| | - Diane M Maher
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Xin Wang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alex H Heglin
- Department of Biology, University of South Dakota, Vermillion, South Dakota
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, South Dakota
| | - Erliang Zeng
- Department of Biology, University of South Dakota, Vermillion, South Dakota
- Department of Computer Science, University of South Dakota, Vermillion, South Dakota
| | - Stephanie Puget
- AP-HP, Department of Pediatric Neurosurgery, Necker Hospital, Paris, France
| | - Indra Chandrasekar
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota
| | - Kameswaran Surendran
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota
| | - Richard J Bram
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ulrich Schüller
- Research Institute Children's Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael D Talyor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Haotian Zhao
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, South Dakota
- Cancer Biology Research Center, Sanford Research, Sioux Falls, South Dakota
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota
| |
Collapse
|
9
|
BKM120 induces apoptosis and inhibits tumor growth in medulloblastoma. PLoS One 2017; 12:e0179948. [PMID: 28662162 PMCID: PMC5491106 DOI: 10.1371/journal.pone.0179948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, accounting for nearly 20 percent of all childhood brain tumors. New treatment strategies are needed to improve patient survival outcomes and to reduce adverse effects of current therapy. The phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) intracellular signaling pathway plays a key role in cellular metabolism, proliferation, survival and angiogenesis, and is often constitutively activated in human cancers, providing unique opportunities for anticancer therapeutic intervention. The aim of this study was to evaluate the pre-clinical activity of BKM120, a selective pan-class I PI3K inhibitor, on MB cell lines and primary samples. IC50 values of BKM120 in the twelve MB cell lines tested ranged from 0.279 to 4.38 μM as determined by cell viability assay. IncuCyte ZOOM Live-Cell Imaging system was used for kinetic monitoring of cytotoxicity of BKM120 and apoptosis in MB cells. BKM120 exhibited cytotoxicity in MB cells in a dose and time-dependent manner by inhibiting activation of downstream signaling molecules AKT and mTOR, and activating caspase-mediated apoptotic pathways. Furthermore, BKM120 decreased cellular glycolytic metabolic activity in MB cell lines in a dose-dependent manner demonstrated by ATP level per cell. In MB xenograft mouse study, DAOY cells were implanted in the flank of nude mice and treated with vehicle, BKM120 at 30 mg/kg and 60 mg/kg via oral gavage daily. BKM120 significantly suppressed tumor growth and prolonged mouse survival. These findings help to establish a basis for clinical trials of BKM120, which could be a novel therapy for the treatment of medulloblastoma patients.
Collapse
|
10
|
Ginn KF, Fangman B, Terai K, Wise A, Ziazadeh D, Shah K, Gartrell R, Ricke B, Kimura K, Mathur S, Borrego-Diaz E, Farassati F. RalA is overactivated in medulloblastoma. J Neurooncol 2016; 130:99-110. [PMID: 27566179 DOI: 10.1007/s11060-016-2236-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
Medulloblastoma (MDB) represents a major form of malignant brain tumors in the pediatric population. A vast spectrum of research on MDB has advanced our understanding of the underlying mechanism, however, a significant need still exists to develop novel therapeutics on the basis of gaining new knowledge about the characteristics of cell signaling networks involved. The Ras signaling pathway, one of the most important proto-oncogenic pathways involved in human cancers, has been shown to be involved in the development of neurological malignancies. We have studied an important effector down-stream of Ras, namely RalA (Ras-Like), for the first time and revealed overactivation of RalA in MDB. Affinity precipitation analysis of active RalA (RalA-GTP) in eight MDB cell lines (DAOY, RES256, RES262, UW228-1, UW426, UW473, D283 and D425) revealed that the majority contained elevated levels of active RalA (RalA-GTP) as compared with fetal cerebellar tissue as a normal control. Additionally, total RalA levels were shown to be elevated in 20 MDB patient samples as compared to normal brain tissue. The overall expression of RalA, however, was comparable in cancerous and normal samples. Other important effectors of RalA pathway including RalA binding protein-1 (RalBP1) and protein phosphatase A (PP2A) down-stream of Ral and Aurora kinase A (AKA) as an upstream RalA activator were also investigated in MDB. Considering the lack of specific inhibitors for RalA, we used gene specific silencing in order to inhibit RalA expression. Using a lentivirus expressing anti-RalA shRNA we successfully inhibited RalA expression in MDB and observed a significant reduction in proliferation and invasiveness. Similar results were observed using inhibitors of AKA and geranyl-geranyl transferase (non-specific inhibitors of RalA signaling) in terms of loss of in vivo tumorigenicity in heterotopic nude mouse model. Finally, once tested in cells expressing CD133 (a marker for MDB cancer stem cells), higher levels of RalA activation was observed. These data not only bring RalA to light as an important contributor to the malignant phenotype of MDB but introduces this pathway as a novel target in the treatment of this malignancy.
Collapse
Affiliation(s)
- Kevin F Ginn
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA.,Division of Hematology and Oncology, Children's Mercy Hospital and Clinics, Kansas City, MO, USA
| | - Ben Fangman
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kaoru Terai
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Amanda Wise
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Daniel Ziazadeh
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kushal Shah
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Robyn Gartrell
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Brandon Ricke
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Kyle Kimura
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Sharad Mathur
- Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA
| | - Emma Borrego-Diaz
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA
| | - Faris Farassati
- Molecular Medicine Laboratory, Department of Medicine, University of Kansas Medical School, Kansas City, KS, USA. .,Research Service (151), Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation-Saint Luke's Marion Bloch Brain Tumor Research Program, 4801 E Linwood Blvd, F5-123, Kansas City, MO, 64128, USA.
| |
Collapse
|
11
|
Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol 2016; 37:10053-66. [PMID: 27193823 DOI: 10.1007/s13277-016-5069-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
Progress in cancer biology has led to an increasing discovery of oncogenic alterations of the platelet-derived growth factor receptors (PDGFRs) in cancers. In addition, their overexpression in numerous cancers invariably makes PDGFRs and platelet-derived growth factors (PDGFs) prognostic and treatment markers in some cancers. The oncologic alterations of the PDGFR/PDGF system affect the extracellular, transmembrane and tyrosine kinase domains as well as the juxtamembrane segment of the receptor. The receptor is also involved in fusions with intracellular proteins and receptor tyrosine kinase. These discoveries undoubtedly make the system an attractive oncologic therapeutic target. This review covers elementary biology of PDGFR/PDGF system and its role as a prognostic and treatment marker in cancers. In addition, the multifarious therapeutic targets of PDGFR/PDGF system are discussed. Great potential exists in the role of PDGFR/PDGF system as a prognostic and treatment marker and for further exploration of its multifarious therapeutic targets in safe and efficacious management of cancer treatments.
Collapse
|
12
|
Wang Y, Appiah-Kubi K, Wu M, Yao X, Qian H, Wu Y, Chen Y. The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) are major players in oncogenesis, drug resistance, and attractive oncologic targets in cancer. Growth Factors 2016; 34:64-71. [PMID: 27170215 DOI: 10.1080/08977194.2016.1180293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a key role in signaling pathways in oncogenesis. The overexpression of PDGFs and PDGFRs and the oncogenic alterations of these receptors have been implicated in human cancers and correlated significantly with poor outcomes. This review discusses the biology of the PDGF isoforms and receptors briefly, and their role in oncogenesis. Also, the attractiveness of targeting PDGFs and PDGFRs, based on a wide display of oncologic alterations in cancers, diverse therapeutic strategies, their roles in resistance to cancer treatments with prospects of overcoming drug resistance, and the extent to which validated biomarkers have been developed for effective PDGFs and PDGFRs-based cancer management are discussed.
Collapse
Affiliation(s)
- Ying Wang
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Kwaku Appiah-Kubi
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
- b Department of Applied Biology , University for Development Studies , Navrongo , Ghana , and
| | - Min Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Xiaoyuan Yao
- c Basic Medical Department, Changchun Medical College , Jilin , People's Republic of China
| | - Hai Qian
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yan Wu
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| | - Yongchang Chen
- a Department of Physiology , School of Medicine, Jiangsu University , Jiangsu , People's Republic of China
| |
Collapse
|
13
|
Wang F, Remke M, Bhat K, Wong ET, Zhou S, Ramaswamy V, Dubuc A, Fonkem E, Salem S, Zhang H, Hsieh TC, O'Rourke ST, Wu L, Li DW, Hawkins C, Kohane IS, Wu JM, Wu M, Taylor MD, Wu E. A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget 2015; 6:2709-24. [PMID: 25576913 PMCID: PMC4413612 DOI: 10.18632/oncotarget.2779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/19/2014] [Indexed: 01/23/2023] Open
Abstract
Over-expression of PDGF receptors (PDGFRs) has been previously implicated in high-risk medulloblastoma (MB) pathogenesis. However, the exact biological functions of PDGFRα and PDGFRβ signaling in MB biology remain poorly understood. Here, we report the subgroup specific expression of PDGFRα and PDGFRβ and their associated biological pathways in MB tumors. c-MYC, a downstream target of PDGFRβ but not PDGFRα, is involved in PDGFRβ signaling associated with cell proliferation, cell death, and invasion. Concurrent inhibition of PDGFRβ and c-MYC blocks MB cell proliferation and migration synergistically. Integrated analysis of miRNA and miRNA targets regulated by both PDGFRβ and c-MYC reveals that increased expression of JAG2, a target of miR-1280, is associated with high metastatic dissemination at diagnosis and a poor outcome in MB patients. Our study may resolve the controversy on the role of PDGFRs in MB and unveils JAG2 as a key downstream effector of a PDGFRβ-driven signaling cascade and a potential therapeutic target.
Collapse
Affiliation(s)
- Fengfei Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Marc Remke
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Kruttika Bhat
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Eric T Wong
- Brain Tumor Center & Neuro-Oncology Unit, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Adrian Dubuc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Ekokobe Fonkem
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, Temple, TX 76508, USA
| | - Saeed Salem
- Department of Computer Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100073, China
| | - Tze-Chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - David W Li
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cynthia Hawkins
- Division of Pathology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Isaac S Kohane
- Informatics Program, Children's Hospital Boston, Harvard Medical School, Boston 02115, MA, USA
| | - Joseph M Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, ND 58202, USA
| | - Michael D Taylor
- Arthur and Sonia Labatt Brain Tumor Research Centre, Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
14
|
Zhao X, Ponomaryov T, Ornell KJ, Zhou P, Dabral SK, Pak E, Li W, Atwood SX, Whitson RJ, Chang ALS, Li J, Oro AE, Chan JA, Kelleher JF, Segal RA. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res 2015; 75:3623-35. [PMID: 26130651 DOI: 10.1158/0008-5472.can-14-2999-t] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors.
Collapse
Affiliation(s)
- Xuesong Zhao
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Tatyana Ponomaryov
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts. University of Birmingham, Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Kimberly J Ornell
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Pengcheng Zhou
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Sukriti K Dabral
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Ekaterina Pak
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Ramon J Whitson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anne Lynn S Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jennifer A Chan
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Kelleher
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Rosalind A Segal
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
15
|
Saletta F, Wadham C, Ziegler DS, Marshall GM, Haber M, McCowage G, Norris MD, Byrne JA. Molecular profiling of childhood cancer: Biomarkers and novel therapies. BBA CLINICAL 2014; 1:59-77. [PMID: 26675306 PMCID: PMC4633945 DOI: 10.1016/j.bbacli.2014.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Technological advances including high-throughput sequencing have identified numerous tumor-specific genetic changes in pediatric and adolescent cancers that can be exploited as targets for novel therapies. SCOPE OF REVIEW This review provides a detailed overview of recent advances in the application of target-specific therapies for childhood cancers, either as single agents or in combination with other therapies. The review summarizes preclinical evidence on which clinical trials are based, early phase clinical trial results, and the incorporation of predictive biomarkers into clinical practice, according to cancer type. MAJOR CONCLUSIONS There is growing evidence that molecularly targeted therapies can valuably add to the arsenal available for treating childhood cancers, particularly when used in combination with other therapies. Nonetheless the introduction of molecularly targeted agents into practice remains challenging, due to the use of unselected populations in some clinical trials, inadequate methods to evaluate efficacy, and the need for improved preclinical models to both evaluate dosing and safety of combination therapies. GENERAL SIGNIFICANCE The increasing recognition of the heterogeneity of molecular causes of cancer favors the continued development of molecularly targeted agents, and their transfer to pediatric and adolescent populations.
Collapse
Key Words
- ALK, anaplastic lymphoma kinase
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- ARMS, alveolar rhabdomyosarcoma
- AT/RT, atypical teratoid/rhabdoid tumor
- AURKA, aurora kinase A
- AURKB, aurora kinase B
- BET, bromodomain and extra terminal
- Biomarkers
- CAR, chimeric antigen receptor
- CML, chronic myeloid leukemia
- Childhood cancer
- DFMO, difluoromethylornithine
- DIPG, diffuse intrinsic pontine glioma
- EGFR, epidermal growth factor receptor
- ERMS, embryonal rhabdomyosarcoma
- HDAC, histone deacetylases
- Hsp90, heat shock protein 90
- IGF-1R, insulin-like growth factor type 1 receptor
- IGF/IGFR, insulin-like growth factor/receptor
- Molecular diagnostics
- NSCLC, non-small cell lung cancer
- ODC1, ornithine decarboxylase 1
- PARP, poly(ADP-ribose) polymerase
- PDGFRA/B, platelet derived growth factor alpha/beta
- PI3K, phosphatidylinositol 3′-kinase
- PLK1, polo-like kinase 1
- Ph +, Philadelphia chromosome-positive
- RMS, rhabdomyosarcoma
- SHH, sonic hedgehog
- SMO, smoothened
- SYK, spleen tyrosine kinase
- TOP1/TOP2, DNA topoisomerase 1/2
- TRAIL, TNF-related apoptosis-inducing ligand
- Targeted therapy
- VEGF/VEGFR, vascular endothelial growth factor/receptor
- mAb, monoclonal antibody
- mAbs, monoclonal antibodies
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
| | - Carol Wadham
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick 2031, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Geoffrey McCowage
- The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| | - Murray D. Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW, Randwick 2031, New South Wales, Australia
| | - Jennifer A. Byrne
- Children's Cancer Research Unit, Kids Research Institute, Westmead 2145, New South Wales, Australia
- The University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Westmead 2145, New South Wales, Australia
| |
Collapse
|
16
|
Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F. Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech 2014; 7:883-94. [PMID: 24878567 PMCID: PMC4073277 DOI: 10.1242/dmm.014969] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinoma, one of the worst malignancies of the exocrine pancreas, is a solid tumor with increasing incidence and mortality in industrialized countries. This condition is usually driven by oncogenic KRAS point mutations and evolves into a highly aggressive metastatic carcinoma due to secondary gene mutations and unbalanced expression of genes involved in the specific signaling pathways. To examine in vivo the effects of KRASG12D during pancreatic cancer progression and time correlation with cancer signaling pathway activities, we have generated a zebrafish model of pancreatic adenocarcinoma in which eGFP-KRASG12D expression was specifically driven to the pancreatic tissue by using the GAL4/UAS conditional expression system. Outcrossing the inducible oncogenic KRASG12D line with transgenic zebrafish reporters, harboring specific signaling responsive elements of transcriptional effectors, we were able to follow TGFβ, Notch, Bmp and Shh activities during tumor development. Zebrafish transgenic lines expressing eGFP-KRASG12D showed normal exocrine pancreas development until 3 weeks post fertilization (wpf). From 4 to 24 wpf we observed several degrees of acinar lesions, characterized by an increase in mesenchymal cells and mixed acinar/ductal features, followed by progressive bowel and liver infiltrations and, finally, highly aggressive carcinoma. Moreover, live imaging analysis of the exocrine pancreatic tissue revealed an increasing number of KRAS-positive cells and progressive activation of TGFβ and Notch pathways. Increase in TGFβ, following KRASG12D activation, was confirmed in a concomitant model of medulloblastoma (MDB). Notch and Shh signaling activities during tumor onset were different between MDB and pancreatic adenocarcinoma, indicating a tissue-specific regulation of cell signaling pathways. Moreover, our results show that a living model of pancreatic adenocarcinoma joined with cell signaling reporters is a suitable tool for describing in vivo the signaling cascades and molecular mechanisms involved in tumor development and a potential platform to screen for novel oncostatic drugs.
Collapse
Affiliation(s)
- Marco Schiavone
- Department of Biology, University of Padua, 35131 Padua, Italy
| | - Elena Rampazzo
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | | | - Giusy Battilana
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Luca Persano
- Department of Woman and Child Health, University of Padua, 35131 Padua, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padua, 35131 Padua, Italy
| | - Shu Liu
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steve D Leach
- Department of Surgery and The McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | |
Collapse
|
17
|
Virág J, Kenessey I, Haberler C, Piurkó V, Bálint K, Döme B, Tímár J, Garami M, Hegedűs B. Angiogenesis and angiogenic tyrosine kinase receptor expression in pediatric brain tumors. Pathol Oncol Res 2013; 20:417-26. [PMID: 24190638 DOI: 10.1007/s12253-013-9711-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/10/2013] [Indexed: 01/07/2023]
Abstract
Tumor angiogenesis and receptor tyrosine kinases (RTK) are major novel targets in anticancer molecular therapy. Accordingly, we characterized the vascular network and the expression pattern of angiogenic RTK in the most frequent pediatric brain tumors. In a retrospective collection of 44 cases (14 astrocytoma, 16 ependymoma and 14 medulloblastoma), immunohistochemistry for VEGFR1, VEGFR2, PDGFRα, PDGFRβ, and c-Kit as well as microvessel labeling with CD34 and SMA were conducted on surgical specimens. We found a significantly higher vascular density in ependymoma. Glomeruloid formations were abundant in medulloblastoma but rare or almost absent in astrocytoma and ependymoma, respectively. C-Kit and VEGFR2 labeled blood vessels were more abundant in ependymoma than in the other two types of tumors. In contrast, medulloblastoma contained higher number of PDGFRα expressing vessels. In tumor cells, we found no VEGFR2 but VEGFR1 expression in all three tumor types. PDGFRα was strongly expressed on the tumor cells in all three malignancies, while PDGFRβ tumor cell expression was present in the majority of medulloblastoma cases. Interestingly, small populations of c-Kit expressing cancer cells were found in a number of medulloblastoma and ependymoma cases. Our study suggests that different angiogenic mechanisms are present in ependymoma and medulloblastoma. Furthermore ependymoma patients may benefit from anti-angiogenic therapies based on the high vascularization as well as the endothelial expression of c-kit and VEGFR2. The expression pattern of the receptors on tumor cells also suggests the targeting of specific angiogenic tyrosine kinase receptors may have direct antitumor activity. Further preclinical and biomarker driven clinical investigations are needed to establish the application of tyrosine kinase inhibitors in the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- József Virág
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smee RI, Williams JR, De-Loyde KJ, Meagher NS, Cohn R. Medulloblastoma: progress over time. J Med Imaging Radiat Oncol 2012; 56:227-34. [PMID: 22498198 DOI: 10.1111/j.1754-9485.2012.02349.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common central nervous system tumour in children aged 0-4 years, with 75% of cases occurring in patients <16 years, and rare in adults. The intent of this audit is to review a single centre's experience and to compare outcomes with other centres' outcomes. METHODS This Ethics approved retrospective audit evaluates the paediatric population aged <16 years who received radiotherapy as their initial or salvage treatment at the Prince of Wales Hospital Cancer Centre between 1972 and 2007. The primary and secondary end-points were progression-free survival (PFS) and cancer-specific survival (CSS), with comparisons made between patients treated before and after 1990, and the impact of high- and low-risk disease. RESULTS There were 80 eligible patients, 78 who had radiotherapy at initial presentation, and 2 at the time of recurrence. Median age was 6.5 years, 52 were boys and 28 were girls. Seventy-eight patients had a surgical procedure and ultimately received craniospinal radiotherapy. Of these 78 patients, 32 (40%) had a macroscopically complete resection. The 5-year PFS was 69.7%. The 5-year PFS for patients treated pre and post 1990 was 66.1% and 71.8%, respectively. The 5-year CSS for high- and low-risk patients was 61.1% and 78.4%, respectively. Ultimately, 33% of patients were dead due to disease. CONCLUSION This audit demonstrates those children referred to this facility for treatment have comparable survival to that of other major centres.
Collapse
Affiliation(s)
- Robert I Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Level 2, High Street, Randwick, NSW 2031, Australia
| | | | | | | | | |
Collapse
|
19
|
Kolb EA, Gorlick R, Houghton PJ, Morton CL, Neale G, Keir ST, Carol H, Lock R, Phelps D, Kang MH, Reynolds CP, Maris JM, Billups C, Smith MA. Initial testing (stage 1) of AZD6244 (ARRY-142886) by the Pediatric Preclinical Testing Program. Pediatr Blood Cancer 2010; 55:668-77. [PMID: 20806365 PMCID: PMC3004092 DOI: 10.1002/pbc.22576] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AZD6244 (ARRY-142886) is a potent small molecule inhibitor of MEK1/2 that is in phase 2 clinical development. PROCEDURES AZD6244 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro panel (1 nM-10 microM). In vivo AZD6244 was tested at a dose of 100 mg/kg administered orally twice daily 5 days per week for 6 weeks. Subsequently, AZD6244 was evaluated against two juvenile pilocytic astrocytoma (JPA) xenografts using once and twice daily dosing schedules. Phosphorylation of ERK1/2 was used as a surrogate for in vivo inhibition of MEK1/2 was determined by immunoblotting. RESULTS At the highest concentration used in vitro (10 microM) AZD6244 only inhibited growth by 50% in 5 of the 23 cell lines. Against the in vivo tumor panels, AZD6244 induced significant differences in EFS distribution in 10 of 37 (27%) solid tumor models and 0 of 6 acute lymphoblastic leukemia (ALL) models. There were no objective responses. Pharmacodynamic studies indicated at this dose and schedule AZD6244 completely inhibited ERK1/2 phosphorylation. AZD6244 was evaluated against two JPA xenografts, BT-35 (wild-type BRAF) and BT-40 (mutant [V600E] BRAF). BT-40 xenografts were highly sensitive to AZD6244, whereas BT-35 xenografts progressed on AZD6244 treatment. CONCLUSIONS At the dose and schedule of administration used, AZD6244 as a single agent had limited in vitro and in vivo activity against the PPTP tumor panels despite inhibition of MEK1/2 activity. However, AZD6244 was highly active against BT-40 JPA xenografts that harbor constitutively activated BRAF, causing complete regressions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hernan Carol
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | - Richard Lock
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | - Doris Phelps
- St. Jude Children’s Research Hospital, Memphis, TN
| | - Min H. Kang
- Children’s Hospital of Los Angeles, Los Angeles, CA
| | | | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | | | | |
Collapse
|
20
|
Pizer BL, Clifford SC. The potential impact of tumour biology on improved clinical practice for medulloblastoma: progress towards biologically driven clinical trials. Br J Neurosurg 2009; 23:364-75. [PMID: 19637007 DOI: 10.1080/02688690903121807] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medulloblastoma is the most common malignant brain tumour of childhood and accounts for around 10% of all childhood cancer deaths. Despite recent improvements in survival rates, the delivery of individualised therapies based on disease-risk remains a major goal; intensified treatment for poor-risk disease, whilst reducing therapy for favourable-risk cases, with the overall aim of maximising survival whilst minimising late effects. Current clinical indices for the prediction of disease course are imprecise, however a series of molecular and histopathological biomarkers have been identified recently, which may allow a more accurate prediction of disease outcome (e.g., beta-catenin status as a favourable-risk marker, MYC gene amplification and large-cell histology as high-risk markers). Pan-European clinical trials being planned for medulloblastoma by the SIOP Brain tumour group will assess the stratification of patients using molecular and histological biomarkers, alongside clinical indices, to select favourable, standard and high-risk treatment groups. This selection will underpin two concurrent trials; PNET 5, which will test whether treatment can be reduced for a favourable-risk disease sub-group, with the aim of maintaining survival rates while reducing late-effects, and PNET 6, which will aim to improve survival rates in the standard-risk group. The implementation of these trials presents important new logistical challenges within routine practice, involving (i) the development of quality-controlled sample collection and handling systems across multiple treatment centres, including the mandatory ascertainment of fresh-frozen tumour material, and (ii) the delivery of standardised central biomarker analysis and histopathological review, within the approximately 30-day post-surgical window, prior to the selection and commencement of adjuvant therapy. Feasibility studies to establish these systems are underway across SIOP Europe national groups. Their success will require a coordinated approach by the entire multidisciplinary team, including neurosurgeons, oncologists and neuropathologists, with the common aim of facilitating targeted delivery of individualised risk-adapted therapies for children with medulloblastoma.
Collapse
Affiliation(s)
- Barry L Pizer
- Department of Paediatric Oncology, Alder Hey Children's Hospital, Liverpool, UK
| | | |
Collapse
|
21
|
Blom T, Roselli A, Häyry V, Tynninen O, Wartiovaara K, Korja M, Nordfors K, Haapasalo H, Nupponen NN. Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors. J Neurooncol 2009; 97:217-24. [PMID: 19779861 DOI: 10.1007/s11060-009-0014-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P <or= 0.001). Most strikingly, increased gene copy number of PDGFRA was associated with poor overall survival (P = 0.027). We suggest that coamplification of PDGFRA or VEGFR2 with KIT may be clinically useful novel molecular markers in MBs and PNETs.
Collapse
Affiliation(s)
- Tea Blom
- Molecular Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sikkema AH, Diks SH, den Dunnen WFA, ter Elst A, Scherpen FJG, Hoving EW, Ruijtenbeek R, Boender PJ, de Wijn R, Kamps WA, Peppelenbosch MP, de Bont ESJM. Kinome profiling in pediatric brain tumors as a new approach for target discovery. Cancer Res 2009; 69:5987-95. [PMID: 19567681 DOI: 10.1158/0008-5472.can-08-3660] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exceedingly complicated. Here, we introduce kinome profiling using flow-through peptide microarrays as a new concept for target discovery. Comprehensive tyrosine kinase activity profiles were identified in 29 pediatric brain tumors using the PamChip kinome profiling system. Previously reported activity of epidermal growth factor receptor, c-Met, and vascular endothelial growth factor receptor in pediatric brain tumors could be appreciated in our array results. Peptides corresponding with phosphorylation consensus sequences for Src family kinases showed remarkably high levels of phosphorylation compared with normal tissue types. Src activity was confirmed applying Phos-Tag SDS-PAGE. Furthermore, the Src family kinase inhibitors PP1 and dasatinib induced substantial tumor cell death in nine pediatric brain tumor cell lines but not in control cell lines. Thus, this study describes a new high-throughput technique to generate clinically relevant tyrosine kinase activity profiles as has been shown here for pediatric brain tumors. In the era of a rapidly increasing number of small-molecule inhibitors, this approach will enable us to rapidly identify new potential targets in a broad range of human malignancies.
Collapse
Affiliation(s)
- Arend H Sikkema
- Department of Pediatric Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ferretti E, De Smaele E, Po A, Di Marcotullio L, Tosi E, Espinola MSB, Di Rocco C, Riccardi R, Giangaspero F, Farcomeni A, Nofroni I, Laneve P, Gioia U, Caffarelli E, Bozzoni I, Screpanti I, Gulino A. MicroRNA profiling in human medulloblastoma. Int J Cancer 2008; 124:568-77. [PMID: 18973228 DOI: 10.1002/ijc.23948] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medulloblastoma is an aggressive brain malignancy with high incidence in childhood. Current treatment approaches have limited efficacy and severe side effects. Therefore, new risk-adapted therapeutic strategies based on molecular classification are required. MicroRNA expression analysis has emerged as a powerful tool to identify candidate molecules playing an important role in a large number of malignancies. However, no data are yet available on human primary medulloblastomas. A high throughput microRNA expression profiles was performed in human primary medulloblastoma specimens to investigate microRNA involvement in medulloblastoma carcinogenesis. We identified specific microRNA expression patterns which distinguish medulloblastoma differing in histotypes (anaplastic, classic and desmoplastic), in molecular features (ErbB2 or c-Myc overexpressing tumors) and in disease-risk stratification. MicroRNAs expression profile clearly differentiates medulloblastoma from either adult or fetal normal cerebellar tissues. Only a few microRNAs displayed upregulated expression, while most of them were downregulated in tumor samples, suggesting a tumor growth-inhibitory function. This property has been addressed for miR-9 and miR-125a, whose rescued expression promoted medulloblastoma cell growth arrest and apoptosis while targeting the proproliferative truncated TrkC isoform. In conclusion, misregulated microRNA expression profiles characterize human medulloblastomas, and may provide potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Medulloblastoma is the most common brain tumor of childhood. Multiple signaling pathways have been associated with medulloblastoma formation and growth. These include the developmental pathways Hedgehog, (Hh) Notch, and Wnt as well as the receptor tyrosine kinases (RTK) c-Met, erbB2, IGF-R and TrkC, and the oncoprotein Myc. Here we review the involvement of these pathways in medulloblastoma malignancy with a focus on their mode of deregulation, prognostic value, functional effects, cellular and molecular mechanisms of action, and implications for therapy.
Collapse
Affiliation(s)
- Fadila Guessous
- Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
25
|
Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NSV, Caron HN, Cloos J, Mrsić A, Ylstra B, Grajkowska W, Hartmann W, Pietsch T, Ellison D, Clifford SC, Versteeg R. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 2008; 3:e3088. [PMID: 18769486 PMCID: PMC2518524 DOI: 10.1371/journal.pone.0003088] [Citation(s) in RCA: 532] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. METHODS AND FINDINGS To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in beta-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. CONCLUSIONS The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.
Collapse
Affiliation(s)
- Marcel Kool
- Department of Human Genetics, Academic Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Platelet-derived growth factor receptor expression and amplification in choroid plexus carcinomas. Mod Pathol 2008; 21:265-70. [PMID: 18157090 DOI: 10.1038/modpathol.3800989] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Platelet-derived growth factor (PDGF) receptor signaling has been implicated in the development of glial tumors, but not yet been examined in choroid plexus carcinomas, pediatric tumors with dismal prognosis for which novel treatment options would be desirable. Therefore, protein expression of PDGF receptors alpha and beta as well as amplification status of the respective genes, PDGFRA and PDGFRB, were examined in a series of 22 patients harboring choroid plexus carcinoma using immunohistochemistry and chromogenic in situ hybridization (CISH). The majority of choroid plexus carcinomas expressed PDGF receptors with 6 cases (27%) displaying high staining scores for PDGF receptor alpha and 13 cases (59%) showing high staining scores for PDGF receptor beta. Correspondingly, copy-number gains of PDGFRA were observed in 8 cases out of 12 cases available for CISH and 1 case displayed amplification (six or more signals per nucleus). The proportion of choroid plexus carcinomas with amplification of PDGFRB was even higher (5/12 cases). PDGFRB amplification status and PDGF receptor beta protein expression scores were significantly correlated (P=0.01, Spearman). Expression status of PDGF receptor alpha or PDGF receptor beta was not significantly associated with progression-free survival. To conclude, expression and amplification of PDGF receptors, particularly PDGF receptor beta, are frequent in choroid plexus carcinomas, providing a first rationale for the development of treatments targeting PDGF receptor signaling in these rare malignant pediatric tumors.
Collapse
|