1
|
Alshammari ND, Elkanayati R, Vemula SK, Al Shawakri E, Uttreja P, Almutairi M, Repka MA. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024; 25:236. [PMID: 39379609 DOI: 10.1208/s12249-024-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application's advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.
Collapse
Affiliation(s)
- Nouf D Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, 91431, Arar, Saudi Arabia
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Esraa Al Shawakri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
2
|
Shojaie F, Ferrero C, Caraballo I. Development of 3D-Printed Bicompartmental Devices by Dual-Nozzle Fused Deposition Modeling (FDM) for Colon-Specific Drug Delivery. Pharmaceutics 2023; 15:2362. [PMID: 37765330 PMCID: PMC10535423 DOI: 10.3390/pharmaceutics15092362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Dual-nozzle fused deposition modeling (FDM) is a 3D printing technique that allows for the simultaneous printing of two polymeric filaments and the design of complex geometries. Hence, hybrid formulations and structurally different sections can be combined into the same dosage form to achieve customized drug release kinetics. The objective of this study was to develop a novel bicompartmental device by dual-nozzle FDM for colon-specific drug delivery. Hydroxypropylmethylcellulose acetate succinate (HPMCAS) and polyvinyl alcohol (PVA) were selected as matrix-forming polymers of the outer pH-dependent and the inner water-soluble compartments, respectively. 5-Aminosalicylic acid (5-ASA) was selected as the model drug. Drug-free HPMCAS and drug-loaded PVA filaments suitable for FDM were extruded, and their properties were assessed by thermal, X-ray diffraction, microscopy, and texture analysis techniques. 5-ASA (20% w/w) remained mostly crystalline in the PVA matrix. Filaments were successfully printed into bicompartmental devices combining an outer cylindrical compartment and an inner spiral-shaped compartment that communicates with the external media through an opening. Scanning electron microscopy and X-ray tomography analysis were performed to guarantee the quality of the 3D-printed devices. In vitro drug release tests demonstrated a pH-responsive biphasic release pattern: a slow and sustained release period (pH values of 1.2 and 6.8) controlled by drug diffusion followed by a faster drug release phase (pH 7.4) governed by polymer relaxation/erosion. Overall, this research demonstrates the feasibility of the dual-nozzle FDM technique to obtain an innovative 3D-printed bicompartmental device for targeting 5-ASA to the colon.
Collapse
Affiliation(s)
| | - Carmen Ferrero
- Departamento Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González No. 2, 41012 Sevilla, Spain; (F.S.); (I.C.)
| | | |
Collapse
|
3
|
Samaro A, Vergaelen M, Purino M, Tigrine A, de la Rosa VR, Goudarzi NM, Boone MN, Vanhoorne V, Hoogenboom R, Vervaet C. Poly(2-alkyl-2-oxazoline)s: A polymer platform to sustain the release from tablets with a high drug loading. Mater Today Bio 2022; 16:100414. [PMID: 36133793 PMCID: PMC9483731 DOI: 10.1016/j.mtbio.2022.100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
Sustaining the release of highly dosed APIs from a matrix tablet is challenging. To address this challenge, this study evaluated the performance of thermoplastic poly (2-alkyl-2-oxazoline)s (PAOx) as matrix excipient to produce sustained-release tablets via three processing routes: (a) hot-melt extrusion (HME) combined with injection molding (IM), (b) HME combined with milling and compression and (c) direct compression (DC). Different PAOx (co-)polymers and polymer mixtures were processed with several active pharmaceutical ingredients having different aqueous solubilities and melting temperatures (metoprolol tartrate (MPT), metformin hydrochloride (MTF) and theophylline anhydrous (THA)). Different PAOx grades were synthesized and purified by the Supramolecular Chemistry Group, and the effect of PAOx grade and processing technique on the in vitro release kinetics was evaluated. Using the hydrophobic poly (2-n-propyl-2-oxazoline) (PnPrOx) as a matrix excipient allowed to sustain the release of different APIs, even at a 70% (w/w) drug load. Whereas complete THA release was not achieved from the PnPrOx matrix over 24 h regardless of the processing technique, adding 7.5% w/w of the hydrophilic poly (2-ethyl-2-oxazoline) to the hydrophobic PnPrOx matrix significantly increased THA release, highlighting the relevance of mixing different PAOx grades. In addition, it was demonstrated that the release of THA was similar from co-polymer and polymer mixtures with the same polymer ratios. On the other hand, as the release of MTF from a PnPrOx matrix was fast, the more hydrophobic poly (2-sec-butyl-2-oxazoline) (PsecBuOx) was used to retard MTF release. In addition, a mixture between the hydrophilic PEtOx and the hydrophobic PsecBuOx allowed accurate tuning of the release of MTF formulations. Finally, it was demonstrated that PAOx also showed a high ability to tune the in vivo release. IM tablets containing 70% MTF and 30% PsecBuOx showed a lower in vivo bioavailability compared to IM tablets containing a low PEtOx concentration (7.5%, w/w) in combination with PsecBuOx (22.5%, w/w). Importantly, the in vivo MTF blood level from the sustained release tablets correlated well with the in vitro release profiles. In general, this work demonstrates that PAOx polymers offer a versatile formulation platform to adjust the release rate of different APIs, enabling sustained release from tablets with up to 70% w/w drug loading.
Collapse
Affiliation(s)
- Aseel Samaro
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Ali Tigrine
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Victor R de la Rosa
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium.,Avroxa BV., Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Niloofar Moazami Goudarzi
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Matthieu N Boone
- Radiation Physics Research Group, Department of Physics and Astronomy, Ghent University, Belgium.,Center for X-ray Tomography (UGCT), Ghent University, Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Krijgslaan 281-S4 9000 Ghent University, Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg, 460 9000, Ghent, Belgium
| |
Collapse
|
4
|
Mohammadian E, Foroumadi A, Hasanvand Z, Rahimpour E, Zhao H, Jouyban A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Alzahrani A, Nyavanandi D, Mandati P, Adel Ali Youssef A, Narala S, Bandari S, Repka M. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951. [PMID: 35753536 DOI: 10.1016/j.ijpharm.2022.121951] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
6
|
Sohail Arshad M, Zafar S, Yousef B, Alyassin Y, Ali R, AlAsiri A, Chang MW, Ahmad Z, Ali Elkordy A, Faheem A, Pitt K. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev 2021; 178:113840. [PMID: 34147533 DOI: 10.1016/j.addr.2021.113840] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.
Collapse
Affiliation(s)
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Yasmine Alyassin
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Radeyah Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Pharmacy College, Pharmaceutics Department, Najran University, Najran, Saudi Arabia
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom; Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kendal Pitt
- Manufacturing, Science & Technology, Pharma Supply Chain, GlaxoSmithKline, Ware, United Kingdom.
| |
Collapse
|
7
|
Kapote DN, Wagner KG. Shellac- a natural carrier for colon targeting of indomethacin using hot melt extrusion. Drug Dev Ind Pharm 2021; 47:748-757. [PMID: 34038307 DOI: 10.1080/03639045.2021.1934863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Indomethacin (IND) is one of the supporting drug candidates for colonic targeting but it belongs to BCS class II category presenting a challenge in optimal targeting at the colonic site. To overcome this challenge, we sought to prepare a pH-dependent soluble ternary solid dispersion (SD) of IND of improved solubility and dissolution rate at the colon without the need for a coating. The current study focuses on the preparation of binary SDs of API (IND) with shellac (SSB 55) and Eudragit FS 100 (EFS) and ternary mixtures of IND, SSB 55 together with a new grade of HPMC (A15). Respective SDs were prepared via HME to achieve gastric protection and improved dissolution performance including maintenance of supersaturation. The SDs were characterized and tested for in-vitro dissolution performance using a pH shift dissolution method from 1.1, 5.5, 6.8, and 7.4. A ternary extrudate of IND, SSB 55, and A15 showed improved protection below pH 5.5 with a complete release of 99.5% at pH 7.4 compared to IND neat and binary extrudates from IND-A15, IND-SSB 55, and IND-EFS. It was attributed to an increased level of intermolecular interaction confirmed by ATR-IR and was studied for stability. It was found that in a ternary mixture containing IND, A15 and SSB 55 an increased hydrogen bonding interaction is present, which resulted in improved dissolution performance compared to binary mixtures. Therefore, ternary SDs proved to be a promising concept for future development of colon targeting of poorly soluble drugs.
Collapse
Affiliation(s)
- Dnyaneshwar N Kapote
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| | - Karl G Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Nandi U, Trivedi V, Ross SA, Douroumis D. Advances in Twin-Screw Granulation Processing. Pharmaceutics 2021; 13:pharmaceutics13050624. [PMID: 33925577 PMCID: PMC8146340 DOI: 10.3390/pharmaceutics13050624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022] Open
Abstract
Twin-screw granulation (TSG) is a pharmaceutical process that has gained increased interest from the pharmaceutical industry for its potential for the development of oral dosage forms. The technology has evolved rapidly due to the flexibility of the equipment design, the selection of the process variables and the wide range of processed materials. Most importantly, TSG offers the benefits of both batch and continuous manufacturing for pharmaceutical products, accompanied by excellent process control, high product quality which can be achieved through the implementation of Quality by Design (QbD) approaches and the integration of Process Analytical Tools (PAT). Here, we present basic concepts of the various twin-screw granulation techniques and present in detail their advantages and disadvantages. In addition, we discuss the detail of the instrumentation used for TSG and how the critical processing paraments (CPP) affect the critical quality attributes (CQA) of the produced granules. Finally, we present recent advances in TSG continuous manufacturing including the paradigms of modelling of continuous granulation process, QbD approaches coupled with PAT monitoring for granule optimization and process understanding.
Collapse
Affiliation(s)
- Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
| | - Vivek Trivedi
- Medway School of Pharmacy, Medway Campus, University of Kent, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
| | - Steven A. Ross
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Cubi-Tech Extrusion: 3, Sextant Park, Neptune Cl, Rochester ME2 4LU, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, UK;
- CIPER Centre for Innovation and Process Engineering Research, Kent ME4 4TB, UK;
- Correspondence: ; Tel.: +44-2083318440
| |
Collapse
|
9
|
Gao M, Liu S, Chen J, Gordon KC, Tian F, McGoverin CM. Potential of Raman spectroscopy in facilitating pharmaceutical formulations development - An AI perspective. Int J Pharm 2021; 597:120334. [PMID: 33540015 DOI: 10.1016/j.ijpharm.2021.120334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023]
Abstract
Drug development is time-consuming and inherently possesses a high failure rate. Pharmaceutical formulation development is the bridge that links a new chemical entity (NCE) to pre-clinical and clinical trials, and has a high impact on the efficacy and safety of the final drug product. Further, the time required for this process is escalating as formulation techniques are becoming more complicated due to the rising demands for drug products with better efficacy and patient compliance, as well as the inherent difficulties of addressing the unfavorable properties of NCEs such as low water solubility. The advent of artificial intelligence (AI) provides possibilities to accelerate the drug development process. In this review, we first examine applications of AI methods in different types of pharmaceutical formulations and formulation techniques. Moreover, as availability of data is the engine for the advancement of AI, we then suggest a potential way (i.e. applying Raman spectroscopy) for faster high-quality data gathering from formulations. Raman techniques have the capability of analyzing the composition and distribution of components and the physicochemical properties thereof within formulations, which are prominent factors governing drug dissolution profiles and subsequently bioavailability. Thus, useful information can be obtained bridging formulation development to the final product quality.
Collapse
Affiliation(s)
- Ming Gao
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Sibo Liu
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Jianan Chen
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Keith C Gordon
- Dodd-Walls Centre, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Fang Tian
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Cushla M McGoverin
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
10
|
Rajput AS, Jha DK, Gurram S, Shah DS, Amin PD. RP-HPLC method development and validation for the quantification of Efonidipine hydrochloride in HME processed solid dispersions. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Efonidipine hydrochloride (EFO) is a poorly water-soluble drug and, hence, has poor bioavailability. Solid dispersions (SDs) of EFO using Eudragit EPO were prepared using hot-melt extrusion (HME) for the first time. The current study aims at developing a simple RP-HPLC method to quantify EFO in the developed SDs.
Results
The chromatographic separation was carried out on an Agilent Eclipsed XDB-C18 column (4.6 × 250 mm), packed with 5 μm particles. The optimized mobile phase consisted of HPLC grade acetonitrile and 0.020 mol/L KH2PO4 (pH 2.5) buffer in the ratio of 85:15 v/v with a flow rate optimized at 1.2 ml/min. The developed method was validated for system suitability, linearity, accuracy, precision, and robustness. The linearity results showed an excellent linear relationship between the drug concentration and peak area, indicating the peak area is directly proportional to the analyte concentration within a specific range and an excellent correlation coefficient of 0.9998. Intermediate precision and repeatability confirmed that the method provides precise results with %RSD value less than 2% for EFO. The assay results of the developed formulations were in the acceptable range with RSD less than 2%. The enhanced drug dissolution from the Eudragit EPO carrier with 10% Citric Acid (CA) is attributed to the conversion of the drug from crystalline to amorphous form, and microenvironmental acidic pH provided by CA.
Conclusion
In a nutshell, the developed RP-HPLC method showed excellent ability to differentiate the formulations and highlights the role of the polymer and the plasticizer.
Graphical abstract
Collapse
|
11
|
Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics. Pharmaceutics 2020; 12:pharmaceutics12090795. [PMID: 32842703 PMCID: PMC7558966 DOI: 10.3390/pharmaceutics12090795] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Three-dimensional (3D) printing offers the greatest potential to revolutionize the future of pharmaceutical manufacturing by overcoming challenges of conventional pharmaceutical operations and focusing design and production of dosage forms on the patient’s needs. Of the many technologies available, fusion deposition modelling (FDM) is considered of the lowest cost and higher reproducibility and accessibility, offering clear advantages in drug delivery. FDM requires in-house production of filaments of drug-containing thermoplastic polymers by hot-melt extrusion (HME), and the prospect of connecting the two technologies has been under investigation. The ability to integrate HME and FDM and predict and tailor the filaments’ properties will extend the range of printable polymers/formulations. Hence, this work revises the properties of the most common pharmaceutical-grade polymers used and their effect on extrudability, printability, and printing outcome, providing suitable processing windows for different raw materials. As a result, formulation selection will be more straightforward (considering the characteristics of drug and desired dosage form or release profile) and the processes setup will be more expedite (avoiding or mitigating typical processing issues), thus guaranteeing the success of both HME and FDM. Relevant techniques used to characterize filaments and 3D-printed dosage forms as an essential component for the evaluation of the quality output are also presented.
Collapse
|
12
|
Nakagawa Y, Suzuki T, Suga Y, Shimada T, Sai Y. Examination of Aggregate Formation upon Simultaneous Dissolution of Methacrylic Acid Copolymer LD Enteric Coating Agent, Pharmaceutical Additives, and Zwitterionic Ingredients. Biol Pharm Bull 2020; 43:682-687. [DOI: 10.1248/bpb.b19-00924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukiko Nakagawa
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University
- Department of Hospital Pharmacy, University Hospital, Kanazawa University
| | - Takuya Suzuki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University
| | - Yukio Suga
- Department of Clinical Drug Informatics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University
| | - Tsutomu Shimada
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University
- Department of Hospital Pharmacy, University Hospital, Kanazawa University
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University
- Department of Hospital Pharmacy, University Hospital, Kanazawa University
| |
Collapse
|
13
|
Azad MOK, Kang WS, Lim JD, Park CH. Bio- Fortification of Angelica gigas Nakai Nano-Powder Using Bio-Polymer by Hot Melt Extrusion to Enhance the Bioaccessibility and Functionality of Nutraceutical Compounds. Pharmaceuticals (Basel) 2019; 13:E3. [PMID: 31881704 PMCID: PMC7169383 DOI: 10.3390/ph13010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
Angelica gigas Nakai (AGN) is a popular traditional herbal medicine which has been used to alleviate various human diseases in Korea since ancient times. However, the low bioaccessibility of the nutraceutical compounds of AGN results in a poor water solubility, thereby limiting bioavailability. In this regard, a ternary AGN-biopolymer-plasticizer composite (AGNC) was developed to enhance the bioaccessibility of nutraceutical compounds from extrudate AGN formulations manufactured by hot melt extrusion (HME). The AGNC was prepared with extrudate AGN (EAGN) using different hydroxypropyl methylcellulose (HPMC) biopolymers (5% w/w) viz.: hypromellose phthalate (HP), hypromellose (AN), and hypromellose (CN) along with acetic acid (AA) (0.1 M, 20% w/v) as a plasticizer. The non-extrudate fresh AGN (FAGN) powder was used as a control. The physicochemical properties of the extrudate formulations and control were characterized by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). DSC analysis showed a lower enthalpy (ΔH) (12.22 J/g) and lower glass transition temperature (Tg) (41 °C) in HP-AA-EAGN compared to the control. FTIR confirmed the physical crosslinking between AGN and biopolymer in the extrudate composite and demonstrated that some functional groups formed viz., -OH and -CH2. The obtained result also shows that the particle size was reduced by 341 nm, and solubility was increased by 65.5% in HP-AA-EAGN compared to the control (1499 nm, 29.4%, respectively). The bioaccessibility of the total phenolic content and the total flavonoids-including decursin (D) and decursinol angelate (DA)-were significantly higher in HP-AA-EAGN compared to the control. The 2,2-diphenyl-1 picryl hydrazyl (DPPH) free radical scavenging capacity and ferric reducing antioxidant power assay (FRAP) indicated that the HP-AA-EAGN formulation preserves a greater antioxidant profile than the other formulations. Finally, it is summarized that the addition of acidified HP biopolymer increased the bioaccessibility, functionality, and improved the physicochemical properties of nutraceutical compounds in the extrudate AGN formulation.
Collapse
Affiliation(s)
- Md Obyedul Kalam Azad
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (W.S.K.)
| | - Wie Soo Kang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (W.S.K.)
| | - Jung Dae Lim
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea;
| | - Cheol Ho Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (W.S.K.)
| |
Collapse
|
14
|
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Shanmukhan NK. Pharmacogenomic phase transition from personalized medicine to patient-centric customized delivery. THE PHARMACOGENOMICS JOURNAL 2019; 20:1-18. [PMID: 31819163 DOI: 10.1038/s41397-019-0135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Personalized medicine has been a booming area in clinical research for the past decade, in which the detailed information about the patient genotype and clinical conditions were collected and considered to optimize the therapy to prevent adverse reactions. However, the utility of commercially available personalized medicine has not yet been maximized due to the lack of a structured protocol for implementation. In this narrative review, we explain the role of pharmacogenetics in personalized medicine, next-generation personalized medicine, i.e., patient-centric personalized medicine, in which the patient's comfort is considered along with pharmacogenomics to be a primary factor. We extensively discuss the classifications, strategies, tools, and drug delivery systems that can support the implementation of patient-centric personalized medicine from an industrial perspective.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India.
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy (JSS Academy of Higher Education & Research), Ooty, India
| | | |
Collapse
|
15
|
Simões MF, Pinto RM, Simões S. Hot-melt extrusion in the pharmaceutical industry: toward filing a new drug application. Drug Discov Today 2019; 24:1749-1768. [DOI: 10.1016/j.drudis.2019.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 05/17/2019] [Indexed: 01/30/2023]
|
16
|
Khizer Z, Akram MR, Sarfraz RM, Nirwan JS, Farhaj S, Yousaf M, Hussain T, Lou S, Timmins P, Conway BR, Ghori MU. Plasticiser-Free 3D Printed Hydrophilic Matrices: Quantitative 3D Surface Texture, Mechanical, Swelling, Erosion, Drug Release and Pharmacokinetic Studies. Polymers (Basel) 2019; 11:E1095. [PMID: 31261678 PMCID: PMC6680934 DOI: 10.3390/polym11071095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 11/16/2022] Open
Abstract
Hydroxypropyl methyl cellulose, HPMC, a hydrophilic polymer, is widely used for the development of extended release hydrophilic matrices and it is also considered as a good contender for the fabrication of 3D printing of matrix tablets. It is often combined with plasticisers to enable extrusion. The aim of the current project was to develop plasticizer-free 3D printed hydrophilic matrices using drug loaded filaments prepared via HME to achieve an in vitro (swelling, erosion and drug release) and in vivo (drug absorption) performance which is analogous to hydrophilic matrix tablets developed through conventional approaches. Additionally, the morphology of the printed tablets was studied using quantitative 3D surface texture studies and the porosity calculated. Filaments were produced successfully and used to produce matrix tablets with acceptable drug loading (95-105%), mechanical and surface texture properties regardless of the employed HPMC grade. The viscosity of HPMC had a discernible impact on the swelling, erosion, HPMC dissolution, drug release and pharmacokinetic findings. The highest viscosity grade (K100M) results in higher degree of swelling, decreased HPMC dissolution, low matrix erosion, decreased drug release and extended drug absorption profile. Overall, this study demonstrated that the drug loaded (glipizide) filaments and matrix tablets of medium to high viscosity grades of HPMC, without the aid of plasticisers, can be successfully prepared. Furthermore, the in vitro and in vivo studies have revealed the successful fabrication of extended release matrices.
Collapse
Affiliation(s)
- Zara Khizer
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Muhammad R Akram
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Rai M Sarfraz
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Jorabar Singh Nirwan
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Samia Farhaj
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Maria Yousaf
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Tariq Hussain
- System Engineering Department, Military Technological College, Muscat 111, Oman
- The Wolfson Centre for Bulk Solid Handling Technology, University of Greenwich, London SE10 9LS, UK
| | - Shan Lou
- School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Peter Timmins
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Barbara R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
17
|
Shahdadi Sardo H, Saremnejad F, Bagheri S, Akhgari A, Afrasiabi Garekani H, Sadeghi F. A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int J Pharm 2019; 558:367-379. [PMID: 30664993 DOI: 10.1016/j.ijpharm.2019.01.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Site-specific colon drug delivery is a practical approach for the treatment of local diseases of the colon with several advantages such as rapid onset of action and reduction of the dosage of the drug as well as minimization of harmful side effects. 5-aminosalicylic acid (5-ASA) is a drug of choice in the treatment of inflammatory bowel disease and colitis. For the efficient delivery of this drug, it is vital to prevent 5-ASA release in the upper part of the gastrointestinal tract and to promote its release in the proximal colon. Different approaches including chemical manipulation of drug molecule for production of prodrugs or modification of drug delivery systems using pH-dependent, time-dependent and/or bacterially biodegradable materials have been tried to optimize 5-ASA delivery to the colon. In the current review, the different strategies utilized in the design and development of an oral colonic delivery dosage form of 5-ASA are presented and discussed.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardo
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farinaz Saremnejad
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Bagheri
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Xue X, Chen G, Xu X, Wang J, Wang J, Ren L. A Combined Utilization of Plasdone-S630 and HPMCAS-HF in Ziprasidone Hydrochloride Solid Dispersion by Hot-Melt Extrusion to Enhance the Oral Bioavailability and No Food Effect. AAPS PharmSciTech 2019; 20:37. [PMID: 30604142 DOI: 10.1208/s12249-018-1216-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to research a novel combination of Plasdone-S630 and HPMCAS-HF as hot-melt carrier used in ziprasidone hydrochloride for enhanced oral bioavailability and dismissed food effect. Ziprasidone hydrochloride solid dispersion (ZH-SD) was prepared by hot-melt extrusion technique, and its optimized formulation was selected by the central composite design (CCD), which was characterized for powder X-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), in vitro dissolution study, and stability study. Finally, the in vivo study in fasted/fed state was carried out in beagle dogs. Based on PXRD analysis, HME technique successfully dispersed ziprasidone with a low crystallinity hydrochloride form in the polymers. According to the analysis of FTIR, hydrogen bonds were formed between drug and polymers during the process of HME. Without any noticeable bulk, crystalline could be found from the micrograph of ZH-SD when analyzed the result of scanning electron microscope (SEM). Pharmacokinetics studies indicated that the bioavailability of ZH-SD formulation had no significant difference in fasted and fed state, and the Cmax and AUC of ZH-SD were two fold higher than Zeldox® in fasted state. This result indicated that ziprasidone has achieved a desired oral bioavailability in fasted state and no food effect.
Collapse
|
19
|
Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040203. [PMID: 30356002 PMCID: PMC6321644 DOI: 10.3390/pharmaceutics10040203] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional printing, also known as additive manufacturing, is a fabrication process whereby a 3D object is created layer-by-layer by depositing a feedstock material such as thermoplastic polymer. The 3D printing technology has been widely used for rapid prototyping and its interest as a fabrication method has grown significantly across many disciplines. The most common 3D printing technology is called the Fused Deposition Modelling (FDM) which utilises thermoplastic filaments as a starting material, then extrudes the material in sequential layers above its melting temperature to create a 3D object. These filaments can be fabricated using the Hot-Melt Extrusion (HME) technology. The advantage of using HME to manufacture polymer filaments for FDM printing is that a homogenous solid dispersion of two or more pharmaceutical excipients i.e., polymers can be made and a thermostable drug can even be introduced in the filament composition, which is otherwise impractical with any other techniques. By introducing HME techniques for 3D printing filament development can improve the bioavailability and solubility of drugs as well as sustain the drug release for a prolonged period of time. The latter is of particular interest when medical implants are considered via 3D printing. In recent years, there has been increasing interest in implementing a continuous manufacturing method on pharmaceutical products development and manufacture, in order to ensure high quality and efficacy with less batch-to-batch variations of the pharmaceutical products. The HME and FDM technology can be combined into one integrated continuous processing platform. This article reviews the working principle of Hot Melt Extrusion and Fused Deposition Modelling, and how these two technologies can be combined for the use of advanced pharmaceutical applications.
Collapse
|
20
|
Dumpa NR, Sarabu S, Bandari S, Zhang F, Repka MA. Chronotherapeutic Drug Delivery of Ketoprofen and Ibuprofen for Improved Treatment of Early Morning Stiffness in Arthritis Using Hot-Melt Extrusion Technology. AAPS PharmSciTech 2018; 19:2700-2709. [PMID: 29968041 DOI: 10.1208/s12249-018-1095-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
This work developed a chronotherapeutic drug delivery system (CTDDS) utilizing a potential continuous hot-melt extrusion (HME) technique. Ketoprofen (KTP) and ibuprofen (IBU) were used as two separate model drugs. Eudragit S100 (ES100) was the matrix-forming agent, and ethyl cellulose (EC) (2.5 and 5%) was the release-retarding agent. A 16-mm extruder was used to develop the CTDDS to pilot scale. The obtained extrudate strands were transparent, indicating that the drugs were homogeneously dispersed in the matrix in an amorphous form, confirmed by both differential scanning calorimetry and powder X-ray diffraction. The strands were pelletized into 1, 2, and 3 mm size pellets. A 100% drug release from 1, 2, and 3 mm pellets with 2.5% EC was observed at 12, 14, and 16 h, whereas the drug release was sustained for 14, 16, and 22 h from 5% EC pellets, respectively, for KTP. The release characteristics of IBU were similar to those of KTP with modest variations in release at lag time. The in vitro drug release study conducted in three-stage dissolution media showed a desired lag time of 6 h. The percent drug release from 1, 2, and 3 mm pellets with 40% drug load showed < 20% release from all formulations at 6 h. The amount of ethyl cellulose and pellet size significantly affected drug release. Formulations of both KTP and IBU were stable for 4 months at accelerated stability conditions of 40°C/75% RH. In summary, HME is a novel technique for developing CTDDS.
Collapse
|
21
|
Van Renterghem J, Dhondt H, Verstraete G, De Bruyne M, Vervaet C, De Beer T. The impact of the injection mold temperature upon polymer crystallization and resulting drug release from immediate and sustained release tablets. Int J Pharm 2018; 541:108-116. [DOI: 10.1016/j.ijpharm.2018.01.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
22
|
Adi-Dako O, Ofori-Kwakye K, Boakye-Gyasi ME, Oppong Bekoe S, Okyem S. In Vitro Evaluation of Cocoa Pod Husk Pectin as a Carrier for Chronodelivery of Hydrocortisone Intended for Adrenal Insufficiency. JOURNAL OF DRUG DELIVERY 2017; 2017:8284025. [PMID: 29435369 PMCID: PMC5757137 DOI: 10.1155/2017/8284025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
This study evaluated the in vitro potential of cocoa pod husk (CPH) pectin as a carrier for chronodelivery of hydrocortisone intended for adrenal insufficiency. FTIR studies found no drug-CPH pectin interactions, and chemometric analysis showed that pure hydrocortisone bears closer similarity to hydrocortisone in hot water soluble pectin (HWSP) than hydrocortisone in citric acid soluble pectin (CASP). CPH pectin-based hydrocortisone matrix tablets (~300 mg) were prepared by direct compression and wet granulation techniques, and the tablet cores were film-coated with a 15% HPMC formulation for timed release, followed by a 12.5% Eudragit® S100 formulation for acid resistance. In vitro drug release studies of the uncoated and coated matrix tablets in simulated gastrointestinal conditions showed that wet granulation tablets exhibit greater retardation of drug release in aqueous medium than directly compressed tablets. CASP showed greater suppression of drug release in aqueous medium than HWSP. Wet granulation HWSP-based matrix tablets coated to a final coat weight gain of ~25% w/w were optimized for chronodelivery of hydrocortisone in the colon. The optimized tablets exhibited a lag phase of ~6 h followed by accelerated drug release in the colonic region and have potential to control night time cortisol levels in patients with adrenal insufficiency.
Collapse
Affiliation(s)
- Ofosua Adi-Dako
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Pharmacy, University of Ghana, Legon, Ghana
| | - Kwabena Ofori-Kwakye
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Mariam El Boakye-Gyasi
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Oppong Bekoe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Okyem
- Central Laboratory, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
23
|
Desai D, Sandhu H, Shah N, Malick W, Zia H, Phuapradit W, Vaka SRK. Selection of Solid-State Plasticizers as Processing Aids for Hot-Melt Extrusion. J Pharm Sci 2017; 107:372-379. [PMID: 28923318 DOI: 10.1016/j.xphs.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
The objective of the study was to select solid-state plasticizers for hot-melt extrusion (HME) process. The physical and mechanical properties of plasticizers, in selected binary (polymer:plasticizer) and ternary (active pharmaceutical ingredient:polymer:plasticizer) systems, were evaluated to assess their effectiveness as processing aids for HME process. Indomethacin and Eudragit® E PO were selected as model active pharmaceutical ingredient and polymer, respectively. Solubility parameters, thermal analysis, and rheological evaluation were used as assessment tools. Based on comparable solubility parameters, stearic acid, glyceryl behenate, and polyethylene glycol 8000 were selected as solid-state plasticizers. Binary and ternary physical mixtures were evaluated as a function of plasticizer concentration for thermal and rheological behavior. The thermal and rheological assessments also confirmed the miscibility predictions from solubility parameters. The understanding of thermal and rheological properties of the various mixtures helped in predicating plasticization efficiency of stearic acid, glyceryl behenate, and polyethylene glycol 8000. The evaluation also provided insight into the properties of the final product. An empirical model was also developed correlating rheological property of physical mixtures to actual HME process. Based on plasticizer efficiency, solid-state plasticizers and processing conditions can be selected for a HME process.
Collapse
Affiliation(s)
- Dipen Desai
- Kashiv Pharma LLC, 995 Route 202/206 Bridgewater, New Jersey 08807.
| | - Harpreet Sandhu
- Kashiv Pharma LLC, 995 Route 202/206 Bridgewater, New Jersey 08807
| | - Navnit Shah
- Kashiv Pharma LLC, 995 Route 202/206 Bridgewater, New Jersey 08807
| | | | | | | | | |
Collapse
|
24
|
Bioavailability enhancement of itraconazole-based solid dispersions produced by hot melt extrusion in the framework of the Three Rs rule. Eur J Pharm Sci 2017; 99:1-8. [DOI: 10.1016/j.ejps.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/07/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
|
25
|
Thiry J, Krier F, Ratwatte S, Thomassin JM, Jerome C, Evrard B. Hot-melt extrusion as a continuous manufacturing process to form ternary cyclodextrin inclusion complexes. Eur J Pharm Sci 2017; 96:590-597. [DOI: 10.1016/j.ejps.2016.09.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/29/2022]
|
26
|
Continuous production of itraconazole-based solid dispersions by hot melt extrusion: Preformulation, optimization and design space determination. Int J Pharm 2016; 515:114-124. [DOI: 10.1016/j.ijpharm.2016.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/19/2022]
|
27
|
Sadia M, Sośnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 2016; 513:659-668. [DOI: 10.1016/j.ijpharm.2016.09.050] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/30/2022]
|
28
|
The Use of Binary Polymeric Networks in Stabilizing Polyethylene Oxide Solid Dispersions. J Pharm Sci 2016; 105:3064-3072. [DOI: 10.1016/j.xphs.2016.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022]
|
29
|
Thiry J, Broze G, Pestieau A, Tatton AS, Baumans F, Damblon C, Krier F, Evrard B. Investigation of a suitable in vitro dissolution test for itraconazole-based solid dispersions. Eur J Pharm Sci 2016; 85:94-105. [PMID: 26850682 DOI: 10.1016/j.ejps.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 11/28/2022]
Abstract
The difficulty to find a relevant in vitro dissolution test to evaluate poorly soluble drugs is a well-known issue. One way to enhance their aqueous solubility is to formulate them as amorphous solid dispersions. In this study, three formulations containing itraconazole (ITZ), a model drug, were tested in seven different conditions (different USP apparatuses and different media). Two of the formulations were amorphous solid dispersions namely Sporanox®, the marketed product, and extrudates composed of Soluplus® and ITZ produced by hot melt extrusion; and the last one was pure crystalline ITZ capsules. After each test, a ranking of the formulations was established. Surprisingly, the two amorphous solid dispersions exhibited very different behavior depending primarily on the dissolution media. Indeed, the extrudates showed a better release profile than Sporanox® in non-sink and in biphasic conditions, whilst Sporanox® showed a higher release profile than the extrudates in sink and fasted simulated gastric conditions. The disintegration, dynamic light scattering and nuclear magnetic resonance results highlighted the presence of interaction between the surfactants and Soluplus®, which slowed down the erosion of the polymer matrix. Indeed, the negative charge of sodium dodecyl sulfate (SDS) and bile salts interacted with the surface of the extrudates that formed a barrier through which the water hardly diffused. Moreover, Soluplus® and SDS formed mixed micelles in solution in which ITZ interacts with SDS, but no longer with Soluplus®. Regarding the biphasic dissolution test, the interactions between the octanol dissolved in the aqueous media disrupted the polymer--ITZ system leading to a reduced release of ITZ from Sporanox®, whilst it had no influence on the extrudates. All together these results pointed out the difficulty of finding a suitable in vitro dissolution test due to interactions between the excipients that complicates the prediction of the behavior of these solid dispersions in vivo.
Collapse
Affiliation(s)
- Justine Thiry
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium.
| | - Guy Broze
- Center for Education and Research on Macromolecules, University of Liege, Chemistry Department, B6a, Sart-Tilman, Liege, Belgium
| | - Aude Pestieau
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| | - Andrew S Tatton
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - France Baumans
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - Christian Damblon
- Center of Nuclear Magnetic Resonance (CREMAN), Department of Chemistry, University of Liege, 4000, Liege, Belgium
| | - Fabrice Krier
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000, Liege, Belgium
| |
Collapse
|
30
|
Patil H, Tiwari RV, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016; 17:20-42. [PMID: 26159653 PMCID: PMC4766118 DOI: 10.1208/s12249-015-0360-7] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Roshan V Tiwari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
31
|
Tamaddon L, Mostafavi SA, Karkhane R, Riazi-Esfahani M, Dorkoosh FA, Rafiee-Tehrani M. Thermoanalytical characterization of clindamycin-loaded intravitreal implants prepared by hot melt extrusion. Adv Biomed Res 2015; 4:147. [PMID: 26322295 PMCID: PMC4549919 DOI: 10.4103/2277-9175.161563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 12/01/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The aim of the present study was to evaluate a non-destructive fabrication method in for the development of sustained-release poly (L, D-lactic acid)-based biodegradable clindamycin phosphate implants for the treatment of ocular toxoplasmosis. MATERIALS AND METHODS The rod-shaped intravitreal implants with an average length of 5 mm and a diameter of 0.4 mm were evaluated for their physicochemical parameters. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR), and nuclear magnetic resonance (1H NMR) studies were employed in order to study the characteristics of these formulations. RESULTS Drug content uniformity test confirmed the uniformity in different implant batches. Furthermore, the DSC, FTIR, and 1H NMR studies proved that the fabrication process did not have any destructive effects either on the drug or on the polymer structures. CONCLUSION These studies showed that the developed sustained-release implants could be of interest for long-term sustained intraocular delivery of clindamycin, which can provide better patient compliance and also have good potential in terms of industrial feasibility.
Collapse
Affiliation(s)
- Lana Tamaddon
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Abolfazl Mostafavi
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Karkhane
- Department of Ophthalmology, Eye Research Center, Farabi Eye Hospital, Tehran, Iran
| | | | | | | |
Collapse
|
32
|
Bennett RC, Keen JM, Bi Y(V, Porter S, Dürig T, McGinity JW. Investigation of the interactions of enteric and hydrophilic polymers to enhance dissolution of griseofulvin following hot melt extrusion processing. J Pharm Pharmacol 2015; 67:918-38. [DOI: 10.1111/jphp.12388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 12/21/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
This study focuses on the application of hot melt extrusion (HME) to produce solid dispersions containing griseofulvin (GF) and investigates the in-vitro dissolution performance of HME powders and resulting tablet compositions containing HME-processed dispersions.
Methods
Binary, ternary and quaternary dispersions containing GF, enteric polymer (Eudragit L100-55 or AQOAT-LF) and/or vinyl pyrrolidone-based polymer (Plasdone K-12 povidone or S-630 copovidone) were processed by HME. Two plasticizers, triethyl citrate (TEC) and acetyl tributyl citrate (ATBC), were incorporated to aid in melt processing and to modify release of GF in neutral media following a pH-change in dissolution. Products were characterized for GF recovery, degrees of compositional amorphous character, intermolecular interactions and non-sink dissolution performance.
Key findings
Binary dispersions exhibited lower maximum observed concentration values and magnitudes of supersaturated GF in neutral media dissolution in comparison with the ternary dispersions. The quaternary HME products, 1 : 2 : 1 : 0.6 GF : L100-55 : S-630 : ATBC and GF : AQOAT-LF : K-12 : ATBC, were determined as the most optimal concentration-enhancing compositions due to increased hydrogen bonding of enteric functional groups with carbonyl/acetate groups of vinyl pyrrolidone-based polymers, reduced compositional crystallinity and presence of incorporated hydrophobic plasticizer.
Conclusions
HME products containing combinations of concentration-enhancing polymers can supersaturate and sustain GF dissolution to greater magnitudes in neutral media following the pH-transition and be compressed into immediate-release tablets exhibiting similar dissolution profiles.
Collapse
Affiliation(s)
- Ryan C Bennett
- Division of Pharmaceutics, The University of Texas at Austin, Austin, TX, USA
| | - Justin M Keen
- Division of Pharmaceutics, The University of Texas at Austin, Austin, TX, USA
| | - Yunxia (Vivian) Bi
- Pharmaceutical and Nutritional Technology, R&D, Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Stuart Porter
- Pharmaceutical and Nutritional Technology, R&D, Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Thomas Dürig
- Pharmaceutical and Nutritional Technology, R&D, Ashland Specialty Ingredients, Wilmington, DE, USA
| | - James W McGinity
- Division of Pharmaceutics, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
33
|
Thiry J, Krier F, Evrard B. A review of pharmaceutical extrusion: critical process parameters and scaling-up. Int J Pharm 2014; 479:227-40. [PMID: 25541517 DOI: 10.1016/j.ijpharm.2014.12.036] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 11/30/2022]
Abstract
Hot melt extrusion has been a widely used process in the pharmaceutical area for three decades. In this field, it is important to optimize the formulation in order to meet specific requirements. However, the process parameters of the extruder should be as much investigated as the formulation since they have a major impact on the final product characteristics. Moreover, a design space should be defined in order to obtain the expected product within the defined limits. This gives some freedom to operate as long as the processing parameters stay within the limits of the design space. Those limits can be investigated by varying randomly the process parameters but it is recommended to use design of experiments. An examination of the literature is reported in this review to summarize the impact of the variation of the process parameters on the final product properties. Indeed, the homogeneity of the mixing, the state of the drug (crystalline or amorphous), the dissolution rate, the residence time, can be influenced by variations in the process parameters. In particular, the impact of the following process parameters: temperature, screw design, screw speed and feeding, on the final product, has been reviewed.
Collapse
Affiliation(s)
- J Thiry
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium.
| | - F Krier
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium
| | - B Evrard
- University of Liege (ULg), Department of Pharmacy, CIRM, Laboratory of Pharmaceutical Technology and Biopharmacy, CHU, Avenue de l'Hopital 1, B36, B-4000 Liege, Belgium
| |
Collapse
|
34
|
Yang M, He S, Fan Y, Wang Y, Ge Z, Shan L, Gong W, Huang X, Tong Y, Gao C. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: Preparation, characterization and evaluation in vivo. Int J Pharm 2014; 475:97-109. [DOI: 10.1016/j.ijpharm.2014.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 08/05/2014] [Accepted: 08/23/2014] [Indexed: 12/30/2022]
|
35
|
Formulation and Evaluation of Sustained Release Extrudes Prepared via Novel Hot Melt Extrusion Technique. J Pharm Innov 2014. [DOI: 10.1007/s12247-014-9191-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Silva AE, Oliveira EE, Gomes MCS, Marcelino HR, Silva KCH, Souza BS, Nagashima T, Ayala AP, Oliveira AG, Egito ESTD. Producing xylan/Eudragit® S100-based microparticles by chemical and physico-mechanical approaches as carriers for 5-aminosalicylic acid. J Microencapsul 2013; 30:787-95. [DOI: 10.3109/02652048.2013.788087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Sarode A, Wang P, Cote C, Worthen DR. Low-viscosity hydroxypropylcellulose (HPC) grades SL and SSL: versatile pharmaceutical polymers for dissolution enhancement, controlled release, and pharmaceutical processing. AAPS PharmSciTech 2013; 14:151-9. [PMID: 23250708 DOI: 10.1208/s12249-012-9897-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022] Open
Abstract
Hydroxypropylcellulose (HPC)-SL and -SSL, low-viscosity hydroxypropylcellulose polymers, are versatile pharmaceutical excipients. The utility of HPC polymers was assessed for both dissolution enhancement and sustained release of pharmaceutical drugs using various processing techniques. The BCS class II drugs carbamazepine (CBZ), hydrochlorthiazide, and phenytoin (PHT) were hot melt mixed (HMM) with various polymers. PHT formulations produced by solvent evaporation (SE) and ball milling (BM) were prepared using HPC-SSL. HMM formulations of BCS class I chlorpheniramine maleate (CPM) were prepared using HPC-SL and -SSL. These solid dispersions (SDs) manufactured using different processes were evaluated for amorphous transformation and dissolution characteristics. Drug degradation because of HMM processing was also assessed. Amorphous conversion using HMM could be achieved only for relatively low-melting CBZ and CPM. SE and BM did not produce amorphous SDs of PHT using HPC-SSL. Chemical stability of all the drugs was maintained using HPC during the HMM process. Dissolution enhancement was observed in HPC-based HMMs and compared well to other polymers. The dissolution enhancement of PHT was in the order of SE>BM>HMM>physical mixtures, as compared to the pure drug, perhaps due to more intimate mixing that occurred during SE and BM than in HMM. Dissolution of CPM could be significantly sustained in simulated gastric and intestinal fluids using HPC polymers. These studies revealed that low-viscosity HPC-SL and -SSL can be employed to produce chemically stable SDs of poorly as well as highly water-soluble drugs using various pharmaceutical processes in order to control drug dissolution.
Collapse
|
38
|
Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci 2013; 48:371-84. [DOI: 10.1016/j.ejps.2012.12.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/16/2022]
|
39
|
Li D, Guo G, Fan R, Liang J, Deng X, Luo F, Qian Z. PLA/F68/Dexamethasone implants prepared by hot-melt extrusion for controlled release of anti-inflammatory drug to implantable medical devices: I. Preparation, characterization and hydrolytic degradation study. Int J Pharm 2013. [DOI: 10.1016/j.ijpharm.2012.11.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
|
41
|
Impact of Excipient Interactions on Solid Dosage Form Stability. Pharm Res 2012; 29:2660-83. [DOI: 10.1007/s11095-012-0782-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
42
|
Terife G, Wang P, Faridi N, Gogos CG. Hot melt mixing and foaming of soluplus® and indomethacin. POLYM ENG SCI 2012. [DOI: 10.1002/pen.23106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, Mohammed NN. Melt extrusion: process to product. Expert Opin Drug Deliv 2011; 9:105-25. [DOI: 10.1517/17425247.2012.642365] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Maderuelo C, Zarzuelo A, Lanao JM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Control Release 2011; 154:2-19. [DOI: 10.1016/j.jconrel.2011.04.002] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/29/2011] [Indexed: 11/30/2022]
|
45
|
Abu-Diak OA, Jones DS, Andrews GP. An Investigation into the Dissolution Properties of Celecoxib Melt Extrudates: Understanding the Role of Polymer Type and Concentration in Stabilizing Supersaturated Drug Concentrations. Mol Pharm 2011; 8:1362-71. [DOI: 10.1021/mp200157b] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Osama A. Abu-Diak
- The Drug Delivery and Biomaterials Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, U.K
| | - David S. Jones
- The Drug Delivery and Biomaterials Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, U.K
| | - Gavin P. Andrews
- The Drug Delivery and Biomaterials Group, School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, U.K
| |
Collapse
|
46
|
Cassidy CM, Tunney MM, Caldwell DL, Andrews GP, Donnelly RF. Development of novel oral formulations prepared via hot melt extrusion for targeted delivery of photosensitizer to the colon. Photochem Photobiol 2011; 87:867-76. [PMID: 21375536 DOI: 10.1111/j.1751-1097.2011.00915.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.
Collapse
|
47
|
Mechanical influence of static versus dynamic loadings on parametrical analysis of plasticized ethyl cellulose films. Int J Pharm 2011; 408:1-8. [DOI: 10.1016/j.ijpharm.2010.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/15/2010] [Indexed: 11/22/2022]
|
48
|
Design and evaluation of matrix base with sigmoidal release profile for colon-specific delivery using a combination of Eudragit and non-ionic cellulose ether polymers. Drug Deliv Transl Res 2011; 1:132-46. [DOI: 10.1007/s13346-011-0016-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Schilling SU, Lirola HL, Shah NH, Waseem Malick A, McGinity JW. Influence of plasticizer type and level on the properties of Eudragit S100 matrix pellets prepared by hot-melt extrusion. J Microencapsul 2010; 27:521-32. [PMID: 20575612 DOI: 10.3109/02652048.2010.484105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Matrix-type pellets with controlled-release properties may be prepared by hot-melt extrusion applying a single-step, continuous process. However, the manufacture of gastric-resistant pellets is challenging due to the high glass transition temperature of most enteric polymers and an unacceptably high, diffusion-controlled drug release from the matrix during the acidic phase. The objective was to investigate the influence of three plasticizers (triethyl citrate, methylparaben and polyethylene glycol 8000) at two levels (10% or 20%) on the properties of hot-melt extruded Eudragit S100 matrix pellets. Extrusion experiments showed that all plasticizers produced similar reductions in polymer melt viscosity. Differential scanning calorimetry and powder X-ray diffraction demonstrated that the solid state plasticizers were present in the amorphous state. The drug release in acidic medium was influenced by the aqueous solubility of the plasticizer. Less than 10% drug was released after 2 h at pH 1.2 when triethyl citrate or methylparaben was used, independent of the plasticizer level. Drug release at pH 7.4 resulted from polymer dissolution and was not influenced by low levels of plasticizer, but increased significantly at the 20% level. Mechanical testing by diametral compression demonstrated the high tensile strength of the hot-melt extruded pellets that decreased when plasticizers were present.
Collapse
Affiliation(s)
- Sandra U Schilling
- Drug Dynamics Institute, College of Pharmacy, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | |
Collapse
|
50
|
Tapia C, Molina S, Diaz A, Abugoch L, Diaz-Dosque M, Valenzuela F, Yazdani-Pedram M. The effect of chitosan as internal or external coating on the 5-ASA release from calcium alginate microparticles. AAPS PharmSciTech 2010; 11:1294-305. [PMID: 20717758 DOI: 10.1208/s12249-010-9504-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022] Open
Abstract
The effect of chitosan as internal or external coating on the mesalamine (5-ASA) release from calcium alginate microparticles (CaAl) was studied, and a delayed release of 5-ASA system intended for colonic drug delivery was developed. The external chitosan coating was developed by immersion of wetted CaAl in chitosan solution and the internal coating by mixing 5-ASA with chitosan solution and drying before the preparation of CaAl. Both systems were coated with Acryl-EZE® using combined fluid bed coating and immersion procedure. The results showed that in phosphate medium (pH 7.5), chitosan as 5-ASA coating promotes a quick erosion process accelerating drug release, but chitosan as external coating (CaAlCS) does not increase the T (50) value compared with the microparticles without chitosan (CaAl). Chitosan as internal or external coating was not effective to avoid the quick 5-ASA release in acidic medium (pH 1.2). The presence of β-glucosidase enzymes increases significantly the 5-ASA release for CaAl, while no effect was observed with chitosan as internal or external coating. Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray data revealed that 5-ASA did not form a solid solution but was dispersed in the microparticles. The Acryl-EZE® coating of microparticles was effective because all the formulations showed a low release, less than 15%, of 5-ASA in acid medium at pH 1.2. Significant differences in the percentage of 5-ASA released between formulations were observed in phosphate buffer at pH 6.0. In phosphate buffer at pH 7.2, all the formulations released 100% of 5-ASA.
Collapse
|