1
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
2
|
Ripoll L, von Zastrow M. Spatial organization of adenylyl cyclase and its impact on dopamine signaling in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570478. [PMID: 38106018 PMCID: PMC10723477 DOI: 10.1101/2023.12.06.570478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The cAMP cascade is widely recognized to transduce its physiological effects locally through spatially limited cAMP gradients. However, little is known about how the adenylyl cyclase enzymes, which initiate cAMP gradients, are localized. Here we answer this question in physiologically relevant striatal neurons and delineate how AC localization impacts downstream signaling functions. We show that the major striatal AC isoforms are differentially sorted between ciliary and extraciliary domains of the plasma membrane, and that AC9 is uniquely targeted to endosomes. We identify key sorting determinants in the N-terminal cytoplasmic domain responsible for isoform-specific localization. We also show that AC9-containing endosomes accumulate activated dopamine receptors and form an elaborately intertwined network with juxtanuclear PKA stores bound to Golgi membranes. Finally, we show that endosomal localization is critical for AC9 to selectively elevate PKA activity in the nucleus relative to the cytoplasm. These results reveal a precise spatial landscape of the cAMP cascade in neurons and a key role of AC localization in directing downstream signal transduction to the nucleus.
Collapse
|
3
|
Britto-Júnior J, Medeiros-Teixeira LR, Lima AT, Dassow LC, Lopes-Martins RÁB, Campos R, Moraes MO, Moraes MEA, Antunes E, De Nucci G. 6-Nitrodopamine Is the Most Potent Endogenous Positive Inotropic Agent in the Isolated Rat Heart. Life (Basel) 2023; 13:2012. [PMID: 37895394 PMCID: PMC10607994 DOI: 10.3390/life13102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND 6-nitrodopamine released from rat isolated atria exerts positive chronotropic action, being more potent than noradrenaline, adrenaline, and dopamine. Here, we determined whether 6-nitrodopamine is released from rat isolated ventricles (RIV) and modulates heart inotropism. METHODS Catecholamines released from RIV were quantified by LC-MS/MS and their effects on heart inotropism were evaluated by measuring left ventricular developed pressure (LVDP) in Langendorff's preparation. RESULTS 6-nitrodopamine was the major released catecholamine from RIV. Incubation with L-NAME (100 µM), but not with tetrodotoxin (1 µM), caused a significant reduction in 6-nitrodopamine basal release. 6-nitrodopamine release was significantly reduced in ventricles obtained from L-NAME chronically treated animals. 6-nitrodopamine (0.01 pmol) caused significant increases in LVDP and dP/dtmax, whereas dopamine and noradrenaline required 10 pmol, and adrenaline required 100 pmol, to induce similar increases in LVDP and dP/dtmax. The infusion of atenolol (10 nM) reduced basal LVDP and blocked the increases in LVDP induced by 6-ND (0.01 pmol), without affecting the increases in LVDP induced by 10 nmol of dopamine and noradrenaline and that induced by adrenaline (100 nmol). CONCLUSIONS 6-nitrodopamine is the major catecholamine released from rat isolated ventricles. It is 1000 times more potent than dopamine and noradrenaline and is selectively blocked by atenolol, indicating that 6-ND is a main regulator of heart inotropism.
Collapse
Affiliation(s)
- José Britto-Júnior
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Lincoln Rangel Medeiros-Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Antonio Tiago Lima
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Letícia Costa Dassow
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
| | - Rafael Campos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Manoel Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Maria Elisabete A. Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-970, Brazil; (J.B.-J.); (L.R.M.-T.); (A.T.L.); (R.C.); (E.A.)
- Laboratory of Biophotonics and Experimental Therapeutics, University Evangélica of Goiás (UniEVANGÉLICA), Anápolis 75083-515, Brazil; (L.C.D.); (R.Á.B.L.-M.)
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará (UFC), Fortaleza 60020-181, Brazil; (M.O.M.); (M.E.A.M.)
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Sāo Paulo 05508-220, Brazil
| |
Collapse
|
4
|
Activation of β-Adrenoceptors Promotes Lipid Droplet Accumulation in MCF-7 Breast Cancer Cells via cAMP/PKA/EPAC Pathways. Int J Mol Sci 2023; 24:ijms24010767. [PMID: 36614209 PMCID: PMC9820888 DOI: 10.3390/ijms24010767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.
Collapse
|
5
|
Hansen JN, Kaiser F, Leyendecker P, Stüven B, Krause J, Derakhshandeh F, Irfan J, Sroka TJ, Preval KM, Desai PB, Kraut M, Theis H, Drews A, De‐Domenico E, Händler K, Pazour GJ, Henderson DJP, Mick DU, Wachten D. A cAMP signalosome in primary cilia drives gene expression and kidney cyst formation. EMBO Rep 2022; 23:e54315. [PMID: 35695071 PMCID: PMC9346484 DOI: 10.15252/embr.202154315] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The primary cilium constitutes an organelle that orchestrates signal transduction independently from the cell body. Dysregulation of this intricate molecular architecture leads to severe human diseases, commonly referred to as ciliopathies. However, the molecular underpinnings how ciliary signaling orchestrates a specific cellular output remain elusive. By combining spatially resolved optogenetics with RNA sequencing and imaging, we reveal a novel cAMP signalosome that is functionally distinct from the cytoplasm. We identify the genes and pathways targeted by the ciliary cAMP signalosome and shed light on the underlying mechanisms and downstream signaling. We reveal that chronic stimulation of the ciliary cAMP signalosome transforms kidney epithelia from tubules into cysts. Counteracting this chronic cAMP elevation in the cilium by small molecules targeting activation of phosphodiesterase-4 long isoforms inhibits cyst growth. Thereby, we identify a novel concept of how the primary cilium controls cellular functions and maintains tissue integrity in a specific and spatially distinct manner and reveal novel molecular components that might be involved in the development of one of the most common genetic diseases, polycystic kidney disease.
Collapse
Affiliation(s)
- Jan N Hansen
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | - Fabian Kaiser
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | - Birthe Stüven
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| | | | | | | | - Tommy J Sroka
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Kenley M Preval
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Paurav B Desai
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | - Michael Kraut
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Heidi Theis
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Anna‐Dorothee Drews
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Elena De‐Domenico
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Kristian Händler
- Precise Platform for Single Cell Genomics and EpigenomicsDepartment of Systems MedicineGerman Center for Neurogenerative DiseasesBonnGermany
| | - Gregory J Pazour
- Program in Molecular MedicineUniversity of Massachusetts Chan Medical School, Biotech IIWorcesterMAUSA
| | | | - David U Mick
- Center for Molecular Signaling (PZMS)Center of Human and Molecular Biology (ZHMB)Saarland University, School of MedicineHomburgGermany
| | - Dagmar Wachten
- Institute of Innate ImmunityMedical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
6
|
Schleicher K, Hester S, Stegmann M, Zaccolo M. Quantitative Phosphoproteomics to Study cAMP Signaling. Methods Mol Biol 2022; 2483:281-296. [PMID: 35286683 DOI: 10.1007/978-1-0716-2245-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) signaling activates multiple downstream cellular targets in response to different stimuli. Specific phosphorylation of key target proteins via activation of the cAMP effector protein kinase A (PKA) is achieved via signal compartmentalization. Termination of the cAMP signal is mediated by phosphodiesterases (PDEs), a diverse group of enzymes comprising several families that localize to distinct cellular compartments. By studying the effects of inhibiting individual PDE families on the phosphorylation of specific targets it is possible to gain information on the subcellular spatial organization of this signaling pathway.We describe a phosphoproteomic approach that can detect PDE family-specific phosphorylation changes in cardiac myocytes against a high phosphorylation background. The method combines dimethyl labeling and titanium dioxide-mediated phosphopeptide enrichment, followed by tandem mass spectrometry.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Svenja Hester
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Monika Stegmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Endosomal cAMP production broadly impacts the cellular phosphoproteome. J Biol Chem 2021; 297:100907. [PMID: 34166681 PMCID: PMC8294583 DOI: 10.1016/j.jbc.2021.100907] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Endosomal signaling downstream of G-protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. However, our knowledge of the functional consequences of intracellular signaling is incomplete. To begin to address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger generated by active GPCRs, cyclic AMP (cAMP), with unbiased mass-spectrometry-based analysis of the phosphoproteome. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP elevation. We next determined that the same amount of cAMP produced from the endosomal membrane led to more robust changes in phosphorylation than the plasma membrane. Remarkably, this was true for the entire repertoire of 218 identified targets and irrespective of their annotated subcellular localizations (endosome, cell surface, nucleus, cytosol). Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A by cAMP-responsive kinases as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness to cAMP by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.
Collapse
|
8
|
Sebastian S, Nobles M, Tsisanova E, Ludwig A, Munroe PB, Tinker A. The role of resistance to inhibitors of cholinesterase 8b in the control of heart rate. Physiol Genomics 2021; 53:150-159. [PMID: 33719582 DOI: 10.1152/physiolgenomics.00157.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have assessed the role of ric-b8 in the control of heart rate after the gene was implicated in a recent genome-wide association study of resting heart rate. We developed a novel murine model in which it was possible to conditionally delete ric-8b in the sinoatrial (SA) node after the addition of tamoxifen. Despite this, we were unable to obtain homozygotes and thus studied heterozygotes. Haploinsufficiency of ric-8b in the sinoatrial node induced by the addition of tamoxifen in adult animals leads to mice with a reduced heart rate. However, other electrocardiographic intervals (e.g., PR and QRS) were normal, and there was no apparent arrhythmia such as heart block. The positive chronotropic response to isoprenaline was abrogated, whereas the response to carbachol was unchanged. The pacemaker current If (funny current) has an important role in regulating heart rate, and its function is modulated by both isoprenaline and carbachol. Using a heterologous system expressing HCN4, we show that ric-8b can modulate the HCN4 current. Overexpression of ric-8b led to larger HCN4 currents, whereas silencing ric-8b led to smaller currents. Ric-8b modulates heart rate responses in vivo likely via its actions on the stimulatory G-protein.
Collapse
Affiliation(s)
- Sonia Sebastian
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muriel Nobles
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elena Tsisanova
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patricia B Munroe
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Tinker
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Chen R, Chen T, Wang T, Dai X, Zhang S, Jiang D, Meng K, Wang Y, Geng T, Xu J, Zhou K, Wang Y. Tongmai Yangxin pill reduces myocardial No-reflow via endothelium-dependent NO-cGMP signaling by activation of the cAMP/PKA pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113462. [PMID: 33058924 DOI: 10.1016/j.jep.2020.113462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin pill (TMYX) is derived from the Zhigancao decoction recorded in Shang han lun by Zhang Zhongjing during the Han dynasty. TMYX is used for the clinical treatment of chest pain, heartache, and qi-yin-deficiency coronary heart disease. Previous studies have confirmed that TMYX can improve vascular endothelial function in patients with coronary heart disease by upregulating nitric oxide activity and then regulating vascular tension. Whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels remains unclear. AIM OF THE STUDY This study aimed to reveal whether TMYX can further improve myocardial NR by upregulating NO activity and then dilating blood vessels. The underlying cAMP/PKA and NO-cGMP signaling pathway-dependent mechanism is also explored. MATERIALS AND METHODS The left anterior descending coronary arteries of healthy adult male SD rats were ligated to establish the NR model. TMYX (4.0 g/kg) was orally administered throughout the experiment. Cardiac function was measured through echocardiography. Thioflavin S, Evans Blue, and TTC staining were used to evaluate the NR and ischemic areas. Pathological changes in the myocardium were assessed by hematoxylin-eosin staining. An automated biochemical analyzer and kit were used to detect the activities of myocardial enzymes and myocardial oxidants, including CK, CK-MB, LDH, reactive oxygen species, superoxide dismutase, malonaldehyde, and NO. The expression levels of genes and proteins related to the cAMP/PKA and NO/cGMP signaling pathways were detected via real-time fluorescence quantitative PCR and Western blot analysis, respectively. A microvascular tension sensor was used to detect coronary artery diastolic function in vitro. RESULTS TMYX elevated the EF, FS, LVOT peak, LVPWd and LVPWs values, decreased the LVIDd, LVIDs, LV-mass, IVSd, and LV Vols values, demonstrating cardio-protective effects, and reduced the NR and ischemic areas. Pathological staining showed that TMYX could significantly reduce inflammatory cell number and interstitial edema. The activities of CK, LDH, and MDA were reduced, NO activity was increased, and oxidative stress was suppressed after treatment with TMYX. TMYX not only enhanced the expression of Gs-α, AC, PKA, and eNOS but also increased the expression of sGC and PKG. Furthermore, TMYX treatment significantly decreased ROCK expression. We further showed that TMYX (25-200 mg/mL) relaxed isolated coronary microvessels. CONCLUSIONS TMYX attenuates myocardial NR after ischemia and reperfusion by activating the cAMP/PKA and NO/cGMP signaling pathways, further upregulating NO activity and relaxing coronary microvessels.
Collapse
Affiliation(s)
- Rui Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ting Chen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tianqi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Xiangdong Dai
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Shuying Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Di Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Ke Meng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yanyan Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Tong Geng
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Research Institute Branch, Tianjin, 300457, China.
| | - Jinpeng Xu
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd, Drug Marketing Co., Ltd, Tianjin, 300193, China.
| | - Kun Zhou
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
10
|
Capel RA, Bose SJ, Collins TP, Rajasundaram S, Ayagama T, Zaccolo M, Burton RAB, Terrar DA. IP 3-mediated Ca 2+ release regulates atrial Ca 2+ transients and pacemaker function by stimulation of adenylyl cyclases. Am J Physiol Heart Circ Physiol 2020; 320:H95-H107. [PMID: 33064562 PMCID: PMC7864251 DOI: 10.1152/ajpheart.00380.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias. NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.
Collapse
Affiliation(s)
- Rebecca A Capel
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Samuel J Bose
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thomas P Collins
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Skanda Rajasundaram
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thamali Ayagama
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rebecca-Ann Beatrice Burton
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Derek A Terrar
- Department of Pharmacology, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β 2AR-cAMP Signalling. Cells 2020; 9:cells9102275. [PMID: 33053822 PMCID: PMC7601768 DOI: 10.3390/cells9102275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to differentiate induced-pluripotent stem cells into cardiomyocytes (iPSC-CMs) has opened up novel avenues for potential cardiac therapies. However, iPSC-CMs exhibit a range of somewhat immature functional properties. This study explored the development of the beta-adrenergic receptor (βAR) pathway, which is crucial in regulating contraction and signifying the health and maturity of myocytes. We explored the compartmentation of β2AR-signalling and phosphodiesterases (PDEs) in caveolae, as functional nanodomains supporting the mature phenotype. Förster Resonance Energy Transfer (FRET) microscopy was used to study the cyclic adenosine monophosphate (cAMP) levels in iPSC-CMs at day 30, 60, and 90 following βAR subtype-specific stimulation. Subsequently, the PDE2, PDE3, and PDE4 activity was investigated using specific inhibitors. Cells were treated with methyl-β-cyclodextrin (MβCD) to remove cholesterol as a method of decompartmentalising β2AR. As iPSC-CMs mature with a prolonged culture time, the caveolae density is increased, leading to a reduction in the overall cytoplasmic cAMP signal stimulated through β2AR (but not β1AR). Pan-phosphodiesterase inhibition or caveolae depletion leads to an increase in the β2AR-stimulated cytoplasmic cAMP. Moreover, with time in culture, the increase in the βAR-dependent cytoplasmic cAMP becomes more sensitive to cholesterol removal. The regulation of the β2AR response by PDE2 and 4 is similarly increased with the time in culture. We conclude that both the β2AR and PDEs are restricted to the caveolae nanodomains, and thereby exhibit a tighter spatial restriction over the cAMP signal in late-stage compared to early iPSC-CMs.
Collapse
|
12
|
Zhang JZ, Lu TW, Stolerman LM, Tenner B, Yang JR, Zhang JF, Falcke M, Rangamani P, Taylor SS, Mehta S, Zhang J. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell 2020; 182:1531-1544.e15. [PMID: 32846158 PMCID: PMC7502557 DOI: 10.1016/j.cell.2020.07.043] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
The fidelity of intracellular signaling hinges on the organization of dynamic activity architectures. Spatial compartmentation was first proposed over 30 years ago to explain how diverse G protein-coupled receptors achieve specificity despite converging on a ubiquitous messenger, cyclic adenosine monophosphate (cAMP). However, the mechanisms responsible for spatially constraining this diffusible messenger remain elusive. Here, we reveal that the type I regulatory subunit of cAMP-dependent protein kinase (PKA), RIα, undergoes liquid-liquid phase separation (LLPS) as a function of cAMP signaling to form biomolecular condensates enriched in cAMP and PKA activity, critical for effective cAMP compartmentation. We further show that a PKA fusion oncoprotein associated with an atypical liver cancer potently blocks RIα LLPS and induces aberrant cAMP signaling. Loss of RIα LLPS in normal cells increases cell proliferation and induces cell transformation. Our work reveals LLPS as a principal organizer of signaling compartments and highlights the pathological consequences of dysregulating this activity architecture.
Collapse
Affiliation(s)
- Jason Z Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tsan-Wen Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lucas M Stolerman
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Tenner
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica R Yang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jin-Fan Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Falcke
- Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; Department of Physics, Humboldt University, 12489 Berlin, Germany
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
14
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Chen J, Zook D, Crickard L, Tabatabaei A. Effect of phosphodiesterase (1B, 2A, 9A and 10A) inhibitors on central nervous system cyclic nucleotide levels in rats and mice. Neurochem Int 2019; 129:104471. [PMID: 31121256 DOI: 10.1016/j.neuint.2019.104471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 01/27/2023]
Abstract
Phosphodiesterase (PDE) inhibition has been broadly investigated as a target for a wide variety of indications including central nervous system (CNS) disorders. Cyclic nucleotide (cNT) changes within associated tissues may serve as a biomarker of PDE inhibition. We recently developed robust sample harvesting and bioanalytical methods to quantify cNT levels in rodent brain and cerebrospinal fluid (CSF). Herein, we report on the application of those methods to study rodent species-specific and rodent brain region-specific cNT changes following individual or concomitant PDE inhibitor administration. Male Sprague Dawley (Crl:CD® [SD]) rats were dosed subcutaneously (sc) with a PDE1B inhibitor (DNS-0056), a PDE2A inhibitor (PF-05180999), a PDE9A inhibitor (PF-4447943), and a PDE10A inhibitor (MP10), each at a single dose of 10 or 30 mg/kg, or concomitantly with all 4 inhibitors at 10 mg/kg each. Male Carworth Farms (Crl:CF1 ®[CF-1]) mice were dosed intraperitoneally (ip) with the four individual inhibitors at a single dose of 10 mg/kg or concomitantly with all 4 inhibitors at 10 mg/kg each. The doses studied are generally adequate for affecting measurable cNT levels in the tissues of interest and were thereby chosen for this investigation. Measured 3',5'-cyclic adenosine monophosphate (cAMP) changes were generally statistically insignificant in the brain, striatum and CSF after administration of the aforementioned PDE inhibitors. However, the levels of 3',5'-cyclic guanosine monophosphate (cGMP) increased in both rat and mouse striatum (2.2-, 2.1- and 1.7-fold and 6.4-, 2.8- and 1.7-fold, respectively) after PDE2A, 9A, and 10A inhibitor dosing. In all cases, the cNT changes followed the same trend in the brain, striatum and CSF after PDE inhibitor dosing and dose response was observed in rats. Concomitant treatment with PDE1B, PDE2A, PDE9A and PDE10A inhibitors resulted in a 4.4- and 36.7-fold increase of cGMP in rat and mouse striatum. The drug exposures after concomitant treatment were also higher than in the individual inhibitor-treated animals. cGMP enhancement observed could be due to synergistic effects, though an additive effect of the combined inhibitor concentrations may also contribute.
Collapse
Affiliation(s)
- Jie Chen
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Douglas Zook
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Lindsay Crickard
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| | - Ali Tabatabaei
- Dart NeuroScience, LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
| |
Collapse
|
16
|
Shete V, Liu N, Jia Y, Viswakarma N, Reddy JK, Thimmapaya B. Mouse Cardiac Pde1C Is a Direct Transcriptional Target of Pparα. Int J Mol Sci 2018; 19:ijms19123704. [PMID: 30469494 PMCID: PMC6321386 DOI: 10.3390/ijms19123704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase 1C (PDE1C) is expressed in mammalian heart and regulates cardiac functions by controlling levels of second messenger cyclic AMP and cyclic GMP (cAMP and cGMP, respectively). However, molecular mechanisms of cardiac Pde1c regulation are currently unknown. In this study, we demonstrate that treatment of wild type mice and H9c2 myoblasts with Wy-14,643, a potent ligand of nuclear receptor peroxisome-proliferator activated receptor alpha (PPARα), leads to elevated cardiac Pde1C mRNA and cardiac PDE1C protein, which correlate with reduced levels of cAMP. Furthermore, using mice lacking either Pparα or cardiomyocyte-specific Med1, the major subunit of Mediator complex, we show that Wy-14,643-mediated Pde1C induction fails to occur in the absence of Pparα and Med1 in the heart. Finally, using chromatin immunoprecipitation assays we demonstrate that PPARα binds to the upstream Pde1C promoter sequence on two sites, one of which is a palindrome sequence (agcTAGGttatcttaacctagc) that shows a robust binding. Based on these observations, we conclude that cardiac Pde1C is a direct transcriptional target of PPARα and that Med1 may be required for the PPARα mediated transcriptional activation of cardiac Pde1C.
Collapse
Affiliation(s)
- Varsha Shete
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ning Liu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Janardan K Reddy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bayar Thimmapaya
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
17
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
18
|
CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia. Int J Mol Sci 2017; 18:ijms18091896. [PMID: 28869532 PMCID: PMC5618545 DOI: 10.3390/ijms18091896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP- and cGMP-regulated chloride (Cl−) and bicarbonate (HCO3−) channel localized primarily at the apical plasma membrane of epithelial cells lining the airway, gut and exocrine glands, where it is responsible for transepithelial salt and water transport. Several human diseases are associated with altered CFTR channel function. Cystic fibrosis (CF) is caused by the absence or dysfunction of CFTR channel activity, resulting from mutations in the gene. Secretory diarrhea is caused by the hyperactivation of CFTR channel activity in the gastrointestinal tract. CFTR is a validated target for drug development to treat CF, and extensive research has been conducted to develop CFTR inhibitors for therapeutic interventions of secretory diarrhea. The intracellular processing, trafficking, apical membrane localization, and channel function of CFTR are regulated by dynamic protein–protein interactions in a complex network. In this paper, we review the current knowledge of a macromolecular complex of CFTR, Na+/H+ exchanger regulatory factor 2 (NHERF2), and lysophosphatidic acids (LPA) receptor 2 (LPA2) at the apical plasma membrane of airway and gut epithelial cells, and discuss its relevance in human physiology and diseases. We also explore the possibilities of targeting this complex to fine tune CFTR channel activity, with a hope to open up new avenues to develop novel therapies for CF and secretory diarrhea.
Collapse
|
19
|
Weber S, Zeller M, Guan K, Wunder F, Wagner M, El-Armouche A. PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal 2017; 38:76-84. [PMID: 28668721 DOI: 10.1016/j.cellsig.2017.06.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
The cyclic nucleotides cAMP and cGMP are central second messengers in cardiac cells and critical regulators of cardiac physiology as well as pathophysiology. Consequently, subcellular compartmentalization allows for spatiotemporal control of cAMP/cGMP metabolism and subsequent regulation of their respective effector kinases PKA or PKG is most important for cardiac function in health and disease. While acute cAMP-mediated signalling is a mandatory prerequisite for the physiological fight-or-flight response, sustained activation of this pathway may lead to the progression of heart failure. In contrast, acute as well as sustained cGMP-mediated signalling can foster beneficial features, e.g. anti-hypertrophic and vasodilatory effects. These two signalling pathways seem to be intuitively counteracting and there is increasing evidence for a functionally relevant crosstalk between cAMP and cGMP signalling pathways on the level of cyclic nucleotide hydrolysing phosphodiesterases (PDEs). Among this diverse group of enzymes, PDE2 may fulfill a unique integrator role. Equipped with dual substrate specificity for cAMP as well as for cGMP, it is the only cAMP hydrolysing PDE, which is allosterically activated by cGMP. Recent studies have revealed strongly remodelled cAMP/cGMP microdomains and subcellular concentration profiles in different cardiac pathologies, leading to a putatively enhanced involvement of PDE2 in cAMP/cGMP breakdown and crosstalk compared to the other cardiac PDEs. This review sums up the current knowledge about molecular properties and regulation of PDE2 and explains the complex signalling network encompassing PDE2 in order to better understand the functional role of PDE2 in distinct cell types in cardiac health and disease. Moreover, this review gives an outlook in which way PDE2 may serve as a therapeutic target to treat cardiac disease.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Miriam Zeller
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Kaomei Guan
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Frank Wunder
- Drug Discovery, Bayer AG, Aprather Weg 18a, Wuppertal 42113, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
20
|
Zhao CY, Greenstein JL, Winslow RL. Mechanisms of the cyclic nucleotide cross-talk signaling network in cardiac L-type calcium channel regulation. J Mol Cell Cardiol 2017; 106:29-44. [PMID: 28365422 PMCID: PMC5508987 DOI: 10.1016/j.yjmcc.2017.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 10/19/2022]
Abstract
Regulation of L-type Calcium (Ca2+) Channel (LCC) gating is critical to shaping the cardiac action potential (AP) and triggering the initiation of excitation-contraction (EC) coupling in cardiac myocytes. The cyclic nucleotide (cN) cross-talk signaling network, which encompasses the β-adrenergic and the Nitric Oxide (NO)/cGMP/Protein Kinase G (PKG) pathways and their interaction (cross-talk) through distinctively-regulated phosphodiesterase isoenzymes (PDEs), regulates LCC current via Protein Kinase A- (PKA) and PKG-mediated phosphorylation. Due to the tightly-coupled and intertwined biochemical reactions involved, it remains to be clarified how LCC gating is regulated by the signaling network from receptor to end target. In addition, the large number of EC coupling-related phosphorylation targets of PKA and PKG makes it difficult to quantify and isolate changes in L-type Ca2+ current (ICaL) responses regulated by the signaling network. We have developed a multi-scale, biophysically-detailed computational model of LCC regulation by the cN signaling network that is supported by experimental data. LCCs are modeled with functionally distinct PKA- and PKG-phosphorylation dependent gating modes. The model exhibits experimentally observed single channel characteristics, as well as whole-cell LCC currents upon activation of the cross-talk signaling network. Simulations show 1) redistribution of LCC gating modes explains changes in whole-cell current under various stimulation scenarios of the cN cross-talk network; 2) NO regulation occurs via potentiation of a gating mode characterized by prolonged closed times; and 3) due to compensatory actions of cross-talk and antagonizing functions of PKA- and PKG-mediated phosphorylation of LCCs, the effects of individual inhibitions of PDEs 2, 3, and 4 on ICaL are most pronounced at low levels of β-adrenergic stimulation. Simulations also delineate the contribution of the following two mechanisms to overall LCC regulation, which have otherwise been challenging to distinguish: 1) regulation of PKA and PKG activation via cN cross-talk (Mechanism 1); and 2) LCC interaction with activated PKA and PKG (Mechanism 2). These results provide insights into how cN signals transduced via the cN cross-talk signaling network are integrated via LCC regulation in the heart.
Collapse
Affiliation(s)
- Claire Y Zhao
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Joseph L Greenstein
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| | - Raimond L Winslow
- Department of Biomedical Engineering and the Institute for Computational Medicine, The Johns Hopkins University School of Medicine and Whiting School of Engineering, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
21
|
Brescia M, Zaccolo M. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity. Int J Mol Sci 2016; 17:E1672. [PMID: 27706091 PMCID: PMC5085705 DOI: 10.3390/ijms17101672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that degrade the cyclic nucleotides cAMP and cGMP, and play a key role in modulating the amplitude and duration of the signal delivered by these two key intracellular second messengers. Defects in cyclic nucleotide signalling are known to be involved in several pathologies. As a consequence, PDEs have long been recognized as potential drug targets, and they have been the focus of intense research for the development of therapeutic agents. A number of PDE inhibitors are currently available for the treatment of disease, including obstructive pulmonary disease, erectile dysfunction, and heart failure. However, the performance of these drugs is not always satisfactory, due to a lack of PDE-isoform specificity and their consequent adverse side effects. Recent advances in our understanding of compartmentalised cyclic nucleotide signalling and the role of PDEs in local regulation of cAMP and cGMP signals offers the opportunity for the development of novel strategies for therapeutic intervention that may overcome the current limitation of conventional PDE inhibitors.
Collapse
Affiliation(s)
- Marcella Brescia
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| |
Collapse
|
22
|
Baillie GS. Editorial. Cell Signal 2016; 28:699-700. [PMID: 26850139 DOI: 10.1016/j.cellsig.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- George S Baillie
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, G128QQ, UK
| |
Collapse
|
23
|
Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell Signal 2015; 28:725-32. [PMID: 26475678 PMCID: PMC4872538 DOI: 10.1016/j.cellsig.2015.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/12/2015] [Indexed: 01/08/2023]
Abstract
In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets.
Collapse
|
24
|
Huang YMM, Huber G, McCammon JA. Electrostatic steering enhances the rate of cAMP binding to phosphodiesterase: Brownian dynamics modeling. Protein Sci 2015; 24:1884-9. [PMID: 26346301 DOI: 10.1002/pro.2794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023]
Abstract
Signaling in cells often involves co-localization of the signaling molecules. Most experimental evidence has shown that intracellular compartmentalization restricts the range of action of the second messenger, 3'-5'-cyclic adenosine monophosphate (cAMP), which is degraded by phosphodiesterases (PDEs). The objective of this study is to understand the details of molecular encounter that may play a role in efficient operation of the cAMP signaling apparatus. The results from electrostatic potential calculations and Brownian dynamics simulations suggest that positive potential of the active site from PDE enhances capture of diffusing cAMP molecules. This electrostatic steering between cAMP and the active site of a PDE plays a major role in the enzyme-substrate encounter, an effect that may be of significance in sequestering cAMP released from a nearby binding site or in attracting more freely diffusing cAMP molecules.
Collapse
Affiliation(s)
- Yu-ming M Huang
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093
| | - Gary Huber
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093
| | - J Andrew McCammon
- Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, 92093.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
25
|
Bongartz LG, Soni S, Cramer MJ, Steendijk P, Gaillard CAJM, Verhaar MC, Doevendans PA, van Veen TA, Joles JA, Braam B. Neuronal nitric oxide synthase-dependent amelioration of diastolic dysfunction in rats with chronic renocardiac syndrome. Cardiorenal Med 2015; 5:69-78. [PMID: 25759702 PMCID: PMC4327336 DOI: 10.1159/000370052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
Abstract
We have recently described the chronic renocardiac syndrome (CRCS) in rats with renal failure, cardiac dysfunction and low nitric oxide (NO) availability by combining subtotal nephrectomy and transient low-dose NO synthase (NOS) inhibition. Cardiac gene expression of the neuronal isoform of NOS (nNOS) was induced. Hence, we studied the role of nNOS, in vivo cardiac function and β-adrenergic response in our CRCS model by micromanometer/conductance catheter. Left ventricular (LV) hemodynamics were studied during administration of dobutamine (dobu), the highly specific irreversible inhibitor of nNOS L-VNIO [L-N5-(1-Imino-3-butenyl)-ornithine], or both at steady state and during preload reduction. Rats with CRCS showed LV systolic dysfunction at baseline, together with prolonged diastolic relaxation and rightward shift of the end-systolic pressure-volume relationships. After L-VNIO infusion, diastolic relaxation of CRCS rats further prolonged. The time constant of active relaxation (tau) increased by 25 ± 6% from baseline (p < 0.05), and the maximal rate of pressure decrease was 36 ± 7% slower (p < 0.001). These variables did not change in controls. In our CRCS model, nNOS did not seem to affect systolic dysfunction. In summary, in this model of CRCS, blockade of nNOS further worsens diastolic dysfunction and L-VNIO does not influence inherent contractility and the response to dobu stress.
Collapse
Affiliation(s)
- Lennart G Bongartz
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands ; Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Siddarth Soni
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten-Jan Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul Steendijk
- Department of Cardiology and Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Carlo A J M Gaillard
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Branko Braam
- Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, Alta., Canada ; Department Physiology, University of Alberta, Edmonton, Alta., Canada
| |
Collapse
|
26
|
Blackwell KT, Jedrzejewska-Szmek J. Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:717-31. [PMID: 24019266 PMCID: PMC3947422 DOI: 10.1002/wsbm.1240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022]
Abstract
Interactions among signaling pathways that are activated by transmembrane receptors produce complex networks and emergent dynamical behaviors that are implicated in synaptic plasticity. Temporal dynamics and spatial aspects are critical determinants of cell responses such as synaptic plasticity, although the mapping between spatiotemporal activity pattern and direction of synaptic plasticity is not completely understood. Computational modeling of neuronal signaling pathways has significantly contributed to understanding signaling pathways underlying synaptic plasticity. Spatial models of signaling pathways in hippocampal neurons have revealed mechanisms underlying the spatial distribution of extracellular signal-related kinase (ERK) activation in hippocampal neurons. Other spatial models have demonstrated that the major role of anchoring proteins in striatal and hippocampal synaptic plasticity is to place molecules near their activators. Simulations of yet other models have revealed that the spatial distribution of synaptic plasticity may differ for potentiation versus depression. In general, the most significant advances have been made by interactive modeling and experiments; thus, an interdisciplinary approach should be applied to investigate critical issues in neuronal signaling pathways. These issues include identifying which transmembrane receptors are key for activating ERK in neurons, and the crucial targets of kinases that produce long-lasting synaptic plasticity. Although the number of computer programs for computationally efficient simulation of large reaction-diffusion networks is increasing, parameter estimation and sensitivity analysis in these spatial models remain more difficult than in single compartment models. Advances in live cell imaging coupled with further software development will continue to accelerate the development of spatial models of synaptic plasticity.
Collapse
Affiliation(s)
- KT Blackwell
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Studies George Mason University, Fairfax, VA 22030-444, USA
| | - J Jedrzejewska-Szmek
- Molecular Neuroscience Department, The Krasnow Institute for Advanced Studies George Mason University, Fairfax, VA 22030-444, USA
| |
Collapse
|
27
|
Knebel SM, Elrick MM, Bowles EA, Zdanovec AK, Stephenson AH, Ellsworth ML, Sprague RS. Synergistic effects of prostacyclin analogs and phosphodiesterase inhibitors on cyclic adenosine 3',5' monophosphate accumulation and adenosine 3'5' triphosphate release from human erythrocytes. Exp Biol Med (Maywood) 2013; 238:1069-74. [PMID: 23986226 DOI: 10.1177/1535370213498981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Prostacyclin (PGI2) and phosphodiesterase 5 (PDE5) inhibitors are potent vasodilators that are used alone and in combination for the treatment of pulmonary arterial hypertension (PAH). Although these vasodilators are known to stimulate relaxation of vascular smooth muscle directly, other cells in circulation, including erythrocytes, express prostacyclin receptor (IPR) and contain PDE5. The binding of PGI2 analogs to the erythrocyte IPR results in activation of a signaling pathway that increases cyclic adenosine 3',5' monophosphate (cAMP), a requirement for adenosine 3'5' triphosphate (ATP) release. Within this pathway, cAMP levels are regulated by phosphodiesterase 3 (PDE3), a PDE that is inhibited by cGMP, a cyclic nucleotide regulated by the activity of PDE5. Since inhibition of PDE3 enhances ATP release in response to PGI2 analogs, we investigated if the selective PDE5 inhibitors, zaprinast (ZAP) and tadalafil (TAD), would similarly increase cAMP and ATP release from human erythrocytes in response to the same stimulus. We determined that pretreatment of erythrocytes with one of two chemically dissimilar PDE5 inhibitors (ZAP or TAD, 10 µM) potentiated increases in cAMP and ATP release in response to incubation of human erythrocytes with the PGI2 analog, UT-15C (100 nM). These results suggest that a heretofore unrecognized synergism exists between IPR agonists and PDE5 inhibitors that could provide a new rationale for the co-administration of these agents as vasodilators in humans with PAH.
Collapse
Affiliation(s)
- Stephanie M Knebel
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Phosphorylation of mitochondrial proteins has emerged as a major regulatory mechanism for metabolic adaptation. cAMP signaling and PKA phosphorylation of mitochondrial proteins have just started to be investigated, and the presence of cAMP-generating enzymes and PKA inside mitochondria is still controversial. Here, we discuss the role of cAMP in regulating mitochondrial bioenergetics through protein phosphorylation and the evidence for soluble adenylyl cyclase as the source of cAMP inside mitochondria.
Collapse
Affiliation(s)
- Federica Valsecchi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, USA
| | | | | | | | | |
Collapse
|
29
|
Safavi M, Baeeri M, Abdollahi M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Drug Discov 2013; 8:733-51. [DOI: 10.1517/17460441.2013.787986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Fu Q, Chen X, Xiang YK. Compartmentalization of β-adrenergic signals in cardiomyocytes. Trends Cardiovasc Med 2013; 23:250-6. [PMID: 23528751 DOI: 10.1016/j.tcm.2013.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 11/19/2022]
Abstract
Under β-adrenergic stimulation, the distribution of cAMP is highly restricted at distinct intracellular domains for compartmentalized activation of protein kinase A, which promotes selective phosphorylation of proteins for contractile responses in cardiomyocytes. This is primarily due to a concerted effort between restrictions of cAMP distribution by a family of phosphodiesterases and locally anchored protein kinase A by a family of scaffold A kinase-anchoring proteins. Moreover, these regulatory mechanisms underlie the cross talk between β-adrenergic signals and other receptor-stimulated signaling cascades, which alters the compartmentalized β-adrenergic signals for proper contractility in myocardium. Maintaining integrity of compartmentalized β-adrenergic signals is critical for physiological cardiac function and for preventing development of cardiac diseases.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, University of California at Davis, Davis, CA 95616; Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | |
Collapse
|
31
|
Efetova M, Petereit L, Rosiewicz K, Overend G, Haußig F, Hovemann BT, Cabrero P, Dow JAT, Schwärzel M. Separate roles of PKA and EPAC in renal function unraveled by the optogenetic control of cAMP levels in vivo. J Cell Sci 2012; 126:778-88. [PMID: 23264735 DOI: 10.1242/jcs.114140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.
Collapse
Affiliation(s)
- Marina Efetova
- Institute for Biology/Genetics, Free University Berlin, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Recent advances and new perspectives in targeting CFTR for therapy of cystic fibrosis and enterotoxin-induced secretory diarrheas. Future Med Chem 2012; 4:329-45. [PMID: 22393940 DOI: 10.4155/fmc.12.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical surfaces of epithelial cells lining airway, gut and exocrine glands, where it is responsible for transepithelial salt and water transport. Several human diseases are associated with an altered channel function of CFTR. Cystic fibrosis (CF) is caused by the loss or dysfunction of CFTR-channel activity resulting from the mutations on the gene; whereas enterotoxin-induced secretory diarrheas are caused by the hyperactivation of CFTR channel function. CFTR is a validated target for drug development to treat these diseases. Significant progress has been made in developing CFTR modulator therapy by means of high-throughput screening followed by hit-to-lead optimization. Several oral administrated investigational drugs are currently being evaluated in clinical trials for CF. Also importantly, new ideas and methodologies are emerging. Targeting CFTR-containing macromolecular complexes is one such novel approach.
Collapse
|
33
|
Li XD, Cheng YT, Yang YJ, Meng XM, Zhao JL, Zhang HT, Wu YJ, You SJ, Wu YL. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res 2012; 84:44-54. [DOI: 10.1016/j.mvr.2012.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/23/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
|
34
|
Brown KM, Lee LCY, Findlay JE, Day JP, Baillie GS. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activated by protein kinase A-mediated phosphorylation. FEBS Lett 2012; 586:1631-7. [PMID: 22673573 DOI: 10.1016/j.febslet.2012.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/21/2012] [Accepted: 04/11/2012] [Indexed: 02/06/2023]
Abstract
The cyclic AMP-specific phosphodiesterase PDE8 has been shown to play a pivotal role in important processes such as steroidogenesis, T cell adhesion, regulation of heart beat and chemotaxis. However, no information exists on how the activity of this enzyme is regulated. We show that under elevated cAMP conditions, PKA acts to phosphorylate PDE8A on serine 359 and this action serves to enhance the activity of the enzyme. This is the first indication that PDE8 activity can be modulated by a kinase, and we propose that this mechanism forms a feedback loop that results in the restoration of basal cAMP levels.
Collapse
Affiliation(s)
- Kim M Brown
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
35
|
Oliveira RF, Kim M, Blackwell KT. Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. PLoS Comput Biol 2012; 8:e1002383. [PMID: 22346744 PMCID: PMC3276550 DOI: 10.1371/journal.pcbi.1002383] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 12/26/2011] [Indexed: 12/01/2022] Open
Abstract
Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. The striatum is a part of the basal ganglia which plays a role in addiction and reward learning. Its importance is underscored by pathologies such as Parkinson's disease and Huntington's disease in which degeneration of the dopamine inputs to the striatum or degeneration of neurons in the striatum, respectively, produces motor dysfunction. Dopamine in the striatum activates cascades of signaling molecules, ultimately producing an activity dependent change in the strength of connections between neurons. However, the dispersive movement of signaling molecules seems incompatible with the strengthening of specific subsets of connections, which is required for formation of distinct memories. Anchoring proteins, which restrict molecules to particular compartments within the neuron, are proposed to achieve specificity. We develop a reaction-diffusion model of dopamine activated signaling pathways to explore mechanisms whereby anchoring proteins can produce specificity. We use an efficient Monte-Carlo simulator to implement the cascades of signaling molecules in a neuronal dendrite with multiple dendritic spines. Simulations demonstrate that spatial specificity requires both anchoring proteins and inactivation mechanisms that limit the diffusion of signaling molecules.
Collapse
Affiliation(s)
- Rodrigo F. Oliveira
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - MyungSook Kim
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Zaccolo M. Spatial control of cAMP signalling in health and disease. Curr Opin Pharmacol 2011; 11:649-55. [PMID: 22000603 DOI: 10.1016/j.coph.2011.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 01/28/2023]
Abstract
The cyclic adenosine 3',5'-monophosphate signalling pathway is now recognised to transduce signals in a compartmentalised manner such that individual stimuli only engage a subset of the pathway components that are physically constrained within defined subcellular locales, thus resulting in a precise functional outcome. As we are starting to appreciate the complexity of the spatial organisation and of the temporal regulation of this pathway, it is becoming clear that disruption of local signalling may lead to pathology and that local manipulation of cAMP signals may offer alternative approaches to treat disease.
Collapse
Affiliation(s)
- Manuela Zaccolo
- University of Glasgow, Molecular Pharmacology Centre, Institute of Neuroscience & Psychology, Room 403, Davidson Building, University Avenue, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
37
|
Functional regulation of cystic fibrosis transmembrane conductance regulator-containing macromolecular complexes: a small-molecule inhibitor approach. Biochem J 2011; 435:451-62. [PMID: 21299497 DOI: 10.1042/bj20101725] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) has been shown to form multiple protein macromolecular complexes with its interacting partners at discrete subcellular microdomains to modulate trafficking, transport and signalling in cells. Targeting protein-protein interactions within these macromolecular complexes would affect the expression or function of the CFTR channel. We specifically targeted the PDZ domain-based LPA2 (type 2 lysophosphatidic acid receptor)-NHERF2 (Na+/H+ exchanger regulatory factor-2) interaction within the CFTR-NHERF2-LPA2-containing macromolecular complexes in airway epithelia and tested its regulatory role on CFTR channel function. We identified a cell-permeable small-molecule compound that preferentially inhibits the LPA2-NHERF2 interaction. We show that this compound can disrupt the LPA2-NHERF2 interaction in cells and thus compromises the integrity of macromolecular complexes. Functionally, it elevates cAMP levels in proximity to CFTR and upregulates its channel activity. The results of the present study demonstrate that CFTR Cl- channel function can be finely tuned by modulating PDZ domain-based protein-protein interactions within the CFTR-containing macromolecular complexes. The present study might help to identify novel therapeutic targets to treat diseases associated with dysfunctional CFTR Cl- channels.
Collapse
|
38
|
Zhang YH, Casadei B. Sub-cellular targeting of constitutive NOS in health and disease. J Mol Cell Cardiol 2011; 52:341-50. [PMID: 21945464 DOI: 10.1016/j.yjmcc.2011.09.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 02/04/2023]
Abstract
Constitutive nitric oxide synthases (NOSs) are ubiquitous enzymes that play a pivotal role in the regulation of myocardial function in health and disease. The discovery of both a neuronal NOS (nNOS) and an endothelial NOS (eNOS) isoform in the myocardium and the availability of genetically modified mice with selective eNOS or nNOS gene deletion have been of crucial importance for understanding the role of constitutive nitric oxide (NO) production in the myocardium. eNOS and nNOS are homologous in structure and utilize the same co-factors and substrates; however, they differ in their subcellular localization, regulation, and downstream signaling, all of which may account for their distinct effects on excitation-contraction coupling. In particular, eNOS-derived NO has been reported to increase left ventricular (LV) compliance, attenuate beta-adrenergic inotropy and enhance parasympathetic/muscarinic responses, and mediate the negative inotropic response to β3 adrenoreceptor stimulation via cGMP-dependent signaling. Conversely, nNOS-derived NO regulates basal myocardial inotropy and relaxation by inhibiting the sarcolemmal Ca(2+) current (I(Ca)) and promoting protein kinase A-dependent phospholamban (PLN) phosphorylation, independent of cGMP. By inhibiting the activity of myocardial oxidase systems, nNOS regulates the redox state of the myocardium and contributes to maintain eNOS "coupled" activity. After myocardial infarction, up-regulation of myocardial nNOS attenuates adverse remodeling and prevents arrhythmias whereas uncoupled eNOS activity in murine models of left ventricular pressure overload accelerates the progress towards heart failure. Here we review the evidence in support of the idea that NOS subcellular localization, mode of activation, and downstream signaling account for the diverse and highly specialized actions of NO in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Yin Hua Zhang
- Department of Physiology, Seoul National University, College of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
39
|
Abstract
The cAMP-protein kinase A pathway plays a central role in the development and physiology of endocrine tissues. cAMP mediates the intracellular effects of numerous peptide hormones. Various cellular and molecular alterations of the cAMP-signaling pathway have been observed in endocrine diseases. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. Indeed, PDEs are the only known mechanism for inactivation of cAMP by catalysis to 5'-AMP. It has been suggested that disruption of PDEs could also have a role in the pathogenesis of many endocrine diseases. This review summarizes the most recent advances concerning the role of the PDEs in the physiopathology of endocrine diseases. The potential significance of this knowledge can be easily envisaged by the development of drugs targeting specific PDEs.
Collapse
Affiliation(s)
- Delphine Vezzosi
- Inserm U1016, CNRS UMR 8104, Institut Cochin, 75014 Paris, France.
| | | |
Collapse
|
40
|
Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during induction of long-lasting long-term-potentiation. PLoS Comput Biol 2011; 7:e1002084. [PMID: 21738458 PMCID: PMC3127802 DOI: 10.1371/journal.pcbi.1002084] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022] Open
Abstract
The ability of neurons to differentially respond to specific temporal and spatial input patterns underlies information storage in neural circuits. One means of achieving spatial specificity is to restrict signaling molecules to particular subcellular compartments using anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Disruption of protein kinase A (PKA) anchoring to AKAPs impairs a PKA-dependent form of long term potentiation (LTP) in the hippocampus. To investigate the role of localized PKA signaling in LTP, we developed a stochastic reaction-diffusion model of the signaling pathways leading to PKA activation in CA1 pyramidal neurons. Simulations investigated whether the role of anchoring is to locate kinases near molecules that activate them, or near their target molecules. The results show that anchoring PKA with adenylyl cyclase (which produces cAMP that activates PKA) produces significantly greater PKA activity, and phosphorylation of both inhibitor-1 and AMPA receptor GluR1 subunit on S845, than when PKA is anchored apart from adenylyl cyclase. The spatial microdomain of cAMP was smaller than that of PKA suggesting that anchoring PKA near its source of cAMP is critical because inactivation by phosphodiesterase limits diffusion of cAMP. The prediction that the role of anchoring is to colocalize PKA near adenylyl cyclase was confirmed by experimentally rescuing the deficit in LTP produced by disruption of PKA anchoring using phosphodiesterase inhibitors. Additional experiments confirm the model prediction that disruption of anchoring impairs S845 phosphorylation produced by forskolin-induced synaptic potentiation. Collectively, these results show that locating PKA near adenylyl cyclase is a critical function of anchoring. The hippocampus is a part of the cerebral cortex involved in formation of certain types of long term memories. Activity-dependent change in the strength of neuronal connections in the hippocampus, known as synaptic plasticity, is one mechanism used to store memories. The ability to form crisp and distinguishable memories of different events implies that learning produces plasticity of specific and distinct subsets of synapses within each neuron. Synaptic activity leads to production of intracellular signaling molecules, which ultimately cause changes in the properties of the synapses. The requirement for synaptic specificity seems incompatible with the diffusibility of intracellular signaling molecules. Anchoring proteins restrict signaling molecules to particular subcellular compartments thereby combating the indiscriminate spread of intracellular signaling molecules. To investigate whether the critical function of anchoring proteins is to localize proteins near their activators or their targets, we developed a stochastic reaction-diffusion model of signaling pathways leading to synaptic plasticity in hippocampal neurons. Simulations demonstrate that colocalizing proteins with their activator molecules is more important due to inactivation mechanisms that limit the spatial extent of the activator molecules.
Collapse
|
41
|
Adderley SP, Sridharan M, Bowles EA, Stephenson AH, Sprague RS, Ellsworth ML. Inhibition of ATP release from erythrocytes: a role for EPACs and PKC. Microcirculation 2011; 18:128-35. [PMID: 21166931 DOI: 10.1111/j.1549-8719.2010.00073.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Here we demonstrate that, in human erythrocytes, increases in cAMP that are not localized to a specific receptor-mediated signaling pathway for ATP release can activate effector proteins resulting in inhibition of ATP release. Specifically we sought to establish that exchange proteins activated by cAMP (EPACs) inhibit ATP release via activation of protein kinase C (PKC). METHODS ATP release stimulated by iloprost (ILO), or isoproterenol (ISO), was determined in the absence and presence of selective phosphodiesterase inhibitors and/or the EPAC activator, 8CPT2OMecAMP (8CPT). To determine whether EPACs inhibit ATP release via activation of PKC, erythrocytes were incubated with phorbol 12-myristate 13-acetate (PMA) prior to either forskolin or ILO in the absence and presence of a PKC inhibitor, calphostin C (CALC). RESULTS Selective inhibition of PDEs in one pathway inhibited ATP release in response to activation of the other cAMP-dependent pathway. 8CPT and PMA inhibited both ILO- and ISO-induced ATP release. Inhibition of ATP release with 8CPT was rescued by CALC. CONCLUSION These results support the hypothesis that cAMP not localized to a specific signaling pathway can activate EPACs which inhibit ATP release via activation of PKC and suggest a novel role for EPACs in erythrocytes.
Collapse
Affiliation(s)
- Shaquria P Adderley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| | | | | | | | | | | |
Collapse
|
42
|
AKAPs: the architectural underpinnings of local cAMP signaling. J Mol Cell Cardiol 2011; 52:351-8. [PMID: 21600214 DOI: 10.1016/j.yjmcc.2011.05.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/13/2022]
Abstract
The cAMP-dependent protein kinase A (PKA) is targeted to specific compartments in the cardiac myocyte by A-kinase anchoring proteins (AKAPs), a diverse set of scaffold proteins that have been implicated in the regulation of excitation-contraction coupling and cardiac remodeling. AKAPs bind not only PKA, but also a large variety of structural and signaling molecules. In this review, we discuss the basic concepts underlying compartmentation of cAMP and PKA signaling, as well as a few of the individual AKAPs that have been shown to be functionally relevant in the heart. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
43
|
|
44
|
Christian F, Szaszák M, Friedl S, Drewianka S, Lorenz D, Goncalves A, Furkert J, Vargas C, Schmieder P, Götz F, Zühlke K, Moutty M, Göttert H, Joshi M, Reif B, Haase H, Morano I, Grossmann S, Klukovits A, Verli J, Gáspár R, Noack C, Bergmann M, Kass R, Hampel K, Kashin D, Genieser HG, Herberg FW, Willoughby D, Cooper DMF, Baillie GS, Houslay MD, von Kries JP, Zimmermann B, Rosenthal W, Klussmann E. Small molecule AKAP-protein kinase A (PKA) interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem 2011; 286:9079-96. [PMID: 21177871 PMCID: PMC3058960 DOI: 10.1074/jbc.m110.160614] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/12/2010] [Indexed: 12/22/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.
Collapse
Affiliation(s)
- Frank Christian
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Márta Szaszák
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Sabine Friedl
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Stephan Drewianka
- Biaffin GmbH & Co. KG, AVZ 2, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Dorothea Lorenz
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Andrey Goncalves
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens Furkert
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Carolyn Vargas
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Peter Schmieder
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Frank Götz
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kerstin Zühlke
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Marie Moutty
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hendrikje Göttert
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Mangesh Joshi
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Bernd Reif
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hannelore Haase
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Ingo Morano
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Solveig Grossmann
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Anna Klukovits
- the Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös u. 6., Hungary
| | - Judit Verli
- the Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös u. 6., Hungary
| | - Róbert Gáspár
- the Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös u. 6., Hungary
| | - Claudia Noack
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Martin Bergmann
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Robert Kass
- Columbia University Medical Center, New York, New York 10032
| | - Kornelia Hampel
- Biaffin GmbH & Co. KG, AVZ 2, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Dmitry Kashin
- Biolog Life Science Institute, Flughafendamm 9A, 28199 Bremen, Germany
| | | | - Friedrich W. Herberg
- the Department of Biochemistry, University of Kassel, Heinrich-Plett-Strasse 40, 34109 Kassel, Germany
| | - Debbie Willoughby
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, United Kingdom
| | - Dermot M. F. Cooper
- the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, United Kingdom
| | - George S. Baillie
- Neuroscience and Molecular Pharmacology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom, and
| | - Miles D. Houslay
- Neuroscience and Molecular Pharmacology, Wolfson Link and Davidson Buildings, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom, and
| | - Jens Peter von Kries
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Bastian Zimmermann
- Biaffin GmbH & Co. KG, AVZ 2, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Walter Rosenthal
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Molecular Pharmacology and Cell Biology, Charité-University Medicine Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Enno Klussmann
- From the Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
45
|
Sips PY, Brouckaert P, Ichinose F. The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. Basic Res Cardiol 2011; 106:635-43. [PMID: 21394564 DOI: 10.1007/s00395-011-0167-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/14/2011] [Accepted: 02/25/2011] [Indexed: 01/16/2023]
Abstract
Nitric oxide (NO)-dependent soluble guanylate cyclase (sGC) activation is an important component of cardiac signal transduction pathways, including the cardioprotective signaling cascade induced by ischemic preconditioning (IPC). The sGCα subunit, which binds to the common sGCβ1 subunit, exists in two different isoforms, sGCα1 and sGCα2, but their relative physiological roles remain unknown. In the present study, we studied Langendorff-perfused isolated hearts of genetically engineered mice lacking functional sGCα1 (sGCα1KO mice), which is the predominant isoform in the heart. Our results show that the loss of sGCα1 has a positive inotropic and lusitropic effect on basal cardiac function, indicating an important role for sGCα1 in regulating basal myocardial contractility. Surprisingly, IPC led to a similar 35-40% reduction in infarct size and concomitant protein kinase Cε (PKCε) phosphorylation in both wild-type (WT) and sGCα1KO hearts subjected to 40 min of global ischemia and reperfusion. Inhibition of the activation of all sGC isoforms by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ, 10 μmol/L) completely abolished the protection by IPC in WT and sGCα1KO hearts. NO-stimulated cGMP production was severely attenuated in sGCα1KO hearts compared to WT hearts, indicating that the sGCα2 isoform only produces minute amounts of cGMP after NO stimulation. Taken together, our results indicate that although sGCα1 importantly regulates cardiac contractility, it is not required for cardioprotection by IPC. Instead, our results suggest that possibly only minimal sGC activity, which in sGCα1KO hearts is provided by the sGCα2 isoform, is sufficient to transduce the cardioprotective signal induced by IPC via phosphorylation of PKCε.
Collapse
Affiliation(s)
- Patrick Y Sips
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | |
Collapse
|
46
|
Abstract
Interplay between the signaling pathways of the intracellular second messengers, cAMP and Ca(2+), has vital consequences for numerous essential physiological processes. Although cAMP can impact on Ca(2+)-homeostasis at many levels, Ca(2+) either directly, or indirectly (via calmodulin [CaM], CaM-binding proteins, protein kinase C [PKC] or Gβγ subunits) may also regulate cAMP synthesis. Here, we have evaluated the evidence for regulation of adenylyl cyclases (ACs) by Ca(2+)-signaling pathways, with an emphasis on verification of this regulation in a physiological context. The effects of compartmentalization and protein signaling complexes on the regulation of AC activity by Ca(2+)-signaling pathways are also addressed. Major gaps are apparent in the interactions that have been assumed, revealing a need to comprehensively clarify the effects of Ca(2+) signaling on individual ACs, so that the important ramifications of this critical interplay between Ca(2+) and cAMP are fully appreciated.
Collapse
Affiliation(s)
- Michelle L Halls
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD, United Kingdom
| | | |
Collapse
|
47
|
De Arcangelis V, Liu S, Zhang D, Soto D, Xiang YK. Equilibrium between adenylyl cyclase and phosphodiesterase patterns adrenergic agonist dose-dependent spatiotemporal cAMP/protein kinase A activities in cardiomyocytes. Mol Pharmacol 2010; 78:340-9. [PMID: 20530128 PMCID: PMC2939479 DOI: 10.1124/mol.110.064444] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/07/2010] [Indexed: 11/22/2022] Open
Abstract
Beta-adrenergic receptor induces cAMP/Protein kinase A (PKA) activation to regulate cardiac contraction. Using real-time fluorescence resonance energy transfer imaging for highly sensitive detection of cAMP and PKA activities, we show two distinct phases in isoproterenol dose-dependent responses in cardiomyocytes: a transient and dose-dependent increase in cAMP and PKA activities at lower concentrations from 10(-12) to 10(-8) M; and a saturated initial increases at higher concentrations from 10(-8) to 10(-5) M followed by a rapid decrease to different levels that were later sustained in a dose-dependent manner. The dose-dependent temporal responses are patterned by equilibrium between receptor-activated adenylyl cyclase (AC) and phosphodiesterase (PDE). At lower concentrations, cAMP is produced in an agonist dose-dependent manner with AC as a rate-limiting factor. However, the cAMP activities are confined within local domains for phosphorylation of PDE isoforms in the receptor complex but not for phosphorylation of phospholamban and troponin I. At higher concentrations, isoproterenol promotes a dose-dependent selective dissociation of PDE4D but not ACVI from the receptor complex, which shifts the equilibrium between AC and PDE. This shifted balance leads to sustained cAMP accumulation and diffusion for PKA phosphorylation of phospholamban and troponin I, and for myocyte contraction. Pharmacological inhibition or overexpression of either ACVI or PDE4D8 disrupts the balance and shapes the temporal responses in cAMP accumulation. Together, our data reveal a new paradigm for adrenergic agonist dose-dependent cAMP/PKA activities for substrate-specific phosphorylation dictated by dual regulation of AC and PDE in cardiomyocytes.
Collapse
Affiliation(s)
- Vania De Arcangelis
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, 407 S. Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
48
|
Haworth RS, Cuello F, Avkiran M. Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res Cardiol 2010; 106:51-63. [PMID: 20725733 PMCID: PMC3012212 DOI: 10.1007/s00395-010-0116-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 08/02/2010] [Accepted: 08/12/2010] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD) targets several proteins in the heart, including cardiac troponin I (cTnI) and class II histone deacetylases, and regulates cardiac contraction and hypertrophy. In adult rat ventricular myocytes (ARVM), PKD activation by endothelin-1 (ET1) occurs via protein kinase Cε and is attenuated by cAMP-dependent protein kinase (PKA). Intracellular compartmentalisation of cAMP, arising from localised activity of distinct cyclic nucleotide phosphodiesterase (PDE) isoforms, may result in spatially constrained regulation of the PKA activity that inhibits PKD activation. We have investigated the roles of the predominant cardiac PDE isoforms, PDE2, PDE3 and PDE4, in PKA-mediated inhibition of PKD activation. Pretreatment of ARVM with the non-selective PDE inhibitor isobutylmethylxanthine (IBMX) attenuated subsequent PKD activation by ET1. However, selective inhibition of PDE2 [by erythro-9-(2-hydroxy-3-nonyl) adenine, EHNA], PDE3 (by cilostamide) or PDE4 (by rolipram) individually had no effect on ET1-induced PKD activation. Selective inhibition of individual PDE isoforms also had no effect on the phosphorylation status of the established cardiac PKA substrates phospholamban (PLB; at Ser16) and cTnI (at Ser22/23), which increased markedly with IBMX. Combined administration of cilostamide and rolipram, like IBMX alone, attenuated ET1-induced PKD activation and increased PLB and cTnI phosphorylation, while combined administration of EHNA and cilostamide or EHNA and rolipram was ineffective. Thus, cAMP pools controlled by PDE3 and PDE4, but not PDE2, regulate the PKA activity that inhibits ET1-induced PKD activation. Furthermore, PDE3 and PDE4 play redundant roles in this process, such that inhibition of both isoforms is required to achieve PKA-mediated attenuation of PKD activation.
Collapse
Affiliation(s)
- Robert S Haworth
- King's College London British Heart Foundation Centre, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | |
Collapse
|
49
|
Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, Zaccolo M, Blackwell KT. The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 2010; 5:e11725. [PMID: 20661441 PMCID: PMC2908681 DOI: 10.1371/journal.pone.0011725] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/17/2010] [Indexed: 11/29/2022] Open
Abstract
Cyclic AMP (cAMP) and its main effector Protein Kinase A (PKA) are critical for several aspects of neuronal function including synaptic plasticity. Specificity of synaptic plasticity requires that cAMP activates PKA in a highly localized manner despite the speed with which cAMP diffuses. Two mechanisms have been proposed to produce localized elevations in cAMP, known as microdomains: impeded diffusion, and high phosphodiesterase (PDE) activity. This paper investigates the mechanism of localized cAMP signaling using a computational model of the biochemical network in the HEK293 cell, which is a subset of pathways involved in PKA-dependent synaptic plasticity. This biochemical network includes cAMP production, PKA activation, and cAMP degradation by PDE activity. The model is implemented in NeuroRD: novel, computationally efficient, stochastic reaction-diffusion software, and is constrained by intracellular cAMP dynamics that were determined experimentally by real-time imaging using an Epac-based FRET sensor (H30). The model reproduces the high concentration cAMP microdomain in the submembrane region, distinct from the lower concentration of cAMP in the cytosol. Simulations further demonstrate that generation of the cAMP microdomain requires a pool of PDE4D anchored in the cytosol and also requires PKA-mediated phosphorylation of PDE4D which increases its activity. The microdomain does not require impeded diffusion of cAMP, confirming that barriers are not required for microdomains. The simulations reported here further demonstrate the utility of the new stochastic reaction-diffusion algorithm for exploring signaling pathways in spatially complex structures such as neurons.
Collapse
Affiliation(s)
- Rodrigo F. Oliveira
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Anna Terrin
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | - Wonryull Koh
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - MyungSook Kim
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
| | - Manuela Zaccolo
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Kim T. Blackwell
- The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
- * E-mail:
| |
Collapse
|
50
|
Christian F, Anthony DF, Vadrevu S, Riddell T, Day JP, McLeod R, Adams DR, Baillie GS, Houslay MD. p62 (SQSTM1) and cyclic AMP phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with links to autophagy and proteasome degradation pathways. Cell Signal 2010; 22:1576-96. [PMID: 20600853 DOI: 10.1016/j.cellsig.2010.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 06/15/2010] [Indexed: 02/07/2023]
Abstract
Chronic challenge of cyclic AMP phosphodiesterase-4A4 (PDE4A4) with certain PDE4 selective inhibitors causes it to reversibly form intracellular aggregates that are not membrane-encapsulated. These aggregates are neither stress granules (SGs) nor processing bodies (PBs) as they contain neither PABP-1 nor Dcp1a, respectively. However, the PDE4 inhibitor rolipram decreases arsenite-induced SGs and increases the amount of PBs, while arsenite challenge ablates rolipram-induced PDE4A4 aggregates. PDE4A4 aggregates are neither autophagic vesicles (autophagosomes) nor aggresomes, although microtubule disruptors ablate PDE4A4 aggregate formation. PDE4A4 constitutively co-immunoprecipitates with p62 protein (sequestosome1, SQSTM1), which locates to both PDE4A4 aggregates and autophagosomes in cells constitutively challenged with rolipram. The mTor inhibitor, rapamycin, activates autophagy, prevents PDE4A4 from forming intracellular aggregates and triggers the loss of bound p62 from PDE4A4. siRNA-mediated knockdown of p62 attenuates PDE4A4 aggregate formation. The p62-binding protein, light chain 3 (LC3), is not found in PDE4A4 aggregates. Blockade of proteasome activity and activation of autophagy with MG132 both increases the level of ubiquitinated proteins found associated with PDE4A4 and inhibits PDE4A4 aggregate formation. Activation of autophagy with either thapsigargin or ionomycin inhibits PDE4A4 aggregate formation. Inhibition of autophagy with either wortmannin or LY294002 activates PDE4A4 aggregate formation. The protein kinase C inhibitors, RO 320432 and GO 6983, and the ERK inhibitors UO 126 and PD 98059 all activated PDE4A4 aggregate formation, whilst roscovitine, thalidomide and the tyrosine kinase inhibitors, genistein and AG17, all inhibited this process. We suggest that the fate of p62-containing protein aggregates need not necessarily be terminal, through delivery to autophagic vesicles and aggresomes. Instead, we propose a novel regulatory mechanism where a sub-population of p62-containing protein aggregates would form in a rapid, reversible manner so as to sequester specific cargo away from their normal, functionally important site(s) within the cell. Thus an appropriate conformational change in the target protein would confer reversible recruitment into a sub-population of p62-containing protein aggregates and so provide a regulatory function by removing these cargo proteins from their functionally important site(s) in a cell.
Collapse
Affiliation(s)
- Frank Christian
- Neuroscience and Molecular Pharmacology, Wolfson and Davidson Buildings, Faculty of Biomedical & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|