1
|
Coticchio G, Marchio L, Bartolacci A, Cimadomo D, Zacà C, Lagalla C, Tarozzi N, Borini A, Rienzi L. Delays in the final stages of fertilization are strongly associated with trichotomous cytokinesis and cleavage arrest. J Assist Reprod Genet 2024:10.1007/s10815-024-03330-3. [PMID: 39607653 DOI: 10.1007/s10815-024-03330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE Recent evidence showed that the phase between pronuclear fading and the first cleavage is a perilous bridge connecting the zygote and the embryo. Indeed, delay in the short interval between pronuclear breakdown (PNBD) and the first cytokinesis may result in chromosome segregation errors. We tested the hypothesis that delays in this final phase of fertilization are associated with a detrimental impact on embryo development. METHODS This is a retrospective study of 1315 zygotes cultured using time lapse technologies generated in 205 first ICSI-cycles. RESULTS We observed an association between increasing times of the pronuclear fading-first cleavage interval (t2-tPNf) and the rates of trichotomous/direct unequal cleavage at the first (DUC-1) and second (DUC-2) mitotic cycle. Moreover, we observed a reduced blastulation rate. No significant associations were observed between rates of direct unequal cleavage at the third mitotic cycle (DUC-3) and top-quality blastocysts, euploidy, and live births. To evaluate whether the interval t2-tPNf could have a predictive value for the onset of DUC-1 and DUC-2, ROC curve analyses were performed. The area under the curve values obtained for DUC-1 showed a significant prediction accuracy. The best cut-offs to identify zygotes with a high risk of DUC-1 and DUC-2 occurrence were t2-tPNf > 2.78 (hours) and t2-tPNf > 2.50 (hours), respectively. CONCLUSION Delay in the short interval between PNBD and the first cytokinesis result in trichotomous cleavage and early developmental arrest. However, if the embryos reach the blastocyst stage, rates of euploidy and live birth do not appear to be compromised.
Collapse
Affiliation(s)
| | | | - Alessandro Bartolacci
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlotta Zacà
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
| | | | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.Baby, Bologna, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
2
|
Porokh V, Kyjovská D, Martonová M, Klenková T, Otevřel P, Kloudová S, Holubcová Z. Zygotic spindle orientation defines cleavage pattern and nuclear status of human embryos. Nat Commun 2024; 15:6369. [PMID: 39075061 PMCID: PMC11286845 DOI: 10.1038/s41467-024-50732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
The first embryonic division represents a starting point for the development of a new individual. In many species, tight control over the first embryonic division ensures its accuracy. However, the first division in humans is often erroneous and can impair embryo development. To delineate the spatiotemporal organization of the first mitotic division typical for normal human embryo development, we systematically analyzed a unique timelapse dataset of 300 IVF embryos that developed into healthy newborns. The zygotic division pattern of these best-quality embryos was compared to their siblings that failed to implant or arrested during cleavage stage. We show that division at the right angle to the juxtaposed pronuclei is preferential and supports faithful zygotic division. Alternative configurations of the first mitosis are associated with reduced clustering of nucleoli and multinucleation at the 2-cell stage, which are more common in women of advanced age. Collectively, these data imply that orientation of the first division predisposes human embryos to genetic (in)stability and may contribute to aneuploidy and age-related infertility.
Collapse
Affiliation(s)
- Volodymyr Porokh
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Drahomíra Kyjovská
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Martina Martonová
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Tereza Klenková
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Pavel Otevřel
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Soňa Kloudová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Zuzana Holubcová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
3
|
Cimadomo D, Innocenti F, Taggi M, Saturno G, Campitiello MR, Guido M, Vaiarelli A, Ubaldi FM, Rienzi L. How should the best human embryo in vitro be? Current and future challenges for embryo selection. Minerva Obstet Gynecol 2024; 76:159-173. [PMID: 37326354 DOI: 10.23736/s2724-606x.23.05296-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In-vitro fertilization (IVF) aims at overcoming the causes of infertility and lead to a healthy live birth. To maximize IVF efficiency, it is critical to identify and transfer the most competent embryo within a cohort produced by a couple during a cycle. Conventional static embryo morphological assessment involves sequential observations under a light microscope at specific timepoints. The introduction of time-lapse technology enhanced morphological evaluation via the continuous monitoring of embryo preimplantation in vitro development, thereby unveiling features otherwise undetectable via multiple static assessments. Although an association exists, blastocyst morphology poorly predicts chromosomal competence. In fact, the only reliable approach currently available to diagnose the embryonic karyotype is trophectoderm biopsy and comprehensive chromosome testing to assess non-mosaic aneuploidies, namely preimplantation genetic testing for aneuploidies (PGT-A). Lately, the focus is shifting towards the fine-tuning of non-invasive technologies, such as "omic" analyses of waste products of IVF (e.g., spent culture media) and/or artificial intelligence-powered morphologic/morphodynamic evaluations. This review summarizes the main tools currently available to assess (or predict) embryo developmental, chromosomal, and reproductive competence, their strengths, the limitations, and the most probable future challenges.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy -
| | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Marilena Taggi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Gaia Saturno
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Maria R Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Maurizio Guido
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Filippo M Ubaldi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, Carlo Bo University of Urbino, Urbino, Italy
| |
Collapse
|
4
|
De Martin H, Bonetti TCS, Nissel CAZ, Gomes AP, Fujii MG, Monteleone PAA. Association of early cleavage, morula compaction and blastocysts ploidy of IVF embryos cultured in a time-lapse system and biopsied for genetic test for aneuploidy. Sci Rep 2024; 14:739. [PMID: 38185698 PMCID: PMC10772106 DOI: 10.1038/s41598-023-51087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024] Open
Abstract
IVF embryos have historically been evaluated by morphological characteristics. The time-lapse system (TLS) has become a promising tool, providing an uninterrupted evaluation of morphological and dynamic parameters of embryo development. Furthermore, TLS sheds light on unknown phenomena such as direct cleavage and incomplete morula compaction. We retrospectively analyzed the morphology (Gardner Score) and morphokinetics (KIDScore) of 835 blastocysts grown in a TLS incubator (Embryoscope+), which were biopsied for preimplantation genetic testing for aneuploidy (PGT-A). Only the embryos that reached the blastocyst stage were included in this study and time-lapse videos were retrospectively reanalysed. According to the pattern of initial cleavages and morula compaction, the embryos were classified as: normal (NC) or abnormal (AC) cleavage, and fully (FCM) or partially compacted (PCM) morulae. No difference was found in early cleavage types or morula compaction patterns between female age groups (< 38, 38-40 and > 40 yo). Most of NC embryos resulted in FCM (≅ 60%), while no embryos with AC resulted in FCM. Aneuploidy rate of AC-PCM group did not differ from that of NC-FCM group in women < 38 yo, but aneuploidy was significantly higher in AC-PCM compared to NC-FCM of women > 40 yo. However, the quality of embryos was lower in AC-PCM blastocysts in women of all age ranges. Morphological and morphokinetic scores declined with increasing age, in the NC-PCM and AC-PCM groups, compared to the NC-FCM. Similar aneuploidy rates among NC-FCM and AC-PCM groups support the hypothesis that PCM in anomalous-cleaved embryos can represent a potential correction mechanism, even though lower morphological/morphokinetic scores are seen on AC-PCM. Therefore, both morphological and morphokinetic assessment should consider these embryonic development phenomena.
Collapse
Affiliation(s)
- H De Martin
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil.
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil.
| | - T C S Bonetti
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Departamento de Ginecologia, Escola Paulista de Medicina - Universidade Federal de São Paulo, Rua Pedro de Toledo, 781. 4º andar. Vila Clementino, São Paulo, SP, 04039030, Brazil
| | - C A Z Nissel
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil
| | - A P Gomes
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
| | - M G Fujii
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
| | - P A A Monteleone
- Centro de Reprodução Humana Monteleone, Rua Lima Barros, 61 Jardim Paulista, São Paulo, SP, CEP 04503-030, Brazil
- Disciplina de Ginecologia-Departamento de Obstetrícia e Ginecologia, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255-10 Andar-Cerqueira César, São Paulo, SP, CEP 05403-000, Brazil
| |
Collapse
|
5
|
Ezoe K, Takahashi T, Miki T, Kato K. Developmental perturbation in human embryos: Clinical and biological significance learned from time-lapse images. Reprod Med Biol 2024; 23:e12593. [PMID: 38983691 PMCID: PMC11232294 DOI: 10.1002/rmb2.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Time-lapse technology (TLT) has gained widespread adoption worldwide. In addition to facilitating the undisturbed culture of embryos, TLT offers the unique capability of continuously monitoring embryos to detect spatiotemporal changes. Although these observed phenomena play a role in optimal embryo selection/deselection, the clinical advantages of introducing TLT remain unclear. However, manual annotation of embryo perturbation could facilitate a comprehensive assessment of developmental competence. This process requires a thorough understanding of embryo observation and the biological significance associated with developmental dogma and variation. This review elucidates the typical behavior and variation of each phenomenon, exploring their clinical significance and research perspectives. Methods The MEDLINE database was searched using PubMed for peer-reviewed English-language original articles concerning human embryo development. Main findings TLT allows the observation of consecutive changes in embryo morphology, serving as potential biomarkers for embryo assessment. In assisted reproductive technology laboratories, several phenomena have not revealed their mechanism, posing difficulties such as fertilization deficiency and morula arrest. Conclusion A profound understanding of the biological mechanisms and significance of each phenomenon is crucial. Further collaborative efforts between the clinical and molecular fields following translational studies are required to advance embryonic outcomes and assessment.
Collapse
|
6
|
McCoy RC, Summers MC, McCollin A, Ottolini CS, Ahuja K, Handyside AH. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med 2023; 15:77. [PMID: 37779206 PMCID: PMC10544495 DOI: 10.1186/s13073-023-01231-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND The high incidence of aneuploidy in early human development, arising either from errors in meiosis or postzygotic mitosis, is the primary cause of pregnancy loss, miscarriage, and stillbirth following natural conception as well as in vitro fertilization (IVF). Preimplantation genetic testing for aneuploidy (PGT-A) has confirmed the prevalence of meiotic and mitotic aneuploidies among blastocyst-stage IVF embryos that are candidates for transfer. However, only about half of normally fertilized embryos develop to the blastocyst stage in vitro, while the others arrest at cleavage to late morula or early blastocyst stages. METHODS To achieve a more complete view of the impacts of aneuploidy, we applied low-coverage sequencing-based PGT-A to a large series (n = 909) of arrested embryos and trophectoderm biopsies. We then correlated observed aneuploidies with abnormalities of the first two cleavage divisions using time-lapse imaging (n = 843). RESULTS The combined incidence of meiotic and mitotic aneuploidies was strongly associated with blastocyst morphological grading, with the proportion ranging from 20 to 90% for the highest to lowest grades, respectively. In contrast, the incidence of aneuploidy among arrested embryos was exceptionally high (94%), dominated by mitotic aneuploidies affecting multiple chromosomes. In turn, these mitotic aneuploidies were strongly associated with abnormal cleavage divisions, such that 51% of abnormally dividing embryos possessed mitotic aneuploidies compared to only 23% of normally dividing embryos. CONCLUSIONS We conclude that the combination of meiotic and mitotic aneuploidies drives arrest of human embryos in vitro, as development increasingly relies on embryonic gene expression at the blastocyst stage.
Collapse
Affiliation(s)
- Rajiv C McCoy
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21212, USA.
| | - Michael C Summers
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
- Present Address: London Women's Clinic, The Chesterfield, Nuffield Health Clinic, 3 Clifton Hill, Bristol, BS8 1BN, UK
| | - Abeo McCollin
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christian S Ottolini
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
- Department of Maternal and Fetal Medicine, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- Present Address: Juno Genetics Italia, Via Di Quarto Peperino 22, 00188, Rome, Italy
| | - Kamal Ahuja
- London Women's Clinic, 113-115 Harley Street, Marylebone, London, W1G 6AP, UK
| | - Alan H Handyside
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
7
|
Kakulavarapu R, Stensen MH, Jahanlu D, Haugen TB, Delbarre E. Altered morphokinetics and differential reproductive outcomes associated with cell exclusion events in human embryos. Reprod Biomed Online 2023; 47:103285. [PMID: 37573752 DOI: 10.1016/j.rbmo.2023.103285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
RESEARCH QUESTION Can embryos harbouring cell exclusion and their reproductive outcomes be classified based on morphokinetic profiles? DESIGN A total of 469 time-lapse videos of embryos transferred between 2013 and 2019 from a single clinic were analysed. Videos were assessed and grouped according to the presence or absence of one or more excluded cells before compaction. Cell division timings, intervals between subsequent cell divisions and dynamic intervals were analysed to determine the morphokinetic profiles of embryos with cell exclusion (CE+), compared with fully compacted embryos without cell exclusion or extrusion (CE-). RESULTS Transfer of CE+ embryos resulted in lower proportions of fetal heartbeat (FHB) and live birth compared with CE- embryos (both, P < 0.001). CE+ embryos were associated with delays in t2 (P = 0.030), t6 (P = 0.018), t7 (P < 0.001), t8 (P = 0.001), tSC (P < 0.001) and tM (P < 0.001). Earlier timings for t3 (P = 0.014) and t5 (P < 0.001) were positively associated with CE+; CE+ embryos indicated prolonged S2, S3, ECC3, cc2 and cc4. Logistic regression analysis revealed that t5, tM, S2 and ECC3 were the strongest predictive indicators of cell exclusion. Timings for S2 and ECC3 were useful in identifying increased odds of FHB when a cell exclusion event was present. CONCLUSION Embryos harbouring cell exclusion indicated altered morphokinetic profiles. Their overall lower reproductive success was associated with two morphokinetic parameters. Morphokinetic profiles could be used as adjunct indicators for reproductive success during cycles producing few, low-quality embryos. This may allow more objective identification of cell exclusion and refinement of embryo ranking procedures before transfer.
Collapse
Affiliation(s)
- Radhika Kakulavarapu
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway..
| | | | - David Jahanlu
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Trine B Haugen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Erwan Delbarre
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway..
| |
Collapse
|
8
|
Coker SJ, Dyson RM, Smith-Díaz CC, Vissers MCM, Berry MJ. Effects of Low Vitamin C Intake on Fertility Parameters and Pregnancy Outcomes in Guinea Pigs. Nutrients 2023; 15:4107. [PMID: 37836389 PMCID: PMC10574174 DOI: 10.3390/nu15194107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Identifying how specific nutrients can impact fertility, pregnancy, and neonatal outcomes will yield important insights into the biological mechanisms linking diet and reproductive health. Our study investigates how dietary vitamin C intake affects various fertility parameters and pregnancy and neonatal outcomes in the guinea pig, a natural model of vitamin C dependency. Dunkin Hartley guinea pigs were fed an optimal (900 mg/kg feed) or low (100 mg/kg feed) vitamin C diet ad libitum for at least three weeks prior to mating and throughout pregnancy. We found that animals receiving the low vitamin C diet had an increased number of unsuccessful matings, a higher incidence of foetal reabsorption, and, among pregnancies resulting in delivery at term, produced fewer offspring. Neonates from mothers on the low vitamin C diet had significantly decreased plasma vitamin C concentrations at birth and exhibited mild growth impairments in a sex-dependent manner. We conclude that a diet low of vitamin C induces a state of subfertility, reduces overall fecundity, and adversely impacts both pregnancy outcomes and growth in the offspring. Our study provides an essential foundation for future investigations to determine whether these findings translate to humans. If so, they could have important clinical implications for assisted reproductive technologies and nutritional recommendations for couples trying to conceive, pregnant women, and breastfeeding mothers.
Collapse
Affiliation(s)
- Sharna J. Coker
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Rebecca M. Dyson
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| | - Carlos C. Smith-Díaz
- Mātai Hāora—Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Margreet C. M. Vissers
- Mātai Hāora—Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - Mary J. Berry
- Perinatal and Developmental Physiology Group, Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand; (S.J.C.); (R.M.D.)
| |
Collapse
|
9
|
Ozturk S. Genetic variants underlying developmental arrests in human preimplantation embryos. Mol Hum Reprod 2023; 29:gaad024. [PMID: 37335858 DOI: 10.1093/molehr/gaad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Developmental arrest in preimplantation embryos is one of the major causes of assisted reproduction failure. It is briefly defined as a delay or a failure of embryonic development in producing viable embryos during ART cycles. Permanent or partial developmental arrest can be observed in the human embryos from one-cell to blastocyst stages. These arrests mainly arise from different molecular biological defects, including epigenetic disturbances, ART processes, and genetic variants. Embryonic arrests were found to be associated with a number of variants in the genes playing key roles in embryonic genome activation, mitotic divisions, subcortical maternal complex formation, maternal mRNA clearance, repairing DNA damage, transcriptional, and translational controls. In this review, the biological impacts of these variants are comprehensively evaluated in the light of existing studies. The creation of diagnostic gene panels and potential ways of preventing developmental arrests to obtain competent embryos are also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
10
|
Jian O, MengXia N, Shiyu X, QingXia M, QinYan Z, Jie D, Wei W, Jiaojiao W, Hong L, Yining H. MiR-145 is upregulated in the retarded preimplantation embryos and modulates cholesterol levels in mice preimplantation embryos through targeting Abca1. Reprod Biol Endocrinol 2022; 20:168. [PMID: 36510317 PMCID: PMC9743540 DOI: 10.1186/s12958-022-01044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preimplantation embryonic lethality is a driver of female infertility. Certain microRNAs (miRNAs) have previously been demonstrated to play important roles in the regulation of embryogenesis. METHODS Normally developing blastocysts and arrested embryos were collected from patients undergoing intracytoplasmic sperm injection (ICSI), and the expression of specific miRNAs therein was evaluated by qPCR. The overexpression of target molecule miR-145 in early mice embryos was achieved via oocyte microinjection, enabling the subsequent monitoring of how such overexpression impacted embryonic development. Bioinformatics approaches were utilized to identify putative miR-145 target mRNAs, and luciferase reporter assessments were implemented to confirm the ability of miR-145 to regulate Abca1 in HEK293T cells. The functional relationship between miR-145 and Abca1 in the mice's embryonic development was then confirmed through rescue assays. RESULTS Abnormally increased miR-145 expression was observed in patients' arrested embryos, and the exogenous overexpression of this miRNA significantly suppressed mural blastocyst formation. Mechanistically, miR-145 was found to bind to the 3'-untranslated area of the Abca1 mRNA in HK293T cells, thus suppressing its expression and increasing embryonic cholesterol levels. In line with the importance of these cholesterol levels to embryogenesis, the upregulation of Abca1 was sufficient to rescue the observed change in cholesterol levels and the associated retardation of mice embryonic development that occurred in response to the overexpression of miR-145. CONCLUSION The regulatory dynamics of the miR-145/Abca1 axis play an important role in shaping normal embryonic development.
Collapse
Affiliation(s)
- Ou Jian
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ni MengXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xing Shiyu
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meng QingXia
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zou QinYan
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ding Jie
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wang Wei
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Wan Jiaojiao
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China
| | - Li Hong
- Center for Reproduction and Genetics, Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Huang Yining
- Peking Jabrehoo Med-Tech Co., Ltd, No. 19 Tianrong Road, Daxing Bio-medicine Industry Park, Daxing District, Peking, 102629, China.
| |
Collapse
|
11
|
Jin L, Dong X, Tan W, Huang B. Incidence, dynamics and recurrences of reverse cleavage in aneuploid, mosaic and euploid blastocysts, and its relationship with embryo quality. J Ovarian Res 2022; 15:91. [PMID: 35932054 PMCID: PMC9356443 DOI: 10.1186/s13048-022-01026-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background During embryonic development, the normality of cleavage and the ploidy state are closely related to the final clinical outcome. At present, many research teams are focusing on the combined application of timelapse (TL) technology and preimplantation genetic testing (PGT) technology, hoping to find a connection between the two aspects of morphodynamics and genes. In the process of embryonic cleavage, there is a common abnormal cleavage pattern called reverse cleavage (RC). RC refers to blastomere fusion and failed cytokinesis. There are very few reports about it. Whether the occurrence of RC affects blastocyst euploidy is even less clear. Whether the RC phenomenon affects the embryonic developmental potential and whether it is related to the embryo ploidy. This is important for clinicians and embryologists. In this study, we used TL to observe whether there was a phenomenon of RC in each biopsy embryo and then combined it with the ploidy state to give an answer, which provided support for the selection strategy of RC embryos. Methods A total of 405 TL-PGT cycles and 1,467 blastocysts were included in the study. All TL data were collected from the Reproductive Medicine Center, Huazhong University of Science and Technology Hospital. Embryos images throughout embryonic development, from post-insemination to day 5 or 6 until biopsy and cryopreservation, were acquired by the Embryoscope Plus TL microscopy system from January 2019 to December 2020. This study investigated the overall incidence of RC during cleavage; the relationship between RC phenomenon and the number of occurrences and ploidy results; the relationship between RC occurrence and blastocyst developmental quality, as well as the dynamics of RC embryos. Results Among the 1,453 blastocysts biopsied, 400 blastocysts showed RC phenomenon at the cleavage stage, and the incidence rate was 25.9%. In euploid, mosaic and aneuploid embryos, the incidence of RC was 27.2%, 26.6%, and 25.0%, respectively. The incidence of RC was similar among these three groups with no significant difference (P > 0.05). The number of RC occurrences was not associated with embryo ploidy status (P > 0.05). In general, the blastocyst quality of the RC + group was lower than that of the RC- group. In the ICM score, the proportion of A score in the RC + group was significantly lower than that in RC- group (P < 0.05). In the TE score, there was no significant difference between the two groups of A-grade blastocysts, but the proportion of B-grade blastocysts in the RC + group was significantly lower than that in the RC- group (P < 0.01). In terms of developmental kinetic parameters, the cleavage synchrony parameters s2 and s3 were significantly longer in RC + embryos than in RC- embryos (P < 0.05). However, these changes in kinetic parameters were not significantly different between the euploid, mosaic and aneuploid groups. Conclusions The chromosomal euploidy of cleavage-stage embryos with RC phenomenon developed to the blastocyst stage was not significantly different from that of cleavage normal blastocysts. Therefore, RC embryos should not be discarded. It is recommended to select and utilize blastocyst culture, which has similar clinical value to normal cleavage embryos. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-01026-9.
Collapse
Affiliation(s)
- Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Wei Tan
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030
| | - Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, 430030.
| |
Collapse
|
12
|
Potabattula R, Trapphoff T, Dittrich M, Fic K, Ptak GE, Dieterle S, Haaf T. Ribosomal DNA methylation in human and mouse oocytes increases with age. Aging (Albany NY) 2022; 14:1214-1232. [PMID: 35157611 PMCID: PMC8876901 DOI: 10.18632/aging.203891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An age-dependent increase in ribosomal DNA (rDNA) methylation has been observed across a broad spectrum of somatic tissues and the male mammalian germline. Bisulfite pyrosequencing (BPS) was used to determine the methylation levels of the rDNA core promoter and the rDNA upstream control element (UCE) along with two oppositely genomically imprinted control genes (PEG3 and GTL2) in individual human germinal vesicle (GV) oocytes from 90 consenting women undergoing fertility treatment because of male infertility. Apart from a few (4%) oocytes with single imprinting defects (in either PEG3 or GTL2), the analyzed GV oocytes displayed correct imprinting patterns. In 95 GV oocytes from 42 younger women (26-32 years), the mean methylation levels of the rDNA core promoter and UCE were 7.4±4.0% and 9.3±6.1%, respectively. In 79 GV oocytes from 48 older women (33-39 years), methylation levels increased to 9.3±5.3% (P = 0.014) and 11.6±7.4% (P = 0.039), respectively. An age-related increase in oocyte rDNA methylation was also observed in 123 mouse GV oocytes from 29 4-16-months-old animals. Similar to the continuously mitotically dividing male germline, ovarian aging is associated with a gain of rDNA methylation in meiotically arrested oocytes. Oocytes from the same woman can exhibit varying rDNA methylation levels and, by extrapolation, different epigenetic ages.
Collapse
Affiliation(s)
- Ramya Potabattula
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | | | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
- Department of Bioinformatics, Julius Maximilians University, Würzburg, Germany
| | - Kinga Fic
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Grazyna E. Ptak
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Stefan Dieterle
- Fertility Center, Dortmund, Germany
- Division of Reproductive Medicine and Infertility, Department of Obstetrics and Gynecology, Witten/Herdecke University, Dortmund, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
13
|
Zeng Y, Shi J, Xu S, Shi R, Wu T, Li H, Xue X, Zhu Y, Chen B, Sang Q, Wang L. Bi-allelic mutations in MOS cause female infertility characterized by preimplantation embryonic arrest. Hum Reprod 2022; 37:612-620. [PMID: 34997960 DOI: 10.1093/humrep/deab281] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Are mutations in MOS (MOS proto-oncogene, serine/threonine kinase) involved in early embryonic arrest in infertile women? SUMMARY ANSWER We identified mutations in MOS that may cause human female infertility characterized by preimplantation embryonic arrest (PREMBA), and the effects of the mutations in human embryonic kidney 293T (HEK293T cells) and mouse oocytes provided evidence for a causal relation between MOS and female infertility. WHAT IS KNOWN ALREADY MOS, an activator of mitogen-activated protein kinase, mediates germinal vesicle breakdown and metaphase II arrest. Female MOS knockout mice are viable but sterile. Thus, MOS seems to be an important part of the mammalian cell cycle mechanism that regulates female meiosis. STUDY DESIGN, SIZE, DURATION Whole-exome sequencing, bioinformatics filtering analysis and genetic analysis were performed to identify two different biallelic mutations in MOS in two independent families. The infertile patients presenting with early embryonic arrest were recruited from October 2018 to June 2020. PARTICIPANTS/MATERIALS, SETTING, METHODS The female patients diagnosed with primary infertility were recruited from the reproduction centres of local hospitals. Genomic DNA from the affected individuals, their family members and healthy controls was extracted from peripheral blood. We performed whole-exome sequencing in patients diagnosed with PREMBA. Functional effects of the mutations were investigated in HEK293T cells by western blotting and in mouse oocytes by microinjection and immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE We identified the homozygous missense mutation c.285C>A (p.(Asn95Lys)) and the compound heterozygous mutations c.467delG (p.(Gly156Alafs*18)) and c.956G>A (p.(Arg319His)) in MOS in two independent patients. The mutations c.285C>A (p.(Asn95Lys)) and c.467delG (p.(Gly156Alafs*18)) reduced the protein level of MOS, and all mutations reduced the ability of MOS to phosphorylate its downstream target, extracellular signal-regulated kinase1/2. In addition, the identified mutations reduced the capacity of exogenous human MOS to rescue the metaphase II exit phenotype, and the F-actin cytoskeleton of mouse oocytes was affected by the patient-derived mutations. LIMITATIONS, REASONS FOR CAUTION Owing to the lack of in vivo data from patient oocytes, the exact molecular mechanism affected by MOS mutations and leading to PREMBA is still unknown and should be further investigated using knock-out or knock-in mice. WIDER IMPLICATIONS OF THE FINDINGS We identified recessive mutations in MOS in two independent patients with the PREMBA phenotype. Our findings reveal the important role of MOS during human oocyte meiosis and embryonic development and suggest that mutations in MOS may be precise diagnostic markers for clinical genetic counselling. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (81725006, 81822019, 81771581, 81971450, 81971382,82001538 and 82071642), the project supported by the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), the Project of the Shanghai Municipal Science and Technology Commission (19JC1411001), the Natural Science Foundation of Shanghai (19ZR1444500 and 21ZR1404800), the Shuguang Program of the Shanghai Education Development Foundation and the Shanghai Municipal Education Commission (18SG03), the Foundation of the Shanghai Health and Family Planning Commission (20154Y0162), the Capacity Building Planning Program for Shanghai Women and Children's Health Service and the collaborative innovation centre project construction for Shanghai Women and Children's Health. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Juanzi Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Shiru Xu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Rong Shi
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Tonghua Wu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Hongyan Li
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Xia Xue
- Reproductive Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yuanchang Zhu
- Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Zheng W, Zhang S, Gu Y, Gong F, Kong L, Lu G, Lin G, Liang B, Hu L. Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos. Front Physiol 2021; 12:777259. [PMID: 34867485 PMCID: PMC8640355 DOI: 10.3389/fphys.2021.777259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose: This study aimed to establish a non-invasive predicting model via Raman spectroscopy for evaluating the blastocyst development potential of day 3 high-quality cleavage stage embryos. Methods: Raman spectroscopy was used to detect the metabolic spectrum of spent day 3 (D3) embryo culture medium, and a classification model based on deep learning was established to differentiate between embryos that could develop into blastocysts (blastula) and that could not (non-blastula). The full-spectrum data for 80 blastula and 48 non-blastula samples with known blastocyst development potential from 34 patients were collected for this study. Results: The accuracy of the predicting method was 73.53% and the main different Raman shifts between blastula and non-blastula groups were 863.5, 959.5, 1,008, 1,104, 1,200, 1,360, 1,408, and 1,632 cm-1 from 80 blastula and 48 non-blastula samples by the linear discriminant method. Conclusion: This study demonstrated that the developing potential of D3 cleavage stage embryos to the blastocyst stage could be predicted with spent D3 embryo culture medium using Raman spectroscopy with deep learning classification models, and the overall accuracy reached at 73.53%. In the Raman spectroscopy, ribose vibration specific to RNA were found, indicating that the difference between the blastula and non-blastula samples could be due to materials that have similar structure with RNA. This result could be used as a guide for biomarker development of embryo quality assessment in the future.
Collapse
Affiliation(s)
- Wei Zheng
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Shuoping Zhang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Yifan Gu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Fei Gong
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Guangxiu Lu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
| | - Ge Lin
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Hu
- National Health Commission (NHC) Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xangya, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Development and Carcinogenesis, Changsha, China
| |
Collapse
|
15
|
Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci 2021; 22:ijms22158353. [PMID: 34361119 PMCID: PMC8347543 DOI: 10.3390/ijms22158353] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/14/2022] Open
Abstract
Developmental arrest of the preimplantation embryo is a multifactorial condition, characterized by lack of cellular division for at least 24 hours, hindering the in vitro fertilization cycle outcome. This systematic review aims to present the molecular drivers of developmental arrest, focusing on embryonic and parental factors. A systematic search in PubMed/Medline, Embase and Cochrane-Central-Database was performed in January 2021. A total of 76 studies were included. The identified embryonic factors associated with arrest included gene variations, mitochondrial DNA copy number, methylation patterns, chromosomal abnormalities, metabolic profile and morphological features. Parental factors included, gene variation, protein expression levels and infertility etiology. A valuable conclusion emerging through critical analysis indicated that genetic origins of developmental arrest analyzed from the perspective of parental infertility etiology and the embryo itself, share common ground. This is a unique and long-overdue contribution to literature that for the first time presents an all-inclusive methodological report on the molecular drivers leading to preimplantation embryos’ arrested development. The variety and heterogeneity of developmental arrest drivers, along with their inevitable intertwining relationships does not allow for prioritization on the factors playing a more definitive role in arrested development. This systematic review provides the basis for further research in the field.
Collapse
|
16
|
Shukla V, Høffding MK, Hoffmann ER. Genome diversity and instability in human germ cells and preimplantation embryos. Semin Cell Dev Biol 2021; 113:132-147. [PMID: 33500205 PMCID: PMC8097364 DOI: 10.1016/j.semcdb.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022]
Abstract
Genome diversity is essential for evolution and is of fundamental importance to human health. Generating genome diversity requires phases of DNA damage and repair that can cause genome instability. Humans have a high incidence of de novo congenital disorders compared to other organisms. Recent access to eggs, sperm and preimplantation embryos is revealing unprecedented rates of genome instability that may result in infertility and de novo mutations that cause genomic imbalance in at least 70% of conceptions. The error type and incidence of de novo mutations differ during developmental stages and are influenced by differences in male and female meiosis. In females, DNA repair is a critical factor that determines fertility and reproductive lifespan. In males, aberrant meiotic recombination causes infertility, embryonic failure and pregnancy loss. Evidence suggest germ cells are remarkably diverse in the type of genome instability that they display and the DNA damage responses they deploy. Additionally, the initial embryonic cell cycles are characterized by a high degree of genome instability that cause congenital disorders and may limit the use of CRISPR-Cas9 for heritable genome editing.
Collapse
Affiliation(s)
- Vallari Shukla
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Miya Kudo Høffding
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
17
|
Wilcox AJ, Harmon Q, Doody K, Wolf DP, Adashi EY. Preimplantation loss of fertilized human ova: estimating the unobservable. Hum Reprod 2021; 35:743-750. [PMID: 32296829 DOI: 10.1093/humrep/deaa048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/20/2020] [Accepted: 02/20/2020] [Indexed: 01/03/2023] Open
Abstract
STUDY QUESTION What proportion of fertilized human ova are lost before implantation? SUMMARY ANSWER An estimated 40 to 50% of fertilized ova fail to implant. WHAT IS KNOWN ALREADY Preimplantation loss is not detectable with current technology. Published estimates of preimplantation loss range from 10 to 70%. STUDY DESIGN, SIZE, DURATION We combine data from epidemiologic, demographic, laboratory and in vitro fertilization studies to construct an empirical framework for the estimation of preimplantation loss. This framework is summarized in a user-friendly Excel file included in supplement. PARTICIPANTS/MATERIALS, SETTING, METHODS We draw from multiple sources to generate plausible estimates of fecundability, sterility, transient anovulation, intercourse patterns and the proportion of ova fertilized in the presence of sperm. We combine these estimates to generate a summary estimate of preimplantation loss. This estimate can be considered an average for couples in their prime reproductive years. MAIN RESULTS AND THE ROLE OF CHANCE Under a plausible range of assumptions, we estimate that 40 to 50% of fertilized ova fail to implant. LIMITATIONS, REASONS FOR CAUTION A crucial factor in estimating preimplantation loss is the probability that an ovum will be fertilized when exposed to sperm. Human data are available only from in vitro fertilization (IVF), which may not accurately represent events in vivo. We therefore assume a range of in vivo fertilization rates, from 64% (human IVF data) to 90% (mouse data). WIDER IMPLICATIONS OF THE FINDINGS Our estimate of preimplantation loss takes into account the biological processes relevant to fertilization and loss. Using this empirical basis for estimation, we find support for the usual assumption that risk of loss is highest in the earliest days following fertilization. Furthermore, this framework can provide improved estimates as better reproductive data become available. To the extent that our estimates are accurate, more fertilized ova are apparently lost in vitro than in vivo, suggesting that further improvements in IVF success rates may be possible. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Intramural Program of the National Institute of Environmental Health Sciences, NIH. Professor Adashi serves as Co-Chair of the Safety Advisory Board of Ohana Biosciences, Inc. The other authors have no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Allen J Wilcox
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Quaker Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kevin Doody
- Center for Assisted Reproduction, Bedford, TX, USA
| | - Don P Wolf
- Dept. Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA
| | - Eli Y Adashi
- Dept. Obstetrics and Gynecology, Brown University, Providence, RI, USA
| |
Collapse
|
18
|
Morphokinetic evaluation of embryos generated from vitrified oocytes maintaining the meiotic spindle. Cryobiology 2021; 100:40-45. [PMID: 33826943 DOI: 10.1016/j.cryobiol.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
Vitrification is a technique for preservation of human oocytes. There is still a lack of basic research about the possible effects of vitrification on subsequent embryos following oocyte vitrification. The purpose of this study was to evaluate the embryo morphokinetic parameters formed after fertilization of vitrified-warmed oocytes, where an intact meiotic spindle (MS) was observed pre- and post-cryopreservation. Matured oocytes after in vitro maturation were collected and MS evaluation was performed. The oocytes with MS were divided into two groups: fresh and post vitrification. After intra-cytoplasmic sperm injection, the oocytes were cultured in time lapse monitoring (TLM) and time of second polar body extrusion (SPBE), pronuclei appearance (tPNA), pronuclei fading (tPNF), formation of two to eight cells (t2 to t8), and irregular cleavage events [direct cleavage (DC), reverse cleavage (RC)] and vacuolation were assessed. The fertilization rate was not significantly different between the groups, although the rate of abnormal fertilization was higher in vitrification group compared with fresh group (23.5% VS 7.7%). Analysis of the TLM showed a significant delay in time points, including SPBE, tPNA, tPNF, t 2-cells cleavage in vitrification group (p = 0.02, p = 0.00, p = 0.002, P = 0.00, P = 0.01, respectively). In addition, t3 and t4 time points tended to be delayed in vitrification group (p = 0.05). Moreover, the higher level of DC, RC and vacuolation were noticed in the vitrification group (P˂0.05). In conclusion, despite MS maintenance after warming, TLM evaluation showed both a delay and abnormal cleavage patterns in generated embryos.
Collapse
|
19
|
Wartosch L, Schindler K, Schuh M, Gruhn JR, Hoffmann ER, McCoy RC, Xing J. Origins and mechanisms leading to aneuploidy in human eggs. Prenat Diagn 2021; 41:620-630. [PMID: 33860956 PMCID: PMC8237340 DOI: 10.1002/pd.5927] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022]
Abstract
The gain or loss of a chromosome-or aneuploidy-acts as one of the major triggers for infertility and pregnancy loss in humans. These chromosomal abnormalities affect more than 40% of eggs in women at both ends of the age spectrum, that is, young girls as well as women of advancing maternal age. Recent studies in human oocytes and embryos using genomics, cytogenetics, and in silico modeling all provide new insight into the rates and potential genetic and cellular factors associated with aneuploidy at varying stages of development. Here, we review recent studies that are shedding light on potential molecular mechanisms of chromosome missegregation in oocytes and embryos across the entire female reproductive life span.
Collapse
Affiliation(s)
- Lena Wartosch
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Karen Schindler
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Melina Schuh
- Department of MeiosisMax Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Jennifer R. Gruhn
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Eva R. Hoffmann
- DNRF Center for Chromosome StabilityDepartment of Cellular and Molecular MedicineFaculty of Health and Medical SciencesUniversity of CopenhagenDenmark
| | - Rajiv C. McCoy
- Department of BiologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jinchuan Xing
- Department of GeneticsRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
- Human Genetics Institute of New JerseyRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
20
|
Ye Y, Ma J, Cui L, Lu S, Jin F. A Rapid NGS-Based Preimplantation Genetic Testing for Chromosomal Abnormalities in Day-3 Blastomere Biopsy Allows Embryo Transfer Within the Same Treatment Cycle. Front Genet 2021; 12:636370. [PMID: 33719346 PMCID: PMC7952972 DOI: 10.3389/fgene.2021.636370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nowadays, most of the preimplantation genetic testing (PGT) is performed with a strategy of comprehensive chromosome screening and trophectoderm biopsy. Nevertheless, patients with ovarian insufficiency may not have competent blastocysts. In the present study, we aimed to establish the value of multiple annealing and looping-based amplification cycle (MALBAC)-based next-generation sequencing (NGS) for PGT in day-3 embryos. A total of 94.3% (1168/1239) of embryos yielded informative results, and the overall embryo euploid rate was 21.9% (256/1168). Overall, 225 embryos were transferred in 169 cycles with a clinical pregnancy rate of 49.1% (83/169). The live birth and implantation rates were 47.3% (80/169) and 44.4% (100/225), respectively. Double embryos transfer showed higher clinical pregnancy and live birth rates compared with single embryo transfer, but the implantation rates were similar (44.2% vs. 44.6%, P > 0.05). The euploid rate for reciprocal translocations (16.1%) was significantly lower than that for Robertsonian translocations (28.0%, P < 0.01) and inversions (28.0%, P < 0.01). However, higher percentages of embryos with de novo abnormalities were observed with Robertsonian translocations (23.3%, P < 0.01) and inversions (30.5%, P < 0.01) than with reciprocal translocations (11.6%). We demonstrated that NGS for PGT on day-3 embryos is an effective clinical application, particularly for patients with a diminished ovarian reserve and limited embryos.
Collapse
Affiliation(s)
- Yinghui Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieliang Ma
- Department of Clinical Research, Yikon Genomics Co. Ltd., Suzhou, China
| | - Long Cui
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sijia Lu
- Department of Clinical Research, Yikon Genomics Co. Ltd., Suzhou, China
| | - Fan Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Montjean D, Geoffroy-Siraudin C, Gervoise-Boyer MJ, Boyer P. Competence of embryos showing transient developmental arrest during in vitro culture. J Assist Reprod Genet 2021; 38:857-863. [PMID: 33532884 DOI: 10.1007/s10815-021-02090-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In vitro developing embryos may apparently show no developmental progress during 24 h and resume their development up to the blastocyst stage. The present study was conducted to assess their ability to implant and to give rise to a live birth when replaced at day 5 (fresh or vitrified/warmed) as compared to continuously developing embryos. METHODS Embryo development follow-up and grade were prospectively recorded in a photo database. The studied period was from April 2011 to July 2017. The studied embryos included transient arrested embryos (TAE) that showed the same developmental stage at two subsequent observations, i.e. between day 2 and day 3 (d2 and d3), between day 3 and day 4 (d3 and d4) and between day 4 and day 5 (d4 and d5). TAE were compared to continuously developing embryos (CDE). Elective day 5 embryo transfers were performed. RESULTS Woman age was higher in TAE (34.3±3.9) than in CDE (32.9±4.8) (p<0.01). TAE were more frequently (63.1%) observed after ICSI than after conventional IVF (55.9%) (p<0.01). Implantation rate was reduced in TAE as compared to CDE, after both fresh (10.0% vs 23.8% [p<0.01]) and vitrified/warmed (12.9% vs 19.0% [p<0.01]) embryo transfers. Delivery rate was also lower after the transfer of fresh (8.3% vs 19.4% [p<0.01]) and vitrified/warmed (8.5% vs 14.1% [p<0.01]) TAE as compared to CDE. Implantation and delivery rates were not statistically different whether embryo arrested between day 2 and day 3 (d2 and d3), between day 3 and day 4 (d3 and d4) or between day 4 and day 5 (d4 and d5). CONCLUSION TAE may be considered for transfer at a lower priority than CDE and associated with inferior prognosis than CDE.
Collapse
Affiliation(s)
- Debbie Montjean
- Service de Médecine et Biologie de la Reproduction, Centre Ste Colette, Hôpital Saint-Joseph, 26 boulevard de Louvain, 13008, Marseille, France.
| | - Cendrine Geoffroy-Siraudin
- Service de Médecine et Biologie de la Reproduction, Centre Ste Colette, Hôpital Saint-Joseph, 26 boulevard de Louvain, 13008, Marseille, France
| | - Marie-José Gervoise-Boyer
- Service de Médecine et Biologie de la Reproduction, Centre Ste Colette, Hôpital Saint-Joseph, 26 boulevard de Louvain, 13008, Marseille, France
| | - Pierre Boyer
- Service de Médecine et Biologie de la Reproduction, Centre Ste Colette, Hôpital Saint-Joseph, 26 boulevard de Louvain, 13008, Marseille, France
| |
Collapse
|
22
|
Cimadomo D, Capalbo A, Scarica C, Sosa Fernandez L, Rienzi L, Ciriminna R, Minasi MG, Novelli A, De Santis L, Zuccarello D. When embryology meets genetics: the definition of developmentally incompetent preimplantation embryos (DIPE)-the consensus of two Italian scientific societies. J Assist Reprod Genet 2021; 38:319-331. [PMID: 33236289 PMCID: PMC7884494 DOI: 10.1007/s10815-020-02015-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
A clear definition of developmentally incompetent preimplantation embryo (DIPE) in literature is still missing, while several scientific societies are discussing this challenging topic. From both a clinical and scientific perspective, the identification of embryos unfit for reproductive purpose is crucial. This aim should be pursued in light of all diagnostic technologies for embryo evaluation, encompassing also genetic analyses, of recent implementation in IVF. The Italian context is characterized by an unusual scenario: embryos can be discarded only if not viable and cannot be used for research purposes either. Therefore, thousands of embryos, diagnosed as affected and/or aneuploid as resulting from preimplantation genetic testing (PGT) and clinically not utilizable, are cryopreserved and stored indefinitely, with important psychological, legal, and financial implications. With the aim of updating the definition of DIPE, also on the basis of the embryo genetic status, the Italian Society of Embryology, Reproduction and Research (SIERR) and the Italian Society of Human Genetic (SIGU) reviewed the literature on this topic, found a consensus, and produced a list of relevant criteria.
Collapse
Affiliation(s)
- Danilo Cimadomo
- GeneraLife IVF centers, Clinica Valle Giulia, via G. de Notaris 2b, 00197, Rome, Italy.
| | | | - Catello Scarica
- Center for Reproductive Medicine, Casa di Cura Villa Salaria in Partnership with Institut Marques, Rome, Italy
| | | | - Laura Rienzi
- GeneraLife IVF centers, Clinica Valle Giulia, via G. de Notaris 2b, 00197, Rome, Italy
| | | | | | - Antonio Novelli
- Laboratory of Medical Genetics, IRCCS-Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia De Santis
- Department of Obstetrics & Gynecology, IVF Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
23
|
Masset H, Tšuiko O, Vermeesch JR. Genome-wide abnormalities in embryos: Origins and clinical consequences. Prenat Diagn 2021; 41:554-563. [PMID: 33524193 DOI: 10.1002/pd.5895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 12/30/2020] [Indexed: 12/25/2022]
Abstract
Ploidy or genome-wide chromosomal anomalies such as triploidy, diploid/triploid mixoploidy, chimerism, and genome-wide uniparental disomy are the cause of molar pregnancies, embryonic lethality, and developmental disorders. While triploidy and genome-wide uniparental disomy can be ascribed to fertilization or meiotic errors, the mechanisms causing mixoploidy and chimerism remain shrouded in mystery. Different models have been proposed, but all remain hypothetical and controversial, are deduced from the developmental persistent genomic constitutions present in the sample studied and lack direct evidence. New single-cell genomic methodologies, such as single-cell genome-wide haplotyping, provide an extended view of the constitution of normal and abnormal embryos and have further pinpointed the existence of mixoploidy in cleavage-stage embryos. Based on those recent findings, we suggest that genome-wide anomalies, which persist in fetuses and patients, can for a large majority be explained by a noncanonical first zygotic cleavage event, during which maternal and paternal genomes in a single zygote, segregate to different blastomeres. This process, termed heterogoneic division, provides an overarching theoretical basis for the different presentations of mixoploidy and chimerism.
Collapse
Affiliation(s)
- Heleen Masset
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Olga Tšuiko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven, Belgium.,Center of Human Genetics, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Li HX, Xu XJ, Liu L. A New Day 4 Grading System to Assess Embryo Quality in Frozen Embryo Transfer Cycles. Reprod Sci 2020; 28:1333-1338. [PMID: 33237518 DOI: 10.1007/s43032-020-00389-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/08/2020] [Indexed: 11/29/2022]
Abstract
To present a new day 4 (D4) embryo grading system to assess embryos in frozen-thawed embryo transfer (FET) cycles. A new grading system (grades A-E) was developed from the 2011 ESHRE Istanbul Consensus for D4 embryos in FET cycles. Embryos with complete compaction were classified as grade A; those with partial compaction were assigned as grade B; and those without compaction were classified as grades C, D, and E according to their different blastomere number ratio (BNR; number of embryo blastomeres on D4/number of embryo blastomeres on D3, D4/D3). Embryos with a BNR of ≥ 1.5 were defined as grade C, those with a BNR of ≥ 1.2 and < 1.5 were defined as grade D, and those with a BNR of ≥ 1.0 and < 1.2 were defined as grade E. Using this proposed grading model, 5460 embryos with known implantation data were retrospectively analyzed after D4 transfer in FET cycles. The transferred embryos exhibited a similar declining trend in implantation and live birth rates from the top grade A to the lowest grade E. The in vitro fertilization group showed increased implantation rates of grade B and E embryos compared with the intracytoplasmic sperm injection group (grade B: 41.99%, 34.63%, χ2 = 5.84, p < 0.05 and grade E: 18.98%, 14.08, χ2 = 75.62, p < 0.01). Receiver-operating characteristic analysis revealed that our proposed model predicted the implantation outcomes and live birth rates of all embryos (area under the curve = 0.65; 95% confidence interval [CI],0.63-0.66; p < 0.01 and AUC = 0.73; 95%CI, 0.65-0.84; p < 0.001, respectively). This study demonstrates that the new grading system provided by us can be a useful tool for assisting embryo selection via changes in embryo morphology. D4 embryo transfer provides a simple and applicable method for FET cycles in daily practice.
Collapse
Affiliation(s)
- Hong-Xing Li
- Reproductive Medical Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, 730000, China.
| | - Xiao-Juan Xu
- Reproductive Medical Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, 730000, China
| | - Lin Liu
- Reproductive Medical Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, 730000, China
| |
Collapse
|