1
|
El Hasbani G, Madi M, Zoghbi MASE, Srour L, Uthman I, Jawad ASM. The Impact of Tobacco Smoking on Systemic Sclerosis, Idiopathic Inflammatory Myositis, and Systemic Lupus Erythematosus. CLINICAL MEDICINE INSIGHTS. ARTHRITIS AND MUSCULOSKELETAL DISORDERS 2024; 17:11795441241290522. [PMID: 39430769 PMCID: PMC11490952 DOI: 10.1177/11795441241290522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
This narrative review aims specifically to explore the relationship between tobacco exposure and systemic sclerosis (SSc), idiopathic inflammatory myositis (IIM), and systemic lupus erythematosus (SLE). Relevant articles were obtained by searching key terms such as "tobacco," "smoking," "scleroderma," "myositis," "lupus," and "Sjögren's" in PubMed and Google Scholar databases. The selected articles ranged from the years 2010 to 2023. Inclusion criteria were based on the relevance and contribution to the field of study. Systemic sclerosis is a complex condition involving multiple immune cell lines that can be influenced by tobacco. However, the existing literature does not provide sufficient evidence to support an increased risk of SSc in smokers or the impact on treatment options. Cigarette smoking does increase the risk of skin ulcerations in SSc patients. In addition, cigarette smoking has been associated with IIM through genetic and molecular mechanisms. Smokers with dermatomyositis or polymyositis are at an elevated risk of atherosclerosis and interstitial lung disease. Similarly, smoking in patients with SLE increases the risk of organ damage, thrombosis, and disease severity compared with non-smokers. Smokers with SLE also have more difficulty in controlling disease flares compared with non-smokers. Tobacco exposure can lead to secondary complications in patients with IIM and SLE, although the course of treatment may not differ significantly. No definitive conclusions can be drawn to the clear relationship between tobacco smoking and Sjögren's's syndrome.
Collapse
Affiliation(s)
- Georges El Hasbani
- Department of Medicine, Hartford Healthcare St. Vincent’s Medical Center, Bridgeport, CT, USA
| | - Mikel Madi
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Lara Srour
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Imad Uthman
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali SM Jawad
- Department of Rheumatology, The Royal London Hospital, London, UK
| |
Collapse
|
2
|
Knox D, Parikh V. Basal forebrain cholinergic systems as circuits through which traumatic stress disrupts emotional memory regulation. Neurosci Biobehav Rev 2024; 159:105569. [PMID: 38309497 PMCID: PMC10948307 DOI: 10.1016/j.neubiorev.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Contextual and spatial systems facilitate changes in emotional memory regulation brought on by traumatic stress. Cholinergic basal forebrain (chBF) neurons provide input to contextual/spatial systems and although chBF neurons are important for emotional memory, it is unknown how they contribute to the traumatic stress effects on emotional memory. Clusters of chBF neurons that project to the prefrontal cortex (PFC) modulate fear conditioned suppression and passive avoidance, while clusters of chBF neurons that project to the hippocampus (Hipp) and PFC (i.e. cholinergic medial septum and diagonal bands of Broca (chMS/DBB neurons) are critical for fear extinction. Interestingly, neither Hipp nor PFC projecting chMS/DBB neurons are critical for fear extinction. The retrosplenial cortex (RSC) is a contextual/spatial memory system that receives input from chMS/DBB neurons, but whether this chMS/DBB-RSC circuit facilitates traumatic stress effects on emotional memory remain unexplored. Traumatic stress leads to neuroinflammation and the buildup of reactive oxygen species. These two molecular processes may converge to disrupt chBF circuits enhancing the impact of traumatic stress on emotional memory.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, USA.
| | - Vinay Parikh
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Baudou FG, Gutiérrez JM, Rodríguez JP. Immune response to neurotoxic South American snake venoms. Toxicon 2023; 234:107300. [PMID: 37757959 DOI: 10.1016/j.toxicon.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
South American rattlesnakes (Crotalus durissus spp) and coral snakes (Micrurus sp) venoms are characterized by inducing a limited inflammatory innate immune response, in contrast to Bothrops sp snake venoms which exert a prominent inflammatory activity. Some Crotalus durissus spp venoms, in addition, exert immunosuppressive activities that hamper the development of neutralizing antibodies in animals immunized for antivenom production. Micrurus sp venoms are rich in low molecular mass neurotoxins that elicit a limited immune response. These characteristics make it difficult to generate antivenoms of high neutralizing activity. Therefore, the study of the mechanisms operating behind this limited immune response to venoms is relevant from both fundamental and practical perspectives. This review summarizes key aspects of the immune response to these venoms and discusses some pending challenges to further understand these phenomena and to improve antivenom production.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Grupo de Investigaciones Básicas y Aplicadas en Inmunología y Bioactivos (GIBAIB), Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
4
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Shelukhina I, Siniavin A, Kasheverov I, Ojomoko L, Tsetlin V, Utkin Y. α7- and α9-Containing Nicotinic Acetylcholine Receptors in the Functioning of Immune System and in Pain. Int J Mol Sci 2023; 24:ijms24076524. [PMID: 37047495 PMCID: PMC10095066 DOI: 10.3390/ijms24076524] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) present as many different subtypes in the nervous and immune systems, muscles and on the cells of other organs. In the immune system, inflammation is regulated via the vagus nerve through the activation of the non-neuronal α7 nAChR subtype, affecting the production of cytokines. The analgesic properties of α7 nAChR-selective compounds are mostly based on the activation of the cholinergic anti-inflammatory pathway. The molecular mechanism of neuropathic pain relief mediated by the inhibition of α9-containing nAChRs is not fully understood yet, but the role of immune factors in this process is becoming evident. To obtain appropriate drugs, a search of selective agonists, antagonists and modulators of α7- and α9-containing nAChRs is underway. The naturally occurring three-finger snake α-neurotoxins and mammalian Ly6/uPAR proteins, as well as neurotoxic peptides α-conotoxins, are not only sophisticated tools in research on nAChRs but are also considered as potential medicines. In particular, the inhibition of the α9-containing nAChRs by α-conotoxins may be a pathway to alleviate neuropathic pain. nAChRs are involved in the inflammation processes during AIDS and other viral infections; thus they can also be means used in drug design. In this review, we discuss the role of α7- and α9-containing nAChRs in the immune processes and in pain.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuri Utkin
- Correspondence: or ; Tel.: +7-495-3366522
| |
Collapse
|
6
|
Mori Y, Tanaka M, Kozai H, Hotta K, Aoyama Y, Shigeno Y, Aoike M, Kawamura H, Tsurudome M, Ito M. Antibody response of smokers to the COVID-19 vaccination: Evaluation based on cigarette dependence. Drug Discov Ther 2022; 16:78-84. [PMID: 35370256 DOI: 10.5582/ddt.2022.01022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Smokers may have lower antibody titers after vaccination with a coronavirus disease 2019 (COVID-19) mRNA vaccine. However, to the best of our knowledge, no study has evaluated antibody titers after COVID-19 vaccination based on the level of smokers' cigarette dependence. In this study, we measured the level of serum anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) spike protein receptor-binding domain (S-RBD) immunoglobulin-G (IgG) by enzyme linked immunosorbent assay of 55 actively smoking Japanese social workers (firefighters, paramedics, and rescue workers) who had received two doses of the BNT162b2 vaccine. Further, we assessed their cigarette dependence using the Fagerstrom Test for Nicotine Dependence (FTND), measured their serum cotinine levels, and tested for their correlation with anti-RBD IgG levels. Serum anti-SARS-CoV-2 S-RBD protein IgG levels after BNT162b2 vaccination showed a significant negative correlation with FTND (ρ = -0.426, p = 0.001). In addition, serum cotinine level showed a significant positive correlation with FTND (ρ = 0.470, p = 0.000). However, no significant negative correlation was noted between serum cotinine and serum anti-SARS-CoV-2 S-RBD protein IgG levels (ρ = -0.156, p = 0.256). Our results suggest that smokers with strong cigarette dependence have inadequate anti-SARS-CoV-2 S-RBD protein IgG levels after COVID-19 mRNA vaccination.
Collapse
Affiliation(s)
- Yukihiro Mori
- Graduate School of Life and Health Sciences, Chubu University, Aichi, Japan
- Center for Nursing Practicum Support, Chubu University, Aichi, Japan
| | - Mamoru Tanaka
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Aichi, Japan
| | - Hana Kozai
- Department of Food and Nutritional Sciences, College of Bioscience and Biotechnology, Chubu University, Aichi, Japan
| | - Kiyoshi Hotta
- Center for Nursing Practicum Support, Chubu University, Aichi, Japan
| | - Yuka Aoyama
- Department of Clinical Engineering, College of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Yukihiro Shigeno
- Center for Emergency Medical Technician Practicum Support, Chubu University, Aichi, Japan
| | - Makoto Aoike
- Graduate School of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Hatsumi Kawamura
- Graduate School of Life and Health Sciences, Chubu University, Aichi, Japan
| | - Masato Tsurudome
- Graduate School of Life and Health Sciences, Chubu University, Aichi, Japan
- Department of Biomedical Sciences, College of Life and Health Science, Chubu University, Aichi, Japan
| | - Morihiro Ito
- Graduate School of Life and Health Sciences, Chubu University, Aichi, Japan
- Department of Biomedical Sciences, College of Life and Health Science, Chubu University, Aichi, Japan
| |
Collapse
|
7
|
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int J Mol Sci 2022; 23:ijms23073463. [PMID: 35408823 PMCID: PMC8998457 DOI: 10.3390/ijms23073463] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
CHRFAM7A is a relatively recent and exclusively human gene arising from the partial duplication of exons 5 to 10 of the α7 neuronal nicotinic acetylcholine receptor subunit (α7 nAChR) encoding gene, CHRNA7. CHRNA7 is related to several disorders that involve cognitive deficits, including neuropsychiatric, neurodegenerative, and inflammatory disorders. In extra-neuronal tissues, α7nAChR plays an important role in proliferation, differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis, and tumor progression, as well as in the modulation of the inflammatory response through the “cholinergic anti-inflammatory pathway”. CHRFAM7A translates the dupα7 protein in a multitude of cell lines and heterologous systems, while maintaining processing and trafficking that are very similar to the full-length form. It does not form functional ion channel receptors alone. In the presence of CHRNA7 gene products, dupα7 can assemble and form heteromeric receptors that, in order to be functional, should include at least two α7 subunits to form the agonist binding site. When incorporated into the receptor, in vitro and in vivo data showed that dupα7 negatively modulated α7 activity, probably due to a reduction in the number of ACh binding sites. Very recent data in the literature report that the presence of the duplicated gene may be responsible for the translational gap in several human diseases. Here, we will review the studies that have been conducted on CHRFAM7A in different pathologies, with the intent of providing evidence regarding when and how the expression of this duplicated gene may be beneficial or detrimental in the pathogenesis, and eventually in the therapeutic response, to CHRNA7-related neurological and non-neurological diseases.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, 20129 Milan, Italy; (S.D.L.); (D.F.)
- CNR Institute of Neuroscience, 20845 Vedano al Lambro, Italy
- NeuroMi, Milan Center for Neuroscience, University of Milano Bicocca, 20126 Milan, Italy
- Correspondence:
| |
Collapse
|
8
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
9
|
Skok M. Universal nature of cholinergic regulation demonstrated with nicotinic acetylcholine receptors. BBA ADVANCES 2022; 2:100061. [PMID: 37082580 PMCID: PMC10074969 DOI: 10.1016/j.bbadva.2022.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian nicotinic acetylcholine receptors (nAChRs) were initially discovered as ligand-gated ion channels mediating fast synaptic transmission in the neuro-muscular junctions and autonomic ganglia. They were further found to be involved in a wide range of basic biological processes within the brain and in non-excitable tissues. The present review summarizes the data obtained in our laboratory during last two decades. Investigation of autonomic ganglia with the nAChR subunit-specific antibodies was followed by identification of nAChRs in B lymphocytes, discovery of mitochondrial nAChRs and their role in mitochondrial apoptosis pathway, and revealing the role of α7 nAChRs and α7-specific antibodies in neuroinflammation-related Alzheimer disease and COVID-19. The data obtained demonstrate the involvement of nAChRs in cell survival, proliferation, cell-to-cell communication and inflammatory reaction. Together with the ability of nAChRs to function in both ionotropic and metabotropic way, these data illustrate the universal nature of cholinergic regulation mediated by nAChRs.
Collapse
|
10
|
Mashimo M, Fujii M, Sakagawa N, Fukuda Y, Imanaka R, Fujii T. Muscarinic Acetylcholine Receptors Modulate Interleukin-6 Production and Immunoglobulin Class Switching in Daudi Cells. Biol Pharm Bull 2021; 43:1950-1953. [PMID: 33268714 DOI: 10.1248/bpb.b20-00461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
B cells express muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs, respectively). Following immunization with ovalbumin, serum immunoglobulin G (IgG) and interleukin (IL)-6 levels were lower in M1 and M5 mAChR double-deficient mice and higher in α7 nAChR-deficient mice than in wild-type mice. This suggests mAChRs participate in the cytokine production involved in B cell differentiation into plasma cells, which induces immunoglobulin class switching from IgM to IgG. However, because these results were obtained with conventional knockout mice, in which all cells in the body were affected, the specific roles of these receptors expressed in B cells remains unclear. In the present study, Daudi B lymphoblast cells were used to investigate the specific roles of mAChRs and nAChR in B cells. Stimulating Daudi cells using Pansorbin cells (heat-killed, formalin-fixed Staphylococcus aureus coated with protein A) upregulated expression of M1-M4 mAChRs and the α4 nAChR subunit. Under these conditions, mAChRs, but not nAChRs, mediated immunoglobulin class switching to IgG. This effect was blocked by scopolamine, a non-selective mAChR antagonist, and 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP), a Gq/11-coupled M1, M3, M5 antagonist. In addition, IL-6 secretion was further enhanced following mAChR activation. Thus, Gq/11-coupled mAChRs expressed in B cells thus appear to contribute to IL-6 production and B cell maturation into IgG-producing plasma cells.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Marina Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Natsumi Sakagawa
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Yoshika Fukuda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Rika Imanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
11
|
Lallai V, Manca L, Fowler CD. E-cigarette vape and lung ACE2 expression: Implications for coronavirus vulnerability. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103656. [PMID: 33838329 PMCID: PMC8025581 DOI: 10.1016/j.etap.2021.103656] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 05/15/2023]
Abstract
Evidence in humans suggests a correlation between nicotine smoking and severe respiratory symptoms with COVID-19 infection. In lung tissue, angiotensin-converting enzyme 2 (ACE2) appears to mechanistically underlie viral entry. Here, we investigated whether e-cigarette vapor inhalation alters ACE2 and nicotinic acetylcholine receptor (nAChR) expression in male and female mice. In male lung, nicotine vapor inhalation induced a significant increase in ACE2 mRNA and protein, but surprisingly, these differences were not found in females. Further, both vehicle and nicotine vapor inhalation downregulated α5 nAChR subunits in both sexes, while differences were not found in α7 nAChR subunit expression. Finally, blood ACE2 levels did not differ with exposure, indicating that blood sampling is not a sufficient indicator of lung ACE2 changes. Together, these data indicate a direct link between e-cigarette vaping and increased ACE2 expression in male lung tissue, which thereby reveals an underlying mechanism of increased vulnerability to coronavirus infection in individuals vaping nicotine.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Christie D Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
Duan H, Cai X, Luan Y, Yang S, Yang J, Dong H, Zeng H, Shao L. Regulation of the Autonomic Nervous System on Intestine. Front Physiol 2021; 12:700129. [PMID: 34335306 PMCID: PMC8317205 DOI: 10.3389/fphys.2021.700129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intestine is composed of various types of cells including absorptive epithelial cells, goblet cells, endocrine cells, Paneth cells, immunological cells, and so on, which play digestion, absorption, neuroendocrine, immunological function. Intestine is innervated with extrinsic autonomic nerves and intrinsic enteric nerves. The neurotransmitters and counterpart receptors are widely distributed in the different intestinal cells. Intestinal autonomic nerve system includes sympathetic and parasympathetic nervous systems, which regulate cellular proliferation and function in intestine under physiological and pathophysiological conditions. Presently, distribution and functional characteristics of autonomic nervous system in intestine were reviewed. How autonomic nervous system regulates intestinal cell proliferation was discussed. Function of autonomic nervous system on intestinal diseases was extensively reviewed. It might be helpful to properly manipulate autonomic nervous system during treating different intestinal diseases.
Collapse
Affiliation(s)
- Hongyi Duan
- Medical College of Nanchang University, Nanchang, China
| | - Xueqin Cai
- Medical College of Nanchang University, Nanchang, China
| | - Yingying Luan
- Medical College of Nanchang University, Nanchang, China
| | - Shuo Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Juan Yang
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Hui Dong
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Lijian Shao
- Medical College of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Regulation of Immune Functions by Non-Neuronal Acetylcholine (ACh) via Muscarinic and Nicotinic ACh Receptors. Int J Mol Sci 2021; 22:ijms22136818. [PMID: 34202925 PMCID: PMC8268711 DOI: 10.3390/ijms22136818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acetylcholine (ACh) is the classical neurotransmitter in the cholinergic nervous system. However, ACh is now known to regulate various immune cell functions. In fact, T cells, B cells, and macrophages all express components of the cholinergic system, including ACh, muscarinic, and nicotinic ACh receptors (mAChRs and nAChRs), choline acetyltransferase, acetylcholinesterase, and choline transporters. In this review, we will discuss the actions of ACh in the immune system. We will first briefly describe the mechanisms by which ACh is stored in and released from immune cells. We will then address Ca2+ signaling pathways activated via mAChRs and nAChRs on T cells and B cells, highlighting the importance of ACh for the function of T cells, B cells, and macrophages, as well as its impact on innate and acquired (cellular and humoral) immunity. Lastly, we will discuss the effects of two peptide ligands, secreted lymphocyte antigen-6/urokinase-type plasminogen activator receptor-related peptide-1 (SLURP-1) and hippocampal cholinergic neurostimulating peptide (HCNP), on cholinergic activity in T cells. Overall, we stress the fact that ACh does not function only as a neurotransmitter; it impacts immunity by exerting diverse effects on immune cells via mAChRs and nAChRs.
Collapse
|
14
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
15
|
The nAChR Chaperone TMEM35a (NACHO) Contributes to the Development of Hyperalgesia in Mice. Neuroscience 2021; 457:74-87. [PMID: 33422618 PMCID: PMC7897319 DOI: 10.1016/j.neuroscience.2020.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.
Collapse
|
16
|
Wu YJ, Wang L, Ji CF, Gu SF, Yin Q, Zuo J. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 2021; 44:821-834. [PMID: 33405021 DOI: 10.1007/s10753-020-01396-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.
Collapse
Affiliation(s)
- Yi-Jin Wu
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
| | - Li Wang
- Department of Pharmacy, Wuhu Medicine and Health School, Wuhu, 241000, China
| | - Chao-Fan Ji
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Shao-Fei Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qin Yin
- The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
- Research Center of Integrated Traditional and Western Medicine, Wannan Medical College, 241000, Wuhu, China.
| |
Collapse
|
17
|
Mashimo M. [Dual Roles of α7 Nicotinic Acetylcholine Receptors Expressed in Immune Cells in T Cell Differentiation -α7 nAChRs Exert Different Actions between Antigen-presenting Cells and CD4 + T Cells]. YAKUGAKU ZASSHI 2020; 140:1421-1425. [PMID: 33268683 DOI: 10.1248/yakushi.20-00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune cells such as T cells, macrophages and dendritic cells express various cholinergic system components, including muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs, respectively) and choline acetyltransferase (ChAT), depending on the status of the immune system. The cholinergic system which these components comprise has important effects on the regulation of immune and inflammatory responses. α7 nAChR is a neuronal-type nAChR composed of a homopentamer of the α7 subunit and is characterized by high permeability to Ca2+. It is also expressed in immune cells. For example, α7 nAChRs expressed in B cells suppress IgG production by suppressing B cell maturation into plasma cells. In addition, α7 nAChRs expressed in macrophages suppress production and release of tumor necrosis factor (TNF)-α in a mouse lipopolysaccharide (LPS)-induced sepsis model, thereby protecting the mice from lethal shock. In this review, we summarize the functions of α7 nAChRs expressed in CD4+ helper T (Th) cells and antigen-presenting cells (APCs), such as dendritic cells and macrophages. We focus in particular on their role in Th cell differentiation. α7 nAChRs on APCs interfere with antigen presentation, which leads to suppression of Th cell differentiation. By contrast, α7 nAChRs on naïve Th cells enhance their differentiation. These distinct roles of α7 nAChRs expressed in APCs and Th cells could be useful for development of drugs and therapeutic strategies for the treatment of immune- and inflammation-related diseases and cancers.
Collapse
|
18
|
Li Z, Liu J, Hao HQ, Gao YT, Wang Z. Chinese Herbal Formula Ermiao Powder () Regulates Cholinergic Anti-inflammatory Pathway in Rats with Rheumatoid Arthritis. Chin J Integr Med 2020; 26:905-912. [PMID: 33259023 DOI: 10.1007/s11655-020-3471-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the effect of Chinese herbal formula Ermiao Powder (, EMP) on the expression of cholinergic anti-inflammatory pathway in rats with rheumatoid arthritis (RA). METHODS Seventy-two rats were randomly divided into 6 groups according to body weight, including normal control group, collageninduced arthritis (CIA) group, three doses EMP groups, and methotrexate (MTX) group (n=12 per group). All of the rats except for those in the normal control group were given multipoint subcutaneous injection of bovine type II collagen to establish a CIA model. Three EMP groups received a high- (4.5 g/kg), medium- (3.0 g/kg), and low- (1.5 g/kg) doses of EMP by intragavage, respectively. MTX group was injected intraperitoneally MTX at 0.9 mg/kg once a week as the positive control. The administration was 3 consecutive weeks. Joint swelling, arthritis index, and body weight changes in different experimental groups of rats were tested. The joint damage was evaluated by masson staining. Quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry (IHC) were performed to evaluate the expression of CHRNA7, encoding α7 nicotinic acetylcholine receptor in the cholinergic anti-inflammatory pathway, in different tissues and their localization in the spleen and joints. RESULTS CHRNA7 expression levels were significantly higher in the joints and spleens of CIA group than those in normal control group (both P<0.05). Moreover, the CHRNA7 mRNA and protein levels in the spleen and joints of MTX and three doses of EMP groups were significantly lower than CIA group (all P<0.05). Compared with the MTX group, treatment with low-dose EMP resulted in significant reduction of CHRNA7 mRNA and protein expression levels (P<0.05 or P<0.01). IHC showed positive signals of CHRNA7 in the white pulp and red pulp of the spleens of rats; CHRNA7 was expressed on fibroblast-like synoviocytes, macrophages, and endothelial cells in the joints of rats, and the expression in the joints of low-dose EMP group was significantly lower than that in the CIA group (P<0.01). CONCLUSIONS Cholinergic anti-inflammatory pathway was involved in the generation of the inflammatory reaction in CIA rats, and EMP exerted therapeutic effect on RA through cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Zhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, (030619), Shanxi Province, China
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jin Liu
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Hui-Qin Hao
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, (030619), Shanxi Province, China.
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Yu-Ting Gao
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ze Wang
- Basic Laboratory of Integrated Traditional Chinese and Western Me, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| |
Collapse
|
19
|
Tarasenko O, Voytenko S, Koval L, Lykhmus O, Kalashnyk O, Skok M. Unusual properties of α7 nicotinic acetylcholine receptor ion channels in B lymphocyte-derived SP-2/0 cells. Int Immunopharmacol 2020; 82:106373. [PMID: 32163855 DOI: 10.1016/j.intimp.2020.106373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
This study demonstrates the presence of α7 nicotinic acetylcholine receptors (nAChR) in B lymphocyte-derived SP-2/0 cells by means of flow cytometry and immunocytochemistry. According to lectin and sandwich ELISA, the α7 subunits expressed in SP-2/0 cells are more glycosylated compared to those expressed in the brain or normal B lymphocytes and are combined with β2 subunits. At zero and negative pipette potentials, either acetylcholine or α7-specific agonist PNU282987 stimulated the ion channel activity in SP-2/0 cells revealed by single channel patch-clamp recordings. The conductivity was within the range of 19 to 39 pS and reversal potential was between -17 mV and +28 mV, the currents were potentiated by α7-specific positive allosteric modulator PNU120596 and were partially blocked by α7-specific antagonist methyllicaconitine (MLA). However, they were oriented downwards suggesting that the channels mediated the cation outflux rather than influx. As shown by Ca2+ imaging studies, PNU282987 did not stimulate immediate Ca2+ influx into SP-2/0 cells. Instead, Ca2+ influx through Ca-release-activated channels (CRACs) was observed within minutes after either PNU282987 or MLA application. It is concluded that SP-2/0 express α7β2 nAChRs, which mediate the cation outflux under negative pipette potentials applied, possibly, due to depolarized membrane or negative surface charge formed by carbohydrate residues. In addition, α7β2 nAChRs may influence CRACs in ion-independent way.
Collapse
Affiliation(s)
| | - Sergiy Voytenko
- Bogomoletz Institute of Physiology, 4, Bogomoletz Str, 01024 Kyiv, Ukraine
| | - Lyudmyla Koval
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| | - Olena Lykhmus
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Olena Kalashnyk
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Palladin Institute of Biochemistry, 9, Leontovycha Str., 01030 Kyiv, Ukraine.
| |
Collapse
|
20
|
Malin SG, Shavva VS, Tarnawski L, Olofsson PS. Functions of acetylcholine-producing lymphocytes in immunobiology. Curr Opin Neurobiol 2020; 62:115-121. [PMID: 32126362 DOI: 10.1016/j.conb.2020.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/26/2022]
Abstract
Recent advances in neuroscience and immunology have shown that cholinergic signals are vital in the regulation of inflammation and immunity. Choline acetyltransferase+ (ChAT+) lymphocytes have the capacity to biosynthesize and release acetylcholine, the cognate ligand for cholinergic receptors. Acetylcholine-producing T cells relay neural signals in the 'inflammatory reflex' that regulate cytokine release in spleen. Mice deficient in acetylcholine-producing T cells have increased blood pressure, show reduced local vasodilatation and viral control in lymphocytic choriomeningitis virus infection, and display changes in gut microbiota compared with littermates. These observations indicate that ChAT+ lymphocytes play physiologically important roles in regulation of inflammation and anti-microbial defense. However, the full scope and importance of ChAT+ lymphocytes in immunity and vascular biology remains to be elucidated. Here, we review key findings in this emerging area.
Collapse
Affiliation(s)
- Stephen G Malin
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladmir S Shavva
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Tarnawski
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peder S Olofsson
- Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Tarbiah N, Todd I, Tighe PJ, Fairclough LC. Cigarette smoking differentially affects immunoglobulin class levels in serum and saliva: An investigation and review. Basic Clin Pharmacol Toxicol 2019; 125:474-483. [PMID: 31219219 DOI: 10.1111/bcpt.13278] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/16/2019] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to compare concentrations of IgG, IgA, IgM and IgD in both serum and saliva samples from smoking and non-smoking individuals using a protein microarray assay. The findings were also compared to previous studies. Serum and saliva were collected from 48 smoking male individuals and 48 age-matched never-smoker male individuals. The protein microarray assays for detection of human IgG, IgM, IgA and IgD were established and optimized using Ig class-specific affinity-purified goat anti-human Ig-Fc capture antibodies and horseradish peroxidase (HRP)-conjugated goat anti-human Ig-Fc detection antibodies. The Ig class specificity of the microarray assays was verified, and the optimal dilutions of serum and saliva samples were determined for quantification of Ig levels against standard curves. We found that smoking is associated with reduced IgG concentrations and enhanced IgA concentrations in both serum and saliva. By contrast, smoking differentially affected IgM concentrations-causing increased concentrations in serum, but decreased concentrations in saliva. Smoking was associated with decreased IgD concentrations in serum and did not have a significant effect on the very low IgD concentrations in saliva. Thus, cigarette smoking differentially affects the levels of Ig classes systemically and in the oral mucosa. Although there is variation between the results of different published studies, there is a consensus that smokers have significantly reduced levels of IgG in both serum and saliva. A functional antibody deficiency associated with smoking may compromise the body's response to infection and result in a predisposition to the development of autoimmunity.
Collapse
Affiliation(s)
- Nesrin Tarbiah
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Patrick J Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
22
|
Peng C, Shi QP, Liu JY, Lv YJ, Li J, Yi L, Bai SS, Liu L, Wang PX, Zhou H, Huang KE, Dong Y. Alpha7 nAChR Expression Is Correlated with Arthritis Development and Inhibited by Sinomenine in Adjuvant-Induced Arthritic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3759304. [PMID: 31186658 PMCID: PMC6521432 DOI: 10.1155/2019/3759304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Sinomenine (SIN) is the active ingredient of the Chinese herb Sinomenium acutum that has been used to treat rheumatoid arthritis (RA) for about 30 years in China. Marked expression of the alpha7 nicotinic acetylcholine receptor (α7nAChR) in the joint synovium of RA patients suggested a relationship between α7nAChR and RA. This study investigated the relationship between α7nAChR and RA development and the effects of SIN on α7nAChR expression in vivo and in vitro. Sprague-Dawley rats were injected with complete Freund's adjuvant to induce arthritis and then treated with SIN or methotrexate (MTX) from day 0 to day 30. Four clinical parameters-paw volume, arthritic index (AI), serum TNF-α concentration, and erythrocyte sedimentation rate (ESR)-were measured. Splenic lymphocytes were isolated for Bacille Calmette Guerin (BCG) stimulation. α7nAChR expression in tissues and cells was examined by RT-PCR, western blot, immunofluorescence, flow cytometry, and immunohistochemistry. Cell proliferation was evaluated by the CCK-8 assay. The relationship between α7nAChR expression and the four clinical parameters was analyzed by single-factor correlation analysis. Our results showed that the paw volume, AI, TNF-α concentration, and ESR in adjuvant-induced arthritic (AIA) rats were reduced by SIN or MTX treatment. SIN decreased α7nAChR expression in tissues and cells compared to the model group, while MTX had no significant effect on α7nAChR expression. Moreover, there was a positive relationship between α7nAChR expression and paw swelling, AI, and TNF-α concentration. Splenic lymphocyte activation was accompanied by increased α7nAChR expression, while SIN treatment inhibited cell activation and downregulated α7nAChR expression. α7nAChR expression showed a positive correlation with the progression of RA in AIA rats that may involve lymphocyte activation. Different from MTX, the inhibition of SIN on α7nAChR expression might contribute to its antiarthritic effect, suggesting that SIN could be an important supplement to the treatment strategy for RA.
Collapse
Affiliation(s)
- Chong Peng
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-ping Shi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-yan Liu
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-jun Lv
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lang Yi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sha-sha Bai
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Pei-xun Wang
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-er Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Nicotine Acts on Cholinergic Signaling Mechanisms to Directly Modulate Choroid Plexus Function. eNeuro 2019; 6:eN-NWR-0051-19. [PMID: 31119189 PMCID: PMC6529591 DOI: 10.1523/eneuro.0051-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022] Open
Abstract
Neuronal cholinergic circuits have been implicated in cognitive function and neurological disease, but the role of cholinergic signaling in other cellular populations within the brain has not been as fully defined. Here, we show that cholinergic signaling mechanisms are involved in mediating the function of the choroid plexus, the brain structure responsible for generating CSF and releasing various factors into the brain. The choroid plexus was found to express markers of endogenous cholinergic signaling, including multiple nicotinic acetylcholine receptor (nAChR) subtypes in a region-specific manner, and application of nicotine was found to induce cellular activation, as evidenced by calcium influx in primary tissue. During intravenous nicotine self-administration in male rats, nicotine increased expression of transthyretin, a protein selectively produced and released by the choroid plexus, and microRNA-204 (mir-204), a transcript found in high levels in the choroid plexus and CSF. Finally, human choroid plexus tissue from both sexes was found to exhibit similar nAChR, transthyretin and mir-204 expression profiles, supporting the translational relevance of the findings. Together, these studies demonstrate functionally active cholinergic signaling mechanisms in the choroid plexus, the resulting effects on transthyretin and mir-204 expression, and reveal the direct mechanism by which nicotine modulates function of this tissue.
Collapse
|
24
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
25
|
Bosmans G, Shimizu Bassi G, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic Modulation of Type 2 Immune Responses. Front Immunol 2017; 8:1873. [PMID: 29312347 PMCID: PMC5742746 DOI: 10.3389/fimmu.2017.01873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gabriel Shimizu Bassi
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Erika Gonzalez-Dominguez
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
27
|
Rasmussen SE, Pfeiffer-Jensen M, Drewes AM, Farmer AD, Deleuran BW, Stengaard-Pedersen K, Brock B, Brock C. Vagal influences in rheumatoid arthritis. Scand J Rheumatol 2017; 47:1-11. [PMID: 28766392 DOI: 10.1080/03009742.2017.1314001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease with a prevalence of 0.5-1% in Western populations. Conventionally, it is treated with therapeutic interventions that include corticosteroids, disease-modifying anti-rheumatic drugs, and biological agents. RA exerts a significant socio-economic burden and despite the use of existing treatments some patients end up with disabling symptoms. The autonomic nervous system (ANS) is a brain-body interface that serves to regulate homeostasis by integrating the external environment with the internal milieu. The main neural substrate of the parasympathetic branch of the ANS is the vagus nerve (VN). The discovery of the role of the ANS and the VN in mediating and dampening the inflammatory response has led to the proposal that modulation of neural circuits may serve as a valuable therapeutic tool. Recent studies have explored the role of the VN in this inflammatory reflex and have provided evidence that stimulation may represent a novel new therapeutic intervention. Accumulating evidence suggests that modulation of the parasympathetic tone results in a broad physiological multi-level response, including decreased pro-inflammatory cytokine response in terms of tumour necrosis factor-α, interleukin-1 (IL-1), and IL-6, and may result in an enhanced macrophage switch from M1 to M2 cells and potentially an increased level of the anti-inflammatory cytokine IL-10. Therefore, therapeutic electrical modulation of the VN may serve as an alternative, non-pharmacological, neuroimmunomodulatory intervention in RA in the future. This review gives a focused introduction to the mechanistic link between the ANS and the immune system.
Collapse
Affiliation(s)
- S E Rasmussen
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - M Pfeiffer-Jensen
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - A M Drewes
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | - A D Farmer
- b Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK.,c Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology , Barts and the London School of Medicine and Dentistry, Queen Mary University of London , London , UK.,d Mech-Sense, Department of Gastroenterology and Hepatology , Aalborg University Hospital, and Clinical Institute, Aalborg University , Aalborg , Denmark
| | - B W Deleuran
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark
| | | | - B Brock
- e Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus , Denmark
| | - C Brock
- a Department of Rheumatology , Aarhus University Hospital , Aarhus , Denmark.,d Mech-Sense, Department of Gastroenterology and Hepatology , Aalborg University Hospital, and Clinical Institute, Aalborg University , Aalborg , Denmark.,f Department of Drug Design and Pharmacology , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
28
|
|
29
|
Qiu F, Liang CL, Liu H, Zeng YQ, Hou S, Huang S, Lai X, Dai Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017; 8:268-284. [PMID: 27902485 PMCID: PMC5352117 DOI: 10.18632/oncotarget.13613] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-Qun Zeng
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
31
|
Willemze RA, Luyer MD, Buurman WA, de Jonge WJ. Neural reflex pathways in intestinal inflammation: hypotheses to viable therapy. Nat Rev Gastroenterol Hepatol 2015; 12:353-62. [PMID: 25963513 DOI: 10.1038/nrgastro.2015.56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Studies in neuroscience and immunology have clarified much of the anatomical and cellular basis for bidirectional interactions between the nervous and immune systems. As with other organs, intestinal immune responses and the development of immunity seems to be modulated by neural reflexes. Sympathetic immune modulation and reflexes are well described, and in the past decade the parasympathetic efferent vagus nerve has been added to this immune-regulation network. This system, designated 'the inflammatory reflex', comprises an afferent arm that senses inflammation and an efferent arm that inhibits innate immune responses. Intervention in this system as an innovative principle is currently being tested in pioneering trials of vagus nerve stimulation using implantable devices to treat IBD. Patients benefit from this treatment, but some of the working mechanisms remain to be established, for instance, treatment is effective despite the vagus nerve not always directly innervating the inflamed tissue. In this Review, we will focus on the direct neuronal regulatory mechanisms of immunity in the intestine, taking into account current advances regarding the innervation of the spleen and lymphoid organs, with a focus on the potential for treatment in IBD and other gastrointestinal pathologies.
Collapse
Affiliation(s)
- Rose A Willemze
- Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Meibergdreef 69, 1105BK Amsterdam, Netherlands
| | - Misha D Luyer
- Department of Surgery, Catharina Hospital Eindhoven, Michelangelolaan 2, 5623 EJ, Eindhoven, Netherlands
| | - Wim A Buurman
- School for Mental Health and Neuroscience, Health and Nutrition, 6200 MD, Maastricht University, Netherlands
| | - Wouter J de Jonge
- Department of Gastroenterology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Meibergdreef 69, 1105BK Amsterdam, Netherlands
| |
Collapse
|
32
|
Rodrigues FL, Silva LEV, Hott SC, Bomfim GF, da Silva CAA, Fazan R, Resstel LBM, Tostes RC, Carneiro FS. Toll-like receptor 9 plays a key role in the autonomic cardiac and baroreflex control of arterial pressure. Am J Physiol Regul Integr Comp Physiol 2015; 308:R714-23. [PMID: 25673780 DOI: 10.1152/ajpregu.00150.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/27/2015] [Indexed: 02/07/2023]
Abstract
The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice.
Collapse
Affiliation(s)
- Fernanda Luciano Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Luiz Eduardo V Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Sara Cristina Hott
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Mato Grosso, Brazil
| | - Carlos Alberto Aguiar da Silva
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; and
| | - Leonardo B M Resstel
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil;
| |
Collapse
|
33
|
Darby M, Schnoeller C, Vira A, Culley FJ, Culley F, Bobat S, Logan E, Kirstein F, Wess J, Cunningham AF, Brombacher F, Selkirk ME, Horsnell WGC. The M3 muscarinic receptor is required for optimal adaptive immunity to helminth and bacterial infection. PLoS Pathog 2015; 11:e1004636. [PMID: 25629518 PMCID: PMC4309615 DOI: 10.1371/journal.ppat.1004636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/18/2014] [Indexed: 01/24/2023] Open
Abstract
Innate immunity is regulated by cholinergic signalling through nicotinic acetylcholine receptors. We show here that signalling through the M3 muscarinic acetylcholine receptor (M3R) plays an important role in adaptive immunity to both Nippostrongylus brasiliensis and Salmonella enterica serovar Typhimurium, as M3R-/- mice were impaired in their ability to resolve infection with either pathogen. CD4 T cell activation and cytokine production were reduced in M3R-/- mice. Immunity to secondary infection with N. brasiliensis was severely impaired, with reduced cytokine responses in M3R-/- mice accompanied by lower numbers of mucus-producing goblet cells and alternatively activated macrophages in the lungs. Ex vivo lymphocyte stimulation of cells from intact BALB/c mice infected with N. brasiliensis and S. typhimurium with muscarinic agonists resulted in enhanced production of IL-13 and IFN-γ respectively, which was blocked by an M3R-selective antagonist. Our data therefore indicate that cholinergic signalling via the M3R is essential for optimal Th1 and Th2 adaptive immunity to infection.
Collapse
Affiliation(s)
- Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Corinna Schnoeller
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - Alykhan Vira
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Fiona Jane Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Fiona Culley
- National Heart and Lung Institute, St.Mary's Campus, Praed Street, Imperial College London, London, United Kingdom
| | - Saeeda Bobat
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Erin Logan
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Frank Kirstein
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adam F Cunningham
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Frank Brombacher
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Murray E Selkirk
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London, London, United Kingdom
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine, International Centre for Genetic Engineering and Biotechnology and Division of Immunology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Skok MV. Nicotinic acetylcholine receptors: specific antibodies and functions in humoral immunity. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.06.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Costes LMM, Boeckxstaens GE, de Jonge WJ, Cailotto C. Neural networks in intestinal immunoregulation. Organogenesis 2013; 9:216-23. [PMID: 23867810 PMCID: PMC3896593 DOI: 10.4161/org.25646] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Key physiological functions of the intestine are governed by nerves and neurotransmitters. This complex control relies on two neuronal systems: an extrinsic innervation supplied by the two branches of the autonomic nervous system and an intrinsic innervation provided by the enteric nervous system. As a result of constant exposure to commensal and pathogenic microflora, the intestine developed a tightly regulated immune system. In this review, we cover the current knowledge on the interactions between the gut innervation and the intestinal immune system. The relations between extrinsic and intrinsic neuronal inputs are highlighted with regards to the intestinal immune response. Moreover, we discuss the latest findings on mechanisms underlying inflammatory neural reflexes and examine their relevance in the context of the intestinal inflammation. Finally, we discuss some of the recent data on the identification of the gut microbiota as an emerging player influencing the brain function.
Collapse
Affiliation(s)
- Léa M M Costes
- Department of Neurogastroenterology; Tytgat Institute for Liver and Intestinal Research; Academic Medical Center (AMC); Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
36
|
Harwani SC, Chapleau MW, Legge KL, Ballas ZK, Abboud FM. Neurohormonal modulation of the innate immune system is proinflammatory in the prehypertensive spontaneously hypertensive rat, a genetic model of essential hypertension. Circ Res 2012; 111:1190-7. [PMID: 22904093 DOI: 10.1161/circresaha.112.277475] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RATIONALE Inflammation and autonomic dysfunction contribute to the pathophysiology of hypertension. Cholinergic stimulation suppresses innate immune responses. Angiotensin II (Ang II) induces hypertension and is associated with proinflammatory immune responses. OBJECTIVE Our goal was to define the innate immune response in a model of genetic hypertension and the influences of cholinergic stimulation and Ang II. METHODS AND RESULTS Studies were conducted on 4- to 5-week-old prehypertensive spontaneously hypertensive rats (SHRs) and age-matched normotensive control, Wistar Kyoto (WKY) rats. Isolated splenocytes were preexposed to nicotine or Ang II before Toll-like receptor (TLR) activation. Culture supernatants were tested for cytokines (tumor necrosis factor-α, interleukin [IL]-10, and IL-6). TLR-mediated cytokine responses were most pronounced with TLR7/8 and TLR9 activation and similar between WKY rats and SHRs. Nicotine and Ang II enhanced this TLR-mediated IL-6 response in prehypertensive SHR splenocytes. In contrast, nicotine suppressed the TLR-mediated IL-6 response in WKY rats, whereas Ang II had no effect. In vivo, nicotine enhanced plasma levels of TLR7/8-mediated IL-6 and IL-1β responses in prehypertensive SHRs but suppressed these responses in WKY rats. Flow cytometry revealed an increase in a CD161+ innate immune cell population, which was enhanced by nicotine in the prehypertensive SHR spleen but not in WKY. CONCLUSIONS There is a pronounced anti-inflammatory nicotinic/cholinergic modulation of the innate immune system in WKY rats, which is reversed in prehypertensive SHRs. The results support the novel concept that neurohormonal regulation of the innate immune system plays a role in the pathogenesis of genetic hypertension and provide putative molecular targets for treatment of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
37
|
Mina-Osorio P, Rosas-Ballina M, Valdes-Ferrer SI, Al-Abed Y, Tracey KJ, Diamond B. Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med 2012; 18:618-27. [PMID: 22354214 DOI: 10.2119/molmed.2012.00027] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/14/2012] [Indexed: 02/04/2023] Open
Abstract
Entry of blood-borne pathogens into the spleen elicits a series of changes in cellular architecture that culminates in the systemic release of protective antibodies. Despite an abundance of work that has characterized these processes, the regulatory mechanisms that coordinate cell trafficking and antibody production are still poorly understood. Here, marginal zone (MZ) B cells responding to streptococcus in the blood were observed to migrate along splenic nerves, arriving at the red pulp venous sinuses where they become antibody-secreting cells. Electrical stimulation of the vagus nerve, which in turn regulates the splenic nerve, arrested B-cell migration and decreased antibody secretion. Thus, neural circuits regulate the first wave of antibody production following B-cell exposure to blood-borne antigen.
Collapse
Affiliation(s)
- Paola Mina-Osorio
- Center for Autoimmune and Musculoskeletal Diseases, Manhasset, New York, United States of America
| | | | | | | | | | | |
Collapse
|
38
|
Abboud FM, Harwani SC, Chapleau MW. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 2012; 59:755-62. [PMID: 22331383 DOI: 10.1161/hypertensionaha.111.186833] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- François M Abboud
- Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1081, USA.
| | | | | |
Collapse
|
39
|
Hoogduijn MJ, Cheng A, Genever PG. Functional nicotinic and muscarinic receptors on mesenchymal stem cells. Stem Cells Dev 2010; 18:103-12. [PMID: 18393628 DOI: 10.1089/scd.2008.0032] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are under the control of a large number of signaling systems. In this study, the presence and functionality of the acetylcholine (ACh) signaling system in MSCs was examined. We detected the expression of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and the presence of ACh in MSCs. MSCs also expressed the nicotinic acetylcholine receptor subunits alpha 3, alpha 5, alpha 7, and the muscarinic acetylcholine receptor 2 (M2-receptor). The M2-receptor and the nicotinic alpha 7 receptor subunits were expressed on distinct subpopulations of cells, indicating differential regulation of cholinergic signaling between MSCs. Stimulation of MSCs with the nicotinic receptor agonist nicotine and the muscarinic receptor agonist muscarine induced immediate and transient increases in intracellular Ca(2+) concentration. Furthermore, muscarine had an inhibiting effect on the production of the intracellular signaling molecule cyclic adenosine 3',5'-monophosphate (cAMP). The AChE inhibitor chlorpyrifos, which is widely used as an agricultural insecticide, had similar effects on intracellular Ca(2+) and cAMP in MSCs. Nicotine, muscarine, and chlorpyrifos induced the phosphorylation of extracellular signal-regulated kinases 1 and 2. This study demonstrates that several components of a cholinergic signaling system are present and functional in MSCs. Environmental compounds such as nicotine and agricultural insecticides can interfere with this system and may affect cellular processes in the MSC.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Department of Biology, University of York, York, North Yorkshire, United Kingdom.
| | | | | |
Collapse
|
40
|
Impact of female cigarette smoking on circulating B cells in vivo: the suppressed ICOSLG, TCF3, and VCAM1 gene functional network may inhibit normal cell function. Immunogenetics 2010; 62:237-51. [PMID: 20217071 DOI: 10.1007/s00251-010-0431-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/03/2010] [Indexed: 12/11/2022]
Abstract
As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women. A total of 125 differential expressed genes were identified in our study, and 75.2% of them were down-regulated in smokers. We further obtained genotypes of 702 single nucleotide polymorphisms in those promising genes and assessed their associations with smoking status. Using a novel multicriteria evaluation model integrating information from microarray and the association studies, several genes were further revealed to play important roles in the response of smoking, including ICOSLG (CD275, inducible T-cell co-stimulator ligand), TCF3 (E2A immunoglobulin enhancer binding factors E12/E47), VCAM1 (CD106, vascular cell adhesion molecule 1), CCR1 (CD191, chemokine C-C motif receptor 1) and IL13 (interleukin 13). The differential expression of ICOSLG (p = 0.0130) and TCF3 (p = 0.0125) genes between the two groups were confirmed by real-time reverse transcription PCR experiment. Our findings support the functional importance of the identified genes in response to the smoking stimulus. This is the first in vivo genome-wide expression study on B cells at today's context of high prevalence rate of smoking for women. Our results highlight the potential usage of integrated analyses for unveiling the novel pathogenesis mechanism and emphasized the significance of B cells in the etiology of smoking-induced disease.
Collapse
|
41
|
Zhang P, Li J, Han Y, Wei Yu X, Qin L. Traditional Chinese medicine in the treatment of rheumatoid arthritis: a general review. Rheumatol Int 2010; 30:713-8. [DOI: 10.1007/s00296-010-1370-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/27/2010] [Indexed: 11/29/2022]
|
42
|
Lykhmus O, Koval L, Pavlovych S, Zouridakis M, Zisimopoulou P, Tzartos S, Tsetlin V, Volpina O, Cloëz-Tayarani I, Komisarenko S, Skok M. Functional effects of antibodies against non-neuronal nicotinic acetylcholine receptors. Immunol Lett 2010; 128:68-73. [DOI: 10.1016/j.imlet.2009.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 11/05/2009] [Accepted: 11/13/2009] [Indexed: 01/20/2023]
|
43
|
Chernyavsky AI, Arredondo J, Skok M, Grando SA. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. Int Immunopharmacol 2009; 10:308-15. [PMID: 20004742 DOI: 10.1016/j.intimp.2009.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/20/2009] [Accepted: 12/01/2009] [Indexed: 01/16/2023]
Abstract
Although acetylcholine (ACh) is well known for its neurotransmitter function, recent studies have indicated that it also functions as an immune cytokine that prevents macrophage activation through a 'cholinergic (nicotinic) anti-inflammatory pathway'. In this study, we used the macrophage-like U937 cells to elucidate the mechanisms of the physiologic control of cytokine production by auto/paracrine ACh through the nicotinic class of ACh receptors (nAChRs) expressed in these cells. Stimulation of cells with lipopolysaccharide up-regulated expression of alpha1, alpha4, alpha5, alpha7, alpha10, beta1 and beta3 subunits, down-regulated alpha6 and beta2 subunits, and did not alter the relative quantity of alpha9 and beta4 mRNAs. Distinct nAChR subtypes showed differential regulation of the production of pro- and anti-inflammatory cytokines. While inhibition of the expression of the TNF-alpha gene was mediated predominantly by the alpha-bungarotoxin sensitive nAChRs, that of the IL-6 and IL-18 genes-by the mecamylamine-sensitive nAChRs. Both the Mec- and alphaBtx-sensitive nAChRs regulated expression of the IL-1beta gene equally efficiently. Upregulation of IL-10 production by auto/paracrine ACh was mediated predominantly through alpha7 nAChR. These findings offer a new insight on how nicotinic agonists control inflammation, thus laying a groundwork for the development of novel immunomodulatory therapies based on the nAChR subtype selectivity of nicotinic agonists.
Collapse
|
44
|
Arredondo J, Omelchenko D, Chernyavsky AI, Qian J, Skok M, Grando SA. Functional role of the nicotinic arm of the acetylcholine regulatory axis in human B-cell lines. J Exp Pharmacol 2009; 1:1-7. [PMID: 27186084 PMCID: PMC4863279 DOI: 10.2147/jep.s7055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We studied the involvement of nicotinic acetylcholine receptors (nAChRs) in the inflammation-related activity of human B-cell lines. Activation of nAChRs in Daudi cells with epibatidine abolished the pansorbin-dependent upregulation of the pro-inflammatory marker Cox-2 both at the mRNA and protein levels, indicating that the nicotinergic signaling suppresses B-cell activation. While the anti-inflammatory action on B-cells was mediated predominantly through α7 nAChR, as could be judged from abolishing epibatidine effects with methyllycaconitine, both α7 and non-α7 nAChRs, such as α2-containing receptors, were involved in regulation of B-cell apoptosis. The net effect was antiapoptotic. To determine the role of nAChRs in regulating B-cell activation/plasmacytic differentiation, we measured changes in the CD38, CD138 and Bcl-6 gene expression. Epibatidine significantly (P < 0.05) upregulated CD38 at the transcriptional level and CD138 and Bcl-6 – at the translational levels. AR-R17779 significantly (P < 0.05) increased the protein levels of CD38 and CD138. In both cases, the effect of epibatidine was abolished with Mec, and that of AR-R17779 – by MLA, demonstrating a functional role of nAChRs in regulating Daudi cell differentiation. The obtained results revealed distinct contributions of α7 and non-α7 nAChRs to regulation of B-cell activation/differentiation, and suggested that signaling through the nicotinic arm of acetylcholine regulatory axis is important for B-cell involvement in inflammation.
Collapse
Affiliation(s)
- Juan Arredondo
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| | | | - Alexander I Chernyavsky
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| | - Jing Qian
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| | - Maryna Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
45
|
Westman M, Engström M, Catrina AI, Lampa J. Cell specific synovial expression of nicotinic alpha 7 acetylcholine receptor in rheumatoid arthritis and psoriatic arthritis. Scand J Immunol 2009; 70:136-40. [PMID: 19630919 DOI: 10.1111/j.1365-3083.2009.02266.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuroimmune interactions are known to influence several chronic inflammatory and rheumatic diseases, but the underlying mechanisms have been insufficiently elucidated. The cholinergic anti-inflammatory pathway is characterized by neural regulation of systemic inflammation, mediated by the vagus nerve and specific cholinergic stimulation of the nicotinic alpha-7 acetylcholine receptor (alpha7nAChR) on immune cells. Moreover, alpha7nAChR has been shown important for immune regulation also in the absence of nerves, but little is known about these mechanisms in chronic joint inflammation. The expression and localization of alpha7nAChR in synovial biopsies from patients with rheumatoid arthritis and psoriatic arthritis was investigated by immunohistochemistry using monoclonal antibody against alpha7nAChR. Surface staining of alpha7nAChR was observed in synovial tissue of all arthritis patients investigated and could also to a lesser extent be detected in the synovium of healthy individuals. alpha7nAChR positive cells were detected in mainly synovial lining cells and vessels. The alpha7nAChR positively stained cells were by double immunofluorescence identified as primarily macrophages and fibroblasts, with the majority of these cells expressing the receptor. These results indicate the importance of alpha7nAChR and cholinergic mechanisms in arthritis pathogenesis and implicate specific cholinergic modulation as a potential anti-inflammatory therapeutic strategy in joint inflammation.
Collapse
Affiliation(s)
- M Westman
- Unit of Rheumatology, Department of Medicine, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
46
|
Piao WH, Campagnolo D, Dayao C, Lukas RJ, Wu J, Shi FD. Nicotine and inflammatory neurological disorders. Acta Pharmacol Sin 2009; 30:715-22. [PMID: 19448649 DOI: 10.1038/aps.2009.67] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cigarette smoke is a major health risk factor which significantly increases the incidence of diseases including lung cancer and respiratory infections. However, there is increasing evidence that smokers have a lower incidence of some inflammatory and neurodegenerative diseases. Nicotine is the main immunosuppressive constituent of cigarette smoke, which inhibits both the innate and adaptive immune responses. Unlike cigarette smoke, nicotine is not yet considered to be a carcinogen and may, in fact, have therapeutic potential as a neuroprotective and anti-inflammatory agent. This review provides a synopsis summarizing the effects of nicotine on the immune system and its (nicotine) influences on various neurological diseases.
Collapse
|
47
|
Maanen MAV, Stoof SP, Zanden EPVD, Jonge WJD, Janssen RA, Fischer DF, Vandeghinste N, Brys R, Vervoordeldonk MJ, Tak PP. The α7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: A possible role for a key neurotransmitter in synovial inflammation. ACTA ACUST UNITED AC 2009; 60:1272-81. [DOI: 10.1002/art.24470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, Banghart MR, Dougherty DA, Goate AM, Wang JC. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS JOURNAL 2009; 11:167-77. [PMID: 19280351 DOI: 10.1208/s12248-009-9090-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/07/2009] [Indexed: 01/11/2023]
Abstract
The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.
Collapse
Affiliation(s)
- Henry A Lester
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Severance EG, Dickerson FB, Stallings CR, Origoni AE, Sullens A, Monson ET, Yolken RH. Differentiating nicotine- versus schizophrenia-associated decreases of the alpha7 nicotinic acetylcholine receptor transcript, CHRFAM7A, in peripheral blood lymphocytes. J Neural Transm (Vienna) 2008; 116:213-20. [PMID: 19082523 DOI: 10.1007/s00702-008-0164-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
Nicotine addiction is prevalent in individuals with schizophrenia. Nicotine activation of nicotinic receptors (nAChRs) is time- and dose-dependent, but gene expression analyses often rely on qualitative self- or family-reported measures of smoking. We sought lymphocyte surrogates for cerebral alpha7-nAChR activity and tested if receptor transcription correlated with concurrently measured serum biomarkers for smoking [cotinine, C-reactive protein (CRP)]. PCR surveys to detect lymphocytic alpha7-related isoforms identified CHRFAM7A as the only consistently amplifiable transcript. In 20 smoking-matched people (n = 10 schizophrenia, n = 10 controls), we found significantly lower CHRFAM7A in cotinine and self-reported smokers versus nonsmokers (p <or= 0.001-0.03) and an inverse correlation of cotinine with CHRFAM7A (p <or= 0.04) in regression models. CHRFAM7A was not associated with diagnosis or CRP in any bi- or multi-variate analysis. Smoking-related CRP elevations only occurred in cotinine-based comparisons (p <or= 0.03), and not when smoking was self-reported. Including biochemical indicators of serum nicotine can help differentiate smoking- versus disease-associated changes in nAChR expression.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287-4933, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fowler CD, Arends MA, Kenny PJ. Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice. Behav Pharmacol 2008; 19:461-84. [PMID: 18690103 PMCID: PMC2669417 DOI: 10.1097/fbp.0b013e32830c360e] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) can regulate the activity of many neurotransmitter pathways throughout the central nervous system and are considered to be important modulators of cognition and emotion. nAChRs are also the primary site of action in the brain for nicotine, the major addictive component of tobacco smoke. nAChRs consist of five membrane-spanning subunits (alpha and beta isoforms) that can associate in various combinations to form functional nAChR ion channels. Owing to a dearth of nAChR subtype-selective ligands, the precise subunit composition of the nAChRs that regulate the rewarding effects of nicotine and the development of nicotine dependence are unknown. The advent of mice with genetic nAChR subunit modifications, however, has provided a useful experimental approach to assess the contribution of individual subunits in vivo. Here, we review data generated from nAChR subunit knockout and genetically modified mice supporting a role for discrete nAChR subunits in nicotine reinforcement and dependence processes. Importantly, the rates of tobacco dependence are far higher in patients suffering from comorbid psychiatric illnesses compared with the general population, which may at least partly reflect disease-associated alterations in nAChR signaling. An understanding of the role of nAChRs in psychiatric disorders associated with high rates of tobacco addiction, therefore, may reveal novel insights into mechanisms of nicotine dependence. Thus, we also briefly review data generated from genetically modified mice to support a role for discrete nAChR subunits in anxiety disorders, depression, and schizophrenia.
Collapse
Affiliation(s)
- Christie D. Fowler
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Michael A. Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Paul J. Kenny
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|