1
|
Fan S, Liu J, Chofflet N, Bailey AO, Russell WK, Zhang Z, Takahashi H, Ren G, Rudenko G. Molecular mechanism of contactin 2 homophilic interaction. Structure 2024; 32:1652-1666.e8. [PMID: 38968938 PMCID: PMC11455609 DOI: 10.1016/j.str.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Contactin 2 (CNTN2) is a cell adhesion molecule involved in axon guidance, neuronal migration, and fasciculation. The ectodomains of CNTN1-CNTN6 are composed of six Ig domains (Ig1-Ig6) and four FN domains. Here, we show that CNTN2 forms transient homophilic interactions (KD ∼200 nM). Cryo-EM structures of full-length CNTN2 and CNTN2_Ig1-Ig6 reveal a T-shaped homodimer formed by intertwined, parallel monomers. Unexpectedly, the horseshoe-shaped Ig1-Ig4 headpieces extend their Ig2-Ig3 tips outwards on either side of the homodimer, while Ig4, Ig5, Ig6, and the FN domains form a central stalk. Cross-linking mass spectrometry and cell-based binding assays confirm the 3D assembly of the CNTN2 homodimer. The interface mediating homodimer formation differs between CNTNs, as do the homophilic versus heterophilic interaction mechanisms. The CNTN family thus encodes a versatile molecular platform that supports a very diverse portfolio of protein interactions and that can be leveraged to strategically guide neural circuit development.
Collapse
Affiliation(s)
- Shanghua Fan
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ziqi Zhang
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
2
|
Chybowska AD, Gadd DA, Cheng Y, Bernabeu E, Campbell A, Walker RM, McIntosh AM, Wrobel N, Murphy L, Welsh P, Sattar N, Price JF, McCartney DL, Evans KL, Marioni RE. Epigenetic Contributions to Clinical Risk Prediction of Cardiovascular Disease. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004265. [PMID: 38288591 PMCID: PMC10876178 DOI: 10.1161/circgen.123.004265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/30/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is among the leading causes of death worldwide. The discovery of new omics biomarkers could help to improve risk stratification algorithms and expand our understanding of molecular pathways contributing to the disease. Here, ASSIGN-a cardiovascular risk prediction tool recommended for use in Scotland-was examined in tandem with epigenetic and proteomic features in risk prediction models in ≥12 657 participants from the Generation Scotland cohort. METHODS Previously generated DNA methylation-derived epigenetic scores (EpiScores) for 109 protein levels were considered, in addition to both measured levels and an EpiScore for cTnI (cardiac troponin I). The associations between individual protein EpiScores and the CVD risk were examined using Cox regression (ncases≥1274; ncontrols≥11 383) and visualized in a tailored R application. Splitting the cohort into independent training (n=6880) and test (n=3659) subsets, a composite CVD EpiScore was then developed. RESULTS Sixty-five protein EpiScores were associated with incident CVD independently of ASSIGN and the measured concentration of cTnI (P<0.05), over a follow-up of up to 16 years of electronic health record linkage. The most significant EpiScores were for proteins involved in metabolic, immune response, and tissue development/regeneration pathways. A composite CVD EpiScore (based on 45 protein EpiScores) was a significant predictor of CVD risk independent of ASSIGN and the concentration of cTnI (hazard ratio, 1.32; P=3.7×10-3; 0.3% increase in C-statistic). CONCLUSIONS EpiScores for circulating protein levels are associated with CVD risk independent of traditional risk factors and may increase our understanding of the etiology of the disease.
Collapse
Affiliation(s)
- Aleksandra D. Chybowska
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Danni A. Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Yipeng Cheng
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Rosie M. Walker
- School of Psychology, University of Exeter, United Kingdom (R.M.W.)
| | - Andrew M. McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital (A.M.M.), The University of Edinburgh, United Kingdom
| | - Nicola Wrobel
- Edinburgh Clinical Research Facility, Western General Hospital (N.W., L.M.), The University of Edinburgh, United Kingdom
| | - Lee Murphy
- Edinburgh Clinical Research Facility, Western General Hospital (N.W., L.M.), The University of Edinburgh, United Kingdom
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (P.W., N.S.)
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (P.W., N.S.)
| | - Jackie F. Price
- Usher Institute, Old Medical School (J.F.P.), The University of Edinburgh, United Kingdom
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer (A.D.C., D.A.G., Y.C., E.B., A.C., D.L.M., K.L.E., R.E.M.), The University of Edinburgh, United Kingdom
| |
Collapse
|
3
|
Garofalo M, Vansenne F, Sival DA, Verbeek DS. Pathogenetic Insights into Developmental Coordination Disorder Reveal Substantial Overlap with Movement Disorders. Brain Sci 2023; 13:1625. [PMID: 38137073 PMCID: PMC10741651 DOI: 10.3390/brainsci13121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Developmental Coordination Disorder (DCD) is a neurodevelopmental condition characterized by non-progressive central motor impairments. Mild movement disorder features have been observed in DCD. Until now, the etiology of DCD has been unclear. Recent studies suggested a genetic substrate in some patients with DCD, but comprehensive knowledge about associated genes and underlying pathogenetic mechanisms is still lacking. In this study, we first identified genes described in the literature in patients with a diagnosis of DCD according to the official diagnostic criteria. Second, we exposed the underlying pathogenetic mechanisms of DCD, by investigating tissue- and temporal gene expression patterns and brain-specific biological mechanisms. Third, we explored putative shared pathogenetic mechanisms between DCD and frequent movement disorders with a known genetic component, including ataxia, chorea, dystonia, and myoclonus. We identified 12 genes associated with DCD in the literature, which are ubiquitously expressed in the central nervous system throughout brain development. These genes are involved in cellular processes, neural signaling, and nervous system development. There was a remarkable overlap (62%) in pathogenetic mechanisms between DCD-associated genes and genes linked with movement disorders. Our findings suggest that some patients might have a genetic etiology of DCD, which could be considered part of a pathogenetic movement disorder spectrum.
Collapse
Affiliation(s)
- Martinica Garofalo
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Fleur Vansenne
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Deborah A. Sival
- Department of Pediatric Neurology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (M.G.); (D.A.S.)
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Dineke S. Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Mitrakos A, Kosma K, Makrythanasis P, Tzetis M. Prenatal Chromosomal Microarray Analysis: Does Increased Resolution Equal Increased Yield? Genes (Basel) 2023; 14:1519. [PMID: 37628571 PMCID: PMC10454647 DOI: 10.3390/genes14081519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Chromosomal microarray analysis (CMA) is considered a first-tier test for patients with developmental disabilities and congenital anomalies and is also routinely applied in prenatal diagnosis. The current consensus size cut-off for reporting copy number variants (CNVs) in the prenatal setting ranges from 200 Kb to 400 Kb, with the intention of minimizing the impact of variants of uncertain significance (VUS). Very limited data are currently available on the application of higher resolution platforms prenatally. The aim of this study is to investigate the feasibility and impact of applying high-resolution CMA in the prenatal setting. To that end, we report on the outcomes of applying CMA with a size cut-off of 20 Kb in 250 prenatal samples and discuss the findings and diagnostic yield and also provide follow-up for cases with variants of uncertain significance. Overall, 19.6% (49) showed one or more chromosomal abnormalities, with the findings classified as Pathogenic (P) or Likely Pathogenic (LP) in 15.6% and as VUS in 4%. When excluding the cases with known familial aberrations, the diagnostic yield was 12%. The smallest aberration detected was a 32 Kb duplication of the 16p11.2 region. In conclusion, this study demonstrates that prenatal diagnosis with a high-resolution aCGH platform can reliably detect smaller CNVs that are often associated with neurodevelopmental phenotypes while providing an increased diagnostic yield, regardless of the indication for testing, with only a marginal increase in the VUS incidence. Thus, it can be an important tool in the prenatal setting.
Collapse
Affiliation(s)
- Anastasios Mitrakos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (K.K.); (P.M.)
| | | | | | - Maria Tzetis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (K.K.); (P.M.)
| |
Collapse
|
5
|
Hyblova M, Gnip A, Kucharik M, Budis J, Sekelska M, Minarik G. Maternal Copy Number Imbalances in Non-Invasive Prenatal Testing: Do They Matter? Diagnostics (Basel) 2022; 12:diagnostics12123056. [PMID: 36553064 PMCID: PMC9777446 DOI: 10.3390/diagnostics12123056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) has become a routine practice in screening for common aneuploidies of chromosomes 21, 18, and 13 and gonosomes X and Y in fetuses worldwide since 2015 and has even expanded to include smaller subchromosomal events. In fact, the fetal fraction represents only a small proportion of cell-free DNA on a predominant background of maternal DNA. Unlike fetal findings that have to be confirmed using invasive testing, it has been well documented that NIPT provides information on maternal mosaicism, occult malignancies, and hidden health conditions due to copy number variations (CNVs) with diagnostic resolution. Although large duplications or deletions associated with certain medical conditions or syndromes are usually well recognized and easy to interpret, very little is known about small, relatively common copy number variations on the order of a few hundred kilobases and their potential impact on human health. We analyzed data from 6422 NIPT patient samples with a CNV detection resolution of 200 kb for the maternal genome and identified 942 distinct CNVs; 328 occurred repeatedly. We defined them as multiple occurring variants (MOVs). We scrutinized the most common ones, compared them with frequencies in the gnomAD SVs v2.1, dbVar, and DGV population databases, and analyzed them with an emphasis on genomic content and potential association with specific phenotypes.
Collapse
Affiliation(s)
- Michaela Hyblova
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Correspondence:
| | - Andrej Gnip
- Medirex a.s., Galvaniho 17/C, 820 16 Bratislava, Slovakia
| | | | - Jaroslav Budis
- Geneton s.r.o., Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Martina Sekelska
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.o., Novozamocka 67, 949 05 Nitra, Slovakia
- Trisomy Test s.r.o., Novozamocka 67, 949 05 Nitra, Slovakia
| |
Collapse
|
6
|
Li H, Li K, Zhu Q, Tang Z, Wang Z. Transcriptomic analysis of bladder tissue in a rat model of ketamine-induced bladder fibrosis. Neurourol Urodyn 2022; 41:765-776. [PMID: 35170809 DOI: 10.1002/nau.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Ketamine-induced cystitis (KIC) is a disease caused by ketamine that can cause lower urinary tract symptoms (LUTS). Its end-stage is bladder contracture, which is related to bladder fibrosis and poses a serious burden to patient lives. METHODS We established a KIC model in female Sprague Dawley rats and verified bladder fibrosis in the model by Masson trichrome staining and western blot analysis. The bladders of the rats from the ketamine and control groups were used to perform transcriptome analysis. In particular, association analysis with metabolomics was also used to determine the potential mechanisms of ketamine-induced bladder fibrosis. RESULTS A total of 685 differentially expressed messenger RNAs, 71 differentially expressed long noncoding RNAs, 23 differentially expressed microRNAs, and 68 differentially expressed circular RNAs were identified. We found that ribosome, Wnt signaling, vascular endothelial growth factor signaling, cytoskeleton organization, and cytoskeletal protein binding may be potential pathways in ketamine-induced bladder fibrosis as identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. In addition, the mitogen-activated protein kinase pathway appeared to be closely related to the development of ketamine-induced bladder fibrosis according to association analysis. CONCLUSIONS In this study, using transcriptomic and correlation analyses of metabolomics, we identified pathways that may be potential targets for the prevention and treatment of ketamine-induced bladder fibrosis.
Collapse
Affiliation(s)
- Haozhen Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Urology, The second hospital of Dalian medical university, Dalian, Liaoning, China
| | - Kaixuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang Y, He Y, Zhu Y, He T, Xu J, Kuang Q, Ji Y, Xu R, Li F, Zhou F. Effect of the Minor C Allele of CNTN4 rs2619566 on Medial Hypothalamic Connectivity in Early-Stage Patients of Chinese Han Ancestry with Sporadic Amyotrophic Lateral Sclerosis. Neuropsychiatr Dis Treat 2022; 18:437-448. [PMID: 35250268 PMCID: PMC8888333 DOI: 10.2147/ndt.s339456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Clinical symptoms such as major defects in energy metabolism may involve the hypothalamus in amyotrophic lateral sclerosis (ALS) patients. Our recent study discovered that the single-nucleotide polymorphisms (SNPs) of rs2619566, rs79609816 and rs10260404 are associated with sporadic ALS (sALS). Thus, this study aims to investigate the hypothalamic functional reorganization and its association with the above polymorphisms risk alleles in sALS patients of Chinese Han ancestry. METHODS Forty-four sALS patients (28 males/16 females) and 40 healthy subjects (HS; 28 males/12 females) underwent resting-state functional MRI, genotyping and clinical assessments. A two-sample t test (P < 0.01, GRF correction at P < 0.05) was performed to compare hypothalamic connectivity for group-level analysis in disease diagnosis and genotype, and then the genotype-diagnosis interaction effect was assessed. Finally, Spearman correlation analyses were performed to assess the relationship between the altered functional connectivity and their clinical characteristics. RESULTS The sALS patients showed a short disease duration (median = 12 months). Regarding the diagnosis effect, the sALS patients showed widespread hypothalamic hyperconnectivity with the left superior temporal gyrus/middle temporal gyrus, right inferior frontal gyrus, and left precuneus/posterior cingulate gyrus. For the genotype effect of SNPs, hyperconnectivity was observed in only the medial hypothalamus when the sALS patients harboring the minor C allele of rs2619566 in contactin-4 (CNTN4), while the sALS patients with the TT allele showed a hyperconnectivity network in the right lateral hypothalamus. This connectivity pattern was not observed in other SNPs. No significant genotype-diagnosis interaction was found. Moreover, altered functional connectivity was not significantly correlated with clinical characteristics (P : 0.11-0.90). CONCLUSION These results demonstrated widespread hypothalamic hyperconnectivity in sALS. The risk allele C of the CNTN4 gene may therefore influence functional reorganization of the medial hypothalamus. The effects of the CNTN4 rs2619566 polymorphism may exist in the hypothalamic functional connectivity of patients with sALS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yujie He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Jie Xu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Qinmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Yuqi Ji
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fangjun Li
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.,Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| |
Collapse
|
8
|
Liu H, Wang L, Guo Z, Xu Q, Fan W, Xu Y, Hu J, Zhang Y, Tang J, Xie M, Zhou Z, Hou S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genet Sel Evol 2021; 53:98. [PMID: 34930109 PMCID: PMC8690979 DOI: 10.1186/s12711-021-00684-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Background As a major economic trait in poultry, egg production efficiency attracts widespread interest in breeding and production. However, limited information is available about the underlying genetic architecture of egg production traits in ducks. In this paper, we analyzed six egg production-related traits in 352 F2 ducks derived from reciprocal crosses between mallard and Pekin ducks. Results Feed conversation ratio (FCR) was positively correlated with feed intake but negatively correlated with egg-related traits, including egg weight and egg production, both phenotypically and genetically. Estimates of pedigree-based heritability were higher than 0.2 for all traits investigated, except hip-width. Based on whole-genome sequencing data, we conducted genome-wide association studies to identify genomic regions associated with these traits. In total, 11 genomic regions were associated with FCR. No genomic regions were identified as significantly associated with hip-width, total feed intake, average daily feed intake, and total egg production. Analysis of selective sweeps between mallard and Pekin ducks confirmed three of these genomic regions on chromosomes 13, 3 and 6. Within these three regions, variants in candidate genes that were in linkage disequilibrium with the GWAS leader single nucleotide polymorphisms (SNPs) (Chr13:2,196,728, P = 7.05 × 10–14; Chr3:76,991,524, P = 1.06 × 10–12; Chr6:20,356,803, P = 1.14 × 10–10) were detected. Thus, we identified 31 potential candidate genes associated with FCR, among which the strongest candidates are those that are highly expressed in tissues involved in reproduction and nervous system functions of ducks: CNTN4, CRBR, GPR63, KLHL32, FHL5, TRNT1, MANEA, NDUFAF4, and SCD. Conclusions For the first time, we report the identification of genomic regions that are associated with FCR in ducks and our results illustrate the genomic changes that occurred during their domestication and are involved in egg production efficiency. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00684-5.
Collapse
Affiliation(s)
- Hehe Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Lei Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 613000, China
| | - Wenlei Fan
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Zhang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
9
|
Detection of copy number variation associated with ventriculomegaly in fetuses using single nucleotide polymorphism arrays. Sci Rep 2021; 11:5291. [PMID: 33674646 PMCID: PMC7935846 DOI: 10.1038/s41598-021-83147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Etiopathogenesis of fetal ventriculomegaly is poorly understood. Associations between fetal isolated ventriculomegaly and copy number variations (CNVs) have been previously described. We investigated the correlations between fetal ventriculomegaly-with or without other ultrasound anomalies-and chromosome abnormalities. 222 fetuses were divided into four groups: (I) 103 (46.4%) cases with isolated ventriculomegaly, (II) 41 (18.5%) cases accompanied by soft markers, (III) 33 (14.9%) cases complicated with central nervous system (CNS) anomalies, and (IV) 45 (20.3%) cases with accompanying anomalies. Karyotyping and single nucleotide polymorphism (SNP) array were used in parallel. Karyotype abnormalities were identified in 15/222 (6.8%) cases. Karyotype abnormalities in group I, II, III, and IV were 4/103 (3.9%), 2/41 (4.9%), 4/33 (12.1%), and 5/45 (11.1%), respectively. Concerning the SNP array analysis results, 31/222 (14.0%) were CNVs, CNVs in groups I, II, III, and IV were 11/103 (10.7%), 6/41 (14.6%), 9/33 (27.3%), and 5/45 fetuses (11.1%), respectively. Detections of clinical significant CNVs were higher in non-isolated ventriculomegaly than in isolated ventriculomegaly (16.81% vs 10.7%, P = 0.19). SNP arrays can effectively identify CNVs in fetuses with ventriculomegaly and increase the abnormal chromosomal detection rate by approximately 7.2%, especially ventriculomegaly accompanied by CNS anomalies.
Collapse
|
10
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Casamassa A, Ferrari D, Gelati M, Carella M, Vescovi AL, Rosati J. A Link between Genetic Disorders and Cellular Impairment, Using Human Induced Pluripotent Stem Cells to Reveal the Functional Consequences of Copy Number Variations in the Central Nervous System-A Close Look at Chromosome 15. Int J Mol Sci 2020; 21:ijms21051860. [PMID: 32182809 PMCID: PMC7084702 DOI: 10.3390/ijms21051860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Recent cutting-edge human genetics technology has allowed us to identify copy number variations (CNVs) and has provided new insights for understanding causative mechanisms of human diseases. A growing number of studies show that CNVs could be associated with physiological mechanisms linked to evolutionary trigger, as well as to the pathogenesis of various diseases, including cancer, autoimmune disease and mental disorders such as autism spectrum disorders, schizophrenia, intellectual disabilities or attention-deficit/hyperactivity disorder. Their incomplete penetrance and variable expressivity make diagnosis difficult and hinder comprehension of the mechanistic bases of these disorders. Additional elements such as co-presence of other CNVs, genomic background and environmental factors are involved in determining the final phenotype associated with a CNV. Genetically engineered animal models are helpful tools for understanding the behavioral consequences of CNVs. However, the genetic background and the biology of these animal model systems have sometimes led to confusing results. New cellular models obtained through somatic cellular reprogramming technology that produce induced pluripotent stem cells (iPSCs) from human subjects are being used to explore the mechanisms involved in the pathogenic consequences of CNVs. Considering the vast quantity of CNVs found in the human genome, we intend to focus on reviewing the current literature on the use of iPSCs carrying CNVs on chromosome 15, highlighting advantages and limits of this system with respect to mouse model systems.
Collapse
Affiliation(s)
- Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
| | - Maurizio Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Massimo Carella
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
| | - Angelo Luigi Vescovi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy;
- Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy; (M.G.); (M.C.)
- Correspondence: (A.L.V.); (J.R.)
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Foggia, Italy;
- Correspondence: (A.L.V.); (J.R.)
| |
Collapse
|