1
|
Xu Y, Fei X, Fu H, Chen A, Zhu X, Zhang F, Han Y. Upregulated expression of a TOR2A gene product-salusin-β in the paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in rats with chronic heart failure induced by coronary artery ligation. Acta Physiol (Oxf) 2023; 238:e13987. [PMID: 37183727 DOI: 10.1111/apha.13987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/16/2023]
Abstract
AIM Enhanced cardiac sympathetic afferent reflex (CSAR) promotes sympathetic hyperactivation in chronic heart failure (CHF). Salusin-β is a torsin family 2 member A (TOR2A) gene product and a cardiovascular active peptide closely associated with cardiovascular diseases. We aimed to determine the roles of salusin-β in the paraventricular nucleus (PVN) in modulating enhanced CSAR and sympathetic hyperactivation in rats with CHF induced by coronary artery ligation and elucidate the underlying molecular mechanisms. METHODS CSAR was evaluated based on the responses of mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) to the epicardial administration of capsaicin in rats under anesthesia. RESULTS Salusin-β protein expression was upregulated in the PVN of the CHF compared with sham-operated rats. Salusin-β microinjection into the PVN dose-dependently increased MAP and RSNA and enhanced CSAR, while anti-salusin-β IgG exerted opposite effects. The effect of salusin-β was inhibited by reactive oxygen species (ROS) scavenger or NAD(P)H oxidase inhibitor but promoted by superoxide dismutase inhibitor. The effect of anti-salusin-β IgG was interdicted by nitric oxide (NO) synthase inhibitor. Furthermore, chronic salusin-β gene knockdown in PVN attenuated CSAR, reduced sympathetic output, improved myocardial remodeling and cardiac function, decreased NAD(P)H oxidase activity and ROS levels, and increased NO levels in the CHF rats. CONCLUSION Increased salusin-β activity in the PVN contributes to sympathetic hyperactivation and CSAR in CHF by inhibiting NO release and stimulating NAD(P)H oxidase-ROS production. Reducing endogenous central salusin-β expression might be a novel strategy for preventing and treating CHF in the future.
Collapse
Affiliation(s)
- Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejie Fei
- Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, China
| | - Hangjiang Fu
- Department of General Practice, Jinling Hospital, Nanjing, Jiangsu, China
| | - Aidong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinrui Zhu
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Chemerin-9 in paraventricular nucleus increases sympathetic outflow and blood pressure via glutamate receptor-mediated ROS generation. Eur J Pharmacol 2022; 936:175343. [DOI: 10.1016/j.ejphar.2022.175343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
|
3
|
Wang XL, Wang JX, Chen JL, Hao WY, Xu WZ, Xu ZQ, Jiang YT, Luo PQ, Chen Q, Li YH, Zhu GQ, Li XZ. Asprosin in the Paraventricular Nucleus Induces Sympathetic Activation and Pressor Responses via cAMP-Dependent ROS Production. Int J Mol Sci 2022; 23:ijms232012595. [PMID: 36293450 PMCID: PMC9604496 DOI: 10.3390/ijms232012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Asprosin is a newly discovered adipokine that is involved in regulating metabolism. Sympathetic overactivity contributes to the pathogenesis of several cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the regulation of sympathetic outflow and blood pressure. This study was designed to determine the roles and underlying mechanisms of asprosin in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male adult SD rats under anesthesia. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded, and PVN microinjections were performed bilaterally. Asprosin mRNA and protein expressions were high in the PVN. The high asprosin expression in the PVN was involved in both the parvocellular and magnocellular regions according to immunohistochemical analysis. Microinjection of asprosin into the PVN produced dose-related increases in RSNA, MAP, and HR, which were abolished by superoxide scavenger tempol, antioxidant N-acetylcysteine (NAC), and NADPH oxidase inhibitor apocynin. The asprosin promoted superoxide production and increased NADPH oxidase activity in the PVN. Furthermore, it increased the cAMP level, adenylyl cyclase (AC) activity, and protein kinase A (PKA) activity in the PVN. The roles of asprosin in increasing RSNA, MAP, and HR were prevented by pretreatment with AC inhibitor SQ22536 or PKA inhibitor H89 in the PVN. Microinjection of cAMP analog db-cAMP into the PVN played similar roles with asprosin in increasing the RSNA, MAP, and HR, but failed to further augment the effects of asprosin. Pretreatment with PVN microinjection of SQ22536 or H89 abolished the roles of asprosin in increasing superoxide production and NADPH oxidase activity in the PVN. These results indicated that asprosin in the PVN increased the sympathetic outflow, blood pressure, and heart rate via cAMP–PKA signaling-mediated NADPH oxidase activation and the subsequent superoxide production.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Yuan Hao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Wen-Zhou Xu
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhi-Qin Xu
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yu-Tong Jiang
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Pei-Qi Luo
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, Department of Physiology, Nanjing Medical University, Nanjing 211166, China
- Correspondence: (G.-Q.Z.); (X.-Z.L.)
| | - Xiu-Zhen Li
- Department of Cardiology and Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Correspondence: (G.-Q.Z.); (X.-Z.L.)
| |
Collapse
|
4
|
Hou M, Lu L, Wu X, Liu H. LCZ696 Ameliorates Isoproterenol-Induced Acute Heart Failure in Rats by Activating the Nrf2 Signaling Pathway. Appl Bionics Biomech 2022; 2022:6077429. [PMID: 35528528 PMCID: PMC9076311 DOI: 10.1155/2022/6077429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Objective LCZ696 (sacubitril/valsartan) is an angiotensin II (Ang II) type 1 receptor-neprilysin inhibitor, with effects of immunosuppression, anti-inflammation, antiapoptosis, and antioxidation. The present study was aimed at determining whether LCZ696 has a protective effect against isoproterenol-induced acute heart failure (AHF) in rats. Methods SD rats were randomly divided into four groups: control group, HF group, LCZ696 group, and enalapril group. The cardiac function of rats was evaluated using echocardiographic parameters, heart weight (HW), serum levels of cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). HE is staining, which was used to determine the pathological damage of rat myocardial tissue. Also, we measured oxidative stress markers including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). Finally, the expression of Nrf2 signaling pathway-related proteins was determined using Western blot. Results Compared with the HF group, LCZ696 could significantly improve cardiac function and myocardial injury in rats and reduce AHF-induced oxidative stress. In addition, the results of Western blot confirmed that LCZ696 could upregulate the expression of Nrf2 and HO-1 while decreasing Keap1 expression. Conclusion LCZ696 ameliorates isoproterenol-induced AHF in rats by alleviating oxidative stress injury and activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Min Hou
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxin Lu
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobo Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Lymphoma, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hongxuan Liu
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Knockdown of Salusin- β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8896226. [PMID: 34422210 PMCID: PMC8373485 DOI: 10.1155/2021/8896226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022]
Abstract
Salusin-β is a biologically active peptide with 20 amino acids that exerts several cardiovascular activity-regulating effects, such as regulating vascular endothelial function and the proliferation of vascular smooth muscle cells. However, the regulatory effects of salusin-β in myocardial infarction-induced chronic heart failure (CHF) are still unknown. The current study is aimed at investigating the effects of silencing salusin-β on endothelial function, cardiac function, vascular and myocardial remodeling, and its underlying signaling pathways in CHF rats induced by coronary artery ligation. CHF and sham-operated (Sham) rats were subjected to tail vein injection of adenoviral vectors encoding salusin-β shRNA or a control-shRNA. The coronary artery (CA), pulmonary artery (PA), and mesenteric artery (MA) were isolated from rats, and isometric tension measurements of arteries were performed. Compared with Sham rats, the plasma salusin-β, leptin and visfatin levels and the salusin-β protein expression levels of CA, PA, and MA were increased, while the acetylcholine- (ACh-) induced endothelium-dependent vascular relaxation of CA, PA, and MA was attenuated significantly in CHF rats and was improved significantly by salusin-β gene knockdown. Salusin-β knockdown also improved cardiac function and vascular and myocardial remodeling, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) levels, and decreased NAD(P)H oxidase activity, NOX-2 and NOX-4 expression, and reactive oxygen species (ROS) levels in arteries in CHF rats. The effects of salusin-β knockdown in CHF rats were attenuated significantly by pretreatment with the NOS inhibitor L-NAME. These results indicate that silencing salusin-β contributes to the improvement of endothelial function, cardiac function, and cardiovascular remodeling in CHF by inhibiting NAD(P)H oxidase-ROS generation and activating eNOS-NO production.
Collapse
|
6
|
Abstract
Neuroanatomic and functional studies show the paraventricular (PVN) of the hypothalamus to have a central role in the autonomic control that supports cardiovascular regulation. Direct and indirect projections from the PVN preautonomic neurons to the sympathetic preganglionic neurons in the spinal cord modulate sympathetic activity. The preautonomic neurons of the PVN adjust their level of activation in response to afferent signals arising from peripheral viscerosensory receptors relayed through the nucleus tractus solitarius. The prevailing sympathetic tone is a balance between excitatory and inhibitory influences that arises from the preautonomic PVN neurons. Under physiologic conditions, tonic sympathetic inhibition driven by a nitric oxide-γ-aminobutyric acid-mediated mechanism is dominant, but in pathologic situation such as heart failure there is a switch from inhibition to sympathoexcitation driven by glutamate and angiotensin II. Angiotensin II, reactive oxygen species, and hypoxia as a result of myocardial infarction/ischemia alter the tightly regulated posttranslational protein-protein interaction of CAPON (carboxy-terminal postsynaptic density protein ligand of neuronal nitric oxide synthase (NOS1)) and PIN (protein inhibitor of NOS1) signaling mechanism. Within the preautonomic neurons of the PVN, the disruption of CAPON and PIN signaling leads to a downregulation of NOS1 expression and reduced NO bioavailability. These data support the notion that CAPON-PIN dysregulation of NO bioavailability is a major contributor to the pathogenesis of sympathoexcitation in heart failure.
Collapse
Affiliation(s)
- Susan Pyner
- Department of Biosciences, Durham University, Durham, United Kingdom.
| |
Collapse
|
7
|
Japundžić-Žigon N, Lozić M, Šarenac O, Murphy D. Vasopressin & Oxytocin in Control of the Cardiovascular System: An Updated Review. Curr Neuropharmacol 2020; 18:14-33. [PMID: 31544693 PMCID: PMC7327933 DOI: 10.2174/1570159x17666190717150501] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 07/06/2019] [Indexed: 01/19/2023] Open
Abstract
Since the discovery of vasopressin (VP) and oxytocin (OT) in 1953, considerable knowledge has been gathered about their roles in cardiovascular homeostasis. Unraveling VP vasoconstrictor properties and V1a receptors in blood vessels generated powerful hemostatic drugs and drugs effective in the treatment of certain forms of circulatory collapse (shock). Recognition of the key role of VP in water balance via renal V2 receptors gave birth to aquaretic drugs found to be useful in advanced stages of congestive heart failure. There are still unexplored actions of VP and OT on the cardiovascular system, both at the periphery and in the brain that may open new venues in treatment of cardiovascular diseases. After a brief overview on VP, OT and their peripheral action on the cardiovascular system, this review focuses on newly discovered hypothalamic mechanisms involved in neurogenic control of the circulation in stress and disease.
Collapse
Affiliation(s)
| | - Maja Lozić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Šarenac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Angiotensin Type 1 Receptors and Superoxide Anion Production in Hypothalamic Paraventricular Nucleus Contribute to Capsaicin-Induced Excitatory Renal Reflex and Sympathetic Activation. Neurosci Bull 2020; 36:463-474. [PMID: 31989424 DOI: 10.1007/s12264-019-00460-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Chemical stimulation of the kidney increases sympathetic activity and blood pressure in rats. The hypothalamic paraventricular nucleus (PVN) is important in mediating the excitatory renal reflex (ERR). In this study, we examined the role of molecular signaling in the PVN in mediating the capsaicin-induced ERR and sympathetic activation. Bilateral PVN microinjections were performed in rats under anesthesia. The ERR was elicited by infusion of capsaicin into the cortico-medullary border of the right kidney. The reflex was evaluated as the capsaicin-induced changes in left renal sympathetic nerve activity and mean arterial pressure. Blockade of angiotensin type 1 receptors with losartan or inhibition of angiotensin-converting enzyme with captopril in the PVN abolished the capsaicin-induced ERR. Renal infusion of capsaicin significantly increased NAD(P)H oxidase activity and superoxide anion production in the PVN, which were prevented by ipsilateral renal denervation or microinjection of losartan into the PVN. Furthermore, either scavenging of superoxide anions or inhibition of NAD(P)H oxidase in the PVN abolished the capsaicin-induced ERR. We conclude that the ERR induced by renal infusion of capsaicin is mediated by angiotensin type 1 receptor-related NAD(P)H oxidase activation and superoxide anion production within the PVN.
Collapse
|
9
|
Ye C, Qiu Y, Zhang F, Chen AD, Zhou H, Wang JJ, Chen Q, Li YH, Kang YM, Zhu GQ. Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neurosci Bull 2019; 36:143-152. [PMID: 31392556 DOI: 10.1007/s12264-019-00417-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sympathetic activation and the kidney play critical roles in hypertension and chronic heart failure. The role of the kidney in sympathetic activation is still not well known. In this study, we revealed an excitatory renal reflex (ERR) in rats induced by chemical stimulation of the kidney that regulated sympathetic activity and blood pressure. The ERR was induced by renal infusion of capsaicin, and evaluated by the changes in renal sympathetic outflow, blood pressure, and heart rate. Renal infusion of capsaicin dose-dependently increased the contralateral renal sympathetic nerve activity, mean arterial pressure, and heart rate. Capsaicin in the cortico-medullary border had greater effects than in the cortex or medulla. Intravenous infusion of capsaicin had no significant effects. The effects of renal infusion of capsaicin were abolished by ipsilateral renal denervation, but were not affected by bilateral sinoaortic denervation. Renal infusion of capsaicin increased the ipsilateral renal afferent activity. The ERR was also induced by renal infusion of bradykinin, adenosine, and angiotensin II, but not by ATP. Renal infusion of capsaicin increased c-Fos expression in the paraventricular nucleus (PVN) of hypothalamus. Lesion of neurons in the PVN with kainic acid abolished the capsaicin-induced ERR. These findings indicate that chemical stimulation of kidney causes an excitatory reflex, leading to sympathetic activation, pressor response, and accelerated heart rate. The PVN is an important central nucleus in the pathway of the ERR.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Qi Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue-Hua Li
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, 211166, China. .,Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Li P, Jie Y, YuGen S, Yu W, Yan S. High mobility group box-1 in hypothalamic paraventricular nuclei attenuates sympathetic tone in rats at post-myocardial infarction. Cardiol J 2018; 26:555-563. [PMID: 30338842 DOI: 10.5603/cj.a2018.0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/25/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Inflammation is associated with increased sympathetic drive in cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus is a key regulator of sympathetic nerve activity at post-myocardial infarction (MI). High mobility group box-1 (HMGB1) exhibits inflammatory cytokine like activity in the extracellular space. Inflammation is associated with increased sympathetic drive in cardiovscular diseases. However, the role of HMGB1 in sympathetic nerve activity at post-MI remains unknown. The aim of the present study is to determine the role and mechanism of HMGB1 in the PVN, in terms of sympathetic activity and arrhythmia after MI. METHODS Sprague-Dawley rats underwent left anterior descending coronary artery ligation to induce MI. Anti-HMGB1 polyclonal antibody or control IgG was bilaterally microinjected into the PVN (5 μL every second day for seven consecutive days). Then, renal sympathetic nerve activity (RSNA) was recorded. The association between ventricular arrhythmias (VAs) and MI was evaluated using programmed electrophysiological stimulation. After performing electrophysiological experiments in vivo, immunohistochemistry was used to detect the distribution of HMGB1, while Western blot was used to detect the expression of HMGB1 and p-ERK in the PVN of MI rats. RESULTS HMGB1 and p-ERK were upregulated in the PVN in rats at post-MI. Moreover, bilateral PVN microinjection of anti-HMGB1 polyclonal antibody reversed the expression of HMGB1 and p-ERK, and consequently decreased the baseline RSNA and inducible VAs, when compared to those in sham rats. CONCLUSIONS These results suggest that MI causes the translocation of HMGB1 in the PVN, which leads to sympathetic overactivation through the ERK1/2 signaling pathway. The bilateral PVN microinjection of anti-HMGB1 antibody can be an effective therapy for MI-induced arrhythmia.
Collapse
Affiliation(s)
- Pang Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Yin Jie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Shi YuGen
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wang Yu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
11
|
Lu QB, Sun J, Kang Y, Sun HJ, Wang HS, Wang Y, Zhu GQ, Zhou YB. Superoxide Anions and NO in the Paraventricular Nucleus Modulate the Cardiac Sympathetic Afferent Reflex in Obese Rats. Int J Mol Sci 2017; 19:ijms19010059. [PMID: 29280941 PMCID: PMC5796009 DOI: 10.3390/ijms19010059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/03/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to explore the hypothesis that the endogenous superoxide anions (O2−) and nitric oxide (NO) system of the paraventricular nucleus (PVN) regulates the cardiac sympathetic afferent reflex (CSAR) contributing to sympathoexcitation in obese rats induced by a high-fat diet (42% kcal as fat) for 12 weeks. CSAR was evaluated by monitoring the changes of renal sympathetic nerve activity (RSNA) and the mean arterial pressure (MAP) responses to the epicardial application of capsaicin (CAP) in anaesthetized rats. In obese rats with hypertension (OH group) or without hypertension (OB group), the levels of PVN O2−, angiotensinII (Ang II), Ang II type 1 receptor (AT1R), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were elevated, whereas neural NO synthase (nNOS) and NO were significantly reduced. Moreover, CSAR was markedly enhanced, which promoted the elevation of plasma norepinephrine levels. The enhanced CSAR was attenuated by PVN application of the superoxide scavenger polyethylene glycol-superoxide dismutase (PEG-SOD) and the NO donor sodium nitroprusside (SNP), and was strengthened by the superoxide dismutase inhibitor diethyldithiocarbamic acid (DETC) and the nNOS inhibitor N(ω)-propyl-l-arginine hydrochloride (PLA); conversely, there was a smaller CSAR response to PLA or SNP in rats that received a low-fat (12% kcal) diet. Furthermore, PVN pretreatment with the AT1R antagonist losartan or with PEG-SOD, but not SNP, abolished Ang II-induced CSAR enhancement. These findings suggest that obesity alters the PVN O2− and NO system that modulates CSAR and promotes sympathoexcitation.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Jing Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Ying Kang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Hui-Shan Wang
- Department of Pediatrics, The Fourth Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Yuan Wang
- Department of Pediatrics, The Fourth Clinical Medical College of Nanjing Medical University, Nanjing 210029, China.
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
12
|
Lu P, Jiang SJ, Pan H, Xu AL, Wang GH, Ma CL, Shi Z. Short hairpin RNA interference targeting interleukin 1 receptor type I in the paraventricular nucleus attenuates hypertension in rats. Pflugers Arch 2017; 470:439-448. [PMID: 29143938 DOI: 10.1007/s00424-017-2081-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/16/2017] [Indexed: 01/08/2023]
Abstract
Blood pressure is controlled by tonic sympathetic activities, excessive activation of which contributes to the pathogenesis and progression of hypertension. Interleukin (IL)-1β in the paraventricular nucleus (PVN) is involved in sympathetic overdrive and hypertension. Here, we investigated the therapeutic effects of IL-1 receptor type I (IL-1R1) gene silencing in the PVN on hypertension. Recombinant lentivirus vectors expressing a short hairpin RNA (shRNA) targeting IL-1R1 (Lv-shR-IL-1R1) or a control shRNA were microinjected into PVN of spontaneously hypertensive rats (SHRs) and normotensive WKY rats. The fluorescence of green fluorescent protein-labelled vectors appeared at 2 weeks after injection and persisted for at least 8 weeks. IL-1R1 protein expression in the PVN was reduced 4 weeks after Lv-shR-IL-1R1 injection in SHRs. IL-1R1 interference also reduced basal sympathetic activity, cardiac sympathetic afferent reflex in SHRs. Depressor effects were observed from week 2 to 10 after Lv-shR-IL-1R1 treatment in SHRs, with the most prominent effects seen at the end of week 4. Furthermore, Lv-shR-IL-1R1 treatment decreased the ratio of left ventricular weight to body weight and cross-sectional areas of myocardial cells in SHRs. Additionally, Lv-shR-IL-1R1 treatment prevented an increase in superoxide anion and pro-inflammatory cytokines (PICs, TNF-α and IL-1β) in the PVN of SHR, and upregulated anti-inflammatory cytokine (AIC, IL-10) expression. These results indicate that shRNA interference targeting IL-1R1 in the PVN decreases arterial blood pressure, attenuates excessive sympathetic activity and cardiac sympathetic afferent reflex, and improves myocardial remodelling in SHRs by restoring the balance between PICs and AICs to attenuate oxidative stress.
Collapse
Affiliation(s)
- Peng Lu
- Department of Education, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, China.,Shandong Province Key Laboratory of Stroke, Yantai, 264003, China
| | - Shu-Jun Jiang
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Hong Pan
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Ai-Li Xu
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China
| | - Gui-Hua Wang
- Experimental Teaching Management Center, Binzhou Medical University, Yantai, 264003, China
| | - Chun-Lei Ma
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China.,Shandong Province Key Laboratory of Stroke, Yantai, 264003, China
| | - Zhen Shi
- Department of Physiology, Binzhou Medical University, 346 Guanhai Rd, Laishan District, Yantai, Shandong Province, 264003, China.
| |
Collapse
|
13
|
Ren X, Zhang F, Zhao M, Zhao Z, Sun S, Fraidenburg DR, Tang H, Han Y. Angiotensin-(1-7) in Paraventricular Nucleus Contributes to the Enhanced Cardiac Sympathetic Afferent Reflex and Sympathetic Activity in Chronic Heart Failure Rats. Cell Physiol Biochem 2017; 42:2523-2539. [PMID: 28848201 PMCID: PMC6022399 DOI: 10.1159/000480214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/15/2017] [Indexed: 01/08/2023] Open
Abstract
Background/Aims Cardiac sympathetic afferent reflex (CSAR) enhancement contributes to exaggerated sympathetic activation in chronic heart failure (CHF). The current study aimed to investigate the roles of angiotensin (Ang)-(1-7) in CSAR modulation and sympathetic activation and Ang-(1-7) signaling pathway in paraventricular nucleus of CHF rats. Methods CHF was induced by coronary artery ligation. Responses of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) to epicardial application of capsaicin were used to evaluate CSAR in rats with anesthesia. Results Ang-(1-7) increased RSNA, MAP, CSAR activity, cAMP level, NAD(P)H oxidase activity and superoxide anion level more significantly in CHF than in sham-operated rats, while Mas receptor antagonist A-779 had the opposite effects. Moreover, Ang-(1-7) augmented effects of Ang II in CHF rats. The effects of Ang-(1-7) were blocked by A-779, adenylyl cyclase inhibitor SQ22536, protein kinase A inhibitor Rp-cAMP, superoxide anion scavenger tempol and NAD(P)H oxidase inhibitor apocynin. Mas and AT1 receptor protein expressions, Ang-(1-7) and Ang II levels in CHF increased. Conclusions These results indicate that Ang-(1-7) in paraventricular nucleus enhances CSAR and sympathetic output not only by exerting its own effects but also by augmenting the effects of Ang II through Mas receptor in CHF. Endogenous Ang-(1-7)/Mas receptor activity contributes to CSAR enhancement and sympathetic activation in CHF, and NAD(P)H oxidase-derived superoxide anions and the cAMP-PKA signaling pathway are involved in mediating the effects of Ang-(1-7) in CHF.
Collapse
Affiliation(s)
- Xingsheng Ren
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Mingxia Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Zhenzhen Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China.,The first clinical medical college, Nanjing Medical University, Nanjing, China
| | - Shuo Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dustin R Fraidenburg
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Sci Rep 2017; 7:43259. [PMID: 28230187 PMCID: PMC5322393 DOI: 10.1038/srep43259] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/23/2017] [Indexed: 12/24/2022] Open
Abstract
Salusin-β is a bioactive peptide involved in vascular smooth muscle cell proliferation, vascular fibrosis and hypertension. The present study was designed to determine the effects of silencing salusin-β on hypertension and cardiovascular remodeling in spontaneously hypertensive rats (SHR). Thirteen-week-old male SHR and normotensive Wistar-Kyoto rats (WKY) were subjected to intravenous injection of PBS, adenoviral vectors encoding salusin-β shRNA (Ad-Sal-shRNA) or a scramble shRNA. Salusin-β levels in plasma, myocardium and mesenteric artery were increased in SHR. Silencing salusin-β had no significant effect on blood pressure in WKY, but reduced blood pressure in SHR. It reduced the ratio of left ventricle weight to body weight, cross-sectional areas of cardiocytes and perivascular fibrosis, and decreased the media thickness and the media/lumen ratio of arteries in SHR. Silencing salusin-β almost normalized plasma norepinephrine and angiotensin II levels in SHR. It prevented the upregulation of angiotensin II and AT1 receptors, and reduced the NAD(P)H oxidase activity and superoxide anion levels in myocardium and mesenteric artery of SHR. Knockdown of salusin-β attenuated cell proliferation and fibrosis in vascular smooth muscle cells from SHR. These results indicate that silencing salusin-β attenuates hypertension and cardiovascular remodeling in SHR.
Collapse
|
15
|
Angiotensin-(1–7) enhances the effects of angiotensin II on the cardiac sympathetic afferent reflex and sympathetic activity in rostral ventrolateral medulla in renovascular hypertensive rats. ACTA ACUST UNITED AC 2015; 9:865-77. [DOI: 10.1016/j.jash.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/11/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
|
16
|
Marfella R, Barbieri M, Sardu C, Rizzo MR, Siniscalchi M, Paolisso P, Ambrosino M, Fava I, Materazzi C, Cinquegrana G, Gottilla R, Elia LR, D'andrea D, Coppola A, Rambaldi PF, Mauro C, Mansi L, Paolisso G. Effects of α-lipoic acid therapy on sympathetic heart innervation in patients with previous experience of transient takotsubo cardiomyopathy. J Cardiol 2015; 67:153-61. [PMID: 26347218 DOI: 10.1016/j.jjcc.2015.07.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Takotsubo syndrome is a stress cardiomyopathy, characterized by reversible left ventricle (LV) apical ballooning in the absence of significant angiographic coronary artery stenosis. The frequent association with emotional stress suggests in this disease an autonomic nervous system involvement. We could think that a therapeutic treatment targeting heart sympathetic dysfunction could be of crucial importance. METHODS From January 2010 to June 2012, 886 patients were consecutively evaluated at Cardarelli Hospital, Naples, Italy. Among these, 48 patients met takotsubo cardiomyopathy (TCM) criteria. Each patient was assessed with history and physical examination, 12-lead electrocardiogram, serum troponin, coronary arteriography, and left ventricular angiogram, perfusion myocardial scintigraphy with technetium 99m, with echocardiography and 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. At discharge, the surviving patients were randomly assigned to α-lipoic acid (ALA) treatment (600mg once daily) or placebo. Following discharge, after the initial TCM event, patients returned to our outpatient clinic at Internal Medicine of the Second University Naples for the follow-up evaluation quarterly until 12 months. Routine analysis, myocardial damage serum markers, oxidative stress serum markers, pro-inflammatory cytokines, and sympathetic tone activity were evaluated in all patients. RESULTS ALA administration improved MIBG defect size at 12 months compared to placebo. CONCLUSIONS Adrenergic cardiac innervation dysfunction in TCM patients persists after previous experience of transient stress-induced cardiac dysfunction. ALA treatment improves the adrenergic cardiac innervation. This study evaluates whether sympatho-vagal alterations are TCM event-related.
Collapse
Affiliation(s)
- Raffaele Marfella
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Michelangela Barbieri
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Celestino Sardu
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy.
| | - Maria Rosaria Rizzo
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | | | - Pasquale Paolisso
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Maria Ambrosino
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | - Ilaria Fava
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | - Davide D'andrea
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | | | | | - Ciro Mauro
- Department of Cardiology, Hospital Cardarelli, Naples, Italy
| | - Luigi Mansi
- Diagnostic Imaging Department, Second University of Naples, Naples, Italy
| | - Giuseppe Paolisso
- Department of Medical, Surgical, Neurological, Aging and Metabolic Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
17
|
Chen WW, Xiong XQ, Chen Q, Li YH, Kang YM, Zhu GQ. Cardiac sympathetic afferent reflex and its implications for sympathetic activation in chronic heart failure and hypertension. Acta Physiol (Oxf) 2015; 213:778-94. [PMID: 25598170 DOI: 10.1111/apha.12447] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 10/22/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Persistent excessive sympathetic activation greatly contributes to the pathogenesis of chronic heart failure (CHF) and hypertension. Cardiac sympathetic afferent reflex (CSAR) is a sympathoexcitatory reflex with positive feedback characteristics. Humoral factors such as bradykinin, adenosine and reactive oxygen species produced in myocardium due to myocardial ischaemia stimulate cardiac sympathetic afferents and thereby reflexly increase sympathetic activity and blood pressure. The CSAR is enhanced in myocardial ischaemia, CHF and hypertension. The enhanced CSAR at least partially contributes to the sympathetic activation and pathogenesis of these diseases. Nucleus of the solitary tract (NTS), hypothalamic paraventricular nucleus (PVN) and rostral ventrolateral medulla are the most important central sites involved in the modulation and integration of the CSAR. Angiotensin II, AT1 receptors and NAD(P)H oxidase-derived superoxide anions pathway in the PVN are mainly responsible for the enhanced CSAR in CHF and hypertension. Central angiotensin-(1-7), nitric oxide, endothelin, intermedin, hydrogen peroxide and several other signal molecules are involved in regulating CSAR. Blockade of the CSAR shows beneficial effects in CHF and hypertension. This review focuses on the anatomical and physiological basis of the CSAR, the interaction of CSAR with baroreflex and chemoreflex, and the role of enhanced CSAR in the pathogenesis of CHF and hypertension.
Collapse
Affiliation(s)
- W.-W. Chen
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - X.-Q. Xiong
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| | - Q. Chen
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-H. Li
- Department of Pathophysiology; Nanjing Medical University; Nanjing Jiangsu China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an China
| | - G.-Q. Zhu
- Department of Physiology; Key Laboratory of Cardiovascular Disease and Molecular Intervention; Nanjing Medical University; Nanjing Jiangsu China
| |
Collapse
|
18
|
Angiotensin II in paraventricular nucleus contributes to sympathoexcitation in renal ischemia–reperfusion injury by AT1 receptor and oxidative stress. J Surg Res 2015; 193:361-7. [DOI: 10.1016/j.jss.2014.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/15/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
|
19
|
Pro-inflammatory cytokines in paraventricular nucleus mediate the cardiac sympathetic afferent reflex in hypertension. Auton Neurosci 2014; 186:54-61. [DOI: 10.1016/j.autneu.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 10/10/2014] [Indexed: 02/07/2023]
|
20
|
Sun HJ, Zhou H, Feng XM, Gao Q, Ding L, Tang CS, Zhu GQ, Zhou YB. Superoxide anions in the paraventricular nucleus mediate cardiac sympathetic afferent reflex in insulin resistance rats. Acta Physiol (Oxf) 2014; 212:267-82. [PMID: 25307720 DOI: 10.1111/apha.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/26/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022]
Abstract
AIM Cardiac sympathetic afferent reflex (CSAR) participates in sympathetic over-excitation. Superoxide anions and angiotensin II (Ang II) mechanisms are associated with sympathetic outflow and CSAR in the paraventricular nucleus (PVN). This study was designed to investigate whether PVN superoxide anions mediate CSAR and Ang II-induced CSAR enhancement response in fructose-induced insulin resistance (IR) rats. METHODS CSAR was evaluated with the changes of renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to the epicardial application of capsaicin (CAP) in anaesthetized rats. RESULTS Compared with Control rats, IR rats showed that CSAR, PVN NAD(P)H oxidase activity, superoxide anions, malondialdehyde (MDA), Ang II and AT1 receptor levels were significantly increased, whereas PVN superoxide dismutase (SOD) and catalase (CAT) activities were decreased. In Control and IR rats, PVN microinjection of superoxide anions scavengers tempol, tiron and PEG-SOD (an analogue of endogenous superoxide dismutase) or inhibition of PVN NAD(P)H oxidase with apocynin caused significant reduction of CSAR, respectively, but DETC (a superoxide dismutase inhibitor) strengthened the CSAR. PVN pre-treatment with tempol abolished, whereas DETC potentiated, Ang II-induced CSAR enhancement response. Moreover, PVN pre-treatment with tempol or losartan prevented superoxide anions increase caused by Ang II in IR rats. CONCLUSION PVN superoxide anions mediate CSAR and Ang II-induced CSAR response in IR rats. In IR state, increased NAD(P)H oxidase activity and decreased SOD and CAT activities in the PVN promote superoxide anions increase to involve in CSAR enhancement. Ang II may increase NAD(P)H oxidase activity via AT1 receptor to induce superoxide anion production.
Collapse
Affiliation(s)
- H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - H. Zhou
- Laboratory Center for Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - X.-M. Feng
- Clinical Laboratory of Luyi Xian People's Hospital; Zhoukou China
| | - Q. Gao
- Laboratory Center for Basic Medical Sciences; Nanjing Medical University; Nanjing China
| | - L. Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - C.-S. Tang
- Key Laboratory of Molecular Cardiovascular Science; Ministry of Education; Beijing China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y.-B. Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| |
Collapse
|
21
|
Gan XB, Sun HJ, Chen D, Zhang LL, Zhou H, Chen LY, Zhou YB. Intermedin in the paraventricular nucleus attenuates cardiac sympathetic afferent reflex in chronic heart failure rats. PLoS One 2014; 9:e94234. [PMID: 24709972 PMCID: PMC3978024 DOI: 10.1371/journal.pone.0094234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/13/2014] [Indexed: 01/06/2023] Open
Abstract
Background and Aim Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats. Methodology/Principal Findings Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats. Conclusion IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.
Collapse
Affiliation(s)
- Xian-Bing Gan
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China; Department of Physiology, Anhui University of Chinese Medicine, Hefei, China
| | - Hai-Jian Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Dan Chen
- Department of Physiology, Anhui University of Chinese Medicine, Hefei, China
| | - Ling-Li Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Hong Zhou
- Laboratory Center for Basic Medical Sciences, Department of Medical Physiology and Biochemistry, Nanjing Medical University, Nanjing, China
| | - Li-Yan Chen
- Department of Haematology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Kishi T, Hirooka Y, Sunagawa K. Telmisartan reduces mortality and left ventricular hypertrophy with sympathoinhibition in rats with hypertension and heart failure. Am J Hypertens 2014; 27:260-7. [PMID: 24096926 DOI: 10.1093/ajh/hpt188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Angiotensin II type 1 receptor (AT1R) blockers have various benefits on hypertension and/or heart failure. We demonstrated that telmisartan (TLM), an AT1R blocker, causes sympathoinhibition by reduction of reactive oxygen species (ROS) in the rostral ventrolateral medulla (RVLM) of stroke-prone spontaneously hypertensive rats (SHRSPs). The aim of this study was to determine whether TLM improves survival in rats with hypertension and heart failure. METHODS Angiotensin II-infused and salt-loaded SHRSPs were divided into TLM-treated, candesartan cilexetil (CAN)-treated, and control groups. We determined the dose of TLM or CAN with similar depressor effects. We examined survival, urinary norepinephrine excretion (uNE) as a parameter of sympathoexcitation, ROS in the RVLM, and left ventricular (LV) end-diastolic pressure (LVEDP). LV hypertrophy (LVH) was assessed by echocardiography and heart/body weight. RESULTS Compared with the control group, TLM improved survival to a greater extent than CAN. At 4 weeks after treatment, ROS in the RVLM and uNE were significantly lower in the TLM-treated group than in the CAN-treated group, despite the similar depressor effects. At 8 weeks after the treatments, LVH and LVEDP were attenuated in the TLM-treated group compared with the CAN-treated group. CONCLUSIONS Our results suggest that TLM has the potential to reduce mortality, LVH, and LVEDP and that enhanced sympathoinhibition by reduction of ROS in the RVLM might be one of the mechanisms contributing to the beneficial actions of TLM in a model of rats with severe hypertension and heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | |
Collapse
|
23
|
Affiliation(s)
- Susan Pyner
- School of Biological and Biomedical Sciences; Durham University; Durham UK
| |
Collapse
|
24
|
Sun HJ, Li P, Chen WW, Xiong XQ, Han Y. Angiotensin II and angiotensin-(1-7) in paraventricular nucleus modulate cardiac sympathetic afferent reflex in renovascular hypertensive rats. PLoS One 2012; 7:e52557. [PMID: 23285085 PMCID: PMC3527547 DOI: 10.1371/journal.pone.0052557] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT(1) receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension. METHODOLOGY/PRINCIPAL FINDINGS The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT(1) receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT(1) receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not. CONCLUSIONS Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Hydrogen sulfide in paraventricular nucleus enhances sympathetic activity and cardiac sympathetic afferent reflex in chronic heart failure rats. PLoS One 2012; 7:e50102. [PMID: 23166827 PMCID: PMC3499499 DOI: 10.1371/journal.pone.0050102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H(2)S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H(2)S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF). METHODOLOGY/PRINCIPAL FINDINGS CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H(2)S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H(2)S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H(2)S level in the PVN in both sham-operated rats and CHF rats. CONCLUSIONS Exogenous H(2)S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H(2)S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.
Collapse
|
26
|
Zhang S, Zhang F, Sun H, Zhou Y, Han Y. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin. J Biomed Res 2012; 26:425-31. [PMID: 23554781 PMCID: PMC3597045 DOI: 10.7555/jbr.26.20120035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/03/2012] [Accepted: 08/12/2012] [Indexed: 01/06/2023] Open
Abstract
Our previous studies have shown that the cardiac sympathetic afferent reflex is enhanced in rats with chronic heart failure (CHF) induced by coronary artery ligation and contributes to the over-excitation of sympathetic activity. We sought to determine whether sympathetic activity and cardiac sympathetic afferent reflex were enhanced in adriamycin-induced CHF and whether angiotensin II (Ang II) in the paraventricular nucleus (PVN) was involved in enhancing sympathetic activity and cardiac sympathetic afferent reflex. Heart failure was induced by intraperitoneal injection of adriamycin for six times during 2 weeks (15 mg/kg). Six weeks after the first injection, the rats underwent anesthesia with urethane and α-chloralose. After vagotomy and baroreceptor denervation, cardiac sympathetic afferent reflex was evaluated by renal sympathetic nerve activity and mean arterial pressure (MAP) response to epicardial application of capsaicin (1.0 nmol). The response of MAP to ganglionic blockade with hexamethonium in conscious rats was performed to evaluate sympathetic activity. The renal sympathetic nerve activity and cardiac sympathetic afferent reflex were enhanced in adriamycin rats and the maximum depressor response of MAP induced by hexamethonium was significantly greater in adriamycin rats than that in control rats. Bilateral PVN microinjection of angiotensin II (Ang II) caused larger responses of the cardiac sympathetic afferent reflex, baseline renal sympathetic nerve activity and MAP in adriamycin rats than control rats. These results indicated that both sympathetic activity and cardiac sympathetic afferent reflex were enhanced and Ang II in the PVN was involved in the enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with adriamycin-induced heart failure.
Collapse
Affiliation(s)
- Shujuan Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | |
Collapse
|
27
|
Li P, Zhang F, Zhou YB, Cui BP, Han Y. Superoxide anions modulate the effects of angiotensin-(1–7) in the rostral ventrolateral medulla on cardiac sympathetic afferent reflex and sympathetic activity in rats. Neuroscience 2012; 223:388-98. [DOI: 10.1016/j.neuroscience.2012.07.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/28/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
|
28
|
Chen AD, Xiong XQ, Gan XB, Zhang F, Zhou YB, Gao XY, Han Y. Endothelin-1 in paraventricular nucleus modulates cardiac sympathetic afferent reflex and sympathetic activity in rats. PLoS One 2012; 7:e40748. [PMID: 22815806 PMCID: PMC3398005 DOI: 10.1371/journal.pone.0040748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) is a positive-feedback, sympathoexcitatory reflex. Paraventricular nucleus (PVN) is an important component of the central neurocircuitry of the CSAR. The present study is designed to determine whether endothelin-1 (ET-1) in the PVN modulates the CSAR and sympathetic activity, and whether superoxide anions are involved in modulating the effects of ET-1 in the PVN in rats. Methodology/Principal Findings In anaesthetized Sprague–Dawley rats with cervical vagotomy and sinoaortic denervation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The CSAR was evaluated by the responses of the RSNA and MAP to epicardial application of capsaicin. Microinjection of ET-1 into the bilateral PVN dose-dependently enhanced the CSAR, increased the baseline RSNA and MAP. The effects of ET-1 were blocked by PVN pretreatment with the ETA receptor antagonist BQ-123. However, BQ-123 alone had no significant effects on the CSAR, the baseline RSNA and MAP. Bilateral PVN pretreatment with either superoxide anion scavenger tempol or polyethylene glycol-superoxide dismutase (PEG-SOD) inhibited the effects of ET-1 on the CSAR, RSNA and MAP. Microinjection of ET-1 into the PVN increased the superoxide anion level in the PVN, which was abolished by PVN pretreatment with BQ-123. Epicardial application of capsaicin increased superoxide anion level in PVN which was further enhanced by PVN pretreatment with ET-1. Conclusions Exogenous activation of ETA receptors with ET-1 in the PVN enhances the CSAR, increases RSNA and MAP. Superoxide anions in PVN are involved in the effects of ET-1 in the PVN.
Collapse
Affiliation(s)
- Ai-Dong Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
29
|
Gao J, Zhong MK, Fan ZD, Yuan N, Zhou YB, Zhang F, Gao XY, Zhu GQ. SOD1 overexpression in paraventricular nucleus improves post-infarct myocardial remodeling and ventricular function. Pflugers Arch 2011; 463:297-307. [PMID: 22006090 DOI: 10.1007/s00424-011-1036-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/23/2011] [Accepted: 09/28/2011] [Indexed: 02/07/2023]
Abstract
Excessive sympathetic activation contributes to the progression of chronic heart failure. Reactive oxygen species in paraventricular nucleus (PVN) play an important role in the enhanced sympathetic outflow. This study was designed to determine whether superoxide dismutase 1 (SOD1) overexpression in the PVN attenuated the sympathetic activation and cardiac dysfunction in rats after an episode of myocardial infarction (MI). Adenoviral vectors containing human SOD1 (Ad-SOD) or null adenoviral vectors (Ad-null) were immediately microinjected into the PVN of rats with coronary artery ligation or sham operation. At the eighth week, the SOD1 protein level and activity in the PVN increased while the superoxide anions in the PVN decreased in Ad-SOD rats. The SOD1 overexpression in the PVN prevented the increases in left ventricular end-diastolic pressure and volume, and the decreases in ejection fraction and peak velocities of contraction in MI rats. In addition, there was an attenuation of renal sympathetic nerve activity, cardiac sympathetic afferent reflex and plasma norepinephrine level in MI rats. Furthermore, the SOD1 overexpression in the PVN reduced cardiomyocyte size, collagen deposition and the TUNEL-positive cardiomyocytes in MI rats. These results indicate that the SOD1 overexpression in the PVN attenuates the excessive sympathetic activation, myocardial remodeling, cardiomyocyte apoptosis and ventricular dysfunction in MI rats.
Collapse
Affiliation(s)
- Juan Gao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gan XB, Duan YC, Xiong XQ, Li P, Cui BP, Gao XY, Zhu GQ. Inhibition of cardiac sympathetic afferent reflex and sympathetic activity by baroreceptor and vagal afferent inputs in chronic heart failure. PLoS One 2011; 6:e25784. [PMID: 21991351 PMCID: PMC3185007 DOI: 10.1371/journal.pone.0025784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022] Open
Abstract
Background Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF. Methodology/Principal Findings Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats. Conclusions The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.
Collapse
Affiliation(s)
- Xian-Bing Gan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yang-Can Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Department of Medical Ultrasound, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiao-Qing Xiong
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Peng Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bai-Ping Cui
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xing-Ya Gao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
31
|
Shi Z, Gan XB, Fan ZD, Zhang F, Zhou YB, Gao XY, De W, Zhu GQ. Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiol (Oxf) 2011; 203:289-97. [PMID: 21624097 DOI: 10.1111/j.1748-1716.2011.02313.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM This study was to determine the roles of inflammatory cytokines in paraventricular nucleus (PVN) in modulating sympathetic activity, blood pressure and cardiac sympathetic afferent reflex (CSAR). METHODS Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in anaesthetized rats with bilateral sinoaortic denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of bradykinin (BK). The levels of inflammatory cytokines were measured with ELISA. RESULTS The PVN microinjection of pro-inflammatory cytokines (PIC), tumour necrosis factor (TNF)-α or interleukin (IL)-1β, increased the baseline MAP and RSNA, and enhanced the CSAR. Anti-inflammatory cytokines (AIC), IL-4 or IL-13, in the PVN only increased the baseline MAP. In the rats pretreated with TNF-α or IL-1β but not in the rats pretreated with IL-4 or IL-13, sub-response dose of angiotensin II caused significant increases in the MAP and RSNA and enhancement in the CSAR. AT(1) receptor antagonist losartan in the PVN attenuated the effects of angiotensin II, TNF-α and IL-1β, but not the effects of IL-4 and IL-13. Stimulation of cardiac sympathetic afferents with epicardial application of BK increased the levels of TNF-α, IL-1β but not IL-4 in the PVN. CONCLUSION TNF-α or IL-1β in the PVN increases blood pressure and sympathetic outflow and enhances the CSAR, which is partially dependent on the AT(1) receptors, while IL-4 or IL-13 in the PVN only increases blood pressure. There is a synergetic effect of Ang II with TNF-α or IL-1β on blood pressure, sympathetic activity and CSAR.
Collapse
Affiliation(s)
- Z Shi
- Department of Physiology, Nanjing Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Han Y, Fan ZD, Yuan N, Xie GQ, Gao J, De W, Gao XY, Zhu GQ. Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. J Appl Physiol (1985) 2011; 110:646-52. [DOI: 10.1152/japplphysiol.00908.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation in renovascular hypertension. The present study was designed to determine the role of superoxide anions in the paraventricular nucleus (PVN) in mediating the enhanced CSAR and sympathetic activity in renovascular hypertension in the two-kidney, one-clip (2K1C) model. Sinoaortic denervation and vagotomy were carried out, and renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded under anesthesia. The CSAR was evaluated by the response of RSNA to the epicardial application of capsaicin. Superoxide anion levels and NAD(P)H oxidase activity in the PVN increased in 2K1C rats and were much higher in 2K1C rats than in sham-operated (sham) rats after the epicardial application of capsaicin or PVN microinjection of ANG II. In both 2K1C and sham rats, PVN microinjection of the superoxide anion scavenger tempol or the NAD(P)H oxidase inhibitor apocynin abolished the CSAR, whereas the SOD inhibitor diethyldithiocarbamic acid (DETC) potentiated the CSAR. Tempol and apocynin decreased but DETC increased baseline RSNA and MAP. ANG II in the PVN caused larger responses of the CSAR, baseline RSNA, and baseline MAP in 2K1C rats than in sham rats. The effects of ANG II were abolished by pretreatment with tempol or apocynin in both 2K1C and sham rats and augmented by DETC in the PVN in 2K1C rats. These results indicate that superoxide anions in the PVN mediate the CSAR and the effects of ANG II in the PVN. Increased superoxide anions in the PVN contribute to the enhanced CSAR and sympathetic activity in renovascular hypertension.
Collapse
Affiliation(s)
- Ying Han
- Departments of 1Physiology and
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | - Wei De
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| | | | - Guo-Qing Zhu
- Departments of 1Physiology and
- Biochemical and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Han Y, Yuan N, Zhang SJ, Gao J, Shi Z, Zhou YB, Gao XY, Zhu GQ. c-Src in paraventricular nucleus modulates sympathetic activity and cardiac sympathetic afferent reflex in renovascular hypertensive rats. Pflugers Arch 2011; 461:437-46. [PMID: 21340460 DOI: 10.1007/s00424-011-0932-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/23/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
Enhanced cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation in renovascular hypertension. The study was to determine whether c-Src in paraventricular nucleus (PVN) is involved in the enhanced CSAR and sympathetic activation in hypertensive rats induced by two-kidney one-clip (2K1C). At the end of the fourth week after 2K1C surgery, renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats with baroreceptor denervation and vagotomy. The CSAR was evaluated by the RSNA response to epicardial application of capsaicin. In the PVN, c-Src activity was higher in 2K1C rats than sham-operated (Sham) rats while c-Src expression was not. Epicardial application of capsaicin or PVN microinjection of angiotensin II (Ang II) increased c-Src activity more in 2K1C than Sham rats. PVN microinjection of selective Src family kinase inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazol [3,4-D] pyrimidine (PP2) or 2,3-Dihydro-N,N-dimethyl-2-oxo-3-[(4,5,6,7-tetrahydro-1 H-indol-2-yl)methylene]-1 H-indole-5-sulfonamide (SU6656) abolished the CSAR and decreased RSNA more in 2K1C than Sham rats. The Ang II-induced RSNA and CSAR enhancement was abolished by PP2 or SU6656 pretreatment in 2K1C and Sham rats. NAD(P)H oxidase activity and superoxide anion level in PVN were higher in 2K1C rats, which was attenuated by PP2 but increased by epicardial application of capsaicin or PVN microinjection of Ang II. The effects of capsaicin or Ang II were abolished by PP2. These results indicate that c-Src in the PVN is involved in the enhanced CSAR and sympathetic activation in renovascular hypertension, and mediates the excitatory effects of Ang II in the PVN on the CSAR and sympathetic activity via NAD(P)H oxidase-derived generation of superoxide anions.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu B, Chen WW, Fan ZD, Han Y, Xiong XQ, Gao XY, Zhu GQ. Responses of neurons in paraventricular nucleus to activation of cardiac afferents and acute myocardial ischaemia in rats. Exp Physiol 2011; 96:295-304. [DOI: 10.1113/expphysiol.2010.055475] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Guggilam A, Cardinale JP, Mariappan N, Sriramula S, Haque M, Francis J. Central TNF inhibition results in attenuated neurohumoral excitation in heart failure: a role for superoxide and nitric oxide. Basic Res Cardiol 2011; 106:273-86. [PMID: 21246206 DOI: 10.1007/s00395-010-0146-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/20/2010] [Accepted: 12/23/2010] [Indexed: 11/25/2022]
Abstract
This study examined the effect of central tumor necrosis factor-alpha (TNF) blockade on the imbalance between nitric oxide and superoxide production in the paraventricular nucleus (PVN) and ventrolateral medulla (VLM), key autonomic regulators, and their contribution to enhanced sympathetic drive in mice with congestive heart failure (CHF). We also used a TNF gene knockout (KO) mouse model to study the involvement of TNF in body fluid homeostasis and sympathoexcitation in CHF. After implantation of intracerebroventricular (ICV) cannulae, myocardial infarction (MI) was induced in wild-type (WT) and KO mice by coronary artery ligation. Osmotic mini-pumps were implanted into one set of WT + MI/Sham mice for continuous ICV infusion of Etanercept (ETN), a TNF receptor fusion protein, or vehicle (VEH). Gene expressions of neuronal nitric oxide synthase (NOS) and angiotensin receptor-type 2 were reduced, while those of inducible NOS, Nox2 homologs, superoxide, peroxynitrite and angiotensin receptor-type 1 were elevated in the brainstem and hypothalamus of MI + VEH. Plasma norepinephrine levels and the number of Fos-positive neurons were also increased in the PVN and VLM in MI + VEH. MI + ETN and KO + MI mice exhibited reduced oxidative stress, reduced sympathoexcitation and an improved cardiac function. These changes in WT + MI were associated with increased sodium and fluid retention. These results indicate that elevated TNF in these autonomic regulatory regions of the brain alter the production of superoxide and nitric oxide, contributing to fluid imbalance and sympathoexcitation in CHF.
Collapse
Affiliation(s)
- Anuradha Guggilam
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, 1909 Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nunes FC, Ribeiro TP, França-Silva MS, Medeiros IA, Braga VA. Superoxide scavenging in the rostral ventrolateral medulla blunts the pressor response to peripheral chemoreflex activation. Brain Res 2010; 1351:141-149. [DOI: 10.1016/j.brainres.2010.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 06/26/2010] [Accepted: 07/01/2010] [Indexed: 02/07/2023]
|
37
|
Pyner S. Neurochemistry of the paraventricular nucleus of the hypothalamus: implications for cardiovascular regulation. J Chem Neuroanat 2009; 38:197-208. [PMID: 19778682 DOI: 10.1016/j.jchemneu.2009.03.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 02/07/2023]
Abstract
The paraventricular nucleus of the hypothalamus (PVN) is an important site for autonomic and endocrine homeostasis. The PVN integrates specific afferent stimuli to produce an appropriate differential sympathetic output. The neural circuitry and some of the neurochemical substrates within this circuitry are discussed. The PVN has at least three neural circuits to alter sympathetic activity and cardiovascular regulation. These pathways innervate the vasculature and organs such as the heart, kidney and adrenal medulla. The basal level of sympathetic tone at any given time is dependent upon excitatory and inhibitory inputs. Under normal circumstances the sympathetic nervous system is tonically inhibited. This inhibition is dependent upon GABA and nitric oxide such that nitric oxide potentiates local GABAergic synaptic inputs onto the neurones in the PVN. Excitatory neurotransmitters such as glutamate and angiotensin II modify the tonic inhibitory activity. The neurotransmitters oxytocin, vasopressin and dopamine have been shown to affect cardiovascular function. These neurotransmitters are found in neurones of the PVN and within the spinal cord. Oxytocin and vasopressin terminal fibres are closely associated with sympathetic preganglionic neurones (SPNs). Sympathetic preganglionic neurones have been shown to express receptors for oxytocin, vasopressin and dopamine. Oxytocin causes cardioacceleratory and pressor effects that are greatest in the upper thoracic cord while vasopressin cause these effects but more significant in the lower thoracic cord. Dopaminergic effects on the cardiovascular system include inhibitory or excitatory actions attributed to a direct PVN influence or via interneuronal connections to sympathetic preganglionic neurones.
Collapse
Affiliation(s)
- S Pyner
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
38
|
Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 2009; 458:247-57. [DOI: 10.1007/s00424-008-0627-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/04/2008] [Accepted: 12/11/2008] [Indexed: 10/21/2022]
|
39
|
Li M, Dai X, Watts S, Kreulen D, Fink G. Increased superoxide levels in ganglia and sympathoexcitation are involved in sarafotoxin 6c-induced hypertension. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1546-54. [PMID: 18768769 DOI: 10.1152/ajpregu.00783.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelin (ET) type B receptors (ET(B)R) are expressed in multiple tissues and perform different functions depending on their location. ET(B)R mediate endothelium-dependent vasodilation, clearance of circulating ET, and diuretic effects; all of these should produce a fall in arterial blood pressure. However, we recently showed that chronic activation of ET(B)R in rats with the selective agonist sarafotoxin 6c (S6c) causes sustained hypertension. We have proposed that one mechanism of this effect is constriction of capacitance vessels. The current study was performed to determine whether S6c hypertension is caused by increased generation of reactive oxygen species (ROS) and/or activation of the sympathetic nervous system. The model used was continuous 5-day infusion of S6c into male Sprague-Dawley rats. No changes in superoxide anion levels in arteries and veins were found in hypertensive S6c-treated rats. However, superoxide levels were increased in sympathetic ganglia from S6c-treated rats. In addition, superoxide levels in ganglia increased progressively the longer the animals received S6c. Treatment with the antioxidant tempol impaired S6c-induced hypertension and decreased superoxide levels in ganglia. Acute ganglion blockade lowered blood pressure more in S6c-treated rats than in vehicle-treated rats. Although plasma norepinephrine levels were not increased in S6c hypertension, surgical ablation of the celiac ganglion plexus, which provides most of the sympathetic innervation to the splanchnic organs, significantly attenuated hypertension development. The results suggest that S6c-induced hypertension is partially mediated by sympathoexcitation to the splanchnic organs driven by increased oxidative stress in prevertebral sympathetic ganglia.
Collapse
Affiliation(s)
- Melissa Li
- Dept. of Pharmacology and Toxicology, B440 Life Sciences, Michigan State Univ., East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
40
|
Zhong MK, Shi Z, Zhou LM, Gao J, Liao ZH, Wang W, Gao XY, Zhu GQ. Regulation of cardiac sympathetic afferent reflex by GABAAand GABABreceptors in paraventricular nucleus in rats. Eur J Neurosci 2008; 27:3226-32. [DOI: 10.1111/j.1460-9568.2008.06261.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Zhong MK, Duan YC, Chen AD, Xu B, Gao XY, De W, Zhu GQ. Paraventricular nucleus is involved in the central pathway of cardiac sympathetic afferent reflex in rats. Exp Physiol 2008; 93:746-53. [PMID: 18281391 DOI: 10.1113/expphysiol.2007.041632] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our previous studies have shown that angiotensin II and reactive oxygen species in the paraventricular nucleus (PVN) modulate the cardiac sympathetic afferent reflex (CSAR). The present study was designed to demonstrate more conclusively that the PVN is an important component of the central neurocircuitry of the CSAR. In anaesthetized Sprague-Dawley rats with sinoaortic denervation and cervical vagotomy, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded. The CSAR was evaluated by the response of the RSNA to epicardial application of bradykinin or capsaicin. Bilateral microinjection of the anaesthetic, lignocaine, into the PVN abolished the CSAR without significant effects on the baseline RSNA and MAP, while l-glutamate, which excites the neurons in the PVN, enhanced the CSAR and increased the baseline RSNA and MAP. Bilateral electrolytic lesions of the PVN irreversibly abolished the CSAR without significant effects on the baseline RSNA and MAP. Bilateral selective lesions of the neurons in the PVN with kainic acid induced rapid and great increases in both RSNA and MAP which returned to nearly normal levels in 60 min. At the 90th minute after kainic acid, epicardial application of bradykinin or capsaicin failed to induce the CSAR. These results indicate that inhibition or lesion of the PVN abolishes the CSAR, but excitation of the neurons in the PVN enhances the CSAR, suggesting that the PVN is an important component of the central neurocircuitry of the CSAR.
Collapse
Affiliation(s)
- Ming-Kui Zhong
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|