1
|
Türkdoğan D, Smolina N, Tekgül Ş, Gül T, Yeşilyurt A, Houlden H, Zuchner S, Brais B, Pellerin D, Başak AN. The First Case of Autosomal Recessive Cerebellar Ataxia with Prominent Paroxysmal Non-kinesigenic Dyskinesia Caused by a Truncating FGF14 Variant in a Turkish Patient. Mov Disord 2024. [PMID: 39704271 DOI: 10.1002/mds.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND ATX-FGF/SCA27A has been exclusively associated with heterozygous variants in the FGF14 gene, presenting with postural tremor, slowly progressive cerebellar ataxia, and psychiatric and behavioral disturbances. OBJECTIVES This study describes the first case of ATX-FGF/SCA27A linked to a biallelic frameshift variant in the FGF14 gene. METHODS Whole-exome sequencing (WES) was conducted using the Illumina NovaSeq 6000 platform, and the identified variant was confirmed using Sanger sequencing. RESULTS We report the first case of autosomal recessive FGF14-related cerebellar ataxia caused by a c.75del variant resulting in p.Leu26Serfs*51 truncation of the FGF14 protein. This variant was found in a patient born to consanguineous parents and presented with a complex congenital nonprogressive cerebellar disorder accompanied by neurodevelopmental delay, intellectual disability, and prominent drug-responsive paroxysmal non-kinesigenic dyskinesia. Segregation analysis confirmed that the homozygous variant was inherited from heterozygous parents who developed mild gait ataxia and tremor in their 40s. CONCLUSIONS Biallelic loss-of-function variants in FGF14 are a rare cause of inherited cerebellar ataxia and expand the current genetic spectrum of ATX-FGF14. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dilşad Türkdoğan
- Department of Pediatric Neurology, School of Medicine, Marmara University, and Private Office, Istanbul, Turkey
| | - Natalia Smolina
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, Istanbul, Turkey
| | - Şeyma Tekgül
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, Istanbul, Turkey
| | - Tuğçe Gül
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, Istanbul, Turkey
| | - Ahmet Yeşilyurt
- Division of Medical Genetics, Acıbadem Maslak Hospital, Medical Genetics, Istanbul, Turkey
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Pellerin
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
2
|
Ransdell JL, Brown SP, Xiao M, Ornitz DM, Nerbonne JM. In Vivo Expression of an SCA27A-linked FGF14 Mutation Results in Haploinsufficiency and Impaired Firing of Cerebellar Purkinje Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620253. [PMID: 39484407 PMCID: PMC11527103 DOI: 10.1101/2024.10.25.620253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Autosomal dominant mutations in FGF14 , which encodes intracellular fibroblast growth factor 14 (iFGF14), underlie spinocerebellar ataxia type 27A (SCA27A), a devastating multisystem disorder resulting in progressive deficits in motor coordination and cognitive function. Mice lacking iFGF14 ( Fgf14 -/- ) exhibit similar phenotypes, which have been linked to iFGF14-mediated modulation of the voltage-gated sodium (Nav) channels that control the high frequency repetitive firing of Purkinje neurons, the main output neurons of the cerebellar cortex. To investigate the pathophysiological mechanisms underlying SCA27A, we developed a targeted knock-in strategy to introduce the first point mutation identified in FGF14 into the mouse Fgf14 locus ( Fgf14 F145S ), we determined the impact of in vivo expression of the mutant Fgf14 F145S allele on the motor performance of adult animals and on the firing properties of mature Purkinje neurons in acute cerebellar slices. Electrophysiological experiments revealed that repetitive firing rates are attenuated in adult Fgf14 F145S/+ cerebellar Purkinje neurons, attributed to a hyperpolarizing shift in the voltage-dependence of steady-state inactivation of Nav channels. More severe effects on firing properties and Nav channel inactivation were observed in homozygous Fgf14 F145S/F145S Purkinje neurons. Interestingly, the electrophysiological phenotypes identified in adult Fgf14 F145S/+ and Fgf14 F145S/F145S cerebellar Purkinje neurons mirror those observed in heterozygous Fgf14 +/- and homozygous Fgf14 -/- Purkinje neurons, respectively, suggesting that the mutation results in the loss of the iFGF14 protein. Western blot analysis of lysates from adult heterozygous Fgf14 F145S/+ and homozygous Fgf14 F145S/F145S animals revealed reduced or undetectable, respectively, iFGF14 expression, supporting the hypothesis that the mutant allele results in loss of the iFGF14 protein and that haploinsufficiency underlies SCA27A neurological phenotypes.
Collapse
|
3
|
De T, Sharma P, Upilli B, Vivekanand A, Bari S, Sonakar AK, Srivastava AK, Faruq M. Spinocerebellar ataxia type 27B (SCA27B) in India: insights from a large cohort study suggest ancient origin. Neurogenetics 2024; 25:393-403. [PMID: 38976084 DOI: 10.1007/s10048-024-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The ethnic diversity of India provides a unique opportunity to study the history of the origin of mutations of genetic disorders. Spinocerebellar ataxia type 27B (SCA27B), a recently identified dominantly inherited cerebellar disorder is caused by GAA-repeat expansions in intron 1 of Fibroblast Growth Factor 14 (FGF14). Predominantly reported in the European population, we aimed to screen this mutation and study the founder haplotype of SCA27B in Indian ataxia patients. METHODS We have undertaken screening of GAA repeats in a large Indian cohort of ~ 1400 uncharacterised ataxia patients and kindreds and long-read sequencing-based GAA repeat length assessment. High throughput genotyping-based haplotype analysis was also performed. We utilized ~ 1000 Indian genomes to study the GAA at-risk expansion alleles. FINDINGS We report a high frequency of 1.83% (n = 23) of SCA27B in the uncharacterized Indian ataxia cohort. We observed several biallelic GAA expansion mutations (n = 5) with younger disease onset. We observed a risk haplotype (AATCCGTGG) flanking the FGF14-GAA locus over a 74 kb region in linkage disequilibrium. We further studied the frequency of this risk haplotype across diverse geographical population groups. The highest prevalence of the risk haplotype was observed in the European population (29.9%) followed by Indians (21.5%). The observed risk haplotype has existed through ~ 1100 generations (~ 22,000 years), assuming a correlated genealogy. INTERPRETATION This study provides valuable insights into SCA27B and its Upper Paleolithic origin in the Indian subcontinent. The high occurrence of biallelic expansion is probably relevant to the endogamous nature of the Indian population.
Collapse
Affiliation(s)
- Tiyasha De
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Bharathram Upilli
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - A Vivekanand
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India
| | - Shreya Bari
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India
| | - Akhilesh Kumar Sonakar
- Neurology Department, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, 110029, India
| | - Achal Kumar Srivastava
- Neurology Department, Neuroscience Centre, All India Institute of Medical Sciences, Ansari Nagar, 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, Mall road, New Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Sector-19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
4
|
Mohren L, Erdlenbruch F, Leitão E, Kilpert F, Hönes GS, Kaya S, Schröder C, Thieme A, Sturm M, Park J, Schlüter A, Ruiz M, Morales de la Prida M, Casasnovas C, Becker K, Roggenbuck U, Pechlivanis S, Kaiser FJ, Synofzik M, Wirth T, Anheim M, Haack TB, Lockhart PJ, Jöckel KH, Pujol A, Klebe S, Timmann D, Depienne C. Identification and characterisation of pathogenic and non-pathogenic FGF14 repeat expansions. Nat Commun 2024; 15:7665. [PMID: 39227614 PMCID: PMC11372089 DOI: 10.1038/s41467-024-52148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Repeat expansions in FGF14 cause autosomal dominant late-onset cerebellar ataxia (SCA27B) with estimated pathogenic thresholds of 250 (incomplete penetrance) and 300 AAG repeats (full penetrance), but the sequence of pathogenic and non-pathogenic expansions remains unexplored. Here, we demonstrate that STRling and ExpansionHunter accurately detect FGF14 expansions from short-read genome data using outlier approaches. By combining long-range PCR and nanopore sequencing in 169 patients with cerebellar ataxia and 802 controls, we compare FGF14 expansion alleles, including interruptions and flanking regions. Uninterrupted AAG expansions are significantly enriched in patients with ataxia from a lower threshold (180-200 repeats) than previously reported based on expansion size alone. Conversely, AAGGAG hexameric expansions are equally frequent in patients and controls. Distinct 5' flanking regions, interruptions and pre-repeat sequences correlate with repeat size. Furthermore, pure AAG (pathogenic) and AAGGAG (non-pathogenic) repeats form different secondary structures. Regardless of expansion size, SCA27B is a recognizable clinical entity characterized by frequent episodic ataxia and downbeat nystagmus, similar to the presentation observed in a family with a previously unreported nonsense variant (SCA27A). Overall, this study suggests that SCA27B is a major overlooked cause of adult-onset ataxia, accounting for 23-31% of unsolved patients. We strongly recommend re-evaluating pathogenic thresholds and integrating expansion sequencing into the molecular diagnostic process.
Collapse
Affiliation(s)
- Lars Mohren
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Friedrich Erdlenbruch
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Elsa Leitão
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Kilpert
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - G Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabine Kaya
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Moisés Morales de la Prida
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ulla Roggenbuck
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsklinikum Essen, Essen, Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology & Hertie Institute for Clinical Brain Research Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Thomas Wirth
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mathieu Anheim
- Service de Neurologie, Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, 1, Avenue Molière, Strasbourg, Cedex, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Paul J Lockhart
- Bruce Lefroy Centre, Murdoch Children's Research Institute; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Stephan Klebe
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Shirai S, Mizushima K, Fujiwara K, Koshimizu E, Matsushima M, Miyatake S, Iwata I, Yaguchi H, Matsumoto N, Yabe I. Case series: Downbeat nystagmus in SCA27B. J Neurol Sci 2023; 454:120849. [PMID: 37907039 DOI: 10.1016/j.jns.2023.120849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) 27B, first reported in late 2022, is caused by the abnormal expansion of GAA repeats in the first intron of the FGF14 gene, which encodes the fibroblast growth factor 14. CASE PRESENTATION We present two late-onset cases, each manifesting mild cerebellar ataxia accompanied by omnidirectional downbeat nystagmus, which was enhanced in a suspended head position. None of the patients exhibited impaired head impulse or caloric tests. Repeat-primed PCR and targeted long-read nanopore sequence analysis of the FGF14 GAA repeat site identified more than 250 repeats, leading to the diagnosis of SCA27B. DISCUSSION Downbeat nystagmus is reported to be associated with disturbances in the suppression of the vestibulo-ocular reflex (VOR). Our patients with SCA27B demonstrated downbeat nystagmus, likely due to a disruption of the VOR at the level of the cerebellar cortex, a potentially characteristic clinical feature of SCA27B. We have included video footages of eye movements recorded using Frenzel goggles for these cases. CONCLUSIONS Omnidirectional downbeat nystagmus may be a distinctive clinical feature of SCA27B.
Collapse
Affiliation(s)
- Shinichi Shirai
- Departments of Neurology, Hokkaido University, Sapporo, Japan
| | | | - Keishi Fujiwara
- Otolaryngology-Head & Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Ikuko Iwata
- Departments of Neurology, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Departments of Neurology, Hokkaido University, Sapporo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Departments of Neurology, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
6
|
Miura S, Sawada R, Yorita A, Kida H, Kamada T, Yamanishi Y. A trial of topiramate for patients with hereditary spinocerebellar ataxia. Clin Case Rep 2023; 11:e6980. [PMID: 36855409 PMCID: PMC9968455 DOI: 10.1002/ccr3.6980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023] Open
Abstract
In an open pilot trial, six patients with various hereditary forms of spinocerebellar ataxia (SCA) were assigned to topiramate (50 mg/day) for 24 weeks. Four patients completed the protocol without adverse events. Of these four patients, topiramate was effective for three patients. Some patients with SCA could respond to treatment with topiramate.
Collapse
Affiliation(s)
- Shiroh Miura
- Department of Neurology and Geriatric MedicineEhime University Graduate School of MedicineToonEhimeJapan
| | - Ryusuke Sawada
- Department of PharmacologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesKita‐kuOkayamaJapan
| | - Akiko Yorita
- Division of Respirology, Neurology and Rheumatology, Department of MedicineKurume University School of MedicineKurumeFukuokaJapan
| | - Hiroshi Kida
- Department of AnatomyFukuoka University School of MedicineJonan‐kuFukuokaJapan
| | - Takashi Kamada
- Department of NeurologyFukuoka Sanno HospitalSawara‐kuFukuokaJapan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems EngineeringKyushu Institute of TechnologyIizukaFukuokaJapan
| |
Collapse
|
7
|
Rafehi H, Read J, Szmulewicz DJ, Davies KC, Snell P, Fearnley LG, Scott L, Thomsen M, Gillies G, Pope K, Bennett MF, Munro JE, Ngo KJ, Chen L, Wallis MJ, Butler EG, Kumar KR, Wu KHC, Tomlinson SE, Tisch S, Malhotra A, Lee-Archer M, Dolzhenko E, Eberle MA, Roberts LJ, Fogel BL, Brüggemann N, Lohmann K, Delatycki MB, Bahlo M, Lockhart PJ. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet 2023; 110:105-119. [PMID: 36493768 PMCID: PMC9892775 DOI: 10.1016/j.ajhg.2022.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adult-onset cerebellar ataxias are a group of neurodegenerative conditions that challenge both genetic discovery and molecular diagnosis. In this study, we identified an intronic (GAA) repeat expansion in fibroblast growth factor 14 (FGF14). Genetic analysis of 95 Australian individuals with adult-onset ataxia identified four (4.2%) with (GAA)>300 and a further nine individuals with (GAA)>250. PCR and long-read sequence analysis revealed these were pure (GAA) repeats. In comparison, no control subjects had (GAA)>300 and only 2/311 control individuals (0.6%) had a pure (GAA)>250. In a German validation cohort, 9/104 (8.7%) of affected individuals had (GAA)>335 and a further six had (GAA)>250, whereas 10/190 (5.3%) control subjects had (GAA)>250 but none were (GAA)>335. The combined data suggest (GAA)>335 are disease causing and fully penetrant (p = 6.0 × 10-8, OR = 72 [95% CI = 4.3-1,227]), while (GAA)>250 is likely pathogenic with reduced penetrance. Affected individuals had an adult-onset, slowly progressive cerebellar ataxia with variable features including vestibular impairment, hyper-reflexia, and autonomic dysfunction. A negative correlation between age at onset and repeat length was observed (R2 = 0.44, p = 0.00045, slope = -0.12) and identification of a shared haplotype in a minority of individuals suggests that the expansion can be inherited or generated de novo during meiotic division. This study demonstrates the power of genome sequencing and advanced bioinformatic tools to identify novel repeat expansions via model-free, genome-wide analysis and identifies SCA50/ATX-FGF14 as a frequent cause of adult-onset ataxia.
Collapse
Affiliation(s)
- Haloom Rafehi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Justin Read
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia
| | - David J. Szmulewicz
- Cerebellar Ataxia Clinic, Eye and Ear Hospital, Melbourne, VIC, Australia,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Kayli C. Davies
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Penny Snell
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Liam G. Fearnley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia,Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Liam Scott
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Greta Gillies
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Kate Pope
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Mark F. Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Jacob E. Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Kathie J. Ngo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Luke Chen
- Alfred Hospital, Department of Neurology, Melbourne, VIC, Australia
| | - Mathew J. Wallis
- Clinical Genetics Service, Austin Health, Melbourne, VIC, Australia,Department of Medicine, University of Melbourne, Austin Health, Melbourne, VIC, Australia,School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Kishore R. Kumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia,Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord, NSW, Australia,Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kathy HC. Wu
- School of Medicine, University of New South Wales, Sydney, NSW, Australia,Clinical Genomics, St Vincent’s Hospital, Darlinghurst, NSW, Australia,Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia,School of Medicine, University of Notre Dame, Sydney, NSW, Australia
| | - Susan E. Tomlinson
- School of Medicine, University of Notre Dame, Sydney, NSW, Australia,Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Stephen Tisch
- School of Medicine, University of New South Wales, Sydney, NSW, Australia,Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Abhishek Malhotra
- Department of Neuroscience, University Hospital Geelong, Geelong, VIC, Australia
| | - Matthew Lee-Archer
- Launceston General Hospital, Tasmanian Health Service, Launceston, TAS, Australia
| | | | | | - Leslie J. Roberts
- Department of Neurology and Neurological Research, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA,Departments of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Martin B. Delatycki
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia,Victorian Clinical Genetics Services, Melbourne, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Paul J. Lockhart
- Bruce Lefroy Centre, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, VIC, Australia,Corresponding author
| |
Collapse
|
8
|
Filippopulos FM, Schnabel L, Dunker K, Strobl R, Huppert D. Episodic ataxias in children and adolescents: Clinical findings and suggested diagnostic criteria. Front Neurol 2022; 13:1016856. [PMID: 36353133 PMCID: PMC9638128 DOI: 10.3389/fneur.2022.1016856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022] Open
Abstract
Background The main clinical presentation of episodic ataxias (EAs) consists of vertigo and dizziness attacks lasting for minutes to hours with widely varying accompanying symptoms. The differentiation of EA and episodic vertigo/dizziness syndromes in childhood and adolescence such as vestibular migraine (VM) and recurrent vertigo of childhood (RVC) can be challenging. Furthermore, only few prospective studies of children/adolescents with EA are available. Objective This study aims to characterize clinical and instrument-based findings in EA patients under 18 years of age, to delineate the clinical and therapeutic course in EA, and to present potentially new genetic mutations. Furthermore, the study aims to differentiate distinct characteristics between EA, VM, and RVC patients. Methods We prospectively collected clinical and instrument-based data of patients younger than 18 years, who presented at the German Center for Vertigo and Balance Disorders (DSGZ) at the LMU University Hospital in Munich with EA, VM, or RVC between January 2016 and December 2021. All patients underwent a comprehensive evaluation of neurological, ocular-motor, vestibular and cochlear function, including video-oculography with caloric testing, video head impulse test, vestibular evoked myogenic potentials, posturography, and gait analysis. Results Ten patients with EA, 15 with VM, and 15 with RVC were included. In EA the main symptoms were vertigo/dizziness attacks lasting between 5 min and 12 h. Common accompanying symptoms included walking difficulties, paleness, and speech difficulties. Six EA patients had a previously unknown gene mutation. In the interictal interval all EA patients showed distinct ocular-motor deficits. Significant differences between EA, VM, and RVC were found for accompanying symptoms such as speech disturbances and paleness, and for the trigger factor “physical activity”. Furthermore, in the interictal interval significant group differences were observed for different pathological nystagmus types, a saccadic smooth pursuit, and disturbed fixation suppression. Conclusion By combining clinical and ocular-motor characteristics we propose diagnostic criteria that can help to diagnose EA among children/adolescents and identify patients with EA even without distinct genetic findings. Nevertheless, broad genetic testing (e.g., next generation sequencing) in patients fulfilling the diagnostic criteria should be conducted to identify even rare or unknown genetic mutations for EA.
Collapse
Affiliation(s)
- Filipp Maximilian Filippopulos
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- *Correspondence: Filipp Maximilian Filippopulos
| | - Lutz Schnabel
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Konstanze Dunker
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ralf Strobl
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Doreen Huppert
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
9
|
Li Z, Wang D, Liao H, Zhang S, Guo W, Chen L, Lu L, Huang T, Cai YD. Exploring the Genomic Patterns in Human and Mouse Cerebellums Via Single-Cell Sequencing and Machine Learning Method. Front Genet 2022; 13:857851. [PMID: 35309141 PMCID: PMC8930846 DOI: 10.3389/fgene.2022.857851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022] Open
Abstract
In mammals, the cerebellum plays an important role in movement control. Cellular research reveals that the cerebellum involves a variety of sub-cell types, including Golgi, granule, interneuron, and unipolar brush cells. The functional characteristics of cerebellar cells exhibit considerable differences among diverse mammalian species, reflecting a potential development and evolution of nervous system. In this study, we aimed to recognize the transcriptional differences between human and mouse cerebellum in four cerebellar sub-cell types by using single-cell sequencing data and machine learning methods. A total of 321,387 single-cell sequencing data were used. The 321,387 cells included 4 cell types, i.e., Golgi (5,048, 1.57%), granule (250,307, 77.88%), interneuron (60,526, 18.83%), and unipolar brush (5,506, 1.72%) cells. Our results showed that by using gene expression profiles as features, the optimal classification model could achieve very high even perfect performance for Golgi, granule, interneuron, and unipolar brush cells, respectively, suggesting a remarkable difference between the genomic profiles of human and mouse. Furthermore, a group of related genes and rules contributing to the classification was identified, which might provide helpful information for deepening the understanding of cerebellar cell heterogeneity and evolution.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - HuiPing Liao
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - ShiQi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Dvorak NM, Tapia CM, Singh AK, Baumgartner TJ, Wang P, Chen H, Wadsworth PA, Zhou J, Laezza F. Pharmacologically Targeting the Fibroblast Growth Factor 14 Interaction Site on the Voltage-Gated Na + Channel 1.6 Enables Isoform-Selective Modulation. Int J Mol Sci 2021; 22:ijms222413541. [PMID: 34948337 PMCID: PMC8708424 DOI: 10.3390/ijms222413541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Na+ (Nav) channels are the primary molecular determinant of the action potential. Among the nine isoforms of the Nav channel α subunit that have been described (Nav1.1-Nav1.9), Nav1.1, Nav1.2, and Nav1.6 are the primary isoforms expressed in the central nervous system (CNS). Crucially, these three CNS Nav channel isoforms display differential expression across neuronal cell types and diverge with respect to their subcellular distributions. Considering these differences in terms of their localization, the CNS Nav channel isoforms could represent promising targets for the development of targeted neuromodulators. However, current therapeutics that target Nav channels lack selectivity, which results in deleterious side effects due to modulation of off-target Nav channel isoforms. Among the structural components of the Nav channel α subunit that could be pharmacologically targeted to achieve isoform selectivity, the C-terminal domains (CTD) of Nav channels represent promising candidates on account of displaying appreciable amino acid sequence divergence that enables functionally unique protein–protein interactions (PPIs) with Nav channel auxiliary proteins. In medium spiny neurons (MSNs) of the nucleus accumbens (NAc), a critical brain region of the mesocorticolimbic circuit, the PPI between the CTD of the Nav1.6 channel and its auxiliary protein fibroblast growth factor 14 (FGF14) is central to the generation of electrical outputs, underscoring its potential value as a site for targeted neuromodulation. Focusing on this PPI, we previously developed a peptidomimetic derived from residues of FGF14 that have an interaction site on the CTD of the Nav1.6 channel. In this work, we show that whereas the compound displays dose-dependent effects on the activity of Nav1.6 channels in heterologous cells, the compound does not affect Nav1.1 or Nav1.2 channels at comparable concentrations. In addition, we show that the compound correspondingly modulates the action potential discharge and the transient Na+ of MSNs of the NAc. Overall, these results demonstrate that pharmacologically targeting the FGF14 interaction site on the CTD of the Nav1.6 channel is a strategy to achieve isoform-selective modulation, and, more broadly, that sites on the CTDs of Nav channels interacted with by auxiliary proteins could represent candidates for the development of targeted therapeutics.
Collapse
|
11
|
Abstract
The term SCA refers to a phenotypically and genetically heterogeneous group of autosomal dominant spinocerebellar ataxias. Phenotypically they present as gait ataxia frequently in combination with dysarthria and oculomotor problems. Additional signs and symptoms are common and can include various pyramidal and extrapyramidal signs and intellectual impairment. Genetic causes of SCAs are either repeat expansions within disease genes or common mutations (point mutations, deletions, insertions etc.). Frequently the two types of mutations cause indistinguishable phenotypes (locus heterogeneity). This article focuses on SCAs caused by common mutations. It describes phenotype and genotype of the presently 27 types known and discusses the molecular pathogenesis in those 21 types where the disease gene has been identified. Apart from the dominant types, the article also summarizes findings in a variant caused by mutations in a mitochondrial gene. Possible common disease mechanisms are considered based on findings in the various SCAs described.
Collapse
Affiliation(s)
- Ulrich Müller
- Institute of Human Genetics, JLU-Gießen, Schlangenzahl 14, 35392, Giessen, Germany.
| |
Collapse
|
12
|
Fry AE, Marra C, Derrick AV, Pickrell WO, Higgins AT, Te Water Naude J, McClatchey MA, Davies SJ, Metcalfe KA, Tan HJ, Mohanraj R, Avula S, Williams D, Brady LI, Mesterman R, Tarnopolsky MA, Zhang Y, Yang Y, Wang X, Rees MI, Goldfarb M, Chung SK. Missense variants in the N-terminal domain of the A isoform of FHF2/FGF13 cause an X-linked developmental and epileptic encephalopathy. Am J Hum Genet 2021; 108:176-185. [PMID: 33245860 PMCID: PMC7820623 DOI: 10.1016/j.ajhg.2020.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 01/22/2023] Open
Abstract
Fibroblast growth factor homologous factors (FHFs) are intracellular proteins which regulate voltage-gated sodium (Nav) channels in the brain and other tissues. FHF dysfunction has been linked to neurological disorders including epilepsy. Here, we describe two sibling pairs and three unrelated males who presented in infancy with intractable focal seizures and severe developmental delay. Whole-exome sequencing identified hemi- and heterozygous variants in the N-terminal domain of the A isoform of FHF2 (FHF2A). The X-linked FHF2 gene (also known as FGF13) has alternative first exons which produce multiple protein isoforms that differ in their N-terminal sequence. The variants were located at highly conserved residues in the FHF2A inactivation particle that competes with the intrinsic fast inactivation mechanism of Nav channels. Functional characterization of mutant FHF2A co-expressed with wild-type Nav1.6 (SCN8A) revealed that mutant FHF2A proteins lost the ability to induce rapid-onset, long-term blockade of the channel while retaining pro-excitatory properties. These gain-of-function effects are likely to increase neuronal excitability consistent with the epileptic potential of FHF2 variants. Our findings demonstrate that FHF2 variants are a cause of infantile-onset developmental and epileptic encephalopathy and underline the critical role of the FHF2A isoform in regulating Nav channel function.
Collapse
Affiliation(s)
- Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK; Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Anna V Derrick
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - William O Pickrell
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Neurology department, Morriston Hospital, Swansea Bay University Hospital Health Board, Swansea SA6 6NL, UK
| | - Adam T Higgins
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK
| | - Johann Te Water Naude
- Paediatric Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Martin A McClatchey
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust and Institute of Human Development, University of Manchester, Manchester M13 9WL, UK
| | - Hui Jeen Tan
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Rajiv Mohanraj
- Department of Neurology, Salford Royal Hospital NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool L12 2AP, UK
| | - Denise Williams
- West Midlands Regional Genetics Service, Clinical Genetics Unit, Birmingham Women's Hospital, Birmingham B15 2TG, UK
| | - Lauren I Brady
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Ronit Mesterman
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Mark A Tarnopolsky
- Department of Paediatrics, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Xicheng District, Beijing 100034, China
| | | | - Mark I Rees
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Faculty of Medicine and Health, Camperdown, University of Sydney, NSW 2006, Australia
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University, 695 Park Avenue, New York, NY 10065, USA; Program in Biology, Graduate Center of City University, 365 Fifth Avenue, New York, NY 10016, USA
| | - Seo-Kyung Chung
- Neurology and Molecular Neuroscience Research, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK; Kids Neuroscience Centre, Kids Research, Children Hospital at Westmead, Sydney, NSW 2145, Australia; Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, NSW 2050, Australia
| |
Collapse
|
13
|
Paucar M, Lundin J, Alshammari T, Bergendal Å, Lindefeldt M, Alshammari M, Solders G, Di Re J, Savitcheva I, Granberg T, Laezza F, Iwarsson E, Svenningsson P. Broader phenotypic traits and widespread brain hypometabolism in spinocerebellar ataxia 27. J Intern Med 2020; 288:103-115. [PMID: 32112487 PMCID: PMC10123866 DOI: 10.1111/joim.13052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The goal of this study was to characterize a Swedish family with members affected by spinocerebellar ataxia 27 (SCA27), a rare autosomal dominant disease caused by mutations in fibroblast growth factor 14 (FGF14). Despite normal structural neuroimaging, psychiatric manifestations and intellectual disability are part of the SCA27 phenotype raising the need for functional neuroimaging. Here, we used clinical assessments, structural and functional neuroimaging to characterize these new SCA27 patients. Since one patient presents with a psychotic disorder, an exploratory study of markers of schizophrenia associated with GABAergic neurotransmission was performed in fgf14-/- mice, a preclinical model that replicates motor and learning deficits of SCA27. METHODS A comprehensive characterization that included clinical assessments, cognitive tests, structural neuroimaging studies, brain metabolism with 18 F-fluorodeoxyglucose PET ([18F] FDG PET) and genetic analyses was performed. Brains of fgf14-/- mice were studied with immunohistochemistry. RESULTS Nine patients had ataxia, and all affected patients harboured an interstitial deletion of chromosome 13q33.1 encompassing the entire FGF14 and integrin subunit beta like 1 (ITGBL1) genes. New features for SCA27 were identified: congenital onset, psychosis, attention deficit hyperactivity disorder and widespread hypometabolism that affected the medial prefrontal cortex (mPFC) in all patients. Hypometabolism in the PFC was far more pronounced in a SCA27 patient with psychosis. Reduced expression of VGAT was found in the mPFC of fgf14-/- mice. CONCLUSIONS This is the second largest SCA27 family identified to date. We provide new clinical and preclinical evidence for a significant psychiatric component in SCA27, strengthening the hypothesis of FGF14 as an important modulator of psychiatric disease.
Collapse
Affiliation(s)
- M Paucar
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - J Lundin
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - T Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Å Bergendal
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - M Lindefeldt
- Department of, Pediatric Neurology, Astrid Lindgren's Hospital, Stockholm, Sweden
| | - M Alshammari
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of, Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - G Solders
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - J Di Re
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, TX, USA
| | - I Savitcheva
- Departments of, Department of, Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - T Granberg
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - F Laezza
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - E Iwarsson
- Department of, Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P Svenningsson
- From the, Departments of, Department of, Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of, Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
15
|
Wadsworth PA, Folorunso O, Nguyen N, Singh AK, D'Amico D, Powell RT, Brunell D, Allen J, Stephan C, Laezza F. High-throughput screening against protein:protein interaction interfaces reveals anti-cancer therapeutics as potent modulators of the voltage-gated Na + channel complex. Sci Rep 2019; 9:16890. [PMID: 31729429 PMCID: PMC6858373 DOI: 10.1038/s41598-019-53110-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.
Collapse
Affiliation(s)
- Paul A Wadsworth
- MD/PhD Combined Degree Program and Biochemistry and Molecular Biology Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.,Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Oluwarotimi Folorunso
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Nghi Nguyen
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Aditya K Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Daniela D'Amico
- Neuroscience Graduate Program, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Reid T Powell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - David Brunell
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - John Allen
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Center for Translational Cancer Research, Texas A&M Health Science Center: Institute of Biosciences and Technology, Houston, TX, 77030, USA
| | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, 77555, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Recent advancements in next-generation sequencing (NGS) have enabled techniques such as whole exome sequencing (WES) and whole genome sequencing (WGS) to be used to study paroxysmal movement disorders (PMDs). This review summarizes how the recent genetic advances have altered our understanding of the pathophysiology and treatment of the PMDs. Recently described disease entities are also discussed. RECENT FINDINGS With the recognition of the phenotypic and genotypic heterogeneity that occurs amongst the PMDs, an increasing number of gene mutations are now implicated to cause the disorders. PMDs can also occur as part of a complex phenotype. The increasing complexity of PMDs challenges the way we view and classify them. The identification of new causative genes and their genotype-phenotype correlation will shed more light on the underlying pathophysiology and will facilitate development of genetic testing guidelines and identification of novel drug targets for PMDs.
Collapse
Affiliation(s)
- Zheyu Xu
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Che-Kang Lim
- Department of Clinical Translational Research, Singapore General Hospital, Bukit Merah, Singapore, Singapore
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institute, Solna, Sweden
| | - Louis C S Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|