1
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
2
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
3
|
Global Transcriptomic Analysis of Zebrafish Glucagon Receptor Mutant Reveals Its Regulated Metabolic Network. Int J Mol Sci 2020; 21:ijms21030724. [PMID: 31979106 PMCID: PMC7037442 DOI: 10.3390/ijms21030724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
The glucagon receptor (GCGR) is a G-protein-coupled receptor (GPCR) that mediates the activity of glucagon. Disruption of GCGR results in many metabolic alterations, including increased glucose tolerance, decreased adiposity, hypoglycemia, and pancreatic α-cell hyperplasia. To better understand the global transcriptomic changes resulting from GCGR deficiency, we performed whole-organism RNA sequencing analysis in wild type and gcgr-deficient zebrafish. We found that the expression of 1645 genes changes more than two-fold among mutants. Most of these genes are related to metabolism of carbohydrates, lipids, and amino acids. Genes related to fatty acid β-oxidation, amino acid catabolism, and ureagenesis are often downregulated. Among gcrgr-deficient zebrafish, we experimentally confirmed increases in lipid accumulation in the liver and whole-body glucose uptake, as well as a modest decrease in total amino acid content. These results provide new information about the global metabolic network that GCGR signaling regulates in addition to a better understanding of the receptor’s physiological functions.
Collapse
|
4
|
Design, synthesis, and effects of novel phenylpyrimidines as glucagon receptor antagonists. Bioorg Med Chem 2018; 26:5701-5710. [PMID: 30366787 DOI: 10.1016/j.bmc.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022]
Abstract
The hormone glucagon increases blood glucose levels through increasing hepatic glucose output. In diabetic patients, dysregulation of glucagon secretion contributes to hyperglycemia. Thus, the inhibition of glucagon receptor is one target for the treatment of hyperglycemia in type 2 diabetes. Here we designed and synthesized a series of small molecules based on phenylpyrimidine. Of these, the compound (R)-7a most significantly decreased the glucagon-induced cAMP production and glucagon-induced glucose production during in vitro and in vivo assays. In addition, (R)-7a showed good efficacy in glucagon challenge tests and lowered blood glucose levels in diabetic db/db mice. Our results suggest that the compound (R)-7a could be a potential glucose-lowering agent for treating type 2 diabetes.
Collapse
|
5
|
Hoque M, Ali S, Hoda M. Current status of G-protein coupled receptors as potential targets against type 2 diabetes mellitus. Int J Biol Macromol 2018; 118:2237-2244. [DOI: 10.1016/j.ijbiomac.2018.07.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/09/2018] [Accepted: 07/14/2018] [Indexed: 12/15/2022]
|
6
|
Bankir L, Bouby N, Blondeau B, Crambert G. Glucagon actions on the kidney revisited: possible role in potassium homeostasis. Am J Physiol Renal Physiol 2016; 311:F469-86. [DOI: 10.1152/ajprenal.00560.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/31/2016] [Indexed: 12/25/2022] Open
Abstract
It is now recognized that the metabolic disorders observed in diabetes are not, or not only due to the lack of insulin or insulin resistance, but also to elevated glucagon secretion. Accordingly, selective glucagon receptor antagonists are now proposed as a novel strategy for the treatment of diabetes. However, besides its metabolic actions, glucagon also influences kidney function. The glucagon receptor is expressed in the thick ascending limb, distal tubule, and collecting duct, and glucagon regulates the transepithelial transport of several solutes in these nephron segments. Moreover, it also influences solute transport in the proximal tubule, possibly by an indirect mechanism. This review summarizes the knowledge accumulated over the last 30 years about the influence of glucagon on the renal handling of electrolytes and urea. It also describes a possible novel role of glucagon in the short-term regulation of potassium homeostasis. Several original findings suggest that pancreatic α-cells may express a “potassium sensor” sensitive to changes in plasma K concentration and could respond by adapting glucagon secretion that, in turn, would regulate urinary K excretion. By their combined actions, glucagon and insulin, working in a combinatory mode, could ensure an independent regulation of both plasma glucose and plasma K concentrations. The results and hypotheses reviewed here suggest that the use of glucagon receptor antagonists for the treatment of diabetes should take into account their potential consequences on electrolyte handling by the kidney.
Collapse
Affiliation(s)
- Lise Bankir
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Nadine Bouby
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
- Université Paris-Descartes, Paris, France
| | - Bertrand Blondeau
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| | - Gilles Crambert
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie, Paris, France; and
| |
Collapse
|
7
|
Guan HP, Yang X, Lu K, Wang SP, Castro-Perez JM, Previs S, Wright M, Shah V, Herath K, Xie D, Szeto D, Forrest G, Xiao JC, Palyha O, Sun LP, Andryuk PJ, Engel SS, Xiong Y, Lin S, Kelley DE, Erion MD, Davis HR, Wang L. Glucagon receptor antagonism induces increased cholesterol absorption. J Lipid Res 2015; 56:2183-95. [PMID: 26373568 DOI: 10.1194/jlr.m060897] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 12/26/2022] Open
Abstract
Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Xiaodong Yang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Ku Lu
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Sheng-Ping Wang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Jose M Castro-Perez
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Stephen Previs
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Michael Wright
- Late Stage In Vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Vinit Shah
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Kithsiri Herath
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Dan Xie
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Daphne Szeto
- Late Stage In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Gail Forrest
- Late Stage In Vivo Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Jing Chen Xiao
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Oksana Palyha
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Li-Ping Sun
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Paula J Andryuk
- Clinical Research Department, Merck Research Laboratories, Rahway, NJ 07065
| | - Samuel S Engel
- Clinical Research Department, Merck Research Laboratories, Rahway, NJ 07065
| | - Yusheng Xiong
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Songnian Lin
- Discovery Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033
| | - David E Kelley
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Mark D Erion
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Harry R Davis
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| | - Liangsu Wang
- Departments of Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, NJ 07033
| |
Collapse
|
8
|
Lotfy M, Kalasz H, Szalai G, Singh J, Adeghate E. Recent Progress in the Use of Glucagon and Glucagon Receptor Antago-nists in the Treatment of Diabetes Mellitus. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2014; 8:28-35. [PMID: 25674162 PMCID: PMC4321206 DOI: 10.2174/1874104501408010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/08/2014] [Accepted: 10/12/2014] [Indexed: 12/25/2022]
Abstract
Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of
Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose
production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in
patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon
receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well
as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide
BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6-
(1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption,
dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the
role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus
by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout
techniques.
Collapse
Affiliation(s)
- Mohamed Lotfy
- Department of Biology, College of Science, United Arab Emirates University; School of Forensic and Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, England, UK; National Research Centre, Hormones Department, Cairo, Egypt
| | - Huba Kalasz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Gyorgy Szalai
- ENT Department, St. Janos Hospital, Budapest, Hungary
| | - Jaipaul Singh
- School of Forensic and Investigative Sciences and School of Pharmacy and Biomedical Science, University of Central Lancashire, Preston PR1 2HE, England, UK
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Ar-ab Emirates
| |
Collapse
|
9
|
Tudurí E, Denroche HC, Kara JA, Asadi A, Fox JK, Kieffer TJ. Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid homeostasis. Am J Physiol Endocrinol Metab 2014; 306:E748-55. [PMID: 24473435 DOI: 10.1152/ajpendo.00681.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The role of glucagon in the pathological condition of diabetes is gaining interest, and it has been recently reported that its action is essential for hyperglycemia to occur. Glucagon levels, which are elevated in some diabetic models, are reduced following leptin therapy. Likewise, hyperglycemia is corrected in type 1 diabetic mice treated with leptin, although the mechanisms have not been fully determined. A direct inhibitory effect of leptin on mouse and human α-cells has been demonstrated at the levels of electrical activity, calcium signaling, and glucagon secretion. In the present study we employed the Cre-loxP strategy to generate Lepr(flox/flox) Gcg-cre mice, which specifically lack leptin receptors in glucagon-secreting α-cells, to determine whether leptin resistance in α-cells contributes to hyperglucagonemia, and also whether leptin action in α-cells is required to improve glycemia in type 1 diabetes with leptin therapy. Immunohistochemical analysis of pancreas sections revealed Cre-mediated recombination in ∼ 43% of the α-cells. We observed that in vivo Lepr(flox/flox) Gcg-cre mice display normal glucose and lipid homeostasis. In addition, leptin administration in streptozotocin-induced diabetic Lepr(flox/flox) Gcg-cre mice restored euglycemia similarly to control mice. These findings suggest that loss of leptin receptor signaling in close to one-half of α-cells does not alter glucose metabolism in vivo, nor is it sufficient to prevent the therapeutic action of leptin in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Female
- Gene Deletion
- Glucagon-Secreting Cells/metabolism
- Glucose/metabolism
- Homeostasis/genetics
- Leptin/metabolism
- Leptin/therapeutic use
- Lipid Metabolism/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | | | | | | | | |
Collapse
|
10
|
Mukund S, Shang Y, Clarke HJ, Madjidi A, Corn JE, Kates L, Kolumam G, Chiang V, Luis E, Murray J, Zhang Y, Hötzel I, Koth CM, Allan BB. Inhibitory mechanism of an allosteric antibody targeting the glucagon receptor. J Biol Chem 2013; 288:36168-78. [PMID: 24189067 PMCID: PMC3861664 DOI: 10.1074/jbc.m113.496984] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Elevated glucagon levels and increased hepatic glucagon receptor (GCGR) signaling contribute to hyperglycemia in type 2 diabetes. We have identified a monoclonal antibody that inhibits GCGR, a class B G-protein coupled receptor (GPCR), through a unique allosteric mechanism. Receptor inhibition is mediated by the binding of this antibody to two distinct sites that lie outside of the glucagon binding cleft. One site consists of a patch of residues that are surface-exposed on the face of the extracellular domain (ECD) opposite the ligand-binding cleft, whereas the second binding site consists of residues in the αA helix of the ECD. A docking model suggests that the antibody does not occlude the ligand-binding cleft. We solved the crystal structure of GCGR ECD containing a naturally occurring G40S mutation and found a shift in the register of the αA helix that prevents antibody binding. We also found that alterations in the αA helix impact the normal function of GCGR. We present a model for the allosteric inhibition of GCGR by a monoclonal antibody that may form the basis for the development of allosteric modulators for the treatment of diabetes and other class B GPCR-related diseases.
Collapse
|
11
|
Vater A, Sell S, Kaczmarek P, Maasch C, Buchner K, Pruszynska-Oszmalek E, Kolodziejski P, Purschke WG, Nowak KW, Strowski MZ, Klussmann S. A mixed mirror-image DNA/RNA aptamer inhibits glucagon and acutely improves glucose tolerance in models of type 1 and type 2 diabetes. J Biol Chem 2013; 288:21136-21147. [PMID: 23744070 PMCID: PMC3774380 DOI: 10.1074/jbc.m112.444414] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/04/2013] [Indexed: 11/23/2022] Open
Abstract
Excessive secretion of glucagon, a functional insulin antagonist, significantly contributes to hyperglycemia in type 1 and type 2 diabetes. Accordingly, immunoneutralization of glucagon or genetic deletion of the glucagon receptor improved glucose homeostasis in animal models of diabetes. Despite this strong evidence, agents that selectively interfere with endogenous glucagon have not been implemented in clinical practice yet. We report the discovery of mirror-image DNA-aptamers (Spiegelmer®) that bind and inhibit glucagon. The affinity of the best binding DNA oligonucleotide was remarkably increased (>25-fold) by the introduction of oxygen atoms at selected 2'-positions through deoxyribo- to ribonucleotide exchanges resulting in a mixed DNA/RNA-Spiegelmer (NOX-G15) that binds glucagon with a Kd of 3 nm. NOX-G15 shows no cross-reactivity with related peptides such as glucagon-like peptide-1, glucagon-like peptide-2, gastric-inhibitory peptide, and prepro-vasoactive intestinal peptide. In vitro, NOX-G15 inhibits glucagon-stimulated cAMP production in CHO cells overexpressing the human glucagon receptor with an IC50 of 3.4 nm. A single injection of NOX-G15 ameliorated glucose excursions in intraperitoneal glucose tolerance tests in mice with streptozotocin-induced (type 1) diabetes and in a non-genetic mouse model of type 2 diabetes. In conclusion, the data suggest NOX-G15 as a therapeutic candidate with the potential to acutely attenuate hyperglycemia in type 1 and type 2 diabetes.
Collapse
MESH Headings
- Animals
- Aptamers, Nucleotide/blood
- Aptamers, Nucleotide/pharmacokinetics
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Blood Glucose/metabolism
- Body Weight/drug effects
- CHO Cells
- Cricetinae
- Cricetulus
- Cyclic AMP/biosynthesis
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Disease Models, Animal
- Fasting/blood
- Glucagon/antagonists & inhibitors
- Glucagon/metabolism
- Glucose Tolerance Test
- Humans
- Kinetics
- Male
- Mice
- Mice, Inbred BALB C
- RNA/metabolism
Collapse
Affiliation(s)
- Axel Vater
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Simone Sell
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Przemyslaw Kaczmarek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Christian Maasch
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Klaus Buchner
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Ewa Pruszynska-Oszmalek
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Pawel Kolodziejski
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Werner G Purschke
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krzysztof W Nowak
- the Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, 35 Wolynska Street, 60637 Poznan, Poland, and
| | - Mathias Z Strowski
- the Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Klussmann
- From the NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany,.
| |
Collapse
|
12
|
Fukami A, Seino Y, Ozaki N, Yamamoto M, Sugiyama C, Sakamoto-Miura E, Himeno T, Takagishi Y, Tsunekawa S, Ali S, Drucker DJ, Murata Y, Seino Y, Oiso Y, Hayashi Y. Ectopic expression of GIP in pancreatic β-cells maintains enhanced insulin secretion in mice with complete absence of proglucagon-derived peptides. Diabetes 2013; 62:510-8. [PMID: 23099862 PMCID: PMC3554360 DOI: 10.2337/db12-0294] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon and glucagon-like peptide-1 (GLP-1) are produced in pancreatic α-cells and enteroendocrine L-cells, respectively, in a tissue-specific manner from the same precursor, proglucagon, that is encoded by glucagon gene (Gcg), and play critical roles in glucose homeostasis. Here, we studied glucose homeostasis and β-cell function of Gcg-deficient mice that are homozygous for a Gcg-GFP knock-in allele (Gcg(gfp/gfp)). The Gcg(gfp/gfp) mice displayed improved glucose tolerance and enhanced insulin secretion, as assessed by both oral glucose tolerance test (OGTT) and intraperitoneal glucose tolerance test (IPGTT). Responses of glucose-dependent insulinotropic polypeptide (GIP) to both oral and intraperitoneal glucose loads were unexpectedly enhanced in Gcg(gfp/gfp) mice, and immunohistochemistry localized GIP to pancreatic β-cells of Gcg(gfp/gfp) mice. Furthermore, secretion of GIP in response to glucose was detected in isolated islets of Gcg(gfp/gfp) mice. Blockade of GIP action in vitro and in vivo by cAMP antagonism and genetic deletion of the GIP receptor, respectively, almost completely abrogated enhanced insulin secretion in Gcg(gfp/gfp) mice. These results indicate that ectopic GIP expression in β-cells maintains insulin secretion in the absence of proglucagon-derived peptides (PGDPs), revealing a novel compensatory mechanism for sustaining incretin hormone action in islets.
Collapse
Affiliation(s)
- Ayako Fukami
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Seino
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Metabolic Medicine, Nagoya University School of Medicine, Nagoya, Japan
| | - Nobuaki Ozaki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Research Center of Health, Physical Fitness, and Sports, Nagoya University, Nagoya, Japan
- Corresponding authors: Yoshitaka Hayashi, , and Nobuaki Ozaki,
| | - Michiyo Yamamoto
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Chisato Sugiyama
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Eriko Sakamoto-Miura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhito Himeno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiko Takagishi
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Shin Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Safina Ali
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada and
| | - Daniel J. Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada and
| | - Yoshiharu Murata
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition, and Endocrinology, Department of Medicine, Kansai Electric Power Hospital, Osaka, Japan
| | - Yutaka Oiso
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Hayashi
- Department of Genetics, Division of Stress Adaptation and Recognition, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Corresponding authors: Yoshitaka Hayashi, , and Nobuaki Ozaki,
| |
Collapse
|
13
|
Mu J, Qureshi SA, Brady EJ, Muise ES, Candelore MR, Jiang G, Li Z, Wu MS, Yang X, Dallas-Yang Q, Miller C, Xiong Y, Langdon RB, Parmee ER, Zhang BB. Anti-diabetic efficacy and impact on amino acid metabolism of GRA1, a novel small-molecule glucagon receptor antagonist. PLoS One 2012. [PMID: 23185367 PMCID: PMC3501516 DOI: 10.1371/journal.pone.0049572] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperglucagonemia is implicated in the pathophysiology of hyperglycemia. Antagonism of the glucagon receptor (GCGR) thus represents a potential approach to diabetes treatment. Herein we report the characterization of GRA1, a novel small-molecule GCGR antagonist that blocks glucagon binding to the human GCGR (hGCGR) and antagonizes glucagon-induced intracellular accumulation of cAMP with nanomolar potency. GRA1 inhibited glycogenolysis dose-dependently in primary human hepatocytes and in perfused liver from hGCGR mice, a transgenic line of mouse that expresses the hGCGR instead of the murine GCGR. When administered orally to hGCGR mice and rhesus monkeys, GRA1 blocked hyperglycemic responses to exogenous glucagon. In several murine models of diabetes, acute and chronic dosing with GRA1 significantly reduced blood glucose concentrations and moderately increased plasma glucagon and glucagon-like peptide-1. Combination of GRA1 with a dipeptidyl peptidase-4 inhibitor had an additive antihyperglycemic effect in diabetic mice. Hepatic gene-expression profiling in monkeys treated with GRA1 revealed down-regulation of numerous genes involved in amino acid catabolism, an effect that was paralleled by increased amino acid levels in the circulation. In summary, GRA1 is a potent glucagon receptor antagonist with strong antihyperglycemic efficacy in preclinical models and prominent effects on hepatic gene-expression related to amino acid metabolism.
Collapse
Affiliation(s)
- James Mu
- Discovery and Preclinical Sciences, Merck Research Laboratories, Merck Sharp & Dohme Corp., Whitehouse Station, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Members of the class B family of G protein-coupled receptors (GPCRs) bind peptide hormones and have causal roles in many diseases, ranging from diabetes and osteoporosis to anxiety. Although peptide, small-molecule, and antibody inhibitors of these GPCRs have been identified, structure-based descriptions of receptor antagonism are scarce. Here we report the mechanisms of glucagon receptor inhibition by blocking antibodies targeting the receptor's extracellular domain (ECD). These studies uncovered a role for the ECD as an intrinsic negative regulator of receptor activity. The crystal structure of the ECD in complex with the Fab fragment of one antibody, mAb1, reveals that this antibody inhibits glucagon receptor by occluding a surface extending across the entire hormone-binding cleft. A second antibody, mAb23, blocks glucagon binding and inhibits basal receptor activity, indicating that it is an inverse agonist and that the ECD can negatively regulate receptor activity independent of ligand binding. Biochemical analyses of receptor mutants in the context of a high-resolution ECD structure show that this previously unrecognized inhibitory activity of the ECD involves an interaction with the third extracellular loop of the receptor and suggest that glucagon-mediated structural changes in the ECD accompany receptor activation. These studies have implications for the design of drugs to treat class B GPCR-related diseases, including the potential for developing novel allosteric regulators that target the ECDs of these receptors.
Collapse
|
15
|
Kosinski JR, Hubert J, Carrington PE, Chicchi GG, Mu J, Miller C, Cao J, Bianchi E, Pessi A, SinhaRoy R, Marsh DJ, Pocai A. The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 2012; 20:1566-71. [PMID: 22421924 PMCID: PMC3408645 DOI: 10.1038/oby.2012.67] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxyntomodulin (OXM) is a peptide secreted postprandially from the L-cells of the gut that has a weak affinity for both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR). Peripheral administration of OXM in humans and rodents causes weight loss reducing food intake and increasing energy expenditure. It has been suggested that OXM modulates energy intake solely through GLP1R agonism. Because glucagon decreases food intake in rodents and humans, we examined whether activation of the GCGR is involved in the body weight-lowering effects of OXM. We identified an equipotent GLP1R-selective peptide agonist that differs from OXM by only one residue (Q3→E, OXMQ3E), but has no significant GCGR agonist activity in vitro and ~100-fold reduced ability to stimulate liver glycogenolysis. Chronic treatment of obese mice with OXM and OXMQ3E demonstrated that OXM exhibits superior weight loss and lipid-lowering efficacy, and antihyperglycemic activity that is comparable to the corresponding GLP1R-selective agonist. Studies in Glp1r(-/-) mice and coadministration of OXM and a GCGR antagonist revealed that the antiobesity effect of OXM requires activation of both GLP1R and GCGR. Our data provide new insight into the mechanism of action of OXM and suggest that activation of GCGR is involved in the body weight-lowering action of OXM.
Collapse
Affiliation(s)
| | - James Hubert
- Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | - James Mu
- Merck Research Laboratories, Rahway, New Jersey, USA
| | - Corey Miller
- Merck Research Laboratories, Rahway, New Jersey, USA
| | - Jin Cao
- Merck Research Laboratories, Rahway, New Jersey, USA
| | - Elisabetta Bianchi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Rome, Italy
- Present address: IRBM Science Park, Rome, Italy
| | - Antonello Pessi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Rome, Italy
- Present address: PeptiPharma, Rome, Italy
| | | | | | | |
Collapse
|
16
|
Sinz C, Chang J, Lins AR, Brady E, Candelore M, Dallas-Yang Q, Ding V, Jiang G, Lin Z, Mock S, Qureshi S, Salituro G, Saperstein R, Shang J, Szalkowski D, Tota L, Vincent S, Wright M, Xu S, Yang X, Zhang B, Tata J, Kim R, Parmee E. Discovery of cyclic guanidines as potent, orally active, human glucagon receptor antagonists. Bioorg Med Chem Lett 2011; 21:7131-6. [DOI: 10.1016/j.bmcl.2011.09.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 09/18/2011] [Accepted: 09/20/2011] [Indexed: 12/01/2022]
|
17
|
Bagger JI, Knop FK, Holst JJ, Vilsbøll T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab 2011; 13:965-71. [PMID: 21615669 DOI: 10.1111/j.1463-1326.2011.01427.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucagon is a hormone secreted from the alpha cells of the pancreatic islets. Through its effect on hepatic glucose production (HGP), glucagon plays a central role in the regulation of glucose homeostasis. In patients with type 2 diabetes mellitus (T2DM), abnormal regulation of glucagon secretion has been implicated in the development of fasting and postprandial hyperglycaemia. Therefore, new therapeutic agents based on antagonizing glucagon action, and hence blockade of glucagon-induced HGP, could be effective in lowering both fasting and postprandial hyperglycaemia in patients with T2DM. This review focuses on the mechanism of action, safety and efficacy of glucagon antagonists in the treatment of T2DM and discusses the challenges associated with this new potential antidiabetic treatment modality.
Collapse
Affiliation(s)
- J I Bagger
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | | | | |
Collapse
|
18
|
Lou PH, Gustavsson N, Wang Y, Radda GK, Han W. Increased lipolysis and energy expenditure in a mouse model with severely impaired glucagon secretion. PLoS One 2011; 6:e26671. [PMID: 22046328 PMCID: PMC3203149 DOI: 10.1371/journal.pone.0026671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/30/2011] [Indexed: 12/23/2022] Open
Abstract
Background Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level. Methodology/Principal Findings We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice. Conclusions These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.
Collapse
Affiliation(s)
- Phing-How Lou
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore
| | | | | | | | | |
Collapse
|
19
|
Mu J, Jiang G, Brady E, Dallas-Yang Q, Liu F, Woods J, Zycband E, Wright M, Li Z, Lu K, Zhu L, Shen X, Sinharoy R, Candelore ML, Qureshi SA, Shen DM, Zhang F, Parmee ER, Zhang BB. Chronic treatment with a glucagon receptor antagonist lowers glucose and moderately raises circulating glucagon and glucagon-like peptide 1 without severe alpha cell hypertrophy in diet-induced obese mice. Diabetologia 2011; 54:2381-91. [PMID: 21695571 DOI: 10.1007/s00125-011-2217-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/03/2011] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Antagonism of the glucagon receptor (GCGR) represents a potential approach for treating diabetes. Cpd-A, a potent and selective GCGR antagonist (GRA) was studied in preclinical models to assess its effects on alpha cells. METHODS Studies were conducted with Cpd-A to examine the effects on glucose-lowering efficacy, its effects in combination with a dipeptidyl peptidase-4 (DPP-4) inhibitor, and the extent and reversibility of alpha cell hypertrophy associated with GCGR antagonism in mouse models. RESULTS Chronic treatment with Cpd-A resulted in effective and sustained glucose lowering in mouse models in which endogenous murine Gcgr was replaced with human GCGR (hGCGR). Treatment with Cpd-A also led to stable, moderate elevations in both glucagon and glucagon-like peptide 1 (GLP-1) levels, which were completely reversible and not associated with a hyperglycaemic overshoot following termination of treatment. When combined with a DPP-4 inhibitor, Cpd-A led to additional improvement of glycaemic control correlated with elevated active GLP-1 levels after glucose challenge. In contrast to Gcgr-knockout mice in which alpha cell hypertrophy was detected, chronic treatment with Cpd-A in obese hGCGR mice did not result in gross morphological changes in pancreatic tissue. CONCLUSIONS/INTERPRETATION A GRA lowered glucose effectively in diabetic models without significant alpha cell hypertrophy during or following chronic treatment. Treatment with a GRA may represent an effective approach for glycaemic control in patients with type 2 diabetes, which could be further enhanced when combined with DPP-4 inhibitors.
Collapse
Affiliation(s)
- J Mu
- Merck, RY80N-A58, 126 East Lincoln Avenue, Rahway, NJ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shen DM, Lin S, Parmee ER. A survey of small molecule glucagon receptor antagonists from recent patents (2006 – 2010). Expert Opin Ther Pat 2011; 21:1211-40. [DOI: 10.1517/13543776.2011.587001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ali S, Lamont BJ, Charron MJ, Drucker DJ. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J Clin Invest 2011; 121:1917-29. [PMID: 21540554 DOI: 10.1172/jci43615] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 02/09/2011] [Indexed: 02/03/2023] Open
Abstract
Disordered glucagon secretion contributes to the symptoms of diabetes, and reduced glucagon action is known to improve glucose homeostasis. In mice, genetic deletion of the glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), which may contribute to the alterations in glucose homeostasis observed in Gcgr-/- mice. Here, we assessed the contribution of GLP-1 receptor (GLP-1R) signaling to the phenotype of Gcgr-/- mice by generating Gcgr-/-Glp1r-/- mice. Although insulin sensitivity was similar in all genotypes, fasting glucose was increased in Gcgr-/-Glp1r-/- mice. Elimination of the Glp1r normalized gastric emptying and impaired intraperitoneal glucose tolerance in Gcgr-/- mice. Unexpectedly, deletion of Glp1r in Gcgr-/- mice did not alter the improved oral glucose tolerance and increased insulin secretion characteristic of that genotype. Although Gcgr-/-Glp1r-/- islets exhibited increased sensitivity to the incretin glucose-dependent insulinotropic polypeptide (GIP), mice lacking both Glp1r and the GIP receptor (Gipr) maintained preservation of the enteroinsular axis following reduction of Gcgr signaling. Moreover, Gcgr-/-Glp1r-/- islets expressed increased levels of the cholecystokinin A receptor (Cckar) and G protein-coupled receptor 119 (Gpr119) mRNA transcripts, and Gcgr-/-Glp1r-/- mice exhibited increased sensitivity to exogenous CCK and the GPR119 agonist AR231453. Our data reveal extensive functional plasticity in the enteroinsular axis via induction of compensatory mechanisms that control nutrient-dependent regulation of insulin secretion.
Collapse
Affiliation(s)
- Safina Ali
- Department of Laboratory Medicine and Pathobiology, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Shen DM, Brady EJ, Candelore MR, Dallas-Yang Q, Ding VDH, Feeney WP, Jiang G, McCann ME, Mock S, Qureshi SA, Saperstein R, Shen X, Tong X, Tota LM, Wright MJ, Yang X, Zheng S, Chapman KT, Zhang BB, Tata JR, Parmee ER. Discovery of novel, potent, selective, and orally active human glucagon receptor antagonists containing a pyrazole core. Bioorg Med Chem Lett 2010; 21:76-81. [PMID: 21147532 DOI: 10.1016/j.bmcl.2010.11.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022]
Abstract
A novel class of 1,3,5-pyrazoles has been discovered as potent human glucagon receptor antagonists. Notably, compound 26 is orally bioavailable in several preclinical species and shows selectivity towards cardiac ion channels, other family B receptors such hGIP and hGLP1, and a large panel of enzymes and additional receptors. When dosed orally, compound 26 is efficacious in suppressing glucagon induced plasma glucose excursion in rhesus monkey and transgenic murine pharmacodynamic models at 1 and 10 mpk, respectively.
Collapse
Affiliation(s)
- Dong-Ming Shen
- Department of Basic Chemistry, Merck Research Laboratories, PO Box 2000, RY50G-346, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 2009; 296:E415-21. [PMID: 19116373 DOI: 10.1152/ajpendo.90887.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucagon is secreted from the alpha-cells of the pancreatic islets and regulates glucose homeostasis through modulation of hepatic glucose production. As elevated glucagon levels contribute to the pathophysiology of hyperglycemia in subjects with type 2 diabetes, reduction of glucagon receptor gene (Gcgr) activity represents a potential target for the treatment of T2DM. Herein, we review current concepts of glucagon action in hepatic and extrahepatic tissues and evaluate the therapeutic potential, mechanisms of action, and safety of reducing Gcgr signaling for the treatment of T2DM.
Collapse
Affiliation(s)
- Safina Ali
- Mt. Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | |
Collapse
|
24
|
Kim RM, Chang J, Lins AR, Brady E, Candelore MR, Dallas-Yang Q, Ding V, Dragovic J, Iliff S, Jiang G, Mock S, Qureshi S, Saperstein R, Szalkowski D, Tamvakopoulos C, Tota L, Wright M, Yang X, Tata JR, Chapman K, Zhang BB, Parmee ER. Discovery of potent, orally active benzimidazole glucagon receptor antagonists. Bioorg Med Chem Lett 2008; 18:3701-5. [PMID: 18539028 DOI: 10.1016/j.bmcl.2008.05.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
The discovery and optimization of potent and selective aminobenzimidazole glucagon receptor antagonists are described. One compound possessing moderate pharmacokinetic properties in multiple preclinical species was orally efficacious at inhibiting glucagon-mediated glucose excursion in transgenic mice expressing the human glucagon receptor, and in rhesus monkeys. The compound also significantly lowered glucose levels in a murine model of diabetes.
Collapse
Affiliation(s)
- Ronald M Kim
- Department of Medicinal Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Winzell MS, Brand CL, Wierup N, Sidelmann UG, Sundler F, Nishimura E, Ahrén B. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007; 50:1453-62. [PMID: 17479245 DOI: 10.1007/s00125-007-0675-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 03/05/2007] [Indexed: 12/12/2022]
Abstract
AIMS/HYPOTHESIS Increased glucagon secretion predicts deterioration of glucose tolerance, and high glucagon levels contribute to hyperglycaemia in type 2 diabetes. Inhibition of glucagon action may therefore be a potential novel target to reduce hyperglycaemia. Here, we investigated whether chronic treatment with a glucagon receptor antagonist (GRA) improves islet dysfunction in female mice on a high-fat diet (HFD). MATERIALS AND METHODS After 8 weeks of HFD, mice were treated with a small molecule GRA (300 mg/kg, gavage once daily) for up to 30 days. Insulin secretion was studied after oral and intravenous administration of glucose and glucagon secretion after intravenous arginine. Islet morphology was examined and insulin secretion and glucose oxidation were measured in isolated islets. RESULTS Fasting plasma glucose levels were reduced by GRA (6.0 +/- 0.2 vs 7.4 +/- 0.5 mmol/l; p = 0.017). The acute insulin response to intravenous glucose was augmented (1,300 +/- 110 vs 790 +/- 64 pmol/l; p < 0.001). The early insulin response to oral glucose was reduced in mice on HFD + GRA (1,890 +/- 160 vs 3,040 +/- 420 pmol/l; p = 0.012), but glucose excursions were improved. Intravenous arginine significantly increased the acute glucagon response (129 +/- 12 vs 36 +/- 6 ng/l in controls; p < 0.01), notably without affecting plasma glucose. GRA caused a modest increase in alpha cell mass, while beta cell mass was similar to that in mice on HFD + vehicle. Isolated islets displayed improved glucose-stimulated insulin secretion after GRA treatment (0.061 +/- 0.007 vs 0.030 +/- 0.004 pmol islet(-1) h(-1) at 16.7 mmol/l glucose; p < 0.001), without affecting islet glucose oxidation. CONCLUSIONS/INTERPRETATION Chronic glucagon receptor antagonism in HFD-fed mice improves islet sensitivity to glucose and increases insulin secretion, suggesting improvement of key defects underlying impaired glucose tolerance and type 2 diabetes.
Collapse
Affiliation(s)
- M Sörhede Winzell
- Department of Clinical Sciences, Lund, Division of Medicine, BMC, B11, Lund University, 221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
26
|
Dunning BE, Gerich JE. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007; 28:253-83. [PMID: 17409288 DOI: 10.1210/er.2006-0026] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperglycemic activity of pancreatic extracts was encountered some 80 yr ago during efforts to optimize methods for the purification of insulin. The hyperglycemic substance was named "glucagon," and it was subsequently determined that glucagon is a 29-amino acid peptide synthesized and released from pancreatic alpha-cells. This article begins with a brief overview of the discovery of glucagon and the contributions that somatostatin and a sensitive and selective assay for pancreatic (vs. gut) glucagon made to understanding the physiological and pathophysiological roles of glucagon. Studies utilizing these tools to establish the function of glucagon in normal nutrient homeostasis and to document a relative glucagon excess in type 2 diabetes mellitus (T2DM) and precursors thereof are then discussed. The evidence that glucagon excess contributes to the development and maintenance of fasting hyperglycemia and that failure to suppress glucagon secretion contributes to postprandial hyperglycemia is then reviewed. Although key human studies are emphasized, salient animal studies highlighting the importance of glucagon in normal and defective glucoregulation are also described. The past eight decades of research in this area have led to development of new therapeutic approaches to treating T2DM that have been shown to, or are expected to, improve glycemic control in patients with T2DM in part by improving alpha-cell function or by blocking glucagon action. Accordingly, this review ends with a discussion of the status and therapeutic potential of glucagon receptor antagonists, alpha-cell selective somatostatin agonists, glucagon-like peptide-1 agonists, and dipeptidyl peptidase-IV inhibitors. Our overall conclusions are that there is considerable evidence that relative hyperglucagonemia contributes to fasting and postprandial hyperglycemia in patients with T2DM, and there are several new and emerging pharmacotherapies that may improve glycemic control in part by ameliorating the hyperglycemic effects of this relative glucagon excess.
Collapse
|
27
|
Sloop KW, Michael MD, Moyers JS. Glucagon as a target for the treatment of Type 2 diabetes. Expert Opin Ther Targets 2007; 9:593-600. [PMID: 15948676 DOI: 10.1517/14728222.9.3.593] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glucagon is the key counter-regulatory hormone that opposes the action of insulin. In states of relative hypoglycaemia, glucagon acts to increase blood glucose by stimulating hepatic glycogen breakdown and gluconeogenesis to achieve euglycaemia. Type 2 diabetes is characterised by inappropriate regulation of hepatic glucose production, which is due, at least in part, to an imbalance in the bihormonal relationship between plasma levels of glucagon and insulin. The glucose-lowering effects of glucagon peptide antagonists and antiglucagon neutralising antibodies first demonstrated the potential of glucagon receptor (GCGR) antagonism as a treatment for hyperglycaemia. In recent years, the development of GCGR antisense oligonucleotides and small molecular weight GCGR antagonists have been pursued as possible therapeutic agents to target glucagon action as a treatment for Type 2 diabetes.
Collapse
Affiliation(s)
- Kyle W Sloop
- Endocrine Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | |
Collapse
|
28
|
Conarello SL, Jiang G, Mu J, Li Z, Woods J, Zycband E, Ronan J, Liu F, Roy RS, Zhu L, Charron MJ, Zhang BB. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007; 50:142-50. [PMID: 17131145 DOI: 10.1007/s00125-006-0481-3] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 09/08/2006] [Indexed: 12/31/2022]
Abstract
AIMS/HYPOTHESIS Under normal physiological conditions, glucagon signalling is important in glucose homeostasis. Hyperglucagonaemia or altered insulin:glucagon ratio plays a role in maintaining hyperglycaemia in subjects with type 2 diabetes. It has been reported that glucagon receptor knockout (Gcgr (-/-)) mice develop normally and have lower plasma glucose on a normal diet. The goal of the current research was to further investigate the role of glucagon signalling in metabolic control and glucose homeostasis. METHODS Gcgr (-/-) mice were challenged with a high-fat diet (HFD) and with streptozotocin, which induces beta cell damage. They were then analysed for whole-body and serum metabolic phenotypes as well as pancreatic islet morphology. RESULTS In comparison with wild-type mice, Gcgr (-/-) mice exhibited decreased body weight and food intake, reduced plasma glucose levels, and improved oral and intraperitoneal glucose tolerance. Elevated glucagon-like peptide-1 levels and reduced gastric emptying were also observed in Gcgr (-/-) mice, which also had reduced HFD-induced hyperinsulinaemia and hyperleptinaemia, and were resistant to the development of hepatic steatosis. In addition, Gcgr (-/-) mice were resistant to STZ-induced hyperglycaemia and pancreatic beta cell destruction. CONCLUSIONS/INTERPRETATION This study demonstrates that blocking glucagon signalling by targeted Gcgr gene deletion leads to an improvement in metabolic control in this mouse model.
Collapse
Affiliation(s)
- S L Conarello
- Laboratory Animal Resources, Merck Research Laboratories, Rahway, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liang R, Abrardo L, Brady EJ, Candelore MR, Ding V, Saperstein R, Tota LM, Wright M, Mock S, Tamvakopolous C, Tong S, Zheng S, Zhang BB, Tata JR, Parmee ER. Design and synthesis of conformationally constrained tri-substituted ureas as potent antagonists of the human glucagon receptor. Bioorg Med Chem Lett 2006; 17:587-92. [PMID: 17126016 DOI: 10.1016/j.bmcl.2006.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
A series of conformationally constrained tri-substituted ureas were synthesized, and their potential as glucagon receptor antagonists was evaluated. This effort resulted in the identification of compound 4a, which had a binding IC50 of 4.0 nM and was shown to reduce blood glucose levels at 3 mg/kg in glucagon-challenged mice containing a humanized glucagon receptor. Compound 4a was efficacious in correcting hyperglycemia induced by a high fat diet in transgenic mice at an oral dose as low as 3 mg/kg.
Collapse
Affiliation(s)
- Rui Liang
- Department of Basic Chemistry, Merck Research Laboratories, PO Box 2000, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cohen SM, Duffy JL, Miller C, Kirk BA, Candelore MR, Ding VDH, Kaczorowski G, Tota LM, Werrmann JG, Wright M, Parmee ER, Tata JR, Zhang BB. Direct observation (NMR) of the efficacy of glucagon receptor antagonists in murine liver expressing the human glucagon receptor. Bioorg Med Chem 2006; 14:1506-17. [PMID: 16256355 DOI: 10.1016/j.bmc.2005.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 10/03/2005] [Accepted: 10/03/2005] [Indexed: 11/22/2022]
Abstract
The demonstration of pharmacodynamic efficacy of novel chemical entities represents a formidable challenge in the early exploration of synthetic lead classes. Here, we demonstrate a technique to validate the biological efficacy of novel antagonists of the human glucagon receptor (hGCGR) in the surgically removed perfused liver prior to the optimization of the pharmacokinetic properties of the compounds. The technique involves the direct observation by (13)C NMR of the biosynthesis of [(13)C]glycogen from [(13)C]pyruvate via the gluconeogenic pathway. The rapid breakdown of [(13)C]glycogen (glycogenolysis) following the addition of 50 pM exogenous glucagon is then monitored in real time in the perfused liver by (13)C NMR. The concentration-dependent inhibition of glucagon-mediated glycogenolysis is demonstrated for both the peptidyl glucagon receptor antagonist 1 and structurally diverse synthetic antagonists 2-7. Perfused livers were obtained from a transgenic mouse strain that exclusively expresses the functional human glucagon receptor, conferring human relevance to the activity observed with glucagon receptor antagonists. This technique does not provide adequate quantitative precision for the comparative ranking of active compounds, but does afford physiological evidence of efficacy in the early development of a chemical series of antagonists.
Collapse
Affiliation(s)
- Sheila M Cohen
- Department of Research Imaging, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shen DM, Zhang F, Brady EJ, Candelore MR, Dallas-Yang Q, Ding VDH, Dragovic J, Feeney WP, Jiang G, McCann PE, Mock S, Qureshi SA, Saperstein R, Shen X, Tamvakopoulos C, Tong X, Tota LM, Wright MJ, Yang X, Zheng S, Chapman KT, Zhang BB, Tata JR, Parmee ER. Discovery of novel, potent, and orally active spiro-urea human glucagon receptor antagonists. Bioorg Med Chem Lett 2005; 15:4564-9. [PMID: 16102966 DOI: 10.1016/j.bmcl.2005.06.101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 11/22/2022]
Abstract
A novel class of spiro-ureas has been discovered as potent human glucagon receptor antagonists in both binding and functional assays. Preliminary studies have revealed that compound 15 is an orally active human glucagon receptor antagonist in a transgenic murine pharmacodynamic model at 10 and 30 mpk. Compound 15 is orally bioavailable in several preclinical species and shows selectivity toward cardiac ion channels and other family B receptors, such as hGIP1 and hGLP.
Collapse
Affiliation(s)
- Dong-Ming Shen
- Department of Basic Chemistry, Merck Research Laboratories, PO Box 2000, RY50G-146, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kurukulasuriya R, Link JT. Progress towards glucagon receptor antagonist therapy for Type 2 diabetes. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.12.1739] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Duffy JL, Kirk BA, Konteatis Z, Campbell EL, Liang R, Brady EJ, Candelore MR, Ding VDH, Jiang G, Liu F, Qureshi SA, Saperstein R, Szalkowski D, Tong S, Tota LM, Xie D, Yang X, Zafian P, Zheng S, Chapman KT, Zhang BB, Tata JR. Discovery and investigation of a novel class of thiophene-derived antagonists of the human glucagon receptor. Bioorg Med Chem Lett 2005; 15:1401-5. [PMID: 15713396 DOI: 10.1016/j.bmcl.2005.01.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 12/28/2004] [Accepted: 01/04/2005] [Indexed: 02/01/2023]
Abstract
A novel class of antagonists of the human glucagon receptor (hGCGR) has been discovered. Systematic modification of the lead compound identified substituents that were essential for activity and those that were amenable to further optimization. This SAR exploration resulted in the synthesis of 13, which exhibited good potency as an hGCGR functional antagonist (IC50 = 34 nM) and moderate bioavailability (36% in mice).
Collapse
Affiliation(s)
- Joseph L Duffy
- Department of Basic Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|