1
|
Tayebi-Khorrami V, Rahmanian-Devin P, Fadaei MR, Movaffagh J, Askari VR. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int J Pharm X 2024; 8:100265. [PMID: 39045009 PMCID: PMC11263755 DOI: 10.1016/j.ijpx.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Cancer remains a major global health challenge, and despite available treatments, its prognosis remains poor. Recently, researchers have turned their attention to intelligent nanofibers for cancer drug delivery. These nanofibers exhibit remarkable capabilities in targeted and controlled drug release. Their inherent characteristics, such as a high surface area-to-volume ratio, make them attractive candidates for drug delivery applications. Smart nanofibers can release drugs in response to specific stimuli, including pH, temperature, magnetic fields, and light. This unique feature not only reduces side effects but also enhances the overall efficiency of drug delivery systems. Electrospinning, a widely used method, allows the precision fabrication of smart nanofibers. Its advantages include high efficiency, user-friendliness, and the ability to control various manufacturing parameters. In this review, we explore the latest developments in producing smart electrospun nanofibers for cancer treatment. Additionally, we discuss the materials used in manufacturing these nanofibers and the critical parameters involved in the electrospinning process.
Collapse
Affiliation(s)
- Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebraeel Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Zhu H, Sun H, Dai J, Hao J, Zhou B. Chitosan-based hydrogels in cancer therapy: Drug and gene delivery, stimuli-responsive carriers, phototherapy and immunotherapy. Int J Biol Macromol 2024:137047. [PMID: 39489261 DOI: 10.1016/j.ijbiomac.2024.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Nanotechnology has transformed the oncology sector by particularly targeting cancer cells and enhancing the efficacy of conventional therapies. Environmentally friendly materials are the top choice for treating cancer. Chitosan, sourced from chitin, is widely used with its derivatives for the extensive synthesis or modification of nanoparticles. Chitosan has been deployed to develop hydrogels, as 3D polymeric networks capable of water absorption. The chitosan hydrogels are biocompatible and biodegradable structures that can deliver drugs, genes or a combination of them in cancer therapy. Increased tumor ablation, reducing off-targeting feature and protection of genes against degradation are benefits of using chitosan hydrogels in cancer therapy. The efficacy of cancer immunotherapy can be improved by chitosan hydrogels to prevent emergence of immune evasion. In addition, chitosan hydrogels facilitate photothermal and photodynamic therapy for tumor destruction. Chitosan hydrogels can synergistically integrate chemotherapy, immunotherapy, and phototherapy in cancer treatment. Additionally, chitosan hydrogels that respond to stimuli, specifically thermo-sensitive hydrogels, have been developed for inhibiting tumors.
Collapse
Affiliation(s)
- Hailin Zhu
- Department of Pathology, Ganzhou Cancer Hospital, Ganzhou City, Jiangxi Province, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council-Consejo Superior de Investigaciones Científicas, (UAM-CSIC), 28049 Madrid, Spain
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, MO, USA
| | - Junfeng Hao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China; Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning, China.
| | - Boxuan Zhou
- Department of General Surgery, Breast Disease Center, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
4
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
de Ávila Gonçalves S, da Fonsêca JHL, d'Ávila MA, Vieira RP. Synthesis of thermally and pH-responsive poly(2-(dimethylamino)ethyl methacrylate)-based hydrogel reinforced with cellulose nanocrystals for sustained drug release. Int J Biol Macromol 2024; 277:134168. [PMID: 39067729 DOI: 10.1016/j.ijbiomac.2024.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Hydrogels are widely employed in biomedical applications due to their high swelling potential, tailored mechanical properties, biocompatibility, and ability to incorporate drugs to modify their release behavior. This study explored the synthesis of dual stimuli-responsive composite hydrogels by combining poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) with 4, 8, and 12 % (w/w) of cellulose nanocrystals (CNC) through in-situ free-radical polymerization, modifying their properties for topical anti-inflammatory release. Although PDMAEMA-based hydrogels have been known for their responsiveness to pH and temperature stimuli, which are useful for modulating the release profile of drugs, their use as a matrix for anti-inflammatory topical applications remains unexplored. Thus, a comprehensive analysis of CNC concentration's impact on PDMAEMA-based hydrogel structure and physicochemical properties is provided. The incorporation of ibuprofen as an anti-inflammatory model was assessed, providing insights into the potential of these composite hydrogels for sustained drug delivery applications. Overall, the hydrogels exhibited homogenous CNC dispersion, with gel fraction higher than 70 % and ibuprofen load higher than 90 %. The rise in CNC concentration led to an increase hydrogel stiffness. Finally, the CNC incorporation also modified the ibuprofen release to a more sustained profile, following the Peppas-Sahlin model, which may be attractive for developing pharmaceutical devices for different therapeutical scenarios.
Collapse
Affiliation(s)
- Sayeny de Ávila Gonçalves
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Jéssica Heline Lopes da Fonsêca
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Roniérik Pioli Vieira
- Department of Bioprocess and Materials Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
6
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Horrocks MS, Zhurenkov KE, Malmström J. Conducting polymer hydrogels for biomedical application: Current status and outstanding challenges. APL Bioeng 2024; 8:031503. [PMID: 39323539 PMCID: PMC11424142 DOI: 10.1063/5.0218251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Conducting polymer hydrogels (CPHs) are composite polymeric materials with unique properties that combine the electrical capabilities of conducting polymers (CPs) with the excellent mechanical properties and biocompatibility of traditional hydrogels. This review aims to highlight how the unique properties CPHs have from combining their two constituent materials are utilized within the biomedical field. First, the synthesis approaches and applications of non-CPH conductive hydrogels are discussed briefly, contrasting CPH-based systems. The synthesis routes of hydrogels, CPs, and CPHs are then discussed. This review also provides a comprehensive overview of the recent advancements and applications of CPHs in the biomedical field, encompassing their applications as biosensors, drug delivery scaffolds (DDSs), and tissue engineering platforms. Regarding their applications within tissue engineering, a comprehensive discussion of the usage of CPHs for skeletal muscle prosthetics and regeneration, cardiac regeneration, epithelial regeneration and wound healing, bone and cartilage regeneration, and neural prosthetics and regeneration is provided. Finally, critical challenges and future perspectives are also addressed, emphasizing the need for continued research; however, this fascinating class of materials holds promise within the vastly evolving field of biomedicine.
Collapse
|
8
|
Mishra A, Omoyeni T, Singh PK, Anandakumar S, Tiwari A. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol 2024; 276:133823. [PMID: 39002912 DOI: 10.1016/j.ijbiomac.2024.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Eco-friendly materials have emerged in biomedical engineering, driving major advances in chitosan-based hydrogels. These hydrogels offer a promising green alternative to conventional polymers due to their non-toxicity, biodegradability, biocompatibility, environmental friendliness, affordability, and easy accessibility. Known for their remarkable properties such as drug encapsulation, delivery capabilities, biosensing, functional scaffolding, and antimicrobial behavior, chitosan hydrogels are at the forefront of biomedical research. This paper explores the fabrication and modification methods of chitosan hydrogels for diverse applications, highlighting their role in advancing climate-neutral healthcare technologies. It reviews significant scientific advancements and trends chitosan hydrogels focusing on cancer diagnosis, drug delivery, and wound care. Additionally, it addresses current challenges and green synthesis practices that support a circular economy, enhancing biomedical sustainability. By providing an in-depth analysis of the latest evidence on climate-neutral management, this review aims to facilitate informed decision-making and foster the development of sustainable strategies leveraging chitosan hydrogel technology. The insights from this comprehensive examination are pivotal for steering future research and applications in sustainable biomedical solutions.
Collapse
Affiliation(s)
- Anshuman Mishra
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - Temitayo Omoyeni
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden; Cyprus International University Faculty of Engineering, Nicosia 99258, TRNC, Cyprus
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden
| | - S Anandakumar
- Department of Chemistry, Anna University, Chennai 600025, India
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 59053, Sweden.
| |
Collapse
|
9
|
Shentu CY, Wang HB, Peng X, Xu DC, Qian LN, Chen Y, Peng LH. Progress and Challenges of Topical Delivery Technologies Meditated Drug Therapy for Osteoarthritis. Int J Nanomedicine 2024; 19:8337-8352. [PMID: 39161359 PMCID: PMC11330747 DOI: 10.2147/ijn.s466437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease commonly seen in middle-aged and elderly people. Multiple cytokines are involved in the local tissue damage in OA. Currently, non-pharmacologic and surgical interventions are the main conventional approaches for the treatment of OA. In terms of pharmaceutical drug therapy, NSAIDs and acetaminophen are mainly used to treat OA. However, it is prone to various adverse reactions such as digestive tract ulcer, thromboembolism, prosthesis loosening, nerve injury and so on. With the in-depth study of OA, more and more novel topical drug delivery strategies and vehicles have been developed, which can make up for the shortcomings of traditional dosage forms, improve the bioavailability of drugs, and significantly reduce drug side effects. This review summarizes the immunopathogenesis, treatment guidelines, and progress and challenges of topical delivery technologies of OA, with some perspectives on the future pharmacological treatment of OA proposed.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hao-Bin Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao Peng
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Li-Na Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People’s Republic of China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, 321299, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, People’s Republic of China
| |
Collapse
|
10
|
Leonardi F, Simonazzi B, Martini FM, D’Angelo P, Foresti R, Botti M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Vet Sci 2024; 11:368. [PMID: 39195822 PMCID: PMC11360824 DOI: 10.3390/vetsci11080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, there has been a growing interest in 3D printing technology within the field of bioengineering. This technology offers the ability to create devices with intricate macro- and micro-geometries, as well as specific models. It has particularly gained attention for its potential in personalized medicine, allowing for the production of organ or tissue models tailored to individual patient needs. Further, 3D printing has opened up possibilities to manufacture structures that can substitute, complement, or enhance damaged or dysfunctional organic parts. To apply 3D printing in the medical field, researchers have studied various materials known as biomaterials, each with distinct chemical and physical characteristics. These materials fall into two main categories: hard and soft materials. Each biomaterial needs to possess specific characteristics that are compatible with biological systems, ensuring long-term stability and biocompatibility. In this paper, we aim to review some of the materials used in the biomedical field, with a particular focus on those utilized in veterinary medicine and ophthalmology. We will discuss the significant findings from recent scientific research, focusing on the biocompatibility, structure, applicability, and in vitro and in vivo biological characteristics of two hard and four soft materials. Additionally, we will present the current state and prospects of veterinary ophthalmology.
Collapse
Affiliation(s)
- Fabio Leonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Barbara Simonazzi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Filippo Maria Martini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Pasquale D’Angelo
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| | - Ruben Foresti
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
- Department of Medicine and Surgery, University of Parma, 43123 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43123 Parma, Italy
| | - Maddalena Botti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| |
Collapse
|
11
|
Marín LO, Montoya Y, Bustamante J. Biological Evaluation of Thermosensitive Hydrogels of Chitosan/Hydrolyzed Collagen/β-GP in an In Vitro Model of Induced Cardiac Ischemia. Polymers (Basel) 2024; 16:2206. [PMID: 39125232 PMCID: PMC11314826 DOI: 10.3390/polym16152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 08/12/2024] Open
Abstract
Ischemic events can culminate in acute myocardial infarction, which is generated by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cardiac cell therapy aims to replace injured or necrotic cells with healthy and functional cells. Tissue engineering and cardiovascular regenerative medicine propose therapeutic alternatives using biomaterials that mimic the native extracellular environment and improve cellular and tissue functionality. This investigation evaluates the effect of thermosensitive hydrogels, and murine fetal ventricular cardiomyocytes encapsulated in thermosensitive hydrogels, on the contractile function of cardiomyocyte regeneration during an ischemic event. Chitosan and hydrolyzed collagen thermosensitive hydrogels were developed, and they were physically and chemically characterized. Likewise, their biocompatibility was evaluated through cytotoxicity assays by MTT, LDH, and their hemolytic capacity. The hydrogels, and cells inside the hydrogels, were used as an intervention for primary cardiomyocytes under hypoxic conditions to determine the restoration of the contractile capacity by measuring intracellular calcium levels and the expressions of binding proteins, such as a-actinin and connexin 43. These results evidence the potential of natural thermosensitive hydrogels to restore the bioelectrical functionality of ischemic cardiomyocytes.
Collapse
Affiliation(s)
- Lina Orozco Marín
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
| | - Yuliet Montoya
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
- Working Committee of Cardiovascular Bioengineering, Colombian Society of Cardiology and Cardiovascular Surgery, Bogotá 1013, Colombia
| | - John Bustamante
- Tissue Engineering and Cardiovascular Prosthetics Line, Cardiovascular Dynamics Group, Bioengineering Center, Universidad Pontificia Bolivariana, Medellín 050004, Colombia; (L.O.M.); (J.B.)
- Working Committee of Cardiovascular Bioengineering, Colombian Society of Cardiology and Cardiovascular Surgery, Bogotá 1013, Colombia
| |
Collapse
|
12
|
Kunkel AA, McHugh KJ. Injectable controlled-release systems for the prevention and treatment of infectious diseases. J Biomed Mater Res A 2024; 112:1224-1240. [PMID: 37740704 DOI: 10.1002/jbm.a.37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Pharmaceutical drugs, including vaccines, pre- and post-exposure prophylactics, and chronic drug therapies, are crucial tools in the prevention and treatment of infectious diseases. These drugs have the ability to increase survival and improve patient quality of life; however, infectious diseases still accounted for more than 10.2 million deaths in 2019 before the COVID-19 pandemic. High mortality can be, in part, attributed to challenges in the availability of adequate drugs and vaccines, limited accessibility, poor drug bioavailability, the high cost of some treatments, and low patient adherence. A majority of these factors are logistical rather than technical challenges, providing an opportunity for existing drugs and vaccines to be improved through formulation. Injectable controlled-release drug delivery systems are one class of formulations that have the potential to overcome many of these limitations by releasing their contents in a sustained manner to reduce the need for frequent re-administration and improve clinical outcomes. This review provides an overview of injectable controlled drug delivery platforms, including microparticles, nanoparticles, and injectable gels, detailing recent developments using these systems for single-injection vaccination, long-acting prophylaxis, and sustained-release treatments for infectious disease.
Collapse
Affiliation(s)
- Alyssa A Kunkel
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
13
|
Sangitra SN, Pujala RK. Temperature-dependent yield stress and wall slip behaviour of thermoresponsive Pluronic F127 hydrogels. RSC Adv 2024; 14:23772-23784. [PMID: 39077312 PMCID: PMC11284911 DOI: 10.1039/d4ra04825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024] Open
Abstract
This study explores the temperature-dependent dynamic yield stress of a triblock thermoresponsive polymer, Pluronic F127, with chemical structure (PEO)100(PPO)65(PEO)100, during the sol-gel transition. The yield stress can be defined as static, dynamic, or elastic, depending on the experimental protocol. We examine the dynamic yield stress estimation for this study, which usually entails utilizing non-Newtonian models like the Herschel-Bulkley (HB) or Bingham models to extrapolate the flow curve (shear rate against shear stress). Initially, we determine the yield stress using the HB model. However, apparent wall slip makes it difficult to calculate yield stress using conventional methods, which could lead to underestimates. To validate the existence of apparent wall slip in our trials, we carry out meticulous experiments in a range of rheometric geometries. To determine the true yield stress corrected for slip, we first use the traditional Mooney method, which requires labor-intensive steps and large sample sizes over various gaps in the parallel plate (PP) design. To overcome these drawbacks, we use a different strategy. We modify the Windhab model equation by adding slip boundary conditions to the HB equation, which allowed us to calculate the slip yield stress in addition to the true yield stress. In contrast to other typical thermoresponsive polymers like poly(N-isopropyl acrylamide) (PNIPAM), our findings demonstrate that PF127's yield stress obeys the Boltzmann equation and increases with temperature.
Collapse
Affiliation(s)
- Surya Narayana Sangitra
- Soft and Active Matter Group, Department of Physics and Center for Atomic, Molecular and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati Yerpedu Tirupati 517619 Andhra Pradesh India
| | - Ravi Kumar Pujala
- Soft and Active Matter Group, Department of Physics and Center for Atomic, Molecular and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati Yerpedu Tirupati 517619 Andhra Pradesh India
| |
Collapse
|
14
|
Jiang N, Yu T, Zhang M, Barrett BN, Sun H, Wang J, Luo Y, Sternhagen GL, Xuan S, Yuan G, Kelley EG, Qian S, Bonnesen PV, Hong K, Li D, Zhang D. Effect of Micellar Morphology on the Temperature-Induced Structural Evolution of ABC Polypeptoid Triblock Terpolymers into Two-Compartment Hydrogel Network. Macromolecules 2024; 57:6449-6464. [PMID: 39071044 PMCID: PMC11270984 DOI: 10.1021/acs.macromol.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/14/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
We investigated the temperature-dependent structural evolution of thermoreversible triblock terpolypeptoid hydrogels, namely poly(N-allyl glycine)-b-poly(N-methyl glycine)-b-poly(N-decyl glycine) (AMD), using small-angle neutron scattering (SANS) with contrast matching in conjunction with X-ray scattering and cryogenic transmission electron microscopy (cryo-TEM) techniques. At room temperature, A100M101D10 triblock terpolypeptoids self-assemble into core-corona-type spherical micelles in aqueous solution. Upon heating above the critical gelation temperature (T gel), SANS analysis revealed the formation of a two-compartment hydrogel network comprising distinct micellar cores composed of dehydrated A blocks and hydrophobic D blocks. At T ≳ T gel, the temperature-dependent dehydration of A block further leads to the gradual rearrangement of both A and D domains, forming well-ordered micellar network at higher temperatures. For AMD polymers with either longer D block or shorter A block, such as A101M111D21 and A43M92D9, elongated nonspherical micelles with a crystalline D core were observed at T < T gel. Although these enlarged crystalline micelles still undergo a sharp sol-to-gel transition upon heating, the higher aggregation number of chains results in the immediate association of the micelles into ordered aggregates at the initial stage, followed by a disruption of the spatial ordering as the temperature further increases. On the other hand, fiber-like structures were also observed for AMD with longer A block, such as A153M127D10, due to the crystallization of A domains. This also influences the assembly pathway of the two-compartment network. Our findings emphasize the critical impact of initial micellar morphology on the structural evolution of AMD hydrogels during the sol-to-gel transition, providing valuable insights for the rational design of thermoresponsive hydrogels with tunable network structures at the nanometer scale.
Collapse
Affiliation(s)
- Naisheng Jiang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Meng Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bailee N. Barrett
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haofeng Sun
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Wang
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Luo
- Key
Laboratory of Advanced Materials and Devices for Post-Moore Chips,
Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Garrett L. Sternhagen
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sunting Xuan
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guangcui Yuan
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth G. Kelley
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Shuo Qian
- Neutron
Scattering Division and Second Target Station, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dongcui Li
- Hua An Tang
Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Donghui Zhang
- Department
of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Li S, Zhi L, Chen Q, Zhao W, Zhao C. Reversibly Adhesive, Anti-Swelling, and Antibacterial Hydrogels for Tooth-Extraction Wound Healing. Adv Healthc Mater 2024; 13:e2400089. [PMID: 38354105 DOI: 10.1002/adhm.202400089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Oral wound treatment faces challenges due to the complex oral environment, thus, sealing the wound quickly becomes necessary. Although some materials have achieved adhesion and sterilization, how to effectively solve the contradiction between strong adhesion and on-demand removal remains a challenge. Herein, a reversibly adhesive hydrogel is designed by free radical copolymerization of cationic monomer [2-(acryloyloxy) ethyl] trimethylammonium chloride (ATAC), hydrophobic monomer ethylene glycol phenyl ether acrylate (PEA) and N-isopropylacrylamide (NIPAAm). The cationic quaternary ammonium salts provide electrostatic interactions, the hydrophobic groups provide hydrophobic interactions, and the PNIPAAm chain segments provide hydrogen bonding, leading to strong adhesion. Therefore, the hydrogel obtains an adhesion strength of 18.67 KPa to oral mucosa and can seal wounds fast within 10 s. Furthermore, unlike pure PNIPAAm, the hydrogel has a lower critical solution temperature of 40.3 °C due to the contribution of ATAC and PEA, enabling rapid removal with 40 °C water after treatment. In addition, the hydrogel realizes excellent anti-swelling ratio (≈80%) and antibacterial efficiency (over 90%). Animal experiments prove that the hydrogel effectively reduces inflammation infiltration, promotes collagen deposition and vascular regeneration. Thus, hydrogel as a multi-functional dressing has great application prospects in oral wound management.
Collapse
Affiliation(s)
- Siyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lunhao Zhi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qin Chen
- Department of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
16
|
Carrêlo H, Jiménez-Rosado M, Vieira T, Da Rosa RR, Perez-Puyana VM, Silva JC, Romero A, Borges JP, Soares PIP. A Thermoresponsive injectable drug delivery system of chitosan/β-glycerophosphate with gellan gum/alginate microparticles. Int J Biol Macromol 2024; 271:131981. [PMID: 38811317 DOI: 10.1016/j.ijbiomac.2024.131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/31/2024]
Abstract
The development of new Drug Delivery Systems (DDS) by incorporating microparticles within hydrogels can prolong the release rate of drugs and/or other bioactive agents. In this study, we combined gellan gum/alginate microparticles within a thermoresponsive chitosan (Ch) hydrogel with β-Glycerophosphate (β-GP), designing the system to be in the sol state at 21 °C and in the gel state at 37 °C to enable the injectability of the system. The system was in the sol state between 10 °C and 21 °C. Higher concentrations of β-GP (0, 2, 3, 4, 5 w/v%) and microparticles (0, 2 and 5 w/v%) allowed a faster sol-gel transition with higher mechanical strength at 37 °C. However, the sol-gel transition was not instantaneous. The release profile of methylene blue (MB) from the microparticles was significantly affected by their incorporation in Ch/β-GP hydrogels, only allowing the release of 60-70 % of MB for 6 days, while the microparticles alone released all the MB in 48 h. The proposed system did not present cytotoxicity to VERO cell lines as a preliminary assay, with the Ch/β-GP/GG:Alg having >90 % of cellular viability. The proposed Ch/β-GP system proved to have a delaying effect on drug release and biocompatible properties, being a promising future DDS.
Collapse
Affiliation(s)
- H Carrêlo
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal.
| | - M Jiménez-Rosado
- Department of Applied Chemistry and Physics, Universidad de León, 24007 León, Spain
| | - Tânia Vieira
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal
| | - Rafaela R Da Rosa
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal
| | | | - Jorge Carvalho Silva
- CENIMAT/i3N, Department of Physics, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal.
| | - A Romero
- Department of Chemical Engineering, Universidad de Sevilla, 41012 Sevilla, Spain.
| | - J P Borges
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Paula I P Soares
- CENIMAT/i3N, Department of Materials Science, NOVA School of Science and Technology (NOVA FCT), Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
17
|
Li A, Ma B, Hua S, Ping R, Ding L, Tian B, Zhang X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr Polym 2024; 333:121952. [PMID: 38494217 DOI: 10.1016/j.carbpol.2024.121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Different types of clinical wounds are difficult to treat while infected by bacteria. Wound repair involves multiple cellular and molecular interactions, which is a complicated process. However, wound repair often suffers from abnormal cellular functions or pathways that result in unavoidable side effects, so there is an urgent need for a material that can heal wounds quickly and with few side effects. Based on these needs, hydrogels with injectable properties have been confirmed to be able to undergo self-healing, which provides favorable conditions for wound healing. Notably, as a biopolymer with excellent easy-to-modify properties from a wide range of natural sources, chitosan can be used to prepare injectable hydrogel with multifunction for wound healing because of its outstanding flowability and injectability. Especially, chitosan-based hydrogels with marked biocompatibility, non-toxicity, and bio-adhesion properties are ideal for facilitating wound healing. In this review, the characteristics and healing mechanisms of different wounds are briefly summarized. In addition, the preparation and characterization of injectable chitosan hydrogels in recent years are classified. Additionally, the bioactive properties of this type of hydrogel in vitro and in vivo are demonstrated, and future trend in wound healing is prospected.
Collapse
Affiliation(s)
- Aiqin Li
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Day Ward, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Bin Ma
- Department of Spine Surgery, Yinchuan Guolong Orthopedic Hospital, Yinchuan, Ningxia 750001, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Rui Ping
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, China
| | - Lu Ding
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
18
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
19
|
Fathi A, Gholami M, Motasadizadeh H, Malek-Khatabi A, Sedghi R, Dinarvand R. Thermoresponsive in situ forming and self-healing double-network hydrogels as injectable dressings for silymarin/levofloxacin delivery for treatment of third-degree burn wounds. Carbohydr Polym 2024; 331:121856. [PMID: 38388054 DOI: 10.1016/j.carbpol.2024.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
Our study aimed to introduce a novel double-cross-linked and thermoresponsive hydrogel with remarkable potential for accelerating third-degree burn wound healing. Burn injuries are recognized as challenging, critical wounds. Especially in third-degree burns, treatment is demanding due to extended wounds, irregular shapes, significant exudation, and intense pain during dressing changes. In this work, hydrogels made of zwitterionic chitosan and dialdehyde starch (ZCS and ZDAS) were created to deliver silymarine (SM) and levofloxacin (LEV). The hydrogels were effortlessly produced using dynamic Schiff base linkages and ionic interactions between ZCS and ZDAS at appropriate times. The pore uniformity, gel fraction, and commendable swelling properties can imply a suitable degree of Schiff base cross-link. The hydrogel demonstrated outstanding shape retention, and significant self-healing and flexibility abilities, enabling it to uphold its form even during bodily movements. After injecting biocompatible hydrogel on the wound, a notable acceleration in wound closure was observed on day 21 (98.1 ± 1.10 %) compared to the control group (75.1 ± 6.13 %), and histopathological analysis revealed a reduction of inflammation that can be linked to remarkable antioxidant and antibiotic properties. The results demonstrate the hydrogel's efficacy in promoting burn wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Anna Fathi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Marziye Gholami
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sedghi
- Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, G.C, 1983969411 Tehran, Iran.
| | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran; Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
20
|
Aerts A, Vovchenko M, Elahi SA, Viñuelas RC, De Maeseneer T, Purino M, Hoogenboom R, Van Oosterwyck H, Jonkers I, Cardinaels R, Smet M. A Spontaneous In Situ Thiol-Ene Crosslinking Hydrogel with Thermo-Responsive Mechanical Properties. Polymers (Basel) 2024; 16:1264. [PMID: 38732733 PMCID: PMC11085619 DOI: 10.3390/polym16091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The thermo-responsive behavior of Poly(N-isopropylacrylamide) makes it an ideal candidate to easily embed cells and allows the polymer mixture to be injected. However, P(NiPAAm) hydrogels possess minor mechanical properties. To increase the mechanical properties, a covalent bond is introduced into the P(NIPAAm) network through a biocompatible thiol-ene click-reaction by mixing two polymer solutions. Co-polymers with variable thiol or acrylate groups to thermo-responsive co-monomer ratios, ranging from 1% to 10%, were synthesized. Precise control of the crosslink density allowed customization of the hydrogel's mechanical properties to match different tissue stiffness levels. Increasing the temperature of the hydrogel above its transition temperature of 31 °C induced the formation of additional physical interactions. These additional interactions both further increased the stiffness of the material and impacted its relaxation behavior. The developed optimized hydrogels reach stiffnesses more than ten times higher compared to the state of the art using similar polymers. Furthermore, when adding cells to the precursor polymer solutions, homogeneous thermo-responsive hydrogels with good cell viability were created upon mixing. In future work, the influence of the mechanical micro-environment on the cell's behavior can be studied in vitro in a continuous manner by changing the incubation temperature.
Collapse
Affiliation(s)
- Andreas Aerts
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| | - Maxim Vovchenko
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Laboratory for Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, P.O. Box 2416, 3001 Leuven, Belgium
| | - Seyed Ali Elahi
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Rocío Castro Viñuelas
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
- Laboratory for Tissue Homeostasis and Disease, Department of Development and Regeneration, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Tess De Maeseneer
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Martin Purino
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, UGent, Krijgslaan 281, Building S4, 9000 Ghent, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300C, P.O. Box 2419, 3001 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, P.O. Box 813, 3000 Leuven, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven Tervuursevest 101, P.O. Box 1501, 3001 Leuven, Belgium
| | - Ruth Cardinaels
- Rheology and Technology, Soft Matter, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, P.O. Box 2424, 3001 Leuven, Belgium
| | - Mario Smet
- Laboratory of Organic Material Synthesis, Polymer Chemistry and Materials, Department of Chemistry, KU Leuven, Celestijnenlaan 200f, P.O. Box 2404, 3001 Leuven, Belgium;
| |
Collapse
|
21
|
Li S, Lu D, Li S, Liu J, Xu Y, Yan Y, Rodriguez JZ, Bai H, Avila R, Kang S, Ni X, Luan H, Guo H, Bai W, Wu C, Zhou X, Hu Z, Pet MA, Hammill CW, MacEwan MR, Ray WZ, Huang Y, Rogers JA. Bioresorbable, wireless, passive sensors for continuous pH measurements and early detection of gastric leakage. SCIENCE ADVANCES 2024; 10:eadj0268. [PMID: 38640247 PMCID: PMC11029800 DOI: 10.1126/sciadv.adj0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/18/2024] [Indexed: 04/21/2024]
Abstract
Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.
Collapse
Affiliation(s)
- Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jorge Zárate Rodriguez
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hedan Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shuming Kang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xuhao Zhou
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Mitchell A. Pet
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet W. Hammill
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew R. MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wilson Z. Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing Biomaterial Driven Clinical Bioactivity Over Designing Intricacy during Bioprinting of Trabecular Microarchitecture: A Clinician's Perspective. ACS OMEGA 2024; 9:12426-12435. [PMID: 38524444 PMCID: PMC10956407 DOI: 10.1021/acsomega.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Bone tissue engineering has witnessed a historical shift from three perspectives. From a biomaterial perspective, materials have now become smarter and dynamic; from a bioengineering perspective the bioprinting techniques have now advanced to 4D bioprinting; and from a clinical perspective scaffold bioactivity has progressed toward enhanced osteoinductive scaffolds driven by intricate biomechanical, biophysical, biochemical, and biological cues. Though all of these advancements are indicative of improvised scaffold engineering, a pivotal question regarding the critical role and need of designing and replicating the intricacies of trabecular microarchitecture for enhanced, clinically appreciable osteoangiogenicity needs to be answered. This review hence critically evaluates the rationale and the need of investing substantial effort into designing complex microarchitectures amidst the era of "smart biomaterials" and dynamic 4D bioprinting aimed toward enhancing clinically appreciable bioactivity. The article explores the concept of integrating intricate designs into a scaffold microarchitecture to bolster bioactivity and the practical challenges encountered in 3D bioprinting of complex designs and meticulously examines the pivotal role of biomaterials in scaffold bioactivity, proposing a comprehensive approach to bioprinting geared toward achieving clinical bioactivity and striking a judicious balance between design intricacy and functional outcomes in bone bioprinting.
Collapse
Affiliation(s)
- Sahith Kumar Shetty
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shyam Sundar Santhanakrishnan
- Department
of Oral and Maxillofacial Surgery, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shubha Padurao
- Department
of Material Science, Mangalagangothri Mangalore
University, Konaja 571449, India
| | | |
Collapse
|
23
|
Mo C, Zhang W, Zhu K, Du Y, Huang W, Wu Y, Song J. Advances in Injectable Hydrogels Based on Diverse Gelation Methods for Biomedical Imaging. SMALL METHODS 2024:e2400076. [PMID: 38470225 DOI: 10.1002/smtd.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Indexed: 03/13/2024]
Abstract
The injectable hydrogels can deliver the loads directly to the predetermined sites and form reservoirs to increase the enrichment and retention of the loads in the target areas. The preparation and injection of injectable hydrogels involve the sol-gel transformation of hydrogels, which is affected by factors such as temperature, ions, enzymes, light, mechanics (self-healing property), and pH. However, tracing the injection, degradation, and drug release from hydrogels based on different ways of gelation is a major concern. To solve this problem, contrast agents are introduced into injectable hydrogels, enabling the hydrogels to be imaged under techniques such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, and radionuclide imaging. This review details methods for causing the gelation of imageable hydrogels; discusses the application of injectable hydrogels containing contrast agents in various imaging techniques, and finally explores the potential and challenges of imageable hydrogels based on different modes of gelation.
Collapse
Affiliation(s)
- Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Weiyao Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, China
| |
Collapse
|
24
|
El-Husseiny HM, Mady EA, Doghish AS, Zewail MB, Abdelfatah AM, Noshy M, Mohammed OA, El-Dakroury WA. Smart/stimuli-responsive chitosan/gelatin and other polymeric macromolecules natural hydrogels vs. synthetic hydrogels systems for brain tissue engineering: A state-of-the-art review. Int J Biol Macromol 2024; 260:129323. [PMID: 38242393 DOI: 10.1016/j.ijbiomac.2024.129323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Currently, there are no viable curative treatments that can enhance the central nervous system's (CNS) recovery from trauma or illness. Bioengineered injectable smart/stimuli-responsive hydrogels (SSRHs) that mirror the intricacy of the CNS milieu and architecture have been suggested as a way to get around these restrictions in combination with medication and cell therapy. Additionally, the right biophysical and pharmacological stimuli are required to boost meaningful CNS regeneration. Recent research has focused heavily on developing SSRHs as cutting-edge delivery systems that can direct the regeneration of brain tissue. In the present article, we have discussed the pathology of brain injuries, and the applicable strategies employed to regenerate the brain tissues. Moreover, the most promising SSRHs for neural tissue engineering (TE) including alginate (Alg.), hyaluronic acid (HA), chitosan (CH), gelatin, and collagen are used in natural polymer-based hydrogels and thoroughly discussed in this review. The ability of these hydrogels to distribute bioactive substances or cells in response to internal and external stimuli is highlighted with particular attention. In addition, this article provides a summary of the most cutting-edge techniques for CNS recovery employing SSRHs for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Biochemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Amr M Abdelfatah
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Ras Sudr 46612, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| |
Collapse
|
25
|
Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels 2024; 10:158. [PMID: 38534576 DOI: 10.3390/gels10030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is an ocular disease that leads to progressive photoreceptor death and visual impairment. Currently, the most common therapeutic strategy is to deliver anti-vascular endothelial growth factor (anti-VEGF) agents into the eyes of patients with wet AMD. However, this treatment method requires repeated injections, which potentially results in surgical complications and unwanted side effects for patients. An effective therapeutic approach for dry AMD also remains elusive. Therefore, there is a surge of enthusiasm for the developing the biodegradable drug delivery systems with sustained release capability and develop a promising therapeutic strategy. Notably, the strides made in hydrogels which possess intricate three-dimensional polymer networks have profoundly facilitated the treatments of AMD. Researchers have established diverse hydrogel-based delivery systems with marvelous biocompatibility and efficacy. Advantageously, these hydrogel-based transplantation therapies provide promising opportunities for vision restoration. Herein, we provide an overview of the properties and potential of hydrogels for ocular delivery. We introduce recent advances in the utilization of hydrogels for the delivery of anti-VEGF and in cell implantation. Further refinements of these findings would lay the basis for developing more rational and curative therapies for AMD.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jiale Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Dong Wei
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital (People's Hospital of Zheng Zhou University), Zhengzhou 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Traldi F, Resmini M. Impact of Protein Corona Formation on the Thermoresponsive Behavior of Acrylamide-Based Nanogels. Biomacromolecules 2024; 25:1340-1350. [PMID: 38242644 PMCID: PMC10865348 DOI: 10.1021/acs.biomac.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
The ability to fine-tune the volume phase transition temperature (VPTT) of thermoresponsive nanoparticles is essential to their successful application in drug delivery. The rational design of these materials is limited by our understanding of the impact that nanoparticle-protein interactions have on their thermoresponsive behavior. In this work, we demonstrate how the formation of protein corona impacts the transition temperature values of acrylamide-based nanogels and their reversibility characteristics, in the presence of lysozyme, given its relevance for the ocular and intranasal administration route. Nanogels were synthesized with N-isopropylacrylamide or N-n-propylacrylamide as backbone monomers, methylenebis(acrylamide) (2.5-20 molar %) as a cross-linker, and functionalized with negatively charged monomers 2-acrylamido-2-methylpropanesulfonic acid, N-acryloyl-l-proline, or acrylic acid; characterization showed comparable particle diameter (c.a.10 nm), but formulation-dependent thermoresponsive properties, in the range 28-54 °C. Lysozyme was shown to form a complex with the negatively charged nanogels, lowering their VPTT values; the hydrophilic nature of the charged comonomer controlled the drop in VPTT upon complex formation, while matrix rigidity only had a small, yet significant effect. The cross-linker content was found to play a major role in determining the reversibility of the temperature-dependent transition of the complexes, with only 20 molar % cross-linked-nanogels displaying a fully reversible transition. These results demonstrate the importance of evaluating protein corona formation in the development of drug delivery systems based on thermoresponsive nanoparticles.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, U.K.
| |
Collapse
|
27
|
Huang TY, Wang YW, Liao HX, Su WT. Sprayable hydroxypropyl chitin/collagen extract of Ampelopsis brevipedunculata hydrogel accelerates wound healing. J Wound Care 2024; 33:S10-S23. [PMID: 38348864 DOI: 10.12968/jowc.2024.33.sup2.s10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVE Keeping a wound moist can allow effective and rapid healing, and it can control the formation of scabs, thereby allowing cell proliferation and epithelial formation. When regularly changing a dressing, thermosensitive hydrogel as a moist dressing does not cause a secondary wound from adhesion. The main aim of this study was to evaluate the effect of a new sprayable thermosensitive hydrogel on wound healing. METHOD The hydrophobic N-acetyl group of chitin was removed by microwave reaction with lye until the degree of acetylation was 60%, followed by reaction with propylene oxide to obtain hydroxypropyl chitin (HPCH) with a degree of substitution of 40%. After mixing HPCH with fish scale collagen (FSC), a thermosensitive hydrogel with a gel temperature of 26.5°C was obtained. Ampelopsis brevipedunculata extracts (ABE), which have been found to accelerate wound repair and improve healing, were added. HPCH/FSC is not toxic to the mouse L929 cell line and forms a hydrogel at body surface temperature. It can be easily sprayed on a wound. The HPCH/FSC has a three-dimensional network porous structure with a swelling ratio of 10.95:1 and a water vapour transmission rate of 2386.03±228.87g/m2/day; it can facilitate the penetration of water and air, and promote absorption of wound exudate. Wound repair was performed on five Sprague-Dawley rats. Each rat had three wounds, which were treated with medical gauze, HPCH/FSC and HPCH/FSC/ABE, respectively. RESULTS The wounds in the HPCH/FSC/ABE group recovered the fastest in vivo, the mature wound site was smoother, the re-epithelialisation was even and thicker, and the angiogenesis developed rapidly to the mature stage. CONCLUSION In this study, HPCH/FSC/ABE thermosensitive hydrogel was shown to effectively accelerate wound healing and was convenient for practical application.
Collapse
Affiliation(s)
- Te-Yang Huang
- Department of Orthopedic Surgery Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Wen Wang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hui-Xiang Liao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
28
|
Zachou ME, Kouloulias V, Chalkia M, Efstathopoulos E, Platoni K. The Impact of Nanomedicine on Soft Tissue Sarcoma Treated by Radiotherapy and/or Hyperthermia: A Review. Cancers (Basel) 2024; 16:393. [PMID: 38254881 PMCID: PMC11154327 DOI: 10.3390/cancers16020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
This article presents a comprehensive review of nanoparticle-assisted treatment approaches for soft tissue sarcoma (STS). STS, a heterogeneous group of mesenchymal-origin tumors with aggressive behavior and low overall survival rates, necessitates the exploration of innovative therapeutic interventions. In contrast to conventional treatments like surgery, radiotherapy (RT), hyperthermia (HT), and chemotherapy, nanomedicine offers promising advancements in STS management. This review focuses on recent research in nanoparticle applications, including their role in enhancing RT and HT efficacy through improved drug delivery systems, novel radiosensitizers, and imaging agents. Reviewing the current state of nanoparticle-assisted therapies, this paper sheds light on their potential to revolutionize soft tissue sarcoma treatment and improve patient therapy outcomes.
Collapse
Affiliation(s)
- Maria-Eleni Zachou
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| | | | | | | | - Kalliopi Platoni
- 2nd Department of Radiology, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (V.K.); (M.C.); (E.E.)
| |
Collapse
|
29
|
Srivastava N, Roy Choudhury A. Thermo-reversible self-assembled novel gellan gum hydrogels containing amino acid biogelators with antibacterial activity. Carbohydr Polym 2024; 324:121462. [PMID: 37985076 DOI: 10.1016/j.carbpol.2023.121462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/22/2023]
Abstract
In recent years, hydrogels derived from natural polymers have gained considerable attention. However, lack of mechanical strength and poor stability has become major lacuna of such systems. Scientists have attempted to resolve this problem by introducing chemical cross-linkers or synthetic modifications of natural polymers. In contrast, biological cross-linkers may be more beneficial due to their cytocompatibility and non-immunogenicity. As a biogelator, amino acids (AA) may be lucrative, yet they remain untapped till date. Present study, for the first time, reports exploitation of ʟ-Lysine, ʟ-Arginine, ʟ-Aspartic acid, and ʟ-Glutamic acid as biogelator to fabricate novel gellan gum (GG) hydrogels through green chemistry. Furthermore, as a first instance, molecular docking was applied to gain insight into the interaction between GG and AA. As predicted through docking, physical cross-linking of these hydrogels accounted for their thermo-reversibility. Moreover, to assess the suitability of prepared hydrogel for its intended use, systematic characterization studies were performed via FTIR, Raman spectroscopy, XRD, FE-SEM, and TGA. Additionally, rheological behavior of hydrogels was investigated using variety of parameters. Interestingly, GG-AA hydrogels exhibited around 99 % antibacterial activity against multidrug-resistant bacteria. According to the findings of this study, these novel hydrogels may have immense potential in the food and biomedical sectors.
Collapse
Affiliation(s)
- Nandita Srivastava
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anirban Roy Choudhury
- Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India.
| |
Collapse
|
30
|
Wang M, Li T, Tian J, Zhang L, Wang Y, Li S, Lei B, Xu P. Engineering Single-Component Antibacterial Anti-inflammatory Polyitaconate-Based Hydrogel for Promoting Methicillin-Resistant Staphylococcus aureus-Infected Wound Healing and Skin Regeneration. ACS NANO 2024; 18:395-409. [PMID: 38150353 DOI: 10.1021/acsnano.3c07638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Hydrogel wound dressings play a crucial role in promoting the healing of drug-resistant bacterially infected wounds. However, their clinical application often faces challenges such as the use of numerous components, a complicated preparation process, and insufficient biological activity. Itaconic acid, known for its excellent biological and reaction activities, has not been extensively studied for the preparation of itaconic acid-based hydrogels and their application in infected wound healing. Therefore, there is a need to develop a multifunctional single-component itaconic acid-based hydrogel that is easy to synthesize and holds promising prospects for clinical use in promoting the healing of infected wounds. In this study, we present a single-component polyitaconate-based hydrogel (PICGI) with antibacterial, anti-inflammatory, and biological activity. The PICGI hydrogel demonstrates great potential in promoting healing of infected wounds and skin regeneration. It exhibits desirable thermosensitive, injectable, and adhesive properties, as well as broad-spectrum antibacterial activity and anti-inflammatory effects. Furthermore, the PICGI hydrogel is biocompatible and significantly enhances the migration and tube formation of endothelial cells. In the case of drug-resistant bacterially infected wounds, the PICGI hydrogel effectively inhibits bacterial infection and inflammation, promotes angiogenesis, and facilitates collagen deposition, thereby accelerating the healing and regeneration of the skin. This study highlights the promising application of the PICGI hydrogel as a single-component hydrogel in tissue repair associated with bacterial infection and inflammation. Moreover, the simplicity of its components, convenient preparation process, and sufficient biological activity make the PICGI hydrogel highly suitable for promotion and clinical application.
Collapse
Affiliation(s)
- Min Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
31
|
Matos P, Batista MT, Veiga F, Figueirinha A, Figueiras A. Acanthus mollis Formulations for Transdermal Delivery: From Hydrogels to Emulsions. Gels 2023; 10:36. [PMID: 38247759 PMCID: PMC10815486 DOI: 10.3390/gels10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Topical formulations of Acanthus mollis L. leaf and the optimization of the release of their active compounds and their topical bioavailability were investigated for the first time. In vitro, the release of active compounds from three formulations-an oil-in-water cream and two hydrogels (Carbopol 940 and Pluronic F-127)-was determined using Franz diffusion cells. Detection and quantification of the compounds was performed via high-performance liquid chromatography with a photodiode array (HPLC-PDA). DIBOA, a bioactive compound of this medicinal plant, exhibited release kinetics of the Weibull model for the Carbopol and Pluronic F-127 formulation, identifying it as a potential active agent to optimize the topical distribution of the formulations. The implications extend to applications in inflammation treatment and tyrosinase inhibition, suggesting that it can make a significant contribution to addressing skin conditions, including melanoma and various inflammatory diseases.
Collapse
Affiliation(s)
- Patrícia Matos
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria Teresa Batista
- Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Francisco Veiga
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Artur Figueirinha
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- University of Coimbra, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (P.M.); (F.V.)
- University of Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, 3000-548 Coimbra, Portugal
| |
Collapse
|
32
|
Mohaghegh N, Ahari A, Zehtabi F, Buttles C, Davani S, Hoang H, Tseng K, Zamanian B, Khosravi S, Daniali A, Kouchehbaghi NH, Thomas I, Serati Nouri H, Khorsandi D, Abbasgholizadeh R, Akbari M, Patil R, Kang H, Jucaud V, Khademhosseini A, Hassani Najafabadi A. Injectable hydrogels for personalized cancer immunotherapies. Acta Biomater 2023; 172:67-91. [PMID: 37806376 DOI: 10.1016/j.actbio.2023.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The field of cancer immunotherapy has shown significant growth, and researchers are now focusing on effective strategies to enhance and prolong local immunomodulation. Injectable hydrogels (IHs) have emerged as versatile platforms for encapsulating and controlling the release of small molecules and cells, drawing significant attention for their potential to enhance antitumor immune responses while inhibiting metastasis and recurrence. IHs delivering natural killer (NK) cells, T cells, and antigen-presenting cells (APCs) offer a viable method for treating cancer. Indeed, it can bypass the extracellular matrix and gradually release small molecules or cells into the tumor microenvironment, thereby boosting immune responses against cancer cells. This review provides an overview of the recent advancements in cancer immunotherapy using IHs for delivering NK cells, T cells, APCs, chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. First, we introduce IHs as a delivery matrix, then summarize their applications for the local delivery of small molecules and immune cells to elicit robust anticancer immune responses. Additionally, we discuss recent progress in IHs systems used for local combination therapy, including chemoimmunotherapy, radio-immunotherapy, photothermal-immunotherapy, photodynamic-immunotherapy, and gene-immunotherapy. By comprehensively examining the utilization of IHs in cancer immunotherapy, this review aims to highlight the potential of IHs as effective carriers for immunotherapy delivery, facilitating the development of innovative strategies for cancer treatment. In addition, we demonstrate that using hydrogel-based platforms for the targeted delivery of immune cells, such as NK cells, T cells, and dendritic cells (DCs), has remarkable potential in cancer therapy. These innovative approaches have yielded substantial reductions in tumor growth, showcasing the ability of hydrogels to enhance the efficacy of immune-based treatments. STATEMENT OF SIGNIFICANCE: As cancer immunotherapy continues to expand, the mode of therapeutic agent delivery becomes increasingly critical. This review spotlights the forward-looking progress of IHs, emphasizing their potential to revolutionize localized immunotherapy delivery. By efficiently encapsulating and controlling the release of essential immune components such as T cells, NK cells, APCs, and various therapeutic agents, IHs offer a pioneering pathway to amplify immune reactions, moderate metastasis, and reduce recurrence. Their adaptability further shines when considering their role in emerging combination therapies, including chemoimmunotherapy, radio-immunotherapy, and photothermal-immunotherapy. Understanding IHs' significance in cancer therapy is essential, suggesting a shift in cancer treatment dynamics and heralding a novel period of focused, enduring, and powerful therapeutic strategies.
Collapse
Affiliation(s)
- Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Claire Buttles
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Indiana University Bloomington, Department of Biology, Bloomington, IN 47405, USA
| | - Saya Davani
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hanna Hoang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90024, USA
| | - Kaylee Tseng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90007, USA
| | - Benjamin Zamanian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Ariella Daniali
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, Tehran, Iran
| | - Isabel Thomas
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA
| | - Hamed Serati Nouri
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA; Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Rameshwar Patil
- Department of Basic Science and Neurosurgery, Division of Cancer Science, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Heemin Kang
- Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064 USA.
| | | |
Collapse
|
33
|
Boldrini DE. Starch-based materials for drug delivery in the gastrointestinal tract-A review. Carbohydr Polym 2023; 320:121258. [PMID: 37659802 DOI: 10.1016/j.carbpol.2023.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 09/04/2023]
Abstract
Starch is a natural copolymer with unique physicochemical characteristics. Historically, it has been physically, chemically, or enzymatically modified to obtain ad-hoc functional properties for its use in different applications. In this context, the use of starch-based materials in drug delivery systems (DDSs) has gained great attention mainly because it is cheap, biodegradable, biocompatible, and renewable. This paper reviews the state of the art in starch-based materials design for their use in drug-controlled release with internal stimulus responsiveness; i.e., pH, temperature, colonic microbiota, or enzymes; specifically, those orally administered for its release in the gastrointestinal tract (GIT). Physical-chemical principles in the design of these materials taking into account their response to a particular stimulus are discussed. The relationship between the type of DDSs structure, starch modification routes, and the corresponding drug release profiles are systematically analyzed. Furthermore, the challenges and prospects of starch-based materials for their use in stimulus-responsive DDSs are also debated.
Collapse
Affiliation(s)
- Diego E Boldrini
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
34
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
35
|
Bakshi S, Pandey P, Mohammed Y, Wang J, Sailor MJ, Popat A, Parekh HS, Kumeria T. Porous silicon embedded in a thermoresponsive hydrogel for intranasal delivery of lipophilic drugs to treat rhinosinusitis. J Control Release 2023; 363:452-463. [PMID: 37769816 PMCID: PMC11484479 DOI: 10.1016/j.jconrel.2023.09.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 μg of MF/g of tissue vs. <10 μg of MF/g of tissue, respectively).
Collapse
Affiliation(s)
- Shrishty Bakshi
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Preeti Pandey
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia
| | - Yousuf Mohammed
- Therapeutics Research Group, Diamantina Institute, University of Queensland, Brisbane, Queensland 4102, Australia
| | - Joanna Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, United States of America
| | - Michael J Sailor
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, United States of America
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Harendra S Parekh
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Queensland 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, New South Wales 2052, Australia; Australian Centre for Nanomedicine, The University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
36
|
Gwardys P, Marcisz K, Jagleniec D, Romanski J, Karbarz M. Electrochemically Controlled Release from a Thin Hydrogel Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49865-49873. [PMID: 37877416 PMCID: PMC10614182 DOI: 10.1021/acsami.3c11786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
In this study, we present a thermoresponsive thin hydrogel layer based on poly(N-isopropylacrylamide), functionalized with β-cyclodextrin groups (p(NIPA-βCD)), as a novel electrochemically controlled release system. This thin hydrogel layer was synthesized and simultaneously attached to the surface of a Au quartz crystal microbalance (QCM) electrode using electrochemically induced free radical polymerization. The process was induced and monitored using cyclic voltammetry and a quartz crystal microbalance with dissipation monitoring (QCM-D), respectively. The properties of the thin layer were investigated by using QCM-D and scanning electron microscopy (SEM). The incorporation of β-cyclodextrin moieties within the polymer network allowed rhodamine B dye modified with ferrocene (RdFc), serving as a model metallodrug, to accumulate in the p(NIPA-βCD) layer through host-guest inclusion complex formation. The redox properties of the electroactive p(NIPA-βCD/RdFc) layer and the dissociation of the host-guest complex triggered by changes in the oxidation state of the ferrocene groups were investigated. It was found that oxidation of the ferrocene moieties led to the release of RdFc. It was crucial to achieve precise control over the release of RdFc by applying the appropriate electrochemical signal, specifically, by applying the appropriate potential to the electrode. Importantly, the electrochemically controlled RdFc release process was performed at a temperature similar to that of the human body and monitored using a spectrofluorimetric technique. The presented system appears to be particularly suitable for transdermal delivery and delivery from intrabody implants.
Collapse
Affiliation(s)
- Paulina Gwardys
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Kamil Marcisz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Damian Jagleniec
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Jan Romanski
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, WarsawPL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki i Wigury Av., WarsawPL 02-089, Poland
| |
Collapse
|
37
|
Chiesa I, Ceccarini MR, Bittolo Bon S, Codini M, Beccari T, Valentini L, De Maria C. 4D Printing Shape-Morphing Hybrid Biomaterials for Advanced Bioengineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6661. [PMID: 37895643 PMCID: PMC10608699 DOI: 10.3390/ma16206661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Four-dimensional (4D) printing is an innovative additive manufacturing technology used to fabricate structures that can evolve over time when exposed to a predefined environmental stimulus. 4D printed objects are no longer static objects but programmable active structures that accomplish their functions thanks to a change over time in their physical/chemical properties that usually displays macroscopically as a shapeshifting in response to an external stimulus. 4D printing is characterized by several entangled features (e.g., involved material(s), structure geometry, and applied stimulus entities) that need to be carefully coupled to obtain a favorable fabrication and a functioning structure. Overall, the integration of micro-/nanofabrication methods of biomaterials with nanomaterials represents a promising approach for the development of advanced materials. The ability to construct complex and multifunctional triggerable structures capable of being activated allows for the control of biomedical device activity, reducing the need for invasive interventions. Such advancements provide new tools to biomedical engineers and clinicians to design dynamically actuated implantable devices. In this context, the aim of this review is to demonstrate the potential of 4D printing as an enabling manufacturing technology to code the environmentally triggered physical evolution of structures and devices of biomedical interest.
Collapse
Affiliation(s)
- Irene Chiesa
- Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Silvia Bittolo Bon
- Physics and Geology Department, University of Perugia, Via Pascoli, 06123 Perugia, Italy;
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy; (M.R.C.); (M.C.); (T.B.)
| | - Luca Valentini
- Civil and Environmental Engineering Department, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy;
| | - Carmelo De Maria
- Department of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| |
Collapse
|
38
|
Faber L, Yau A, Chen Y. Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication 2023; 16:012001. [PMID: 37757814 PMCID: PMC10561158 DOI: 10.1088/1758-5090/acfdd0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.
Collapse
Affiliation(s)
- Leah Faber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Anne Yau
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| |
Collapse
|
39
|
Li X, Tan TTY, Lin Q, Lim CC, Goh R, Otake KI, Kitagawa S, Loh XJ, Lim JYC. MOF-Thermogel Composites for Differentiated and Sustained Dual Drug Delivery. ACS Biomater Sci Eng 2023; 9:5724-5736. [PMID: 37729089 DOI: 10.1021/acsbiomaterials.3c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.
Collapse
Affiliation(s)
- Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Tristan T Y Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Qianyu Lin
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chen Chuan Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
| | - Rubayn Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| |
Collapse
|
40
|
Ganeson K, Tan Xue May C, Abdullah AAA, Ramakrishna S, Vigneswari S. Advantages and Prospective Implications of Smart Materials in Tissue Engineering: Piezoelectric, Shape Memory, and Hydrogels. Pharmaceutics 2023; 15:2356. [PMID: 37765324 PMCID: PMC10535616 DOI: 10.3390/pharmaceutics15092356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional biomaterial is frequently used in the biomedical sector for various therapies, imaging, treatment, and theranostic functions. However, their properties are fixed to meet certain applications. Smart materials respond in a controllable and reversible way, modifying some of their properties because of external stimuli. However, protein-based smart materials allow modular protein domains with different functionalities and responsive behaviours to be easily combined. Wherein, these "smart" behaviours can be tuned by amino acid identity and sequence. This review aims to give an insight into the design of smart materials, mainly protein-based piezoelectric materials, shape-memory materials, and hydrogels, as well as highlight the current progress and challenges of protein-based smart materials in tissue engineering. These materials have demonstrated outstanding regeneration of neural, skin, cartilage, bone, and cardiac tissues with great stimuli-responsive properties, biocompatibility, biodegradability, and biofunctionality.
Collapse
Affiliation(s)
- Keisheni Ganeson
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| | - Cindy Tan Xue May
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Amirul Al Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia;
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Gelugor 11700, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas 11800, Penang, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| | - Sevakumaran Vigneswari
- Institute of Climate Adaptation and Marine Biotechnolgy (ICAMB), Kuala Nerus 21030, Terengganu, Malaysia;
| |
Collapse
|
41
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
42
|
Xu K, Weng J, Li J, Chen X. Advances in Intelligent Stimuli-Responsive Microneedle for Biomedical Applications. Macromol Biosci 2023; 23:e2300014. [PMID: 37055877 DOI: 10.1002/mabi.202300014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Microneedles (MNs) are a new type of drug delivery method that can be regarded as an alternative to traditional transdermal drug delivery systems. Recently, MNs have attracted widespread attention for their advantages of effectiveness, safety, and painlessness. However, the functionality of traditional MNs is too monotonous and limits their application. To improve the efficiency of disease treatment and diagnosis by combining the advantages of MNs, the concept of intelligent stimulus-responsive MNs is proposed. Intelligent stimuli-responsive MNs can exhibit unique biomedical functions according to the internal and external environment changes. This review discusses the classification and principles of intelligent stimuli-responsive MNs, such as magnet, temperature, light, electricity, reactive oxygen species, pH, glucose, and protein. This review also highlights examples of intelligent stimuli-responsive MNs for biomedical applications, such as on-demand drug delivery, tissue repair, bioimaging, detection and monitoring, and photothermal therapy. These intelligent stimuli-responsive MNs offer the advantages of high biocompatibility, targeted therapy, selective detection, and precision treatment. Finally, the prospects and challenges for the application of intelligent stimuli-responsive MNs are discussed.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingyu Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
43
|
Falcucci T, Radke M, Sahoo JK, Hasturk O, Kaplan DL. Multifunctional silk vinyl sulfone-based hydrogel scaffolds for dynamic material-cell interactions. Biomaterials 2023; 300:122201. [PMID: 37348323 PMCID: PMC10366540 DOI: 10.1016/j.biomaterials.2023.122201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Biochemical and mechanical interactions between cells and the surrounding extracellular matrix influence cell behavior and fate. Mimicking these features in vitro has prompted the design and development of biomaterials, with continuing efforts to improve tailorable systems that also incorporate dynamic chemical functionalities. The majority of these chemistries have been incorporated into synthetic biomaterials, here we focus on modifications of silk protein with dynamic features achieved via enzymatic, "click", and photo-chemistries. The one-pot synthesis of vinyl sulfone modified silk (SilkVS) can be tuned to manipulate the degree of functionalization. The resultant modified protein-based material undergoes three different gelation mechanisms, enzymatic, "click", and light-induced, to generate hydrogels for in vitro cell culture. Further, the versatility of this chemical functionality is exploited to mimic cell-ECM interactions via the incorporation of bioactive peptides and proteins or by altering the mechanical properties of the material to guide cell behavior. SilkVS is well-suited for use in in vitro culture, providing a natural protein with both tunable biochemistry and mechanics.
Collapse
Affiliation(s)
- Thomas Falcucci
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - Margaret Radke
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | | | - Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA.
| |
Collapse
|
44
|
Fern J, Shi R, Liu Y, Xiong Y, Gracias DH, Schulman R. Swelling characteristics of DNA polymerization gels. SOFT MATTER 2023; 19:6525-6534. [PMID: 37589045 DOI: 10.1039/d3sm00321c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour.
Collapse
Affiliation(s)
- Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yixin Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Yan Xiong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
45
|
Stoilov B, Truong VK, Gronthos S, Vasilev K. Noninvasive and Microinvasive Nanoscale Drug Delivery Platforms for Hard Tissue Engineering. ACS APPLIED BIO MATERIALS 2023; 6:2925-2943. [PMID: 37565698 DOI: 10.1021/acsabm.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Bone tissue plays a crucial role in protecting internal organs and providing structural support and locomotion of the body. Treatment of hard tissue defects and medical conditions due to physical injuries, genetic disorders, aging, metabolic syndromes, and infections is more often a complex and drawn out process. Presently, dealing with hard-tissue-based clinical problems is still mostly conducted via surgical interventions. However, advances in nanotechnology over the last decades have led to shifting trends in clinical practice toward noninvasive and microinvasive methods. In this review article, recent advances in the development of nanoscale platforms for bone tissue engineering have been reviewed and critically discussed to provide a comprehensive understanding of the advantages and disadvantages of noninvasive and microinvasive methods for treating medical conditions related to hard tissue regeneration and repair.
Collapse
Affiliation(s)
- Borislav Stoilov
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide/SAHMRI, North Terrace, Adelaide, South Australia 5001, Australia
| | - Krasimir Vasilev
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| |
Collapse
|
46
|
Sangitra SN, Pujala RK. Effect of small amounts of akaganeite (β-FeOOH) nanorods on the gelation, phase behaviour and injectability of thermoresponsive Pluronic F127. SOFT MATTER 2023; 19:5869-5879. [PMID: 37401782 DOI: 10.1039/d3sm00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Pluronic F127 (PF127) is a copolymer with an amphiphilic nature and can self-assemble to form micelles and, beyond 20% (w/v), form a thermoresponsive physical gel state. However, they are mechanically weak and easily dissolve in physiological environments, which limits their use in load-bearing in specific biomedical applications. Therefore, we propose a pluronic-based hydrogel with enhanced stability by incorporating small amounts of paramagnetic nanorods, akaganeite (β-FeOOH) nanorods (NRs) of aspect ratio ∼7, with PF127. Due to their weak magnetic properties, β-FeOOH NRs have been used as a precursor for preparing stable iron-oxide states (e.g., hematite and magnetite), and the studies on β-FeOOH NRs to be used as a primary component in hydrogels are at the nascent stage. Here we report a method to synthesize β-FeOOH NRs on a gram scale using a simple sol-gel process and characterize the NRs with various techniques. A phase diagram and thermoresponsive behaviour based on rheological experiments and visual observations are proposed for 20% (w/v) PF127 with low concentrations (0.1-1.0% (w/v)) of β-FeOOH NRs. We observe a unique non-monotonous behaviour in the gel network represented by various rheological parameters like storage modulus, yield stress, fragility, high-frequency modulus plateau, and characteristic relaxation time as a function of nanorod concentration. A plausible physical mechanism is proposed to fundamentally understand the observed phase behaviour in the composite gels. These gels show thermoresponsiveness and enhanced injectability, and could find applications in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Surya Narayana Sangitra
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
| | - Ravi Kumar Pujala
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
- Centre for Atomic, Molecular and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
47
|
Rana D, Desai N, Salave S, Karunakaran B, Giri J, Benival D, Gorantla S, Kommineni N. Collagen-Based Hydrogels for the Eye: A Comprehensive Review. Gels 2023; 9:643. [PMID: 37623098 PMCID: PMC10454301 DOI: 10.3390/gels9080643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen-based hydrogels have emerged as a highly promising platform for diverse applications in ophthalmology, spanning from drug delivery systems to biomedical interventions. This review explores the diverse sources of collagen, which give rise to different types of collagen protein. The critical isolation and purification steps are discussed, emphasizing their pivotal role in preparing collagen for biomedical use. To ensure collagen quality and purity, and the suitability of collagen for targeted applications, a comprehensive characterization and quality control are essential, encompassing assessments of its physical, chemical, and biological properties. Also, various cross-linking collagen methods have been examined for providing insight into this crucial process. This comprehensive review delves into every facet of collagen and explores the wide-ranging applications of collagen-based hydrogels, with a particular emphasis on their use in drug delivery systems and their potential in diverse biomedical interventions. By consolidating current knowledge and advancements in the field, this review aims to provide a detailed overview of the utilization of engineered collagen-based hydrogels in ocular therapeutics.
Collapse
Affiliation(s)
- Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India; (N.D.); (J.G.)
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India; (D.R.); (S.S.); (B.K.); (D.B.)
| | - Srividya Gorantla
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA;
| | | |
Collapse
|
48
|
Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, Guo Y, Wang R, Gan D, Shi J, Ma P, Gao F, Su H. Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair. Int J Nanomedicine 2023; 18:4485-4505. [PMID: 37576462 PMCID: PMC10416793 DOI: 10.2147/ijn.s418534] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pluronic F127 hydrogel biomaterial has garnered considerable attention in wound healing and repair due to its remarkable properties including temperature sensitivity, injectability, biodegradability, and maintain a moist wound environment. This comprehensive review provides an in-depth exploration of the recent advancements in Pluronic F127-derived hydrogels, such as F127-CHO, F127-NH2, and F127-DA, focusing on their applications in the treatment of various types of wounds, ranging from burns and acute wounds to infected wounds, diabetic wounds, cutaneous tumor wounds, and uterine scars. Furthermore, the review meticulously examines the intricate interaction mechanisms employed by these hydrogels within the wound microenvironment. By elucidating the underlying mechanisms, discussing the strengths and weaknesses of Pluronic F127, analyzing the current state of wound healing development, and expanding on the trend of targeting mitochondria and cells with F127 as a nanomaterial. The review enhances our understanding of the therapeutic effects of these hydrogels aims to foster the development of effective and safe wound-healing modalities. The valuable insights provided this review have the potential to inspire novel ideas for clinical treatment and facilitate the advancement of innovative wound management approaches.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Cheng Yang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Junqiang Li
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Chao Zhang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Liaoliao Zhu
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yang Song
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Yongdong Guo
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Ronglin Wang
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Dongxue Gan
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Jingjie Shi
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Peixiang Ma
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| | - Fei Gao
- Center for Peptide Functional Materials and Innovative Drugs, Institute of Translational Medicine, Shanghai University, ShangHai City, People’s Republic of China
| | - Haichuan Su
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi’an City, People’s Republic of China
| |
Collapse
|
49
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
50
|
Gupta D, Gupta V, Nath D, Miglani C, Mandal D, Pal A. Stimuli-Responsive Self-Assembly Disassembly in Peptide Amphiphiles to Endow Block- co-Fibers and Tunable Piezoelectric Response. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25110-25121. [PMID: 35767722 DOI: 10.1021/acsami.2c05469] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Supramolecular assemblies with well-defined structural attenuation toward varied functional implications are an emerging area in mimicking natural biomaterials. In that regard, the redox stimuli-responsive ferrocene moiety can reversibly change between a nonpolar ferrocenyl and polar ferrocenium cation that endows interesting modular features to the building blocks with respect to self-assembly/disassembly. We design a series of ferrocene anchored peptide fragment NVFFAKKC using hydrophobic alkyl spacers of different chain lengths. Increasing the spacer length between the redox-responsive and self-assembling motifs increases the propensity to form robust nanofibers, which can be physically cross-linked to form hydrogels. The controlled redox response of the ferrocene moiety tandem with pH control provides access to structural control over the peptide nanostructures and tunable mechanical strengths. Further, such redox-sequestered dormant states hinder the spontaneous nucleation process that we exploit toward seeded supramolecular polymerization to form block cofibers composed of redox-responsive periphery and nonresponsive cores. Finally, such redox sequestration of peptide self-assembly renders an on-off piezoelectric response for potential utilization in peptide bioelectronics.
Collapse
Affiliation(s)
- Deepika Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Varun Gupta
- Quantum Materials and Devices, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Dipankar Mandal
- Quantum Materials and Devices, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|