1
|
Nur Kertmen Kurtar S, Kertmen M, Kose M. Design of a new porphyrin-based compound and investigation of its photosensitive properties for antibacterial photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124529. [PMID: 38824758 DOI: 10.1016/j.saa.2024.124529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Considering the increasing number of pathogens resistant to commonly used antibiotics as well as antiseptics, there is an urgent need for antimicrobial approaches that can effectively inactivate pathogens without the risk of establishing resistance. An alternative approach in this context is antibacterial photodynamic therapy (APDT). APDT is a process that involves bacterial cell death using appropriate wavelength light energy and photosensitizer and causes the production of reactive oxygen species inside or outside the microbial cell depending on the penetration of light energy. In our study, a new porphyrin compound 4,4'-methylenebis(2-((E)-((4-(10,15,20-triphenylporphyrin-5-yl)phenyl)imino)methyl)phenol) (SP) was designed and synthesized as photosensitizer and its structure was clarified by NMR (13C and 1H) and mass determination method. Photophysical and photochemical properties were examined in detail using different methods. Singlet oxygen quantum yields were obtained as 0.48 and 0.59 by direct and indirect methods, respectively. Antibacterial activity studies have been conducted within the scope of biological activity and promising results have been obtained under LED light (500-700 nm, 265 V, 1500 LM), contributing to the antibacterial photodynamic therapy literature.
Collapse
Affiliation(s)
- Seda Nur Kertmen Kurtar
- Material Science and Engineering Department, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye.
| | - Metin Kertmen
- Occupational Health and Safety Department, Siirt University, Siirt 56100, Türkiye
| | - Muhammet Kose
- Chemistry Department, Science Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras 46050, Türkiye.
| |
Collapse
|
2
|
Lourenço LMO, Tomé AC, Tomé JPC. Editorial: Photodynamic Therapy as an Important Tool for Biological Breakthroughs-Photoactive Photosensitizers Applied from Cancer to Microbial Targets. Int J Mol Sci 2023; 25:330. [PMID: 38203501 PMCID: PMC10778883 DOI: 10.3390/ijms25010330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Photodynamic therapy (PDT) stands as an approved clinical treatment for both oncologic and nononcologic disorders [...].
Collapse
Affiliation(s)
- Leandro M. O. Lourenço
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Augusto C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - João P. C. Tomé
- CQE, IMS, DEQ, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Sun Y, Chen YL, Xu CP, Gao J, Feng Y, Wu QF. Disinfection of influenza a viruses by Hypocrellin a-mediated photodynamic inactivation. Photodiagnosis Photodyn Ther 2023; 43:103674. [PMID: 37364664 DOI: 10.1016/j.pdpdt.2023.103674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Influenza A viruses can be transmitted indirectly by surviving on the surface of an object. Photodynamic inactivation (PDI) is a promising approach for disinfection of pathogens. METHODS PDI was generated using Hypocrellin A (HA) and red light emitting diode (625-635 nm, 280 W/m2). Effects of the HA-mediated PDI on influenza viruses H1N1 and H3N2 were evaluated by the reduction of viral titers compared to virus control. After selection of the HA concentrations and illumination times, the applicability of PDI was assessed on surgical masks. Reactive oxygen species (ROS) were determined using a 2'-7'-dichlorodihydrofluorescein diacetate fluorescence probe. RESULTS In solution, 10 μM HA inactivated up to 5.11 ± 0.19 log10 TCID50 of H1N1 and 4.89 ± 0.38 log10 TCID50 of H3N2 by illumination for 5 and 30 min, respectively. When surgical masks were contaminated by virus before HA addition, PDI inactivated 99.99% (4.33 ± 0.34 log reduction) of H1N1 and 99.40% (2.22 ± 0.39 log reduction) of H3N2 under the selected condition. When the masks were pretreated with HA before virus addition, PDI decontaminated 99.92% (3.11 ± 0.19 log reduction) of H1N1 and 98.71% (1.89 ± 0.20 log reduction) of H3N2 virus. The fluorescence intensity of 2',7'-dichlorofluorescein in photoactivated HA was significantly higher than the cell control (P > 0.05), indicating that HA efficiently generated ROS. CONCLUSIONS HA-mediated PDI is effective for the disinfection of influenza viruses H1N1 and H3N2. The approach could be an alternative to decontaminating influenza A viruses on the surfaces of objects.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Lu Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chang-Ping Xu
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Gao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yan Feng
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Qiao-Feng Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Mariewskaya KA, Krasilnikov MS, Korshun VA, Ustinov AV, Alferova VA. Near-Infrared Dyes: Towards Broad-Spectrum Antivirals. Int J Mol Sci 2022; 24:ijms24010188. [PMID: 36613629 PMCID: PMC9820607 DOI: 10.3390/ijms24010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-4957246715
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
5
|
Mgidlana S, Sen P, Nyokong T. Dual action of asymmetrical zinc(II) phthalocyanines conjugated to silver tungstate nanoparticles towards photodegradation of tetracycline and inactivation of Staphylococcus aureus bacteria. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Gümüşgöz Çelik G, Gonca S, Şahin B, Özdemir S, Atilla D, Gürek AG. Novel axially symmetric and unsymmetric silicon(IV) phthalocyanines having anti-inflammatory groups: synthesis, characterization and their biological properties. Dalton Trans 2022; 51:7517-7529. [PMID: 35506506 DOI: 10.1039/d2dt00652a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New asymmetric Si(IV)Pc (1), monomeloxicammonotriethyleneglycolmonomethylether (phthalocyaninano)silicone, axially ligated with meloxicam as a non-steroidal anti-inflammatory drug (NSAID), or triethylene glycol monomethyl ether and symmetric Si(IV)Pc (2), diclofenac(phthalocyaninano)silicone, axially ligated with two diclofenac as NSAID, were synthesized and characterized as antioxidant and antimicrobial agents together with polyoxo-SiPc (3), ditriethyleneglycolmonomethylether(phthalocyaninano)silicone, and SiPc(OH)2 (4), dihydroxy(phthalocyaninano)silicone. The photophysical and photochemical properties of these compounds were investigated. Then, antioxidant assays, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating activities, were performed for these Si(IV) phthalocyanine derivatives (1, 2, 3 and 4). The highest DPPH scavenging activity of 73.48% was achieved with compound 2 and the highest ferrous chelating ability of 66.42% was obtained with compound 3. The results of the antioxidant assays indicated that Pc derivatives 1, 2 and 3 have remarkable superoxide radical scavenging activities, and moderate 2,2-diphenyl-1-picrylhydrazyl activities and metal chelating activities. The antimicrobial effects of the Si(IV) phthalocyanine compounds were studied against six pathogenic bacteria and two pathogenic microfungi. The results for the antimicrobial activity of these compounds indicated that Enterococcus faecalis (ATCC 29212) was the most sensitive microorganism and Pseudomonas aeruginosa (ATCC 27853) and Legionella pneumophila subsp. pneumophila (ATCC 33152) were the most resistant microorganisms against the tested compounds. The DNA cleavage ability and microbial cell viability of these compounds were studied. The studied compounds demonstrated excellent DNA nuclease activity and exhibited 100% cell viability inhibition at 500 mg L-1. Also, the antimicrobial photodynamic therapy of the compounds was tested against Escherichia coli (ATCC 25922) and significant photodynamic antimicrobial activity was observed. In addition, the effect of phthalocyanines on biofilm inhibition produced by Staphylococcus aureus (ATCC 25923) was also tested and 3 showed excellent biofilm inhibition of 82.14%.
Collapse
Affiliation(s)
- Gizem Gümüşgöz Çelik
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Turkey, TR-33343 Yenisehir, Mersin, Turkey
| | - Belgin Şahin
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343 Yenisehir, Mersin, Turkey.
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
7
|
Spesia MB, Durantini EN. Evolution of Phthalocyanine Structures as Photodynamic Agents for Bacteria Inactivation. CHEM REC 2022; 22:e202100292. [PMID: 35018719 DOI: 10.1002/tcr.202100292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Phthalocyanine derivatives have been proposed as photosensitizers for the treatment of several microbial infections. In this review, the progress in the structures of phthalocyanines was analyzed, considering that these compounds can easily functionalize and can form complexes with various metal ions. In this sense, different substituents were used to increase the interaction with the microorganisms, improving their photodynamic inactivation. Furthermore, these photosensitizers absorb strongly at phototherapeutic window, emit red fluorescence, and efficiently produce the formation of reactive oxygen species. Subsequently, the influence of binding, bacteria types, cell density, washing effect, and media on photoinactivation was remarked to elimination of microbes. Finally, photokilling of bacterial biofilm by phthalocyanines and the mechanism of action were discussed. Therefore, this review brings together the main features of phthalocyanines as antimicrobial phototherapeutic agents.
Collapse
Affiliation(s)
- Mariana B Spesia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
8
|
Ovchenkova EN, Bichan NG, Gostev FE, Shelaev IV, Nadtochenko VA, Lomova TN. The donor-acceptor dyad based on high substituted fullero[70]pyrrolidine-coordinated manganese (III) phthalocyanine for photoinduced electron transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120166. [PMID: 34274635 DOI: 10.1016/j.saa.2021.120166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Donor-acceptor dyads based on manganese porphyrins/phthalocyanines and fullerene derivatives with N-basicity centers have proved as promising photoinduced electron-transfer systems for photovoltaic devices, biologically active compounds, and molecular magnetic materials. The macroheterocyclic chromophore characterized by rich UV-visible-near IR absorption is the basis for the applications above. The problem of the synthesis and the characterization of new effective dyads was solved in this work on the example of the self-organizing system consisting of (octakis-3,5-di-tert-butylphenoxy)phthalocyaninato)manganese(III) acetate, (AcO)MnPc(3,5-di-tBuPhO)8, 2',5-di(pyridin-2'-yl)-3,4-fullero[70]pyrrolidine, Py2C70, and toluene. The phthalocyanine-fullerene dyads in the molecular and cationic form (respectively (AcO)(Py2C70)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+(AcO)-) were observed and described using the chemical kinetics/thermodynamics, UV-vis, IR, 1H NMR spectroscopy and mass spectrometry methods. The 1: 1 stoichiometry of both dyads was confirmed; the equilibrium and rate constant value, K= (4.86 ± 0.56) × 104 L mol-1 and k = (4.455 ± 3.37) × 10-5 s-1 was observed for the formation of molecular and cationic dyad, respectively. The study of (AcO)MnPc(3,5-di-tBuPhO)8 and [(Py2C70)MnPc(3,5-di-tBuPhO)8]+AcO- femtosecond transient absorption spectra points to the photoinduced electron transfer in the dyad, for which the lifetimes and the rate constants of charge separation (τCS, kCS) and charge recombination (τCR, kCR) were defined. The analysis of the relationship of the dyad physicochemical parameters with the molecular structure is represented using previously published data.
Collapse
Affiliation(s)
- E N Ovchenkova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| | - N G Bichan
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation.
| | - F E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - I V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - V A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow, Russia
| | - T N Lomova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation
| |
Collapse
|
9
|
Hypericin and Pheophorbide a Mediated Photodynamic Therapy Fighting MRSA Wound Infections: A Translational Study from In Vitro to In Vivo. Pharmaceutics 2021; 13:pharmaceutics13091399. [PMID: 34575478 PMCID: PMC8472478 DOI: 10.3390/pharmaceutics13091399] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023] Open
Abstract
High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.
Collapse
|
10
|
Ribeiro CP, Lourenço LM. Overview of cationic phthalocyanines for effective photoinactivation of pathogenic microorganisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100422] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Aroso RT, Piccirillo G, Arnaut ZA, Gonzalez AC, Rodrigues FM, Pereira MM. Photodynamic inactivation of influenza virus as a potential alternative for the control of respiratory tract infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
12
|
Dharmaratne P, Yu L, Wong RCH, Chan BCL, Lau KM, Wang B, Lau CBS, Fung KP, Ng DKP, Ip M. A Novel Dicationic Boron Dipyrromethene-based Photosensitizer for Antimicrobial Photodynamic Therapy against Methicillin-Resistant Staphylococcus aureus. Curr Med Chem 2021; 28:4283-4294. [PMID: 33292110 PMCID: PMC8287893 DOI: 10.2174/0929867328666201208095105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Abstract
Background
We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups. Methods
The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6’)-APH(2”) and RN4220/pUL5054], and ten non-duplicate clinical strains of hospital- and community-associated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.56-50 µM against all the sixteen MRSA strains. Interestingly, compound 3 was not only more active than an analogue in which the ammonium groups are not directly connected to the n-conjugated system (compound 4), but also showed significantly higher (p < 0.05) antibacterial potency than the clinically approved photosensitizer methylene blue. The skin irritation of compound 3 during topical application was tested on human 3-D skin constructs and proven to be non-irritant in vivo at concentrations below 1.250 mM. In the murine MRSA infected wound study, the colony forming unit reduction of compound 3 + PDT group showed significantly (p < 0.05) higher value (>2.5 log10) compared to other test groups except for the positive control. Conclusion
In conclusion, the present study provides a scientific basis for future development of compound 3 as a potent photosensitizer for photodynamic therapy for MRSA wound infection.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ligang Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Roy Chi-Hang Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Ben Chun-Lap Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kit-Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Kwok-Pui Fung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Dennis Kee-Pui Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| |
Collapse
|
13
|
Sharshov K, Solomatina M, Kurskaya O, Kovalenko I, Kholina E, Fedorov V, Meerovich G, Rubin A, Strakhovskaya M. The Photosensitizer Octakis(cholinyl)zinc Phthalocyanine with Ability to Bind to a Model Spike Protein Leads to a Loss of SARS-CoV-2 Infectivity In Vitro When Exposed to Far-Red LED. Viruses 2021; 13:643. [PMID: 33918615 PMCID: PMC8068984 DOI: 10.3390/v13040643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic inactivation of pathogenic microorganisms can be successfully used to eradicate pathogens in localized lesions, infected liquid media, and on various surfaces. This technique utilizes the photosensitizer (PS), light, and molecular oxygen to produce reactive oxygen species that kill pathogens. Here, we used the PS, water soluble octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+), to inactivate an initial 4.75-5.00 IgTCID50/mL titer of SARS-CoV-2, thereby preventing viral infection when tested in Vero E6 cell cultures. Zn-PcChol8+ in a minimally studied concentration, 1 µM and LED 3.75 J/cm2, completely destroyed the infectivity of SARS-CoV-2. To detect possible PS binding sites on the envelope of SARS-CoV-2, we analyzed electrostatic potential and simulated binding of Zn-PcChol8+ to the spike protein of this coronavirus by means of Brownian dynamics software, ProKSim (Protein Kinetics Simulator). Most of the Zn-PcChol8+ molecules formed clusters at the upper half of the stalk within a vast area of negative electrostatic potential. Positioning of the PS on the surface of the spike protein at a distance of no more than 10 nm from the viral membrane may be favorable for the oxidative damage. The high sensitivity of SARS-CoV-2 to photodynamic inactivation by Zn-PcChol8+ is discussed with respect to the application of this PS to control the spread of COVID-19.
Collapse
Affiliation(s)
- Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Mariya Solomatina
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
- Institute of Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, 115409 Moscow, Russia
| | - Andrew Rubin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
14
|
An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing. NANOSCALE 2021; 13:3374-3411. [PMID: 33538743 PMCID: PMC8349509 DOI: 10.1039/d0nr08353d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacterial, viral and fungal infections pose serious threats to human health and well-being. The continuous emergence of acute infectious diseases caused by pathogenic microbes and the rapid development of resistances against conventional antimicrobial drugs necessitates the development of new and effective strategies for the safe elimination of microbes in water, food or on surfaces, as well as for the inactivation of pathogenic microbes in human hosts. The need for new antimicrobials has triggered the development of plasmonic nano-antimicrobials that facilitate both light-dependent and -independent microbe inactivation mechanisms. This review introduces the relevant photophysical mechanisms underlying these plasmonic nano-antimicrobials, and provides an overview of how the photoresponses and materials properties of plasmonic nanostructures can be applied in microbial pathogen inactivation and sensing applications. Through a systematic analysis of the inactivation efficacies of different plasmonic nanostructures, this review outlines the current state-of-the-art in plasmonic nano-antimicrobials and defines the application space for different microbial inactivation strategies. The advantageous optical properties of plasmonic nano-antimicrobials also enhance microbial detection and sensing modalities and thus help to avoid exposure to microbial pathogens. Sensitive and fast plasmonic microbial sensing modalities and their theranostic and targeted therapeutic applications are discussed.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Shyamsunder Erramilli
- Department of Physics, Boston University, Boston, MA 02215, USA and The Photonics Center, Boston University, Boston, MA 02215, USA
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA 02215, USA. and The Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
15
|
Synthesis of novel nicotinamide susbstituted phthalocyanine and photodynamic antomicrobial chemotherapy evaluation potentiated by potassium iodide against the gram positive S. aureus and gram negative E. coli. Biotechnol Lett 2021; 43:781-790. [PMID: 33387115 DOI: 10.1007/s10529-020-03071-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/14/2020] [Indexed: 11/27/2022]
Abstract
In the present work, we propose the synthesis of novel nicotinamide subsituted phthlocyanine photosensitizer (PS) and characterized by FTIR, UV-visible, H-NMR and MALDI Toff spectroscopy. Nicotinamide plays a vital rule in the central nervous system and its potential as a therapeutic for neurodegenerative disease. Nicotinamide substituted PS (3) efficiently produced ROS via type-1 process as measured by DCF assay. We observed that our PS after red light illumination (22 J/cm2) killed gram positive S. aureus upto 3 log reduction. Furher the addition of Potassium Iodide (100 mM) significantly potentiated PS at lower concentrations and enhanced the bacterial killing upto 6 log reduction against the S. aureus. We further found that the synergistic effect of PS and KI also eradicated the gram negative E. coli strain at lower concentraion of PS and found to killed E. coli upto 5 log reduction under the red light illumination at 22 J/cm2 of light dose. The conjugation of such biologically important form of vitamin B3 with PS would be a great addition and could pav the way for the novel photodynamic agent in the treatement of cancer and infectious diseases. A new symmetrical Nicotinamide tetrasubstituted zinc phthalocyanine (3) was synthesized. Upon addition of potassium Iodide with PS, the PS exhibited significant photodynamic activity with 5-6 logs reduction in bacterial load was achieved.
Collapse
|
16
|
Mete E, Kabay N, Dumoulin F, Ahsen V, Tuncel Kostakoğlu S, Ergin Ç. Photodynamic inactivation of Staphylococcus aureus using tetraethylene glycol-substituted Zn(II) phthalocyanine. Biotech Histochem 2020; 96:311-314. [PMID: 33325738 DOI: 10.1080/10520295.2020.1854855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus infections are increasing, especially in intensive care units. A new method for photodynamic inactivation (PDI) generates reactive oxygen species by photosensitization to kill bacteria. We investigated the PDI effect of tetraethylene glycol-substituted Zn(II) phthalocyanine (TEG-P) on S. aureus strains including two standards (ATCC 25923 and ATCC 43400) and 20 clinically isolated methicillin sensitive and 20 methicillin resistance strains. We also investigated three treated groups: 650 nm laser only, TEG-P only and TEG-P + laser, plus one control group. Treatments included 0.5, 1, 2, 4, 8, 16, 32 µg/ml concentrations of TEG-P. No suppression of bacterial growth was observed in the control, laser only and TEG-P only groups whether or not S. aureus was methicillin resistant. Bacterial growth was suppressed by 85% using 8 µg/ml TEG-P and completely suppressed by 32 µg/ml TEG-P in the TEG-P + laser group. A combination of TEG-P + laser treatment may be an alternative to conventional antibiotics for routine treatment of S. aureus infections, although further investigation of the effect at the tissue level is required.
Collapse
Affiliation(s)
- Ergun Mete
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Nilgün Kabay
- Department of Biomedical Engineering, Faculty of Technology, Pamukkale University, Denizli, Turkey
| | - Fabienne Dumoulin
- Department of Medical Engineering, Faculty of Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Vefa Ahsen
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey
| | - Sinem Tuncel Kostakoğlu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli, Turkey
| | - Çağrı Ergin
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
17
|
Ma W, Liu C, Li J, Hao M, Ji Y, Zeng X. The effects of aloe emodin-mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida albicans. Photochem Photobiol Sci 2020; 19:485-494. [PMID: 32232258 DOI: 10.1039/c9pp00352e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The extensive and repetitive use of antifungal drugs has led to the development of drug-resistant Candida albicans. Antimicrobial photodynamic therapy (aPDT) has received considerable attention as an emerging and promising approach to combat drug-resistant microbes. This study evaluated the photodynamic effects mediated by aloe emodin (AE), a natural compound isolated from Aloe vera and Rheum palmatum, on azole-sensitive and azole-resistant C. albicans in vitro. AE exhibited no significant dark toxicity, but in the presence of light, effectively inactivated C. albicans cells in a concentration-dependent manner. The uptake of AE by fungal cells was investigated by confocal laser scanning microscopy (CLSM), and the results showed that AE possessed stronger ability to enter into C. albicans cells following light irradiation. Transmission electron microscopy analysis suggested that AE-mediated aPDT could induce damage to the cell wall, cytoplasm, and nucleus. Damage to the surface of C. albicans was observed by scanning electron microscopy. These results suggest that AE is a potential PS for use in aPDT of drug-resistant C. albicans strains, and AE-mediated aPDT shows promise as an antifungal treatment.
Collapse
Affiliation(s)
- Wenpeng Ma
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, China.,The Second Hospital of Weinan, 2 East Chaoyang Street, Weinan, 714000, China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, China.
| | - Jiao Li
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, China
| | - Ming Hao
- The Second Hospital of Weinan, 2 East Chaoyang Street, Weinan, 714000, China
| | - Yanhong Ji
- Department of Pathogenic Microbiology & Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an, 710061, China
| | - Xiaoyan Zeng
- The First Affiliated Hospital of College of Medicine, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, China
| |
Collapse
|
18
|
Dharmaratne P, Wang B, Wong RCH, Chan BCL, Lau KM, Ke MR, Lau CBS, Ng DKP, Fung KP, Ip M. Monosubstituted tricationic Zn(II) phthalocyanine enhances antimicrobial photodynamic inactivation (aPDI) of methicillin-resistant Staphylococcus aureus (MRSA) and cytotoxicity evaluation for topical applications: in vitro and in vivo study. Emerg Microbes Infect 2020; 9:1628-1637. [PMID: 32619386 PMCID: PMC7473158 DOI: 10.1080/22221751.2020.1790305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) is an innovative approach to combat multi-drug resistant bacteria. It is known that cationic Zn(II) phthalocyanines (ZnPc) are effective in mediating aPDT against methicillin-resistant Staphylococcus aureus (MRSA). Here we used ZnPc-based photosensitizer named ZnPcE previously reported by our research group to evaluate its aPDT efficacy against broad spectrum of clinically relevant MRSAs. Remarkably, in vitro anti-MRSA activity was achieved using near-infrared (NIR, >610 nm) light with minimal bactericidal concentrations ranging <0.019-0.156 µM against the panel of MRSAs. ZnPcE was not only significantly (p < .05) more potent than methylene blue, which is a clinically approved photosensitizer but also demonstrated low cytotoxicity against human fibroblasts cell line (Hs-27) and human immortalized keratinocytes cell line (HaCaT). The toxicity was further evaluated on human 3-D skin constructs and found ZnPcE did not manifest in vivo skin irritation at ≤7.8 µM concentration. In the murine MRSA wound model, ZnPcE with PDT group demonstrated > 4 log10 CFU reduction and the value is significantly higher (p < .05) than all test groups except positive control. To conclude, results of present study provide a scientific basis for future clinical evaluation of ZnPcE-PDT on MRSA wound infection.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Roy C. H. Wong
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Ben C. L. Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Mei-Rong Ke
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Clara B. S. Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Dennis K. P. Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
| | - Kwok-Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong (SAR), People’s Republic of China
- CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, Hong Kong (SAR), People's Republic of China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong (SAR), People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People’s Republic of China
| |
Collapse
|
19
|
Gamelas SRD, Gomes ATPC, Faustino MAF, Tomé AC, Tomé JPC, Almeida A, Lourenço LMO. Photoinactivation of Escherichia coli with Water-Soluble Ammonium-Substituted Phthalocyanines. ACS APPLIED BIO MATERIALS 2020; 3:4044-4051. [DOI: 10.1021/acsabm.0c00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sara R. D. Gamelas
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana T. P. C. Gomes
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Augusto C. Tomé
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P. C. Tomé
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Adelaide Almeida
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leandro M. O. Lourenço
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Dharmaratne P, Sapugahawatte DN, Wang B, Chan CL, Lau KM, Lau CB, Fung KP, Ng DK, Ip M. Contemporary approaches and future perspectives of antibacterial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA): A systematic review. Eur J Med Chem 2020; 200:112341. [PMID: 32505848 DOI: 10.1016/j.ejmech.2020.112341] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Abstract
The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.
Collapse
Affiliation(s)
- Priyanga Dharmaratne
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | | | - Baiyan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China.
| | - Chung Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kit-Man Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Clara Bs Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, China.
| | - Kwok Pui Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; CUHK-Zhejiang University Joint Laboratory on Natural Products and Toxicology Research, China.
| | - Dennis Kp Ng
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Hong Kong (SAR), China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong (SAR), China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
21
|
Uwitonze AM, Ojeh N, Murererehe J, Atfi A, Razzaque MS. Zinc Adequacy Is Essential for the Maintenance of Optimal Oral Health. Nutrients 2020; 12:E949. [PMID: 32235426 PMCID: PMC7230687 DOI: 10.3390/nu12040949] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 01/19/2023] Open
Abstract
Zinc, a metal found in the Earth's crust, is indispensable for human health. In the human body, around 60% of zinc is present in muscles, 30% in bones, and the remaining 10% in skin, hair, pancreas, kidneys and plasma. An adequate zinc balance is essential for the maintenance of skeletal growth, development and function. It is also necessary for basic cellular functions including enzyme activation, cell signaling and energy metabolism. Inadequate zinc status is associated with a wide variety of systemic disorders including cardiovascular impairment, musculoskeletal dysfunctions and oromaxillary diseases. In this article, we briefly discuss the role of zinc deficiency in the genesis of various oromaxillary diseases, and explain why adequate zinc homeostasis is vital for the maintenance of oral and general health.
Collapse
Affiliation(s)
- Anne Marie Uwitonze
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, KK 737 St, Kigali, Rwanda
| | - Nkemcho Ojeh
- Faculty of Medical Sciences, University of the West Indies, Cave Hill Campus, Bridgetown BB11000, Barbados
| | - Julienne Murererehe
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, KK 737 St, Kigali, Rwanda
| | - Azeddine Atfi
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mohammed S. Razzaque
- Department of Preventive & Community Dentistry, University of Rwanda College of Medicine & Health Sciences, School of Dentistry, KK 737 St, Kigali, Rwanda
- College of Advancing & Professional Studies (CAPS), University of Massachusetts Boston (UMB), Boston, MA 02125, USA
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| |
Collapse
|
22
|
Leung B, Dharmaratne P, Yan W, Chan BC, Lau CB, Fung KP, Ip M, Leung SS. Development of thermosensitive hydrogel containing methylene blue for topical antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 203:111776. [DOI: 10.1016/j.jphotobiol.2020.111776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/28/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
|
23
|
Mantareva V, Gol C, Kussovski V, Durmuş M, Angelov I. Impact of water-soluble zwitterionic Zn(II) phthalocyanines against pathogenic bacteria. ACTA ACUST UNITED AC 2019; 74:183-191. [PMID: 31194695 DOI: 10.1515/znc-2018-0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/16/2019] [Indexed: 01/18/2023]
Abstract
The photodynamic impact of water-soluble zwitterionic zinc phthalocyanines (ZnPc1-4) was studied on pathogenic bacterial strains after specific light exposure (LED 665 nm). The structural differences between the studied ZnPc1-4 are in the positions and the numbers of substitution groups as well as in the bridging atoms (sulfur or oxygen) between substituents and macrocycle. The three peripherally substituted compounds (ZnPc1-3) are tetra-2-(N-propanesulfonic acid)oxypyridine (ZnPc1), tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc2), and octa-substituted 2-(N-propanesulfonic acid)mercaptopyridine (ZnPc3). The nonperipherally substituted compound is tetra-2-(N-propanesulfonic acid)mercaptopyridine (ZnPc4). The uptake and localization capability are studied on Gram (+) Enterococcus faecalis and Gram (-) Pseudomonas aeruginosa as suspensions and as 48 h biofilms. Relatively high accumulations of ZnPc1-4 show bacteria in suspensions with different cell density. The compounds have complete penetration in E. faecalis biofilms but with nonhomogenous distribution in P. aeruginosa biomass. The cytotoxicity test (Balb/c 3T3 Neutral Red Uptake) with ZnPc1-4 suggests the lack of dark toxicity on normal cells. However, only ZnPc3 has a minimal photocytotoxic effect toward Balb/c 3T3 cells and a comparable high potential in the photoinactivation of pathogenic bacterial species.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 9, 1113 Sofia, Bulgaria, Phone: +35 9 9606 181
| | - Cem Gol
- Bolu Abant Izzet Baysal University, Innovative Food Technologies Development Application and Research Center, Gölköy, Bolu, 14300, Turkey
| | - Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 26, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, Gebze-Kocaeli, 41400, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., Bld. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
24
|
Korneev D, Kurskaya O, Sharshov K, Eastwood J, Strakhovskaya M. Ultrastructural Aspects of Photodynamic Inactivation of Highly Pathogenic Avian H5N8 Influenza Virus. Viruses 2019; 11:v11100955. [PMID: 31623281 PMCID: PMC6832225 DOI: 10.3390/v11100955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as “bald” virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture “bald” virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.
Collapse
Affiliation(s)
- Denis Korneev
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia.
| | - Justin Eastwood
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria 3800, Australia.
| | - Marina Strakhovskaya
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA, 115682 Moscow, Russia.
| |
Collapse
|
25
|
Das NM, Singh AK, Ghosh D, Bandyopadhyay D. Graphene oxide nanohybrids for electron transfer-mediated antimicrobial activity. NANOSCALE ADVANCES 2019; 1:3727-3740. [PMID: 36133551 PMCID: PMC9418889 DOI: 10.1039/c9na00272c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/15/2019] [Indexed: 05/25/2023]
Abstract
The rapid increase in the prevalence of antibiotic-resistant bacterial strains poses a global health risk. In this scenario, alternative strategies are needed to combat the alarming rise in multidrug-resistant bacterial populations. For example, metal-incorporated graphene derivatives have emerged as model nanomaterials owing to their intrinsic antibacterial activity together with their biocompatibility. Interestingly, photon-activated phthalocyanine sensitizers have also shown promising physiochemical biocidal effects against pathogenic bacteria populations when conjugated with diverse nanomaterials. Herein, we report the facile synthesis of graphene oxide incorporated zinc phthalocyanine (ZnPc-GO) nanohybrids showing bactericidal activity against Gram-negative Escherichia coli (E. coli) cells, in the absence of any photo-excitation. The ZnPc-GO hybrid nanomaterials were synthesized by the in situ deposition of GO flakes on ZnPc-coated indium tin oxide (ITO) substrates. Two types of morphologically different ZnPc molecules, potato-chip-like α-phase ZnPc, namely ZnPc(A), and nanorod-like β-phase ZnPc(B), were used for the synthesis of the ZnPc(A/B)-GO nanocomposites. The interactions of GO with the underlying ZnPc(A/B) entities in the ZnPc-GO systems were investigated using multiple characterization techniques. It was observed that the GO flakes in the ZnPc(B)-GO nanocomposite possess stronger π-π interactions and thus show a more efficient electron transfer mechanism when compared with the ZnPc(A) counterpart. Furthermore, the E. coli bacterial cells with an electronegative surface demonstrated a profound adherence to the electron-withdrawing ZnPc(B)-GO surface. The death kinetics of bacteria with ZnPc(B)-GO were further investigated using surface potential mapping and Kelvin probe force microscopy (KPFM) analysis. Upon direct contact with ZnPc(B)-GO, the adhered bacterial cells showed outer cell deformation and membrane protein leakage, induced by a proposed charge-transfer mechanism between negatively charged cells and the electron-withdrawing ZnPc(B)-GO surface. These new findings may provide insights into the design of potential ZnPc-GO-based novel antimicrobial nanomaterials or surface coatings.
Collapse
Affiliation(s)
- Nayan Mani Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Amit Kumar Singh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Debdatta Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati Guwahati - 781039 India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati Guwahati - 781039 India
| |
Collapse
|
26
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
27
|
Kussovski V, Mantareva V, Durmuş M, Angelov I. Quaternized Zn(II) phthalocyanines for photodynamic strategy against resistant periodontal bacteria. ACTA ACUST UNITED AC 2019; 73:221-228. [PMID: 29306935 DOI: 10.1515/znc-2017-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 11/15/2022]
Abstract
Photodynamic inactivation (PDI) has been featured as an effective strategy in the treatment of acute drug-resistant infections. The efficiency of PDI was evaluated against three periodontal pathogenic bacteria that were tested as drug-resistant strains. In vitro studies were performed with four water-soluble cationic Zn(II) phthalocyanines (ZnPc1-4) and irradiation of a specific light source (light-emitting diode, 665 nm) with three doses (15, 36 and 60 J/cm2). The well detectable fluorescence of ZnPcs allowed the cellular imaging, which suggested relatively high uptakes of ZnPcs into bacterial species. Complete photoinactivation was achieved with all studied ZnPc1-4 for Enterococcus faecalis (E. faecalis) at a light dose of 15 J/cm2. The photodynamic response was high for Prevotella intermedia (P. intermedia) after the application of 6 μM of ZnPc1 and a light dose of 36 J/cm2 and for 6 μM of ZnPc2 at 60 J/cm2. P. intermedia was inactivated with ZnPc3 (4 log) and ZnPc4 (2 log) with irradiation at an optimal dose of 60 J/cm2. Similar photoinactivation results (2 log) were achieved for Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) treated with 6 μM ZnPc1 and ZnPc2 at a light dose of 60 J/cm2. The study suggested that PDI with quaternized Zn(II) phthalocyanines and specific light irradiation appears to be a very useful antimicrobial strategy for effective inactivation of drug-resistant periodontal pathogens.
Collapse
Affiliation(s)
- Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 26, 1113 Sofia, Bulgaria
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 9, 1113 Sofia, Bulgaria, Tel.: +35-92-9606-181
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze, 41 400 Kocaeli, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, str., Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
28
|
Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur J Med Chem 2019; 175:72-106. [PMID: 31096157 DOI: 10.1016/j.ejmech.2019.04.057] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/27/2018] [Accepted: 04/19/2019] [Indexed: 12/28/2022]
Abstract
The multi-drug resistant bacteria have become a serious problem complicating therapies to such a degree that often the term "post-antibiotic era" is applied to describe the situation. The infections with methicillin-resistant S. aureus, vancomycin-resistant E. faecium, third generation cephalosporin-resistant E. coli, third generation cephalosporin-resistant K. pneumoniae and carbapenem-resistant P. aeruginosa have become commonplace. Thus, the new strategies of infection treatment have been searched for, and one of the approaches is based on photodynamic antimicrobial chemotherapy. Photodynamic protocols require the interaction of photosensitizer, molecular oxygen and light. The aim of this review is to provide a comprehensive overview of photodynamic antimicrobial chemotherapy by porphyrinoid photosensitizers. In the first part of the review information on the mechanism of photodynamic action and the mechanism of the bacteria resistance to the photodynamic technique were described. In the second one, it was described porphyrinoids photosensitizers like: porphyrins, chlorins and phthalocyanines useable in photodynamic bacteria inactivation.
Collapse
|
29
|
Abstract
The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.
Collapse
|
30
|
Farajzadeh N, Karaoğlu HP, Akin M, Saki N, Koçak MB. Antimicrobial and antioxidant properties of novel octa-substituted phthalocyanines bearing (trifluoromethoxy) phenoxy groups on peripheral positions. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619500068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study presents a novel phthalonitrile derivative (2) bearing (trifluoromethoxy)phenoxy groups in 4,5 positions. Cyclotetramerization of (2) in [Formula: see text],[Formula: see text]-dimethylaminoethanol (DMAE) gave a series of peripherally octa-substituted metallophthalocyanines (3-Zn, 3-Co and 3-Cu). The newly synthesized phthalocyanines have been characterized by a combination of various spectroscopic techniques. Effects of solvent nature on aggregation behavior of 3-Zn were studied using different solvents such as acetone, CHCl3 and dichloromethane (DCM). In addition, the aggregation behavior of the phthalocyanine complex 3-Zn was examined in DCM at different concentrations ranging from 4 × 10[Formula: see text]–14 × 10[Formula: see text] M. Antimicrobial activities of synthesized compounds were tested by using the thin layer chromotography (TLC)-direct bioautography and disk diffusion methods. In both assays, the molecules showed activity on the tested Gram (+) bacteria. Antioxidant activities of the molecules, on the other hand, were determined by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method and a reducing power assay. The highest activity was obtained with 3-ZnPc for both methods.
Collapse
Affiliation(s)
- Nazli Farajzadeh
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, TR34469, Turkey
| | | | - Mustafa Akin
- Department of Chemistry, Kocaeli University, TR41380, İzmit, Kocaeli, Turkey
| | - Neslihan Saki
- Department of Chemistry, Kocaeli University, TR41380, İzmit, Kocaeli, Turkey
| | - Makbule Burkut Koçak
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, TR34469, Turkey
| |
Collapse
|
31
|
Lourenço LMO, Rocha DMGC, Ramos CIV, Gomes MC, Almeida A, Faustino MAF, Almeida Paz FA, Neves MGPMS, Cunha Â, Tomé JPC. Photoinactivation of Planktonic and Biofilm Forms of
Escherichia coli
through the Action of Cationic Zinc(II) Phthalocyanines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leandro M. O. Lourenço
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Deisy M. G. C. Rocha
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Catarina I. V. Ramos
- Mass Spectrometry Laboratory and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria C. Gomes
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Adelaide Almeida
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Filipe A. Almeida Paz
- CICECO-Aveiro Institute of Materials and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria G. P. M. S. Neves
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Ângela Cunha
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João P. C. Tomé
- CQE and Departamento de Engenharia Química Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, n°1 1049-001 Lisboa Portugal
| |
Collapse
|
32
|
|
33
|
Meerovich GA, Akhlyustina EV, Tiganova IG, Lukyanets EA, Makarova EA, Tolordava ER, Yuzhakova OA, Romanishkin ID, Philipova NI, Zhizhimova YS, Romanova YM, Loschenov VB, Gintsburg AL. Novel Polycationic Photosensitizers for Antibacterial Photodynamic Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1282:1-19. [PMID: 31446610 DOI: 10.1007/5584_2019_431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Antibacterial photodynamic therapy (APDT) is a promising method of treating local infected foci, in particular, surgical and burn wounds, trophic and diabetic ulcers. Photodynamic inactivation (PDI) is able to effectively destroy bacterial cells without them developing resistance in response to treatment.This work was dedicated to the study of photophysical and antibacterial properties of new photosensitizers (PS) based on polycationic phthalocyanines and synthetic bacteriochlorins for photodynamic inactivation of P. aeruginosa bacteria and their biofilms. Gram-negative bacteria P. aeruginosa are often found in infected wounds, presumably in biofilm state and are characterized by rather low susceptibility to APDT, which is a problem. PS were studied for possible aggregation at various concentrations by means of absorption and fluorescence spectroscopy. The results of studies of the ZnPcChol8, (3-PyHp)4BCBr4 and (3-PyEBr)4BCBr4 in water and serum confirm the assumption of a low degree of their aggregation at high concentrations.Consequently, their photodynamic efficiency is high enabling to use these PS at high concentrations to sensitize pathological foci for APDT.It was shown that all the investigated PS had a high efficiency of photodynamic inactivation of Gram-negative bacteria P. aeruginosa, as well as their biofilms. Tetracationic hydrophilic near-infrared photosensitizer (3-PyEBr)4BCBr4 with reduced molecule size had significantly higher efficacy of photodynamic inactivation of P. aeruginosa biofilms compared with other studied photosensitizers.
Collapse
Affiliation(s)
- G A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia. .,National Research Nuclear University "MEPHI", Moscow, Russia.
| | - E V Akhlyustina
- National Research Nuclear University "MEPHI", Moscow, Russia
| | - I G Tiganova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - E A Lukyanets
- Organic Intermediates and Dyes Institute, Moscow, Russia
| | - E A Makarova
- Organic Intermediates and Dyes Institute, Moscow, Russia
| | - E R Tolordava
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - O A Yuzhakova
- Organic Intermediates and Dyes Institute, Moscow, Russia
| | - I D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
| | - N I Philipova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Yu S Zhizhimova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Yu M Romanova
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - V B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.,National Research Nuclear University "MEPHI", Moscow, Russia
| | - A L Gintsburg
- N.F. Gamaleya National Research Center of Epidemiology and Microbiology, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
34
|
Nishisaka-Nonaka R, Mawatari K, Yamamoto T, Kojima M, Shimohata T, Uebanso T, Nakahashi M, Emoto T, Akutagawa M, Kinouchi Y, Wada T, Okamoto M, Ito H, Yoshida KI, Daidoji T, Nakaya T, Takahashi A. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:193-200. [PMID: 30391908 DOI: 10.1016/j.jphotobiol.2018.10.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
Abstract
Influenza A viruses (IAVs) pose a serious global threat to humans and their livestock, especially poultry and pigs. This study aimed to investigate how to inactivate IAVs by using different ultraviolet-light-emitting diodes (UV-LEDs). We developed sterilization equipment with light-emitting diodes (LEDs) those peak wavelengths were 365 nm (UVA-LED), 310 nm (UVB-LED), and 280 nm (UVC-LED). These UV-LED irradiations decreased dose fluence-dependent plaque-forming units of IAV H1N1 subtype (A/Puerto Rico/8/1934) infected Madin-Darby canine kidney (MDCK) cells, but the inactivation efficiency of UVA-LED was significantly lower than UVB- and UVC-LED. UV-LED irradiations did not alter hemagglutination titer, but decreased accumulation of intracellular total viral RNA in infected MDCK cells was observed. Additionally, UV-LED irradiations suppressed the accumulation of intracellular mRNA (messenger RNA), vRNA (viral RNA), and cRNA (complementary RNA), as measured by strand-specific RT-PCR. These results suggest that UV-LEDs inhibit host cell replication and transcription of viral RNA. Both UVB- and UVC-LED irradiation decreased focus-forming unit (FFU) of H5N1 subtype (A/Crow/Kyoto/53/2004), a highly pathogenic avian IAV (HPAI), in infected MDCK cells, and the amount of FFU were lower than the H1N1 subtype. From these results, it appears that IAVs may have different sensitivity among the subtypes, and UVB- and UVC-LED may be suitable for HPAI virus inactivation.
Collapse
Affiliation(s)
- Risa Nishisaka-Nonaka
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan.
| | - Tomomi Yamamoto
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Mizuki Kojima
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| | - Mutsumi Nakahashi
- Graduate School of Bioscience and Bioindustry, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Takahiro Emoto
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Masatake Akutagawa
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Yohsuke Kinouchi
- Graduate School of Science and Technology, Tokushima University, Minamijyousanjima-cho 2-1, Tokushima City, Tokushima 770-8506, Japan
| | - Takahiro Wada
- Nihon Funen Co., Ltd, 179-1 Mitsujima-shinden, Kawashima-cho, Yoshinogawa City, Tokushima 779-3394, Japan
| | - Masayuki Okamoto
- Nihon Funen Co., Ltd, 179-1 Mitsujima-shinden, Kawashima-cho, Yoshinogawa City, Tokushima 779-3394, Japan
| | - Hiroshi Ito
- Nihon Funen Co., Ltd, 179-1 Mitsujima-shinden, Kawashima-cho, Yoshinogawa City, Tokushima 779-3394, Japan
| | - Ken-Ichi Yoshida
- Nihon Funen Co., Ltd, 179-1 Mitsujima-shinden, Kawashima-cho, Yoshinogawa City, Tokushima 779-3394, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima City, Tokushima 770-8503, Japan
| |
Collapse
|
35
|
Synthesis and characterization of novel quaternized 2, 3-(diethylmethylamino)phenoxy tetrasubstituted Indium and Gallium phthalocyanines and comparison of their antimicrobial and antioxidant properties with different phthalocyanines. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
36
|
Baigorria E, Reynoso E, Alvarez MG, Milanesio ME, Durantini EN. Silica nanoparticles embedded with water insoluble phthalocyanines for the photoinactivation of microorganisms. Photodiagnosis Photodyn Ther 2018; 23:261-269. [PMID: 29964223 DOI: 10.1016/j.pdpdt.2018.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Silica nanoparticles (SiNPs) embedded with Zn(II) 2,9,16,23-tetrakis(methoxy)phthalocyanine (SiNPZnPcOCH3), Zn(II) 2,9,16,23-tetrakis(4-pyridyloxy) phthalocyanine (SiNPZnPcOPy) and Zn(II) 2,9,16,23-tetrakis(t-butyl) phthalocyanine (SiNPZnPctBu) were synthesized in the nonpolar core of AOT/1-butanol/water micelles using triethoxyvinylsilane and 3-aminopropyltriethoxysilane. These SiNPs-Pc presented an average diameter of about 20-25 nm. UV-vis absorption spectra presented the characteristic Soret and Q bands of phthalocyanines embedded into the nanoparticles. Moreover, red fluorescence emission of SiNPs bearing phthalocyanines was detected in water. The SiNPs-Pc produced the photodecomposition of 2,2'-(anthracene-9,10-diyl)bis(methylmalonic acid), which was used to sense the singlet molecular oxygen O2(1Δg) generation in aqueous medium. Also, the formation of superoxide anion radical was detected by nitro blue tetrazolium reduction in the presence of NADH. Photoinactivation of microorganisms was investigated in Staphylococcus aureus and Candida albicans. In vitro experiments showed that photosensitized inactivation induced by SiNPZnPcOCH3 and SiNPZnPctBu improved with an increase of irradiation times. After 30 min irradiation, over 7 log reduction was found for S. aureus. Also, these SiNPs-Pc produced a decrease of 2.5 log in C. albicans after 60 min irradiation. In both cases, a lower photoinactivation activity was found for SiNPZnPcOPy. Studies of photodynamic action mechanism showed that the photokilling of microbial cells was protected in the presence of sodium azide and diazabicyclo[2.2.2]octane. Also, a reduction on the cell photodamage was found with the addition of D-mannitol. Therefore, the photodynamic activity sensitized by SiNPZnPcOCH3 and SiNPZnPctBu in microbial cells was mediated by a contribution of both type I and type II photooxidative mechanisms. Thus, silica nanoparticles are interesting materials to vehicle ZnPcOCH3 and ZnPctBu in aqueous media to photoeradicate microorganisms.
Collapse
Affiliation(s)
- Estefania Baigorria
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Eugenia Reynoso
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - M Elisa Milanesio
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| | - Edgardo N Durantini
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
37
|
Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol 2018; 9:1299. [PMID: 29997579 PMCID: PMC6030385 DOI: 10.3389/fmicb.2018.01299] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Biofilm describes a microbially-derived sessile community in which microbial cells are firmly attached to the substratum and embedded in extracellular polymeric matrix. Microbial biofilms account for up to 80% of all bacterial and fungal infections in humans. Biofilm-associated pathogens are particularly resistant to antibiotic treatment, and thus novel antibiofilm approaches needed to be developed. Antimicrobial Photodynamic therapy (aPDT) had been recently proposed to combat clinically relevant biofilms such as dental biofilms, ventilator associated pneumonia, chronic wound infections, oral candidiasis, and chronic rhinosinusitis. aPDT uses non-toxic dyes called photosensitizers (PS), which can be excited by harmless visible light to produce reactive oxygen species (ROS). aPDT is a multi-stage process including topical PS administration, light irradiation, and interaction of the excited state with ambient oxygen. Numerous in vitro and in vivo aPDT studies have demonstrated biofilm-eradication or substantial reduction. ROS are produced upon photo-activation and attack adjacent targets, including proteins, lipids, and nucleic acids present within the biofilm matrix, on the cell surface and inside the microbial cells. Damage to non-specific targets leads to the destruction of both planktonic cells and biofilms. The review aims to summarize the progress of aPDT in destroying biofilms and the mechanisms mediated by ROS. Finally, a brief section provides suggestions for future research.
Collapse
Affiliation(s)
- Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Ying-Ying Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
| | - Yuguang Wang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Michael R. Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| |
Collapse
|
38
|
Zhang JN, Zhang F, Tang QJ, Xu CS, Meng XH. Effect of photodynamic inactivation of Escherichia coli by hypericin. World J Microbiol Biotechnol 2018; 34:100. [PMID: 29926201 DOI: 10.1007/s11274-018-2464-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023]
Abstract
The present study has focused on the effects of hypericin (Hyp) based photodynamic inactivation (PDI) of Escherichia coli (E. coli). To evaluate the efficiency of Hyp based PDI of E. coli, single factor experiments and response surface optimization experiment were conducted to obtain the optimum parameter values (36 µM Hyp, 5.9 J cm-2 light dose: 16.4 mW cm-2, 60 W, 260 s, 590 nm and 68 min incubation time) and finally achieved a 4.1 log CFU mL-1 decrease of E. coli. Cell-Hyp interaction and intracellular reactive oxygen species (ROS) level were detected by fluorescence spectrometric photometer. Data indicated that Hyp possessed a strong ability to bind with cells. In addition, a significant increase was observed in intracellular ROS level after Hyp-based photosensitization treatment. Therefore, Hyp-based photosensitization seems to be a promising method to efficiently inactivate E. coli. It is expected to be a safe, efficient, low cost and practical method which can be applied in the field of food safety.
Collapse
Affiliation(s)
- Jun-Nan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Fang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Qing-Juan Tang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chuan-Shan Xu
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang-Hong Meng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
39
|
George L, Hiltunen A, Santala V, Efimov A. Photo-antimicrobial efficacy of zinc complexes of porphyrin and phthalocyanine activated by inexpensive consumer LED lamp. J Inorg Biochem 2018; 183:94-100. [DOI: 10.1016/j.jinorgbio.2018.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/01/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
|
40
|
Galstyan A, Dobrindt U. Breaching the wall: morphological control of efficacy of phthalocyanine-based photoantimicrobials. J Mater Chem B 2018; 6:4630-4637. [DOI: 10.1039/c8tb01357h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, photophysical, theoretical and biological studies are combined, highlighting the importance of different characteristics for designing new and more effective PSs.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Ulrich Dobrindt
- Institute of Hygiene
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|
41
|
Miretti M, Clementi R, Tempesti TC, Baumgartner MT. Photodynamic inactivation of multiresistant bacteria (KPC) using zinc(II)phthalocyanines. Bioorg Med Chem Lett 2017; 27:4341-4344. [DOI: 10.1016/j.bmcl.2017.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022]
|
42
|
Antimicrobial and anticancer photodynamic activity of a phthalocyanine photosensitizer with N -methyl morpholiniumethoxy substituents in non-peripheral positions. J Inorg Biochem 2017; 172:67-79. [DOI: 10.1016/j.jinorgbio.2017.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/29/2022]
|
43
|
Ertem B, Sarkı G, Yalazan H, Bıyıklıoğlu Z, Kantekin H. The synthesis and electrochemical characterization of new metallophthalocyanines containing 4-aminoantipyrine moieties on peripherally positions. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Malatesti N, Munitic I, Jurak I. Porphyrin-based cationic amphiphilic photosensitisers as potential anticancer, antimicrobial and immunosuppressive agents. Biophys Rev 2017; 9:149-168. [PMID: 28510089 PMCID: PMC5425819 DOI: 10.1007/s12551-017-0257-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) combines a photosensitiser, light and molecular oxygen to induce oxidative stress that can be used to kill pathogens, cancer cells and other highly proliferative cells. There is a growing number of clinically approved photosensitisers and applications of PDT, whose main advantages include the possibility of selective targeting, localised action and stimulation of the immune responses. Further improvements and broader use of PDT could be accomplished by designing new photosensitisers with increased selectivity and bioavailability. Porphyrin-based photosensitisers with amphiphilic properties, bearing one or more positive charges, are an effective tool in PDT against cancers, microbial infections and, most recently, autoimmune skin disorders. The aim of the review is to present some of the recent examples of the applications and research that employ this specific group of photosensitisers. Furthermore, we will highlight the link between their structural characteristics and PDT efficiency, which will be helpful as guidelines for rational design and evaluation of new PSs.
Collapse
Affiliation(s)
- Nela Malatesti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia.
| | - Ivana Munitic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| |
Collapse
|
45
|
Ağirtaş MS, Öndeş MY, Özdemir S, Okumuş V. DNA cleavage properties and synthesis of metallophthalocyanines with 5-methyl-[1, 2, 4] triazolo [1, 5-a] pyrimidin-7-oxy substituents. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1284086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Salih Ağirtaş
- Department of Chemistry, Faculty of Science, Yüzüncü Yıl University, Van, Turkey
| | - M. Yusuf Öndeş
- Department of Chemistry, Faculty of Science, Yüzüncü Yıl University, Van, Turkey
| | - Sadin Özdemir
- Department of Biology, Faculty of Arts and Science, Siirt University, Siirt, Turkey
| | - Veysi Okumuş
- Department of Biology, Faculty of Arts and Science, Siirt University, Siirt, Turkey
| |
Collapse
|
46
|
Penha CB, Bonin E, da Silva AF, Hioka N, Zanqueta ÉB, Nakamura TU, de Abreu Filho BA, Campanerut-Sá PAZ, Mikcha JMG. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.07.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
El-Khordagui L, El-Sayed N, Galal S, El-Gowelli H, Omar H, Mohamed M. Photosensitizer-eluting nanofibers for enhanced photodynamic therapy of wounds: A preclinical study in immunocompromized rats. Int J Pharm 2017; 520:139-148. [DOI: 10.1016/j.ijpharm.2017.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/28/2017] [Accepted: 02/01/2017] [Indexed: 01/05/2023]
|
48
|
Cheng X, Li Y, Tang S, Zhang X, Wang Y, Wang S, Jiang J, Li Y, Song D. Synthesis and evaluation of halogenated 12N-sulfonyl matrinic butanes as potential anti-coxsackievirus agents. Eur J Med Chem 2017; 126:133-142. [DOI: 10.1016/j.ejmech.2016.09.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/24/2023]
|
49
|
Fanchiotti BG, Machado MPZ, de Paula LC, Durmuş M, Nyokong T, da Silva Gonçalves A, da Silva AR. The photobleaching of the free and encapsulated metallic phthalocyanine and its effect on the photooxidation of simple molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 165:10-23. [PMID: 27755995 DOI: 10.1016/j.jphotobiol.2016.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/06/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
Abstract
The photobleaching of an unsubstituted phthalocyanine (gallium(III) phthalocyanine chloride (GaPc)) and a substituted phthalocyanine (1,4-(tetrakis[4-(benzyloxy)phenoxy]phthalocyaninato) indium(III) chloride (InTBPPc)) was monitored for the free photosensitizers and for the phthalocyanines encapsulated into nanoparticles of PEGylated poly(D,L-lactide-co-glycolide) (PLGA-PEG). Phosphate-buffered solutions (PBS) and organic solutions of the free GaPc or the free InTBPPc, and suspensions of each encapsulated photosensitizer (2-15μmol/L) were irradiated using a laser diode of 665nm with a power of 1-104mW and a light dose of 7.5J/cm2. The relative absorbance (RA) of the free GaPc dissolved in 1-methyl-2-pyrrolidone (MP) decreased 8.4 times when the laser power increased from 1mW to 104mW. However, the free or encapsulated GaPc did not suffer the photobleaching in PBS solution. The RA values decreased 2.4 times and 22.2 times for the free InTBPPc dissolved in PBS solution and in dimethylformamide (DMF), respectively, but the encapsulated InTBPPc was only photobleached when the laser power was 104mW at 8μmol/L. The increase of the free GaPc concentration favored the photobleaching in MP until 8μmol/L while the increase from 2μmol/L to 5μmol/L reduced the photodegradation in PBS solution. However, the photobleaching of the free InTBPPc in DMF or in PBS solution, and of each encapsulated photosensitizer was not influenced by increasing the concentration. The influence of the photobleaching on the capability of the free and encapsulated GaPc and InTBPPc to photooxidate the simple molecules was investigated monitoring the fluorescence of dimethylanthracene (DMA) and the tryptophan (Trp). Free InTBPPc was 2.0 and 1.8 times faster to photooxidate the DMA and Trp than it was the free GaPc, but the encapsulated GaPc was 3.4 times more efficient to photooxidize the Trp than it was the encapsulated InTBPPc due to the photodegradation suffered by the encapsulated InTBPPc. The participation of the singlet oxygen was confirmed with the sodium azide in the photobleaching of all free and encapsulated photosensitizer, and in the photooxidation of the DMA and Trp. The asymmetry of InTBPPc increased the solubility of the free compound, decreasing the aggregation state of the photosensitizer and favoring the photobleaching process. The encapsulation shows capability in decreasing the photobleaching of both photosensitizers but the confocal micrographs showed that the increase of the solubility favored the InTBPPc photobleaching during the acquisition of optical cross section.
Collapse
Affiliation(s)
| | | | | | - Mahmut Durmuş
- Gebze Technical University, Department of Chemistry, PO Box 141, Gebze 41400, Turkey
| | - Tebello Nyokong
- Rhodes University, Department of Chemistry, PO Box 94, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
50
|
Kossakowska-Zwierucho M, Kaźmierkiewicz R, Bielawski KP, Nakonieczna J. Factors Determining Staphylococcus aureus Susceptibility to Photoantimicrobial Chemotherapy: RsbU Activity, Staphyloxanthin Level, and Membrane Fluidity. Front Microbiol 2016; 7:1141. [PMID: 27486456 PMCID: PMC4949386 DOI: 10.3389/fmicb.2016.01141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/07/2016] [Indexed: 12/22/2022] Open
Abstract
Photoantimicrobial chemotherapy (PACT) constitutes a particular type of stress condition, in which bacterial cells induce a pleiotropic and as yet unexplored effect. In light of this, the key master regulators are of putative significance to the overall phototoxic outcome. In Staphylococcus aureus, the alternative sigma factor σB controls the expression of genes involved in the response to environmental stress. We show that aberration of any sigB operon genes in S. aureus USA300 isogenic mutants causes a pronounced sensitization (>5 log10 reduction in CFU drop) to PACT with selected photosensitizers, namely protoporphyrin diarginate, zinc phthalocyanine and rose bengal. This effect is partly due to aberration-coupled staphyloxanthin synthesis inhibition. We identified frequent mutations in RsbU, a σB activator, in PACT-vulnerable clinical isolates of S. aureus, resulting in σB activity impairment. Locations of significant changes in protein structure (IS256 insertion, early STOP codon occurrence, substitutions A230T and A276D) were shown in a theoretical model of S. aureus RsbU. As a phenotypic hallmark of PACT-vulnerable S. aureus strains, we observed an increased fluidity of bacterial cell membrane, which is a result of staphyloxanthin content and other yet unidentified factors. Our research indicates σB as a promising target of adjunctive antimicrobial therapy and suggests that enhanced cell membrane fluidity may be an adjuvant strategy in PACT.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Rajmund Kaźmierkiewicz
- Laboratory of Biomolecular Systems Simulation, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Krzysztof P Bielawski
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|