1
|
Taheri M, Afzali Mehr M, Ghafouri H. The novel orthosteric agonist M1 muscarinic acetylcholine receptor reveals anti-Alzheimer's disease activity. Sci Rep 2024; 14:28824. [PMID: 39572774 PMCID: PMC11582822 DOI: 10.1038/s41598-024-80102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Cholinergic treatments with an emphasis on M1 muscarinic acetylcholine receptor (mAChR) agonists as potential modulating agents are a new approach in Alzheimer's disease (AD) therapy. In previous research, we designed and characterized novel thiazolidine-2,4-dione (TZD)-derived compounds that possess anti-AD properties and enhance the expression of mAChRM1 in rats. This study evaluated a novel orthosteric agonist of mAChRM1 from related pathways that has shown promising anti-Alzheimer's disease activity. PC12 cells were exposed to various concentrations of TZ4M before they were exposed to scopolamine (3 µM). Immunocytochemistry and western blot analyses revealed that TZ4M increased the expression of mAChRM1 in differentiated cells induced by scopolamine-treated PC12 cells. The results showed that TZ4M (3 and 5 µM) markedly upregulated PKC and ChAT protein expression, and the cells were significantly protected against increased ROS levels followed by neuronal cell loss, as evidenced by the MTT assay. TUNEL staining indicated that TZ4M impeded the shaping of apoptotic bodies. Analysis of the amino acid sequences of the ligand-protein binding site indicated that TZ4M is bound to the orthosteric site (acetylcholine site). This study revealed that TZ4M, a derivative of TZD, effectively protects against scopolamine-induced damage. TZ4M, a novel mACRM1 orthosteric agonist, is promising for treating AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Afzali Mehr
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran.
| |
Collapse
|
2
|
Dos Santos TM, Righetti RF, do Nascimento Camargo L, Leick EA, Fukuzaki S, de Campos EC, Galli TT, Saraiva-Romanholo BM, da Silva LLS, Barbosa JAS, João JMLG, Prado CM, de Rezende BG, Bourotte CLM, Dos Santos Lopes FDTQ, de Arruda Martins M, Bensenor IM, de Oliveira Cirillo JV, Bezerra SKM, Silva FJA, Paulo MSL, Lotufo PA, Lopes Calvo Tibério IDF. Effect of VAChT reduction on lung alterations induced by exposure to iron particles in an asthma model. J Inflamm (Lond) 2024; 21:24. [PMID: 38961398 PMCID: PMC11223391 DOI: 10.1186/s12950-024-00399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Pollution harms the health of people with asthma. The effect of the anti-inflammatory cholinergic pathway in chronic allergic inflammation associated to pollution is poorly understood. METHODS One hundred eight animals were divided into 18 groups (6 animals). Groups included: wild type mice (WT), genetically modified with reduced VAChT (VAChTKD), and those sensitized with ovalbumin (VAChTKDA), exposed to metal powder due to iron pelletizing in mining company (Local1) or 3.21 miles away from a mining company (Local2) in their locations for 2 weeks during summer and winter seasons. It was analyzed for hyperresponsivity, inflammation, remodeling, oxidative stress responses and the cholinergic system. RESULTS During summer, animals without changes in the cholinergic system revealed that Local1 exposure increased the hyperresponsiveness (%Rrs, %Raw), and inflammation (IL-17) relative to vivarium animals, while animals exposed to Local2 also exhibited elevated IL-17. During winter, animals without changes in the cholinergic system revealed that Local2 exposure increased the hyperresponsiveness (%Rrs) relative to vivarium animals. Comparing the exposure local of these animals during summer, animals exposed to Local1 showed elevated %Rrs, Raw, and IL-5 compared to Local 2, while in winter, Local2 exposure led to more IL-17 than Local1. Animals with VAChT attenuation displayed increased %Rrs, NFkappaB, IL-5, and IL-13 but reduced alpha-7 compared to animals without changes in the cholinergic system WT. Animals with VAChT attenuation and asthma showed increased the hyperresponsiveness, all inflammatory markers, remodeling and oxidative stress compared to animals without chronic lung inflammation. Exposure to Local1 exacerbated the hyperresponsiveness, oxidative stressand inflammation in animals with VAChT attenuation associated asthma, while Local2 exposure led to increased inflammation, remodeling and oxidative stress. CONCLUSIONS Reduced cholinergic signaling amplifies lung inflammation in a model of chronic allergic lung inflammation. Furthermore, when associated with pollution, it can aggravate specific responses related to inflammation, oxidative stress, and remodeling.
Collapse
Affiliation(s)
- Tabata Maruyama Dos Santos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil.
- Hospital Sírio Libanês, São Paulo, SP, Brazil.
| | - Renato Fraga Righetti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | - Leandro do Nascimento Camargo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | - Silvia Fukuzaki
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Alemão Oswaldo Cruz, São Paulo, Brazil
| | - Elaine Cristina de Campos
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
- Hospital Sírio Libanês, São Paulo, SP, Brazil
| | | | | | | | | | | | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Santos, Brazil
| | | | | | | | | | - Isabela M Bensenor
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | | | | | | | - Paulo A Lotufo
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
3
|
Suehiro CL, Souza NTS, da Silva EB, Cruz MM, Laia RM, de Oliveira Santos S, Santana-Novelli FPR, de Castro TBP, Lopes FD, Pinheiro NM, de FátimaLopes Calvo Tibério I, Olivo CR, Alonso-Vale MI, Prado MAM, Prado VF, de Toledo-Arruda AC, Prado CM. Aerobic exercise training engages cholinergic signaling to improve emphysema induced by cigarette smoke exposure in mice. Life Sci 2022; 301:120599. [DOI: 10.1016/j.lfs.2022.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022]
|
4
|
Anderson S, Atkins P, Bäckman P, Cipolla D, Clark A, Daviskas E, Disse B, Entcheva-Dimitrov P, Fuller R, Gonda I, Lundbäck H, Olsson B, Weers J. Inhaled Medicines: Past, Present, and Future. Pharmacol Rev 2022; 74:48-118. [PMID: 34987088 DOI: 10.1124/pharmrev.120.000108] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of this review is to summarize essential pharmacological, pharmaceutical, and clinical aspects in the field of orally inhaled therapies that may help scientists seeking to develop new products. After general comments on the rationale for inhaled therapies for respiratory disease, the focus is on products approved approximately over the last half a century. The organization of these sections reflects the key pharmacological categories. Products for asthma and chronic obstructive pulmonary disease include β -2 receptor agonists, muscarinic acetylcholine receptor antagonists, glucocorticosteroids, and cromones as well as their combinations. The antiviral and antibacterial inhaled products to treat respiratory tract infections are then presented. Two "mucoactive" products-dornase α and mannitol, which are both approved for patients with cystic fibrosis-are reviewed. These are followed by sections on inhaled prostacyclins for pulmonary arterial hypertension and the challenging field of aerosol surfactant inhalation delivery, especially for prematurely born infants on ventilation support. The approved products for systemic delivery via the lungs for diseases of the central nervous system and insulin for diabetes are also discussed. New technologies for drug delivery by inhalation are analyzed, with the emphasis on those that would likely yield significant improvements over the technologies in current use or would expand the range of drugs and diseases treatable by this route of administration. SIGNIFICANCE STATEMENT: This review of the key aspects of approved orally inhaled drug products for a variety of respiratory diseases and for systemic administration should be helpful in making judicious decisions about the development of new or improved inhaled drugs. These aspects include the choices of the active ingredients, formulations, delivery systems suitable for the target patient populations, and, to some extent, meaningful safety and efficacy endpoints in clinical trials.
Collapse
Affiliation(s)
- Sandra Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Paul Atkins
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Per Bäckman
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - David Cipolla
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Andrew Clark
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Evangelia Daviskas
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bernd Disse
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Plamena Entcheva-Dimitrov
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Rick Fuller
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Igor Gonda
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Hans Lundbäck
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Bo Olsson
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| | - Jeffry Weers
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia (S.A.); Inhaled Delivery Solutions LLC, Durham, North Carolina (P.A.); Emmace Consulting AB Medicon Village, Lund, Sweden (P.B., H.L., B.O.); Insmed Inc., Bridgewater, New Jersey (D.C.); Aerogen Pharma Corporation, San Mateo, California (A.C.); Woolcock Institute of Medical Research, Glebe, New South Wales, Australia (E.D.); Drug Development, Pharmacology and Clinical Pharmacology Consulting, Mainz, Germany (B.D.); Preferred Regulatory Consulting, San Mateo, California (P.E-.D.); Clayton, CA (R.F.); Respidex LLC, Dennis, Massachusetts (I.G.); and cystetic Medicines, Inc., Burlingame, California (J.W.)
| |
Collapse
|
5
|
Pavón-Romero GF, Serrano-Pérez NH, García-Sánchez L, Ramírez-Jiménez F, Terán LM. Neuroimmune Pathophysiology in Asthma. Front Cell Dev Biol 2021; 9:663535. [PMID: 34055794 PMCID: PMC8155297 DOI: 10.3389/fcell.2021.663535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammation of lower airway disease, characterized by bronchial hyperresponsiveness. Type I hypersensitivity underlies all atopic diseases including allergic asthma. However, the role of neurotransmitters (NT) and neuropeptides (NP) in this disease has been less explored in comparison with inflammatory mechanisms. Indeed, the airway epithelium contains pulmonary neuroendocrine cells filled with neurotransmitters (serotonin and GABA) and neuropeptides (substance P[SP], neurokinin A [NKA], vasoactive intestinal peptide [VIP], Calcitonin-gene related peptide [CGRP], and orphanins-[N/OFQ]), which are released after allergen exposure. Likewise, the autonomic airway fibers produce acetylcholine (ACh) and the neuropeptide Y(NPY). These NT/NP differ in their effects; SP, NKA, and serotonin exert pro-inflammatory effects, whereas VIP, N/OFQ, and GABA show anti-inflammatory activity. However, CGPR and ACh have dual effects. For example, the ACh-M3 axis induces goblet cell metaplasia, extracellular matrix deposition, and bronchoconstriction; the CGRP-RAMP1 axis enhances Th2 and Th9 responses; and the SP-NK1R axis promotes the synthesis of chemokines in eosinophils, mast cells, and neutrophils. In contrast, the ACh-α7nAChR axis in ILC2 diminishes the synthesis of TNF-α, IL-1, and IL-6, attenuating lung inflammation whereas, VIP-VPAC1, N/OFQ-NOP axes cause bronchodilation and anti-inflammatory effects. Some NT/NP as 5-HT and NKA could be used as biomarkers to monitor asthma patients. In fact, the asthma treatment based on inhaled corticosteroids and anticholinergics blocks M3 and TRPV1 receptors. Moreover, the administration of experimental agents such as NK1R/NK2R antagonists and exogenous VIP decrease inflammatory mediators, suggesting that regulating the effects of NT/NP represents a potential novel approach for the treatment of asthma.
Collapse
Affiliation(s)
| | | | | | | | - Luis M. Terán
- Department of Immunogenetics and Allergy, Instituto Nacional Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
6
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
7
|
Temeyer KB, Schlechte KG, Olafson PU, Drolet BS, Tidwell JP, Osbrink WLA, Showler AT, Gross AD, Pérez de León AA. Association of Salivary Cholinesterase With Arthropod Vectors of Disease. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1679-1685. [PMID: 32459332 DOI: 10.1093/jme/tjaa096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase (AChE) was previously reported to be present in saliva of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), with proposed potential functions to 1) reduce acetylcholine toxicity during rapid engorgement, 2) modulate host immune responses, and 3) to influence pathogen transmission and establishment in the host. Potential modulation of host immune responses might include participation in salivary-assisted transmission and establishment of pathogens in the host as has been reported for a number of arthropod vector-borne diseases. If the hypothesis that tick salivary AChE may alter host immune responses is correct, we reasoned that similar cholinesterase activities might be present in saliva of additional arthropod vectors. Here, we report the presence of AChE-like activity in the saliva of southern cattle ticks, Rhipicephalus (Boophilus) microplus; the lone star tick, Amblyomma americanum (Linnaeus); Asian tiger mosquitoes, Aedes albopictus (Skuse); sand flies, Phlebotomus papatasi (Scopoli); and biting midges, Culicoides sonorensis Wirth and Jones. Salivary AChE-like activity was not detected for horn flies Haematobia irritans (L.), stable flies Stomoxys calcitrans (L.), and house flies Musca domestica L. Salivary cholinesterase (ChE) activities of arthropod vectors of disease-causing agents exhibited various Michaelis-Menten KM values that were each lower than the KM value of bovine serum AChE. A lower KM value is indicative of higher affinity for substrate and is consistent with a hypothesized role in localized depletion of host tissue acetylcholine potentially modulating host immune responses at the arthropod bite site that may favor ectoparasite blood-feeding and alter host defensive responses against pathogen transmission and establishment.
Collapse
Affiliation(s)
- Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Kristie G Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Pia U Olafson
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS
| | - Jason P Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, Edinburg, TX
| | - Weste L A Osbrink
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Allan T Showler
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Aaron D Gross
- Molecular Physiology and Toxicology Laboratory, Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | |
Collapse
|
8
|
Dean B, Pavey G, Scarr E. Higher levels of α7 nicotinic receptors, but not choline acetyltransferase, in the dorsolateral prefrontal cortex from a sub-group of patients with schizophrenia. Schizophr Res 2020; 222:283-290. [PMID: 32507381 DOI: 10.1016/j.schres.2020.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
It has been suggested the study of sub-groups within the syndrome of schizophrenia will assist in elucidating the complex pathophysiology of the syndrome. Hence, we have studied a number of cholinergic markers in the cortex from a sub-group of subjects with schizophrenia that have a marked decrease in levels of muscarinic M1 receptors (MRDS). The displacement of [3H]NMS by cortical extracts was used to measure tissue anticholinergic load, [125I]α bungarotoxin binding was used to measure levels of the α7 nicotinic receptor (CHRNA7) and western blotting was used to measure levels of choline acetyltransferase (ChAT) 68 and 82 as well as synaptosome nerve-associated protein 25 (SNAP25). In comparing schizophrenia, MRDS and non-MRDS to controls, there were no differences in levels of ChAT 68 or 82, SNAP 25 or cholinergic load in BA 9. However, levels of CHRNA7 were higher in BA 9, but not BA 6 or 44, from subjects with MRDS. These data argue that there is no change in cholinergic innovation (measured using ChAT), presynaptic neurons (measured using SNAP25) or cholinergic load in schizophrenia, MRDS or non-MRDS. However, increased levels of CHRNA7 may be contributing to a breakdown in cholinergic homeostasis in BA 9, but not BA 6 or 44, in subjects with MRDS.
Collapse
Affiliation(s)
- Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia; The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Geoffrey Pavey
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia
| | - Elizabeth Scarr
- The Molecular Psychiatry Laboratory, The Florey Institute for Neuroscience and Mental Health, Victoria, Australia; Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Pinheiro NM, Miranda CJCP, Santana FR, Bittencourt-Mernak M, Arantes-Costa FM, Olivo C, Perini A, Festa S, Caperuto LC, Tibério IFLC, Prado MAM, Martins MA, Prado VF, Prado CM. Effects of VAChT reduction and α7nAChR stimulation by PNU-282987 in lung inflammation in a model of chronic allergic airway inflammation. Eur J Pharmacol 2020; 882:173239. [PMID: 32619677 DOI: 10.1016/j.ejphar.2020.173239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
The cholinergic anti-inflammatory pathway has been shown to regulate lung inflammation and cytokine release in acute models of inflammation, mainly via α7 nicotinic receptor (α7nAChR). We aimed to evaluate the role of endogenous acetylcholine in chronic allergic airway inflammation in mice and the effects of therapeutic nAChR stimulation in this model. We first evaluated lung inflammation and remodeling on knock-down mice with 65% of vesicular acetylcholine transport (VAChT) gene reduction (KDVAChT) and wild-type(WT) controls that were subcutaneously sensitized and then inhaled with ovalbumin(OVA). We then evaluated the effects of PNU-282987(0.5-to-2mg/kg),(α7nAChR agonist) treatment in BALB/c male mice intraperitoneal sensitized and then inhaled with OVA. Another OVA-sensitized-group was treated with PNU-282987 plus Methyllycaconitine (MLA,1 mg/kg, α7nAChR antagonist) to confirm that the effects observed by PNU were due to α7nAChR. We showed that KDVAChT-OVA mice exhibit exacerbated airway inflammation when compared to WT-OVA mice. In BALB/c, PNU-282987 treatment reduced the number of eosinophils in the blood, BAL fluid, and around airways, and also decreased pulmonary levels of IL-4,IL-13,IL-17, and IgE in the serum of OVA-exposed mice. MLA pre-treatment abolished all the effects of PNU-282987. Additionally, we showed that PNU-282987 inhibited STAT3-phosphorylation and reduced SOCS3 expression in the lung. These data indicate that endogenous cholinergic tone is important to control allergic airway inflammation in a murine model. Moreover, α7nAChR is involved in the control of eosinophilic inflammation and airway remodeling, possibly via inhibition of STAT3/SOCS3 pathways. Together these data suggest that cholinergic anti-inflammatory system mainly α7nAChR should be further considered as a therapeutic target in asthma.
Collapse
Affiliation(s)
- Nathalia M Pinheiro
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil; Department of Bioscience, Federal University of Sao Paulo, Santos, Brazil
| | - Claudia J C P Miranda
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Fernanda R Santana
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | | | | | - Clarice Olivo
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Adenir Perini
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Sérgio Festa
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | - Luciana C Caperuto
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | - Iolanda F L C Tibério
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Marco Antônio M Prado
- Molecular Medicine Group, Robarts Research Institute, Canada; Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Mílton A Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Vânia F Prado
- Molecular Medicine Group, Robarts Research Institute, Canada; Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil; Department of Bioscience, Federal University of Sao Paulo, Santos, Brazil.
| |
Collapse
|
10
|
Sales ME, Español AJ, Salem AR, Pulido PM, Sanchez Y, Sanchez F. Role of Muscarinic Acetylcholine Receptors in Breast Cancer: Design of Metronomic Chemotherapy. CURRENT CLINICAL PHARMACOLOGY 2019; 14:91-100. [PMID: 30501602 PMCID: PMC7011678 DOI: 10.2174/1574884714666181203095437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND muscarinic acetylcholine receptors (mAChRs) have attracted interest as targets for therapeutic interventions in different illnesses like Alzheimer´s disease, viral infections and different tumors. Regarding the latter, many authors have studied each subtype of mAChRs, which seem to be involved in the progression of distinct types of malignancies. METHODS We carefully revised research literature focused on mAChRs expression and signaling as well as in their involvement in cancer progression and treatment. The characteristics of screened papers were described using the mentioned conceptual framework. RESULTS Muscarinic antagonists and agonists have been assayed for the treatment of tumors established in lung, brain and breast with beneficial effects. We described an up-regulation of mAChRs in mammary tumors and the lack of expression in non-tumorigenic breast cells and normal mammary tissues. We and others demonstrated that muscarinic agonists can trigger anti-tumor actions in a dose-dependent manner on tumors originated in different organs like brain or breast. At pharmacological concentrations, they exert similar effects to traditional chemotherapeutic agents. Metronomic chemotherapy refers to the administration of anti-cancer drugs at low doses with short intervals among them, and it is a different regimen applied in cancer treatment reducing malignant growth and angiogenesis, and very low incidence of adverse effects. CONCLUSION The usage of subthreshold concentrations of muscarinic agonists combined with conventional chemotherapeutic agents could be a promising tool for breast cancer therapy.
Collapse
Affiliation(s)
- María E. Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alejandro J. Español
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Agustina R. Salem
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Paola M. Pulido
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Y. Sanchez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Francisco Sanchez
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO)-CONICET. 2da Cátedra de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Koarai A, Ichinose M. Possible involvement of acetylcholine-mediated inflammation in airway diseases. Allergol Int 2018; 67:460-466. [PMID: 29605098 DOI: 10.1016/j.alit.2018.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022] Open
Abstract
Inhaled bronchodilator treatment with a long acting muscarinic antagonist (LAMA) reduces symptoms and the risk of exacerbations in COPD and asthma. However, increasing evidence from cell culture and animal studies suggests that anti-muscarinic drugs could also possess anti-inflammatory effects. Recent studies have revealed that acetylcholine (ACh) can be synthesized and released from both neuronal and non-neuronal cells, and the released ACh can potentiate airway inflammation and remodeling in airway diseases. However, these anti-inflammatory effects of anti-muscarinic drugs have not yet been confirmed in COPD and asthma patients. This review will focus on recent findings about the possible involvement of ACh in airway inflammation and remodeling, and the anti-inflammatory effect of anti-muscarinic drugs in airway diseases. Clarifying the acetylcholine-mediated inflammation could provide insights into the mechanisms of airway diseases, which could lead to future therapeutic strategies for inhibiting the disease progression and exacerbations.
Collapse
|
12
|
van der Hoek MD, Madsen O, Keijer J, van der Leij FR. Evolutionary analysis of the carnitine- and choline acyltransferases suggests distinct evolution of CPT2 versus CPT1 and related variants. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:909-918. [PMID: 29730527 DOI: 10.1016/j.bbalip.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
Abstract
Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensive phylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
Collapse
Affiliation(s)
- Marjanne D van der Hoek
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, P.O. box 1528, 8901BV Leeuwarden, The Netherlands; Human and Animal Physiology, Wageningen University, P.O. box 338, 6700AH Wageningen, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics Centre, Wageningen University, P.O. box 338, 6700AH Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, P.O. box 338, 6700AH Wageningen, The Netherlands
| | - Feike R van der Leij
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, P.O. box 1528, 8901BV Leeuwarden, The Netherlands.
| |
Collapse
|
13
|
Marshall-Gradisnik S, Johnston S, Chacko A, Nguyen T, Smith P, Staines D. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Int Med Res 2016; 44:1381-1394. [PMID: 27834303 PMCID: PMC5536760 DOI: 10.1177/0300060516671622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca2+) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3′ untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Samantha Johnston
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Anu Chacko
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Thao Nguyen
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Peter Smith
- 2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| | - Donald Staines
- 1 School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,2 The National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD Australia
| |
Collapse
|
14
|
Xie F, Min S, Liu L, Peng L, Hao X, Zhu X. Advanced age enhances the sepsis-induced up-regulation of the γ- and α7-nicotinic acetylcholine receptors in different parts of the skeletal muscles. Arch Gerontol Geriatr 2016; 65:1-8. [DOI: 10.1016/j.archger.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
|
15
|
Bucher H, Duechs MJ, Tilp C, Jung B, Erb KJ. Tiotropium Attenuates Virus-Induced Pulmonary Inflammation in Cigarette Smoke-Exposed Mice. J Pharmacol Exp Ther 2016; 357:606-18. [PMID: 27016458 PMCID: PMC4885512 DOI: 10.1124/jpet.116.232009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 01/19/2023] Open
Abstract
Viral infections trigger exacerbations in chronic obstructive pulmonary disease (COPD), and tiotropium, a M3 receptor antagonist, reduces exacerbations in patients by unknown mechanisms. In this report, we investigated whether tiotropium has anti-inflammatory effects in mice exposed to cigarette smoke (CS) and infected with influenza virus A/PR/8/34 (H1N1) or respiratory syncytial virus (RSV) and compared these effects with those of steroid fluticasone and PDE4-inhibitor roflumilast. Mice were exposed to CS; infected with H1N1 or RSV; and treated with tiotropium, fluticasone, or roflumilast. The amount of cells and cytokine levels in the airways, lung function, and viral load was determined. NCI-H292 cells were infected with H1N1 or RSV and treated with the drugs. In CS/H1N1-exposed mice, tiotropium reduced neutrophil and macrophage numbers and levels of interleukin-6 (IL-6) and interferon-γ (IFN-γ) in the airways and improved lung function. In contrast, fluticasone increased the loss of body weight; failed to reduce neutrophil or macrophage numbers; increased IL-6, KC, and tumor necrosis factor-α (TNF-α) in the lungs; and worsened lung function. Treatment with roflumilast reduced macrophage numbers, IL-6, and KC in the lungs but had no effect on neutrophil numbers or lung function. In CS/RSV-exposed mice, treatment with tiotropium, but not fluticasone or roflumilast, reduced neutrophil numbers and IL-6 and TNF-α levels in the lungs. Viral load of H1N1 and RSV was significantly elevated in CS/virus-exposed mice and NCI-H292 cells after fluticasone treatment, whereas tiotropium and roflumilast had no effect. In conclusion, tiotropium has anti-inflammatory effects on CS/virus-induced inflammation in mice that are superior to the effects of roflumilast and fluticasone. This finding might help to explain the observed reduction of exacerbation rates in COPD patients.
Collapse
Affiliation(s)
- Hannes Bucher
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthias J Duechs
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Cornelia Tilp
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Birgit Jung
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Klaus J Erb
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
16
|
Winick-Ng W, Caetano FA, Winick-Ng J, Morey TM, Heit B, Rylett RJ. 82-kDa choline acetyltransferase and SATB1 localize to β-amyloid induced matrix attachment regions. Sci Rep 2016; 6:23914. [PMID: 27052102 PMCID: PMC4823725 DOI: 10.1038/srep23914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/16/2016] [Indexed: 01/29/2023] Open
Abstract
The M-transcript of human choline acetyltransferase (ChAT) produces an 82-kDa protein (82-kDa ChAT) that concentrates in nuclei of cholinergic neurons. We assessed the effects of acute exposure to oligomeric amyloid-β1–42 (Aβ1–42) on 82-kDa ChAT disposition in SH-SY5Y neural cells, finding that acute exposure to Aβ1–42 results in increased association of 82-kDa ChAT with chromatin and formation of 82-kDa ChAT aggregates in nuclei. When measured by chromatin immunoprecipitation with next-generation sequencing (ChIP-seq), we identified that Aβ1–42 -exposure increases 82-kDa ChAT association with gene promoters and introns. The Aβ1–42 -induced 82-kDa ChAT aggregates co-localize with special AT-rich binding protein 1 (SATB1), which anchors DNA to scaffolding/matrix attachment regions (S/MARs). SATB1 had a similar genomic association as 82-kDa ChAT, with both proteins associating with synapse and cell stress genes. After Aβ1–42 -exposure, both SATB1 and 82-kDa ChAT are enriched at the same S/MAR on the APP gene, with 82-kDa ChAT expression attenuating an increase in an isoform-specific APP mRNA transcript. Finally, 82-kDa ChAT and SATB1 have patterned genomic association at regions enriched with S/MAR binding motifs. These results demonstrate that 82-kDa ChAT and SATB1 play critical roles in the response of neural cells to acute Aβ -exposure.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine &Dentistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Molecular Medicine Group, Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5C1 Canada
| | - Fabiana A Caetano
- Department of Physiology and Pharmacology, Schulich School of Medicine &Dentistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Molecular Medicine Group, Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5C1 Canada
| | | | - Trevor M Morey
- Department of Physiology and Pharmacology, Schulich School of Medicine &Dentistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Molecular Medicine Group, Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5C1 Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine &Dentistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine &Dentistry, University of Western Ontario, London, Ontario, N6A 5C1 Canada.,Molecular Medicine Group, Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5C1 Canada
| |
Collapse
|
17
|
Kistemaker LEM, Bos IST, Menzen MH, Maarsingh H, Meurs H, Gosens R. Combination therapy of tiotropium and ciclesonide attenuates airway inflammation and remodeling in a guinea pig model of chronic asthma. Respir Res 2016; 17:13. [PMID: 26846267 PMCID: PMC4743207 DOI: 10.1186/s12931-016-0327-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022] Open
Abstract
Background The long-acting anticholinergic tiotropium has recently been registered for the treatment of asthma, and its use is associated with a reduction in exacerbation frequency. Anti-inflammatory and anti-remodeling effects of tiotropium have been demonstrated in in vitro and in vivo models. Because tiotropium treatment is used in combination with inhaled corticosteroids, potential additive effects between the two would be clinically relevant. Therefore, the aim of this study was to investigate additive effects between tiotropium and ciclesonide on airway inflammation and remodeling in guinea pig models of asthma. Methods Guinea pigs (n = 3–8/group) were sensitized and challenged with ovalbumin in an acute (single challenge) and a chronic model (12 weekly challenges) of allergic asthma. Animals were treated with vehicle, nebulized tiotropium (0.01–0.3 mM) and/or intranasally instilled ciclesonide (0.001–1 mg/kg) before each challenge. Bronchoalveolar lavage fluid and lungs were collected for analysis of airway inflammation and remodeling. Results Tiotropium and ciclesonide treatment, alone or in combination, did not inhibit airway inflammation in the acute asthma model. In a dose-finding study, low doses of tiotropium and ciclesonide inhibited airway eosinophilia and airway smooth muscle thickening in the chronic asthma model. Threshold doses of 0.01 mM tiotropium (nebulizer concentration) and 0.01 mg/kg ciclesonide were selected to investigate potential additive effects between both drugs. At these doses, tiotropium and ciclesonide did not inhibit airway eosinophilia or airway smooth muscle thickening when administered alone, but significantly inhibited these allergen-induced responses when administered in combination. Conclusions Combined treatment with low doses of tiotropium and ciclesonide inhibits airway inflammation and remodeling in a guinea pig model of chronic asthma, suggesting that combined treatment with anticholinergics and corticosteroids may have anti-inflammatory and anti-remodeling activity in allergic airway diseases. Since tiotropium is registered as a therapy for asthma added on to corticosteroid treatment, these beneficial effects of the combination therapy may be clinically relevant. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0327-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands. .,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mark H Menzen
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Morgan ML, Sigala B, Soeda J, Cordero P, Nguyen V, McKee C, Mouraliderane A, Vinciguerra M, Oben JA. Acetylcholine induces fibrogenic effects via M2/M3 acetylcholine receptors in non-alcoholic steatohepatitis and in primary human hepatic stellate cells. J Gastroenterol Hepatol 2016; 31:475-83. [PMID: 26270240 DOI: 10.1111/jgh.13085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND The parasympathetic nervous system (PNS), via neurotransmitter acetylcholine (ACh), modulates fibrogenesis in animal models. However, the role of ACh in human hepatic fibrogenesis is unclear. AIMS We aimed to determine the fibrogenic responses of human hepatic stellate cells (hHSC) to ACh and the relevance of the PNS in hepatic fibrosis in patients with non-alcoholic steatohepatitis (NASH). METHODS Primary hHSC were analyzed for synthesis of endogenous ACh and acetylcholinesterase and gene expression of choline acetyltransferase and muscarinic ACh receptors (mAChR). Cell proliferation and fibrogenic markers were analyzed in hHSC exposed to ACh, atropine, mecamylamine, methoctramine, and 4-diphenylacetoxy-N-methylpiperidine methiodide. mAChR expression was analyzed in human NASH scored for fibrosis. RESULTS We observed that hHSC synthesize ACh and acetylcholinesterase and express choline acetyltransferase and M1-M5 mAChR. We also show that M2 was increased during NASH progression, while both M2 and M3 were found upregulated in activated hHSC. Furthermore, endogenous ACh is required for hHSC basal growth. Exogenous ACh resulted in hHSC hyperproliferation via mAChR and phosphoinositide 3-kinase and Mitogen-activated protein kinase kinase (MEK) signaling pathways, as well as increased fibrogenic markers. CONCLUSION We show that ACh regulates hHSC activation via M2 and M3 mAChR involving the phosphoinositide 3-kinase and MEK pathways in vitro. Finally, we provide evidence that the PNS may be involved in human NASH fibrosis.
Collapse
Affiliation(s)
- Maelle L Morgan
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Barbara Sigala
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Junpei Soeda
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Paul Cordero
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Vi Nguyen
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Chad McKee
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Angelina Mouraliderane
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Manlio Vinciguerra
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Gastroenterology Unit, Department of Medical Sciences, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy.,Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jude A Oben
- University College London, Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| |
Collapse
|
19
|
Abraham G. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives. Vet J 2016; 208:13-21. [DOI: 10.1016/j.tvjl.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
|
20
|
Pinheiro NM, Miranda CJCP, Perini A, Câmara NOS, Costa SKP, Alonso-Vale MIC, Caperuto LC, Tibério IFLC, Prado MAM, Martins MA, Prado VF, Prado CM. Pulmonary inflammation is regulated by the levels of the vesicular acetylcholine transporter. PLoS One 2015; 10:e0120441. [PMID: 25816137 PMCID: PMC4376856 DOI: 10.1371/journal.pone.0120441] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/22/2015] [Indexed: 01/02/2023] Open
Abstract
Acetylcholine (ACh) plays a crucial role in physiological responses of both the central and the peripheral nervous system. Moreover, ACh was described as an anti-inflammatory mediator involved in the suppression of exacerbated innate response and cytokine release in various organs. However, the specific contributions of endogenous release ACh for inflammatory responses in the lung are not well understood. To address this question we have used mice with reduced levels of the vesicular acetylcholine transporter (VAChT), a protein required for ACh storage in secretory vesicles. VAChT deficiency induced airway inflammation with enhanced TNF-α and IL-4 content, but not IL-6, IL-13 and IL-10 quantified by ELISA. Mice with decreased levels of VAChT presented increased collagen and elastic fibers deposition in airway walls which was consistent with an increase in inflammatory cells positive to MMP-9 and TIMP-1 in the lung. In vivo lung function evaluation showed airway hyperresponsiveness to methacholine in mutant mice. The expression of nuclear factor-kappa B (p65-NF-kB) in lung of VAChT-deficient mice were higher than in wild-type mice, whereas a decreased expression of janus-kinase 2 (JAK2) was observed in the lung of mutant animals. Our findings show the first evidence that cholinergic deficiency impaired lung function and produce local inflammation. Our data supports the notion that cholinergic system modulates airway inflammation by modulation of JAK2 and NF-kB pathway. We proposed that intact cholinergic pathway is necessary to maintain the lung homeostasis.
Collapse
Affiliation(s)
- Nathalia M. Pinheiro
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Niels O. S. Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Soraia K. P. Costa
- Department of Pharmacology Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Luciana C. Caperuto
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
| | | | - Marco Antônio M. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Mílton A. Martins
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
| | - Vânia F. Prado
- Molecular Medicine Group, Robarts Research Institute, Department of Physiology & Pharmacology and Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M. Prado
- Department of Medicine, School of Medicine, University of Sao Paulo, São Paulo, Brazil
- Department of Biological Science, Federal University of Sao Paulo, Diadema, Brazil
- * E-mail:
| |
Collapse
|
21
|
Yang B, Song JC, Jiang JH, Li ST. Receptor analysis of differential sensitivity change to succinylcholine induced by nerve injury in rat gastrocnemius. J Surg Res 2015; 195:136-43. [PMID: 25703161 DOI: 10.1016/j.jss.2015.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Urgent tracheal intubation is common in intensive care units and the emergency room, and succinylcholine is a first-line neuromuscular blocker used in these situations. Paraplegic or critically ill patients may be at a high risk of receiving succinylcholine because the denervation stage changes nicotinic receptors, which affect the efficacy and safety of succinylcholine. The objective of this study was to determine the receptor subtypes associated with changes in the pharmacodynamics of succinylcholine and its time-line trend. METHODS Denervated gastrocnemius was collected from tibial nerve transected rats. To determine the 50% effective dose of succinylcholine and rocuronium at 0 (control), 1, 3, 7, 14, and 28 d after denervation, action potential amplitude was monitored by an intracellular recording method. Subunits α1, α7, ε, and γ of the acetylcholine receptor (AChR) were quantified by real-time polymerase chain reaction. Receptor amount and pharmacodynamic changes were analyzed by correlation and regression analysis. RESULTS The pharmacodynamic change in succinylcholine was a dynamic process, and at the same time α7, ε, and γ-nicotinic AChR genes in denervated muscle were significantly changed but only α7 was closely correlated with the action of succinylcholine. Subunit γ and α7 were related to pharmacodynamic change in the nondepolarizing neuromuscular agent, rocuronium. CONCLUSIONS Nerve injury may alter nicotinic AChR subtypes in skeletal muscle at different stages, which probably affected the pharmacodynamics of neuromuscular blockers in different ways. Denervation time and stage and the type of neuromuscular blocker and dosage should be taken into consideration when using these drugs in patients with nerve injury.
Collapse
Affiliation(s)
- Bin Yang
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.China
| | - Jin-Chao Song
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ji-Hong Jiang
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.China
| | - Shi-Tong Li
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R.China.
| |
Collapse
|
22
|
Chen YL, Huang HY, Lee CC, Chiang BL. Small interfering RNA targeting nerve growth factor alleviates allergic airway hyperresponsiveness. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e158. [PMID: 24714423 PMCID: PMC4011123 DOI: 10.1038/mtna.2014.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 02/21/2014] [Indexed: 12/03/2022]
Abstract
Airway hyperresponsiveness is the hallmark of allergic asthma and caused by multiple factors. Nerve growth factor (NGF), a neurotrophin, is originally known for regulation of neural circuit development and function. Recent studies indicated that NGF contributes to airway hyperresponsiveness and pathogenesis of asthma. The objective of this study is to develop a small interfering RNA against NGF to attenuate airway hyperresponsiveness and further elucidate the underlying mechanism. In a murine model of allergic asthma, the ovalbumin-sensitized mice were intratracheally delivered small interfering RNA against NGF or administered an inhibitor targeting NGF receptor, tropomyosin-related kinase A, as a positive treatment control. In this study, knockdown NGF derived from pulmonary epithelium significantly reduced airway resistance in vivo. The levels of NGF, proinflammatory cytokines and infiltrated eosinophils in airway were decreased in small interfering RNA against NGF group but not in tropomyosin-related kinase A inhibitor and mock siRNA group. Furthermore, induction of neuropeptide (substance P) and airway innervation were mediated by NGF/tropomyosin-related kinase A pathway. These findings suggested that NGF targeting treatment holds the potential therapy for antigen-induced airway hyperresponsiveness via attenuation of airway innervation and inflammation in asthma.
Collapse
Affiliation(s)
- Yi-Lien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Bor-Luen Chiang
- 1] Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan [2] Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Picardi S, Stevens M, Hahnenkamp K, Durieux M, Lirk P, Hollmann M. Time-dependent modulation of muscarinic m1/m3 receptor signalling by local anaesthetics. Br J Anaesth 2014; 112:370-9. [DOI: 10.1093/bja/aet299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
24
|
Jacob S, Zhu Y, Asmussen S, Ito H, Herndon DN, Enkhbaatar P, Hawkins HK, Cox RA. Tiotropium bromide suppresses smoke inhalation and burn injury-induced ERK 1/2 and SMAD 2/3 signaling in sheep bronchial submucosal glands. Toxicol Mech Methods 2014; 24:250-8. [PMID: 24417427 DOI: 10.3109/15376516.2013.879504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of tiotropium bromide on ERK 1/2, SMAD 2/3 and NFκB signaling in bronchial submucosal gland (SMG) cells of sheep after smoke inhalation and burn injury (S + B) were studied. We hypothesized that tiotropium would modify intracellular signaling processes within SMG cells after injury. Bronchial tissues were obtained from uninjured (sham, n = 6), S + B injured sheep 48 h after injury (n = 6), and injured sheep nebulized with tiotropium (n = 6). The percentage (mean ± SD) of cells showing nuclear localization of phosphorylated ERK 1/2, pSMAD 2/3, and NFκB (p65) was determined by immunohistochemistry. Nuclear pERK 1/2 staining was increased in injured animals as compared to sham, (66 ± 20 versus 14 ± 9), p = 0.0022, as was nuclear pSMAD, 84 ± 10 versus 20 ± 10, p = 0.0022. There was a significant decrease in pERK 1/2 labeling in the tiotropium group compared to the injured group (31 ± 20 versus 66 ± 20, p = 0.013), and also a decrease in pSMAD labeling, 62 ± 17 versus 84 ± 10, p = 0.04. A significant increase for NFκB (p65) was noted in injured animals as compared to sham (73 ± 16 versus 7 ± 6, p = 0.0022). Tiotropium-treated animals showed decreased p65 labeling as compared to injured (35 ± 17 versus 74 ± 16, p = 0.02). The decrease in nuclear expression of pERK, pSMAD and NFκB molecules in SMG cells with tiotropium treatment is suggestive that their activation after injury is mediated in part through muscarinic receptors.
Collapse
Affiliation(s)
- Sam Jacob
- Shriners Hospital for Children and the University of Texas Medical Branch , Galveston, TX , USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A critical role of acute bronchoconstriction in the mortality associated with high-dose sarin inhalation: effects of epinephrine and oxygen therapies. Toxicol Appl Pharmacol 2013; 274:200-8. [PMID: 24269878 DOI: 10.1016/j.taap.2013.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 11/10/2013] [Indexed: 01/26/2023]
Abstract
Sarin is an organophosphate nerve agent that is among the most lethal chemical toxins known to mankind. Because of its vaporization properties and ease and low cost of production, sarin is the nerve agent with a strong potential for use by terrorists and rouge nations. The primary route of sarin exposure is through inhalation and, depending on the dose, sarin leads to acute respiratory failure and death. The mechanism(s) of sarin-induced respiratory failure is poorly understood. Sarin irreversibly inhibits acetylcholine esterase, leading to excessive synaptic levels of acetylcholine and, we have previously shown that sarin causes marked ventilatory changes including weakened response to hypoxia. We now show that LD50 sarin inhalation causes severe bronchoconstriction in rats, leading to airway resistance, increased hypoxia-induced factor-1α, and severe lung epithelium injury. Transferring animals into 60% oxygen chambers after sarin exposure improved the survival from about 50% to 75% at 24h; however, many animals died within hours after removal from the oxygen chambers. On the other hand, if LD50 sarin-exposed animals were administered the bronchodilator epinephrine, >90% of the animals survived. Moreover, while both epinephrine and oxygen treatments moderated cardiorespiratory parameters, the proinflammatory cytokine surge, and elevated expression of hypoxia-induced factor-1α, only epinephrine consistently reduced the sarin-induced bronchoconstriction. These data suggest that severe bronchoconstriction is a critical factor in the mortality induced by LD50 sarin inhalation, and epinephrine may limit the ventilatory, inflammatory, and lethal effects of sarin.
Collapse
|
26
|
Carey JL, Dunn C, Gaspari RJ. Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 2013; 189:403-10. [PMID: 23933009 DOI: 10.1016/j.resp.2013.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
Abstract
Organophosphate (OP) pesticide poisoning is a global health problem with over 250,000 deaths per year. OPs affect neuronal signaling through acetylcholine (Ach) neurotransmission via inhibition of acetylcholinesterase (AChE), leading to accumulation of Ach at the synaptic cleft and excessive stimulation at post-synaptic receptors. Mortality due to OP agents is attributed to respiratory dysfunction, including central apnea. Cholinergic circuits are integral to many aspects of the central control of respiration, however it is unclear which mechanisms predominate during acute OP intoxication. A more complete understanding of the cholinergic aspects of both respiratory control as well as neural modification of pulmonary function is needed to better understand OP-induced respiratory dysfunction. In this article, we review the physiologic mechanisms of acute OP exposure in the context of the known cholinergic contributions to the central control of respiration. We also discuss the potential central cholinergic contributions to the known peripheral physiologic effects of OP intoxication.
Collapse
Affiliation(s)
- Jennifer L Carey
- Department of Emergency Medicine, UMASS Memorial Medical Center, United States.
| | | | | |
Collapse
|
27
|
Greig NH, Reale M, Tata AM. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors. RECENT PATENTS ON CNS DRUG DISCOVERY 2013; 8:123-41. [PMID: 23597304 PMCID: PMC5831731 DOI: 10.2174/1574889811308020003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/13/2013] [Accepted: 04/13/2013] [Indexed: 12/27/2022]
Abstract
The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic receptors in nociception also is over-viewed. In fact, muscarinic agonists such as vedaclidine, CMI-936 and CMI-1145 have been demonstrated to have analgesic effects in animal models comparable or more pronounced to those produced by morphine or opiates. Likewise, the crucial role of cholinesterases (acetylcholinesterase and butirylcholinesterase) in neural transmission is discussed, as large number of drugs inhibiting cholinesterase activity have become of increasing relevance particularly for the treatment of neurodegenerative disorders. Herein we summarize the current knowledge of the cholinesterase inhibitors with particular attention to recent patents for Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Nigel H. Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Marcella Reale
- Department of Experimental and Clinical Sciences, University G. D'Annunzio, Chieti, Italy
| | - Ada Maria Tata
- Dept. of Biology and Biotechnologies Charles Darwin, Sapienza Università di Roma, Research Center of Neurobiology Daniel Bovet, Roma, Italy
| |
Collapse
|
28
|
Gras D, Chanez P, Vachier I, Petit A, Bourdin A. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 2013; 140:290-305. [PMID: 23880290 DOI: 10.1016/j.pharmthera.2013.07.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 01/03/2023]
Abstract
Increasing evidence of a critical role played by the bronchial epithelium in airway homeostasis is opening new therapeutic avenues. Its unique situation at the interface with the environment suggests that the subtle regulation orchestrated by the epithelium between tolerance and specific immune response might be impaired in asthma. Airway mucus is acting as a physical and a biological fluid between the environment and the epithelium, synergistically moved by the cilia. In asthma, excessive mucus production is a hallmark of airway remodeling. Since many years we tried to therapeutically target mucus hypersecretion, but actually this option is still not achieved. The present review discusses the dynamic processes regulating airway mucus production. Airway inflammation is central in current asthma management. Understanding of how the airway epithelium influences the TH2 paradigm in response to deleterious agents is improving. The multiple receptors expressed by the airway epithelium are the transducers of the biological signals induced by various invasive agents to develop the most adapted response. Airway remodeling is observed in severe chronic airway diseases and may result from ongoing disturbance of signal transduction and epithelial renewal. Chronic airway diseases such as asthma will require assessment of these epithelial abnormalities to identify phenotypic characteristics associated with predicting a clinical benefit for epithelial-directed therapies.
Collapse
Affiliation(s)
- Delphine Gras
- UMR INSERM U1067 CNRS 7333, Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
29
|
A new perspective on muscarinic receptor antagonism in obstructive airways diseases. Curr Opin Pharmacol 2013; 13:316-23. [PMID: 23643733 DOI: 10.1016/j.coph.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/25/2023]
Abstract
Acetylcholine has traditionally only been regarded as a neurotransmitter of the parasympathetic nervous system, causing bronchoconstriction and mucus secretion in asthma and COPD by muscarinic receptor activation on airway smooth muscle and mucus-producing cells. Recent studies in experimental models indicate that muscarinic receptor stimulation in the airways also induces pro-inflammatory, pro-proliferative and pro-fibrotic effects, which may involve activation of airway structural and inflammatory cells by neuronal as well as non-neuronal acetylcholine. In addition, mechanical changes caused by muscarinic agonist-induced bronchoconstriction may be involved in airway remodeling. Crosstalk between muscarinic receptors and β2-adrenoceptors on airway smooth muscle causes a reduced bronchodilator response to β2-agonists, and a similar mechanism could possibly apply to the poor inhibition of inflammatory and remodeling processes by these drugs. Collectively, these findings provide novel perspectives for muscarinic receptor antagonists in asthma and COPD, since these drugs may not only acutely affect cholinergic airways obstruction, but also have important beneficial effects on β2-agonist responsiveness, airway inflammation and remodeling. The clinical relevance of these findings is presently under investigation and starting to emerge.
Collapse
|
30
|
Takemura Y, Helms MN, Eaton AF, Self J, Ramosevac S, Jain L, Bao HF, Eaton DC. Cholinergic regulation of epithelial sodium channels in rat alveolar type 2 epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 304:L428-37. [PMID: 23292809 DOI: 10.1152/ajplung.00129.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We and others have shown that epithelial Na(+) channels (ENaC) in alveolar type 2 (AT2) cells are activated by β2 agonists, steroid hormones, elevated oxygen tension, and by dopamine. Although acetylcholine receptors (AChRs) have been previously described in the lung, there are few reports of whether cholinergic agonists alter sodium transport in the alveolar epithelium. Therefore, we investigated how cholinergic receptors regulate ENaC activity in primary cultures of rat AT2 cells using cell-attached patch-clamp recordings to assess ENaC activity. We found that the muscarinic agonists, carbachol (CCh) and oxotremorine, activated ENaC in a dose-dependent manner but that nicotine did not. CCh-induced activation of ENaC was blocked by atropine. Western blotting and immunohistochemistry suggested that muscarinic M2 and M3 receptors (mAChRs) but not nicotinic receptors were present in AT2 cells. Endogenous RhoA and GTP-RhoA increased in response to CCh and the increase was reduced by pretreatment with atropine. We showed that Y-27632, an inhibitor of Rho-associated protein kinase (ROCK), abolished endogenous ENaC activity and inhibited the activation of ENaC by CCh. We also showed that ROCK signaling was necessary for ENaC stability in 2F3 cells, a model for AT2 cells. Our results showed that muscarinic agonists activated ENaC in rat AT2 cells through M2 and/or M3 mAChRs probably via a RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yoshizumi Takemura
- Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pelissier-Rota M, Lainé M, Ducarouge B, Bonaz B, Jacquier-Sarlin M. Role of Cholinergic Receptors in Colorectal Cancer: Potential Therapeutic Implications of Vagus Nerve Stimulation? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jct.2013.46128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Benes J, Varejkova E, Farar V, Novakova M, Myslivecek J. Decrease in heart adrenoceptor gene expression and receptor number as compensatory tool for preserved heart function and biological rhythm in M(2) KO animals. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1161-73. [PMID: 23093370 DOI: 10.1007/s00210-012-0800-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Abstract
Muscarinic receptors (MR) are main cardioinhibitory receptors. We investigated the changes in gene expression, receptor number, echocardiography, muscarinic/adrenergic agonist/antagonist changes in heart rate (HR) and HR biorhythm in M(2) KO mice (mice lacking the main cardioinhibitory receptors) in the left ventricle (LV) and right ventricle (RV). We hypothesize that the disruption of M(2) MR, key players in parasympathetic bradycardia, would change the number of receptors with antagonistic effects on the heart (β(1)- and β(2)-adrenoceptors, BAR), while the function of the heart would be changed only marginally. We have found changes in LV, but not in RV: decrease in M(3) MR, β(1)- and β(2)-adrenoceptor gene expressions that were accompanied by a decrease in MR and BAR receptor binding. No changes were found both in LV systolic and diastolic function as assessed by echocardiography (e.g., similar LV end-systolic and end-diastolic diameter, fractional shortening, mitral flow characteristics, and maximal velocity in LV outflow tract). We have found only marginal changes in specific HR biorhythm parameters. The effects of isoprenaline and propranolol on HR were similar in WT and KO (but with lesser extent). Atropine was not able to increase HR in KO animals. Carbachol decreased the HR in WT but increased HR in KO, suggesting the presence of cardiostimulatory MR. Therefore, we can conclude that although the main cardioinhibitory receptors are not present in the heart, the function is not much affected. As possible mechanisms of almost normal cardiac function, the decreases of both β(1)- and β(2)-adrenoceptor gene expression and receptor binding should be considered.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
33
|
Hollenhorst MI, Lips KS, Wolff M, Wess J, Gerbig S, Takats Z, Kummer W, Fronius M. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca²⁺-dependent Cl⁻ and K⁺ channels. Br J Pharmacol 2012; 166:1388-402. [PMID: 22300281 DOI: 10.1111/j.1476-5381.2012.01883.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies detected the expression of proteins involved in cholinergic metabolism in airway epithelial cells, although the function of this non-neuronal cholinergic system is not known in detail. Thus, this study focused on the effect of luminal ACh as a regulator of transepithelial ion transport in epithelial cells. EXPERIMENTAL APPROACH RT-PCR experiments were performed using mouse tracheal epithelial cells for ChAT and organic cation transporter (OCT) transcripts. Components of tracheal airway lining fluid were analysed with desorption electrospray ionization (DESI) MS. Effects of nicotine on mouse tracheal epithelial ion transport were examined with Ussing-chamber experiments. KEY RESULTS Transcripts encoding ChAT and OCT1-3 were detected in mouse tracheal epithelial cells. The DESI experiments identified ACh in the airway lining fluid. Luminal ACh induced an immediate, dose-dependent increase in the transepithelial ion current (EC₅₀: 23.3 µM), characterized by a transient peak and sustained plateau current. This response was not affected by the Na⁺-channel inhibitor amiloride. The Cl⁻-channel inhibitor niflumic acid or the K⁺-channel blocker Ba²⁺ attenuated the ACh effect. The calcium ionophore A23187 mimicked the ACh effect. Luminal nicotine or muscarine increased the ion current. Experiments with receptor gene-deficient animals revealed the participation of muscarinic receptor subtypes M₁ and M₃. CONCLUSIONS AND IMPLICATIONS The presence of luminal ACh and activation of transepithelial ion currents by luminal ACh receptors identifies a novel non-neuronal cholinergic pathway in the airway lining fluid. This pathway could represent a novel drug target in the airways.
Collapse
Affiliation(s)
- Monika I Hollenhorst
- Institute of Animal Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cazzola M, Page CP, Calzetta L, Matera MG. Pharmacology and therapeutics of bronchodilators. Pharmacol Rev 2012; 64:450-504. [PMID: 22611179 DOI: 10.1124/pr.111.004580] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bronchodilators are central in the treatment of of airways disorders. They are the mainstay of the current management of chronic obstructive pulmonary disease (COPD) and are critical in the symptomatic management of asthma, although controversies around the use of these drugs remain. Bronchodilators work through their direct relaxation effect on airway smooth muscle cells. at present, three major classes of bronchodilators, β(2)-adrenoceptor (AR) agonists, muscarinic receptor antagonists, and xanthines are available and can be used individually or in combination. The use of the inhaled route is currently preferred to minimize systemic effects. Fast- and short-acting agents are best used for rescue of symptoms, whereas long-acting agents are best used for maintenance therapy. It has proven difficult to discover novel classes of bronchodilator drugs, although potential new targets are emerging. Consequently, the logical approach has been to improve the existing bronchodilators, although several novel broncholytic classes are under development. An important step in simplifying asthma and COPD management and improving adherence with prescribed therapy is to reduce the dose frequency to the minimum necessary to maintain disease control. Therefore, the incorporation of once-daily dose administration is an important strategy to improve adherence. Several once-daily β(2)-AR agonists or ultra-long-acting β(2)-AR-agonists (LABAs), such as indacaterol, olodaterol, and vilanterol, are already in the market or under development for the treatment of COPD and asthma, but current recommendations suggest the use of LABAs only in combination with an inhaled corticosteroid. In addition, some new potentially long-acting antimuscarinic agents, such as glycopyrronium bromide (NVA-237), aclidinium bromide, and umeclidinium bromide (GSK573719), are under development, as well as combinations of several classes of long-acting bronchodilator drugs, in an attempt to simplify treatment regimens as much as possible. This review will describe the pharmacology and therapeutics of old, new, and emerging classes of bronchodilator.
Collapse
Affiliation(s)
- Mario Cazzola
- Università di Roma Tor Vergata, Dipartimento di Medicina Interna, Via Montpellier 1, 00133 Roma, Italy.
| | | | | | | |
Collapse
|
35
|
Regulation of airway inflammation and remodeling by muscarinic receptors: perspectives on anticholinergic therapy in asthma and COPD. Life Sci 2012; 91:1126-33. [PMID: 22406302 DOI: 10.1016/j.lfs.2012.02.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 12/15/2022]
Abstract
Acetylcholine is the primary parasympathetic neurotransmitter in the airways and an autocrine/paracrine secreted hormone from non-neuronal origins including inflammatory cells and airway structural cells. In addition to the well-known functions of acetylcholine in regulating bronchoconstriction and mucus secretion, it is increasingly evident that acetylcholine regulates inflammatory cell chemotaxis and activation, and also participates in signaling events leading to chronic airway wall remodeling that is associated with chronic obstructive airway diseases including asthma and COPD. As muscarinic receptors appear responsible for most of the pro-inflammatory and remodeling effects of acetylcholine, these findings have significant implications for anticholinergic therapy in asthma and COPD, which is selective for muscarinic receptors. Here, the regulatory role of acetylcholine in inflammation and remodeling in asthma and COPD will be discussed including the perspectives that these findings offer for anticholinergic therapy in these diseases.
Collapse
|
36
|
Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs 2012; 17:61-82. [DOI: 10.1517/14728214.2012.660917] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Cholinergic regulation of airway inflammation and remodelling. J Allergy (Cairo) 2012; 2012:681258. [PMID: 22291719 PMCID: PMC3265096 DOI: 10.1155/2012/681258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/10/2011] [Indexed: 12/12/2022] Open
Abstract
Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.
Collapse
|
38
|
Abstract
The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Germany.
| | | |
Collapse
|
39
|
Bellier JP, Kimura H. Peripheral type of choline acetyltransferase: biological and evolutionary implications for novel mechanisms in cholinergic system. J Chem Neuroanat 2011; 42:225-35. [PMID: 21382474 DOI: 10.1016/j.jchemneu.2011.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 01/29/2023]
Abstract
The peripheral type of choline acetyltransferase (pChAT) is an isoform of the well-studied common type of choline acetyltransferase (cChAT), the synthesizing enzyme of acetylcholine. Since pChAT arises by exons skipping, its amino acid sequence is similar to that of cChAT, except the lack of a continuous peptide sequence encoded by all the four exons from 6 to 9. While cChAT expression has been observed in both the central and peripheral nervous systems, pChAT is preferentially expressed in the peripheral nervous system. pChAT appears to be a reliable marker for the visualization of peripheral cholinergic neurons and their processes, whereas other conventional markers including cChAT have not been used successfully for it. In mammals like rodents, pChAT immunoreactivity has been observed in most, if not all, physiologically identified peripheral cholinergic structures such as all parasympathetic postganglionic neurons and most neurons of the enteric nervous system. In addition, pChAT has been found in many peripheral neurons that are derived from the neural crest. These include sensory neurons of the trigeminal ganglion and the dorsal root ganglion, and sympathetic postganglionic neurons. Recent studies moreover indicate that pChAT, as well as cChAT, appears ubiquitously expressed among various species not only of vertebrate mammals but also of invertebrate mollusks. This finding implies that the alternative splicing mechanism to generate pChAT and cChAT has been preserved during evolution, probably for some functional benefits.
Collapse
Affiliation(s)
- J-P Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
40
|
Association analysis of RGS7BP gene polymorphisms with aspirin intolerance in asthmatic patients. Ann Allergy Asthma Immunol 2011; 106:292-300.e6. [PMID: 21457877 DOI: 10.1016/j.anai.2010.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 12/30/2022]
Abstract
BACKGROUND Signal-regulated palmitoylation of RGS7BP(regulator of G-protein-signaling 7-binding protein) initiates the activation of G-protein-coupled receptors (GPCRs), including muscarinic receptors, which contribute to the development of asthma and its subphenotypes. OBJECTIVE To determine the association of RGS7BP gene polymorphisms with the development of aspirin-exacerbated respiratory disease (AERD). METHODS We evaluated the association of RGS7BP gene polymorphisms with response to oral aspirin challenge and with responsiveness to methacholine challenge. RGS7BP messenger RNA splice variants in peripheral blood platelets from patients with different single-nucleotide polymorphisms were analyzed by reverse-transcription polymerase chain reaction. RESULTS Logistic regression analysis of RGS7BP gene polymorphisms in patients with AERD (n = 102) and aspirin-tolerant asthma (n = 429) revealed that a haplotype of block 3 consisting of rare alleles +98092 C>G, +98853 C>T, and +104450 T>G of the RGS7BP gene was associated with AERD. Multiple linear regression analysis showed that asthmatic patients carrying ht2/ht2 in block 3 were more responsive to aspirin challenge than those not carrying ht2 (P = .008 in a codominant model). The log-transformed provocation concentration that caused a decrease in forced expiratory volume in 1 second of 20% for methacholine was significantly dependent on the BL3-ht2 haplotype. No significant differences in platelet expression of different RGS7BP messenger RNA splice variants were detected between those with and without the BL3-ht2 haplotype. CONCLUSION BL3-ht2 of RGS7BP may be an important genetic variant associated with AERD. The haplotype of block 3 may play a protective role against aspirin hypersensitivity in asthma, perhaps by altering the responsiveness of muscarinic receptors.
Collapse
|
41
|
Sato T, Chida D, Iwata T, Usui M, Hatori K, Abe T, Takeda S, Yoda T. Non-neuronal regulation and repertoire of cholinergic receptors in organs. Biomol Concepts 2010; 1:357-66. [PMID: 25962009 DOI: 10.1515/bmc.2010.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many studies on the cholinergic pathway have indicated that cholinergic receptors, which are widely expressed in various cells, play an important role in all body organs. In this review, we present the concept that cholinergic responses are regulated through a neuronal or non-neuronal mechanism. The neuronal mechanism is a system in which acetylcholine binds to cholinergic receptors on target cells through the nerves. In the non-neuronal mechanism, acetylcholine, produced by neighboring cells in an autocrine/paracrine manner, binds to cholinergic receptors on target cells. Both mechanisms subsequently lead to physiological and pathophysiological responses. We also investigated the subunits/subtypes of cholinergic receptors on target cells, physiological and pathophysiological responses of the organs via cholinergic receptors, and extracellular factors that alter the subtypes/subunits of cholinergic receptors. Collectively, this concept will elucidate how cholinergic responses occur and will help us conduct further experiments to develop new therapeutic agents.
Collapse
|
42
|
Oenema TA, Kolahian S, Nanninga JE, Rieks D, Hiemstra PS, Zuyderduyn S, Halayko AJ, Meurs H, Gosens R. Pro-inflammatory mechanisms of muscarinic receptor stimulation in airway smooth muscle. Respir Res 2010; 11:130. [PMID: 20875145 PMCID: PMC2955662 DOI: 10.1186/1465-9921-11-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 09/28/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Acetylcholine, the primary parasympathetic neurotransmitter in the airways, plays an important role in bronchoconstriction and mucus production. Recently, it has been shown that acetylcholine, by acting on muscarinic receptors, is also involved in airway inflammation and remodelling. The mechanism(s) by which muscarinic receptors regulate inflammatory responses are, however, still unknown. METHODS The present study was aimed at characterizing the effect of muscarinic receptor stimulation on cytokine secretion by human airway smooth muscle cells (hASMc) and to dissect the intracellular signalling mechanisms involved. hASMc expressing functional muscarinic M2 and M3 receptors were stimulated with the muscarinic receptor agonist methacholine, alone, and in combination with cigarette smoke extract (CSE), TNF-α, PDGF-AB or IL-1β. RESULTS Muscarinic receptor stimulation induced modest IL-8 secretion by itself, yet augmented IL-8 secretion in combination with CSE, TNF-α or PDGF-AB, but not with IL-1β. Pretreatment with GF109203X, a protein kinase C (PKC) inhibitor, completely normalized the effect of methacholine on CSE-induced IL-8 secretion, whereas PMA, a PKC activator, mimicked the effects of methacholine, inducing IL-8 secretion and augmenting the effects of CSE. Similar inhibition was observed using inhibitors of IκB-kinase-2 (SC514) and MEK1/2 (U0126), both downstream effectors of PKC. Accordingly, western blot analysis revealed that methacholine augmented the degradation of IκBα and the phosphorylation of ERK1/2 in combination with CSE, but not with IL-1β in hASMc. CONCLUSIONS We conclude that muscarinic receptors facilitate CSE-induced IL-8 secretion by hASMc via PKC dependent activation of IκBα and ERK1/2. This mechanism could be of importance for COPD patients using anticholinergics.
Collapse
Affiliation(s)
- Tjitske A Oenema
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Saeed Kolahian
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
- Department of Basic Sciences, University of Tabriz, Iran
| | - Janke E Nanninga
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Daniëlle Rieks
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, The Netherlands
| | - Suzanne Zuyderduyn
- Department of Pulmonology, Leiden University Medical Center, The Netherlands
| | - Andrew J Halayko
- Department of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, The Netherlands
| |
Collapse
|
43
|
Villetti G, Pastore F, Bergamaschi M, Bassani F, Bolzoni PT, Battipaglia L, Amari G, Rizzi A, Delcanale M, Volta R, Cenacchi V, Cacciani F, Zaniboni M, Berti F, Rossoni G, Harrison S, Petrillo P, Santoro E, Scudellaro R, Mannini F, Geppetti PA, Razzetti R, Patacchini R, Civelli M. Bronchodilator Activity of (3R)-3-[[[(3-fluorophenyl)[(3,4,5-trifluorophenyl)methyl]amino] carbonyl]oxy]-1-[2-oxo-2-(2-thienyl)ethyl]-1-azoniabicyclo[2.2.2]octane bromide (CHF5407), a Potent, Long-Acting, and Selective Muscarinic M3 Receptor Antagonist. J Pharmacol Exp Ther 2010; 335:622-35. [DOI: 10.1124/jpet.110.170035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
44
|
Osta WA, El-Osta MA, Pezhman EA, Raad RA, Ferguson K, McKelvey GM, Marsh HM, White M, Perov S. Nicotinic acetylcholine receptor gene expression is altered in burn patients. Anesth Analg 2010; 110:1355-9. [PMID: 20304984 DOI: 10.1213/ane.0b013e3181d41512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Burn patients have been observed to be more susceptible to the hyperkalemic effect of the depolarizing muscle relaxant succinylcholine. Changes in nicotinic acetylcholine receptor (nAChR) subunit composition may alter electrophysiologic, pharmacologic, and metabolic characteristics of the receptor inducing hyperkalemia on exposure to succinylcholine. No studies have been performed that show the upregulation and/or alteration of nAChR subunit composition in human burn patients. The scarcity of studies performed on humans with burn injury is mainly attributable to the technical and ethical difficulties in obtaining muscle biopsies at different time frames of illness in these acutely injured patients. nAChRs are expressed in oral keratinocytes and are upregulated or altered in smokers. However, no studies have addressed the expression of nAChRs in the oral mucosa of burn patients. METHODS Buccal mucosal scrapings were collected from 9 burn patients and 6 control nonburn surgical intensive care unit patients. For burn and control patients, tissues were collected upon presentation (time: 0 hour) and at time points 12, 24, and 48 hours, 1 week, and 2 weeks. Gene expression of the nAChR subunits alpha1, alpha7, gamma, and epsilon were performed using real-time reverse transcriptase polymerase chain reaction. RESULTS alpha7 and gamma nAChR genes were significantly upregulated in burn patients, whereas alpha1 and epsilon nAChR genes were minimally affected, showing no significant changes over time. DISCUSSION Over the 2 weeks of measurement, an upregulation of the alpha7 and gamma genes occurred in both burn and control patients; however, the proportion of alpha7 and gamma subunit increases was significantly higher in burn patients than in control surgical intensive care unit patients. The relationship between the thermal injury and the observed alteration in gene expression suggests a possible cause/effect relationship. This effect was observed at a site not affected by the burn injury and in nonmuscle tissues, thus emphasizing the systemic nature of the effect caused by the thermal injury. Because gene expression is the basis of protein production, the upregulation of alpha7 and gamma genes might translate into more alpha7 and gamma protein subunits. These proteins can also combine with each other or with other types of subunits (alpha1, beta, epsilon . . .) to form nAChRs with altered electrophysiologic characteristics leading to the observed abnormal clinical outcomes. CONCLUSION Thermal injury may infer a systemic effect because upregulation/alteration of nAChRs occurs in nonmuscle tissues distant from the site of injury. The effect of thermal injury on nAChR gene subunits can be studied using a minimally invasive method (buccal mucosal scraping) and a highly sensitive technology (real-time reverse transcriptase polymerase chain reaction) obviating the need for more invasive methods.
Collapse
Affiliation(s)
- Walid A Osta
- Department of Anesthesia,Wayne State University/Detroit Medical Center, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Scapecchi S, Nesi M, Matucci R, Bellucci C, Buccioni M, Dei S, Guandalini L, Manetti D, Martelli C, Martini E, Marucci G, Orlandi F, Romanelli MN, Teodori E, Cirilli R. Synthesis, affinity profile and functional activity of potent chiral muscarinic antagonists with a pyrrolidinylfuran structure. J Med Chem 2010; 53:201-7. [PMID: 19928767 DOI: 10.1021/jm901048j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Starting from the structure of previously studied muscarinic agonists, characterized by a pyrrolidinylfuran scaffold, a new series of muscarinic antagonists was synthesized by substituting the 5-position of the furane cycle with bulky hydrophobic groups. Both tertiary amines and the corresponding iodomethyl derivatives were obtained and studied. All the new compounds show high affinity toward cloned human muscarinic M(1)-M(5) receptors expressed in Chinese hamster ovary (CHO) cells and behave as competitive antagonists on classical models of muscarinic receptors. The diastereoisomeric mixture of the highest affinity compound of the series was resolved into the four optical isomers by chiral HPLC. The relative and absolute configuration of the obtained compounds was established by means of a combined strategy based on X-ray crystallography and chiroptical techniques. Although generally fairly potent, the compounds showed only modest subtype selectivity, with the exception of 2a and 6a, which in functional assays presented clear-cut selectivity for the muscarinic receptors present in rabbit vas deferens.
Collapse
Affiliation(s)
- Serena Scapecchi
- Dipartimento di Scienze Farmaceutiche, Universita di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ghedini PC, Honda L, Avellar MCW, Souccar C. Presence of mRNA of muscle nicotinic acetylcholine receptor subunits and an epsilon-subunit splice variant in the mouse brain. Brain Res Bull 2009; 81:453-7. [PMID: 20026389 DOI: 10.1016/j.brainresbull.2009.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/13/2009] [Accepted: 12/13/2009] [Indexed: 12/01/2022]
Abstract
Transcripts encoding for alpha1, beta1, delta, gamma and epsilon (and its splice variant epsilon(s)) subunits of the muscle-type nicotinic acetylcholine receptor (nAChR) were assessed using reverse transcription followed by polymerase chain reaction (RT-PCR) assays, with RNA extracted from the mouse skeletal muscle (diaphragm) and brain regions (cortex, hippocampus and cerebellum). The presence of alpha1, beta1, delta, gamma, epsilon and epsilon(s) transcripts was confirmed in the diaphragm muscle, used as positive control. mRNAs coding for muscle alpha1, beta1, delta, epsilon, epsilon(s), but not gamma subunits, were detected in adult mouse brain regions. An epsilon-subunit sequence variant, named epsilon(t), was also detected in all brain regions examined, but not in skeletal muscle. This new epsilon-subunit splice variant lacks a 115 bp cassette corresponding to exon 8 in the first intracellular transmembrane domain of the subunit, leading to a truncated protein. The data provide evidence for the presence of muscle-type nAChR subunits in the mouse central nervous system.
Collapse
Affiliation(s)
- P C Ghedini
- Department of Pharmacology, Natural Products Section, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
47
|
Forsgren S, Grimsholm O, Jönsson M, Alfredson H, Danielson P. New insight into the non-neuronal cholinergic system via studies on chronically painful tendons and inflammatory situations. Life Sci 2009; 84:865-70. [PMID: 19409915 DOI: 10.1016/j.lfs.2009.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/14/2009] [Accepted: 04/17/2009] [Indexed: 11/29/2022]
Abstract
For certain parts of the body, it is nowadays accepted that there is a cholinergic system that is not related to cholinergic innervation, i.e. a non-neuronal cholinergic system. It might be argued that this system is of minor importance. New information obtained shows, however, that the non-neuronal cholinergic system is more widely distributed in the body than what is previously recognised. In recent studies, the existence of such a system has thus been shown for human tendons, especially in chronically painful situations (tendinopathy/tendinosis), in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis, and in the mucosa of ulcerative colitis patients. There is evidence of both acetylcholine (ACh) production and a marked existence of muscarinic (M2) ACh receptors in these situations. The non-neuronal cholinergic system may be involved in the establishment of a 'cholinergic anti-inflammatory pathway' and in proliferative and tissue reorganisation processes via autocrine/paracrine effects. The new information obtained suggests that this system plays an important functional role in chronically painful tendons and in inflammatory conditions. The findings of such a system in various parts of the body, when taken together, show that not only should the classical neuronal cholinergic system be considered in discussion of the cholinergic influences in the body. Additionally, the production of ACh in local cells in the tissues represents an important extra supply of the transmitter. ACh effects can be obtained whether or not there is a cholinergic innervation in the tissue.
Collapse
Affiliation(s)
- Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
48
|
Maanen MAV, Stoof SP, Zanden EPVD, Jonge WJD, Janssen RA, Fischer DF, Vandeghinste N, Brys R, Vervoordeldonk MJ, Tak PP. The α7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: A possible role for a key neurotransmitter in synovial inflammation. ACTA ACUST UNITED AC 2009; 60:1272-81. [DOI: 10.1002/art.24470] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
49
|
Waldburger JM, Boyle DL, Pavlov VA, Tracey KJ, Firestein GS. Acetylcholine regulation of synoviocyte cytokine expression by the alpha7 nicotinic receptor. ACTA ACUST UNITED AC 2009; 58:3439-49. [PMID: 18975306 DOI: 10.1002/art.23987] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The central nervous system can regulate peripheral inflammation, but the efferent neuronal routes and the mediators remain poorly defined. One candidate is the cholinergic pathway, which releases acetylcholine (ACh). This neurotransmitter can bind to the alpha7 cholinergic receptor (alpha7R) expressed by nonneuronal cells and reduce inflammation. To test this possibility, we evaluated the expression of alpha7R and its potential role as a target in rheumatoid arthritis (RA). METHODS The expression of alpha7R in human synovium and fibroblast-like synoviocytes (FLS) was determined using immunohistochemical, Western blot, and quantitative polymerase chain reaction (PCR) analyses. The effects of ACh in vitro were determined in interleukin-1 (IL-1)-stimulated FLS using immunoassays for protein, quantitative PCR for messenger RNA (mRNA), luciferase reporter constructs for IL-6 and NF-kappaB promoter activity, and electrophoretic mobility shift assays. Expression of alpha7R was knocked down with small interfering RNA (siRNA) or was inhibited with the selective alpha7R antagonist methyllycaconitine (MLA). RESULTS Protein and mRNA for alpha7R were demonstrated in RA and osteoarthritis synovium and cultured synoviocytes. Expression in synovium was mainly in the intimal lining. ACh significantly reduced the production of IL-6, CXCL8, CCL2, CCL3, CCL5, and granulocyte colony-stimulating factor by IL-1-stimulated FLS. This effect was blocked by the alpha7R antagonist MLA or by using alpha7R siRNA to knock down receptor expression. The selective alpha7R agonist PNU-282,987 decreased the production of IL-6 by IL-1-stimulated FLS. ACh did not reduce IL-6 transcription, but it decreased IL-6 mRNA half-life and reduced IL-6 mRNA steady-state levels. CONCLUSION The alpha7 receptor is expressed in the synovium and by synoviocytes. Receptor ligation inhibits cytokine expression in FLS through a posttranscriptional mechanism. Therefore, alpha7R is a potential therapeutic target for inflammatory diseases.
Collapse
|
50
|
Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P. Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif 2008; 41:936-59. [PMID: 19040571 PMCID: PMC9531952 DOI: 10.1111/j.1365-2184.2008.00566.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Lung cancer is the most common cause of cancer death in the world. Cigarette smoking represents the major risk factor. Nicotine, an active component of cigarettes, can induce cell proliferation, angiogenesis and apoptosis resistance. All these events are mediated through the nicotinic acetylcholine receptor (nAChR) expressed on lung cancer cells. We speculate that new insights into the pathophysiological roles of nAChR may lead to new therapeutic avenues to reduce non-small cell lung cancer (NSCLC) tumour growth. MATERIALS AND METHODS Human samples of NSCLC, cell lines and mouse models were utilized in Western blotting, reverse transcriptase polymerase chain reaction and apoptosis studies. RESULTS Human NSCLC tissues expressed alpha7-nAChR. This expression was higher in smoking patients with squamous carcinomas than those with adenocarcinomas and in male smoking patients than in females. All the data support the hypothesis that major expression of alpha7-nAChR is related to major activation of the Rb-Raf-1/phospho-ERK/phospho-p90RSK pathway. alpha7-nAChR antagonists, via mitochondria associated apoptosis, inhibited proliferation of human NSCLC primary and established cells. Nicotine stimulates tumour growth in a murine model, A549 cells orthotopically grafted. The effects of nicotine were associated with increases in phospho-ERK in tumours. Proliferation effects of nicotine could be blocked by inhibition of alpha7-nAChR by the high affinity ligand alpha-cobratoxin. CONCLUSION These results showed that alpha7-nAChR plays an important role in NSCLC cell growth and tumour progression as well as in cell death.
Collapse
Affiliation(s)
- L. Paleari
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - A. Catassi
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy,,University of Insubria, Varese, Italy
| | - M. Ciarlo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - Z. Cavalieri
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - C. Bruzzo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| | - D. Servent
- CEA, iBiTecS, Service d’Ingénierie Moleculaire des Protéines (SIMOPRO), Gif sur Yvette, France
| | - A. Cesario
- IRCCS ‘San Raffaele’, Rome, Italy,,Thoracic Surgery Unit, Catholic University, Rome, Italy
| | - L. Chessa
- Animal Facility Unit, National Cancer Research Institute, Genoa, Italy, and
| | - M. Cilli
- Transplant Thoracic Surgery Unit, ‘San Martino’ Hospital, Genoa, Italy
| | - F. Piccardi
- Transplant Thoracic Surgery Unit, ‘San Martino’ Hospital, Genoa, Italy
| | | | - P. Russo
- Lung Cancer Unit, National Cancer Research Institute, Genoa, Italy
| |
Collapse
|