1
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
2
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
3
|
Lei J, Paul J, Wang Y, Gupta M, Vang D, Thompson S, Jha R, Nguyen J, Valverde Y, Lamarre Y, Jones MK, Gupta K. Heme Causes Pain in Sickle Mice via Toll-Like Receptor 4-Mediated Reactive Oxygen Species- and Endoplasmic Reticulum Stress-Induced Glial Activation. Antioxid Redox Signal 2021; 34:279-293. [PMID: 32729340 PMCID: PMC7821434 DOI: 10.1089/ars.2019.7913] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aims: Lifelong pain is a hallmark feature of sickle cell disease (SCD). How sickle pathobiology evokes pain remains unknown. We hypothesize that increased cell-free heme due to ongoing hemolysis activates toll-like receptor 4 (TLR4), leading to the formation of reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress. Together, these processes lead to spinal microglial activation and neuroinflammation, culminating in acute and chronic pain. Results: Spinal heme levels, TLR4 transcripts, oxidative stress, and ER stress were significantly higher in sickle mice than controls. In vitro, TLR4 inhibition in spinal cord microglial cells attenuated heme-induced ROS and ER stress. Heme treatment led to a time-dependent increase in the characteristic features of sickle pain (mechanical and thermal hyperalgesia) in both sickle and control mice; this effect was absent in TLR4-knockout sickle and control mice. TLR4 deletion in sickle mice attenuated chronic and hypoxia/reoxygenation (H/R)-evoked acute hyperalgesia. Sickle mice treated with the TLR4 inhibitor resatorvid; selective small-molecule inhibitor of TLR4 (TAK242) had significantly reduced chronic hyperalgesia and had less severe H/R-evoked acute pain with quicker recovery. Notably, reducing ER stress with salubrinal ameliorated chronic hyperalgesia in sickle mice. Innovation: Our findings demonstrate the causal role of free heme in the genesis of acute and chronic sickle pain and suggest that TLR4 and/or ER stress are novel therapeutic targets for treating pain in SCD. Conclusion: Heme-induced microglial activation via TLR4 in the central nervous system contributes to the initiation and maintenance of sickle pain via ER stress in SCD. Antioxid. Redox Signal. 34, 279-293.
Collapse
Affiliation(s)
- Jianxun Lei
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jinny Paul
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ying Wang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mihir Gupta
- Department of Neurosurgery, University of California San Diego, La Jolla, California, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Susan Thompson
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ritu Jha
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia Nguyen
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yessenia Valverde
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yann Lamarre
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael K Jones
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology & Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA.,Southern California Institute for Research and Education, Long Beach, California, USA
| |
Collapse
|
4
|
The nAChR Chaperone TMEM35a (NACHO) Contributes to the Development of Hyperalgesia in Mice. Neuroscience 2021; 457:74-87. [PMID: 33422618 PMCID: PMC7897319 DOI: 10.1016/j.neuroscience.2020.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.
Collapse
|
5
|
Therapeutic potential of cannabinoids in combination cancer therapy. Adv Biol Regul 2021; 79:100774. [PMID: 33422460 DOI: 10.1016/j.jbior.2020.100774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Derivatives of the plant Cannabis sativa have been used for centuries for both medical and recreational purposes, as well as industrial. The first proof of its medicinal use comes from ancient China, although there is evidence of its earlier utilization in Europe and Asia. In the 19th century, European practitioners started to employ cannabis extracts to treat tetanus, convulsions, and mental diseases and, in 1851, cannabis made its appearance in the Pharmacopoeia of the United States as an analgesic, hypnotic and anticonvulsant. It was only in 1937 that the Marijuana Tax Act prohibited the use of this drug in the USA. The general term Cannabis is commonly used by the scientific and scholar community to indicate derivatives of the plant Cannabis sativa. The word cannabinoid is a term describing chemical compounds that are either derivate of Cannabis (phytocannabinoids) or artificial analogues (synthetic) or are produced endogenously by the body (endocannabinoids). A more casual term "marijuana" or "weed", a compound derived from dried Cannabis flower tops and leaves, has progressively superseded the term cannabis when referred to its recreational use. The 2018 World health organisation (WHO) data suggest that nearly 2.5% of the global population (147 million) uses marijuana and some countries, such as Canada and Uruguay, have already legalised it. Due to its controversial history, the medicinal use of cannabinoids has always been a centre of debate. The isolation and characterisation of Δ9 tetrahydrocannabinol (THC), the major psychoactive component of cannabis and the detection of two human cannabinoid receptor (CBRs) molecules renewed interest in the medical use of cannabinoids, boosting research and commercial heed in this sector. Some cannabinoid-based drugs have been approved as medications, mainly as antiemetic, antianorexic, anti-seizure remedies and in cancer and multiple sclerosis patients' palliative care. Nevertheless, due to the stigma commonly associated with these compounds, cannabinoids' potential in the treatment of conditions such as cancer is still largely unknown and therefore underestimated.
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search. RECENT FINDINGS In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378). SUMMARY To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.
Collapse
|
7
|
The endocannabinoid system: Novel targets for treating cancer induced bone pain. Biomed Pharmacother 2019; 120:109504. [PMID: 31627091 DOI: 10.1016/j.biopha.2019.109504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023] Open
Abstract
Treating Cancer-induced bone pain (CIBP) continues to be a major clinical challenge and underlying mechanisms of CIBP remain unclear. Recently, emerging body of evidence suggested the endocannabinoid system (ECS) may play essential roles in CIBP. Here, we summarized the current understanding of the antinociceptive mechanisms of endocannabinoids in CIBP and discussed the beneficial effects of endocannabinoid for CIBP treatment. Targeting non-selective cannabinoid 1 receptors or selective cannabinoid 2 receptors, and modulation of peripheral AEA and 2-AG, as well as the inhibition the function of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have produced analgesic effects in animal models of CIBP. Management of ECS therefore appears to be a promising way for the treatment of CIBP in terms of efficacy and safety. Further clinical studies are encouraged to confirm the possible translation to humans of the very promising results already obtained in the preclinical studies.
Collapse
|
8
|
Pioglitazone, a PPARγ agonist, reduces cisplatin-evoked neuropathic pain by protecting against oxidative stress. Pain 2019; 160:688-701. [PMID: 30507781 DOI: 10.1097/j.pain.0000000000001448] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Painful peripheral neuropathy is a dose-limiting side effect of cisplatin treatment. Using a murine model of cisplatin-induced hyperalgesia, we determined whether a PPARγ synthetic agonist, pioglitazone, attenuated the development of neuropathic pain and identified underlying mechanisms. Cisplatin produced mechanical and cold hyperalgesia and decreased electrical thresholds of Aδ and C fibers, which were attenuated by coadministration of pioglitazone (10 mg/kg, intraperitoneally [i.p.]) with cisplatin. Antihyperalgesic effects of pioglitazone were blocked by the PPARγ antagonist T0070907 (10 mg/kg, i.p.). We hypothesized that the ability of pioglitazone to reduce the accumulation of reactive oxygen species (ROS) in dorsal root ganglion (DRG) neurons contributed to its antihyperalgesic activity. Effects of cisplatin and pioglitazone on somatosensory neurons were studied on dissociated mouse DRG neurons after 24 hours in vitro. Incubation of DRG neurons with cisplatin (13 µM) for 24 hours increased the occurrence of depolarization-evoked calcium transients, and these were normalized by coincubation with pioglitazone (10 µM). Oxidative stress in DRG neurons was considered a significant contributor to cisplatin-evoked hyperalgesia because a ROS scavenger attenuated hyperalgesia and normalized the evoked calcium responses when cotreated with cisplatin. Pioglitazone increased the expression and activity of ROS-reducing enzymes in DRG and normalized cisplatin-evoked changes in oxidative stress and labeling of mitochondria with the dye MitoTracker Deep Red, indicating that the antihyperalgesic effects of pioglitazone were attributed to its antioxidant properties in DRG neurons. These data demonstrate clear benefits of broadening the use of the antidiabetic drug pioglitazone, or other PPARγ agonists, to minimize the development of cisplatin-induced painful neuropathy.
Collapse
|
9
|
Sagi V, Song-Naba WL, Benson BA, Joshi SS, Gupta K. Mouse Models of Pain in Sickle Cell Disease. ACTA ACUST UNITED AC 2018; 85:e54. [PMID: 30265442 DOI: 10.1002/cpns.54] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sickle cell disease (SCD) is a genetic blood disorder that impacts millions of individuals worldwide. SCD is characterized by debilitating pain that can begin during infancy and may continue to increase throughout life. This pain can be both acute and chronic. A characteristic feature specific to acute pain in SCD occurs during vaso-occlusive crisis (VOC) due to the blockade of capillaries with sickle red blood cells. The acute pain of VOC is intense, unpredictable, and requires hospitalization. Chronic pain occurs in a significant population with SCD. Treatment options for sickle pain are limited and primarily involve the use of opioids. However, long-term opioid use is associated with numerous side effects. Thus, pain management in SCD remains a major challenge. Humanized transgenic mice expressing exclusively human sickle hemoglobin show features of pain and pathobiology similar to that in patients with SCD. Therefore, these mice offer the potential for investigating the mechanisms of pain in SCD and allow for development of novel targeted analgesic therapies. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Varun Sagi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Waogwende L Song-Naba
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Barbara A Benson
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Sonal S Joshi
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
10
|
Human carbonic anhydrase-8 AAV8 gene therapy inhibits nerve growth factor signaling producing prolonged analgesia and anti-hyperalgesia in mice. Gene Ther 2018; 25:297-311. [PMID: 29789638 PMCID: PMC6063772 DOI: 10.1038/s41434-018-0018-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/16/2018] [Accepted: 02/15/2018] [Indexed: 01/02/2023]
Abstract
Carbonic anhydrase-8 (Car8; murine gene symbol) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates neuronal intracellular calcium release. We previously reported that wildtype Car8 overexpression corrects the baseline allodynia and hyperalgesia associated with calcium dysregulation in the waddle (wdl) mouse due to a 19 bp deletion in exon 8 of the Car8 gene. In this report, we provide preliminary evidence that overexpression of the human wildtype ortholog of Car8 (CA8WT), but not the reported CA8 S100P loss-of-function mutation (CA8MT); inhibits nerve growth factor (NGF)-induced phosphorylation of ITPR1, TrkA (NGF high affinity receptor); and ITPR1-mediated cytoplasmic free calcium release in vitro. Additionally, we show that gene-transfer using AAV8-V5-CA8WT viral particles via sciatic nerve injection demonstrates retrograde transport to dorsal root ganglia (DRG) producing prolonged V5-CA8WT expression, pITPR1 and pTrkA inhibition, and profound analgesia and anti-hyperalgesia in male C57BL/6J mice. AAV8-V5-CA8WT mediated overexpression prevented and treated allodynia and hyperalgesia associated with chronic neuropathic pain produced by the spinal nerve ligation (SNL) model. These AAV8-V5-CA8 data provide a proof-of-concept for precision medicine through targeted gene therapy of NGF-responsive somatosensory neurons as a long-acting local analgesic able to prevent and treat chronic neuropathic pain through regulating TrkA signaling, ITPR1 activation, and intracellular free calcium release by ITPR1.
Collapse
|
11
|
Minervini V, Dahal S, France CP. Behavioral Characterization of κ Opioid Receptor Agonist Spiradoline and Cannabinoid Receptor Agonist CP55940 Mixtures in Rats. J Pharmacol Exp Ther 2016; 360:280-287. [PMID: 27903642 DOI: 10.1124/jpet.116.235630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022] Open
Abstract
Pain is a significant clinical problem, and there is a need for more effective treatments with reduced adverse effects that currently limit the use of μ opioid receptor agonists. Synthetic κ opioid receptor agonists have no abuse liability and well-documented antinociceptive effects; however, adverse effects (diuresis, dysphoria) preclude their use in the clinic. Combining κ opioids with nonopioid drugs (cannabinoid receptor agonists) allows for smaller doses of each drug to produce antinociception. This study tested whether a potentially useful effect of the κ opioid receptor agonist 2-(3,4-dichlorophenyl)-N-methyl-N-[(5R,7S,8S)-7-pyrrolidin-1-yl-1-oxaspiro[4.5]decan-8-yl] (spiradoline; antinociception) is selectively enhanced by the cannabinoid receptor agonist 2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol (CP55940). Cumulative dose-response functions were determined in eight male Sprague-Dawley rats for spiradoline (0.032-32.0 mg/kg, i.p.) and CP55940 (0.0032-1.0 mg/kg, i.p.) for antinociception, hypothermia, food-maintained responding, and diuresis. Alone, each drug dose dependently increased tail withdrawal latencies from 50°C water, decreased body temperature by ∼4°C, and eliminated food-maintained responding. Spiradoline, but not CP55940, significantly increased urine output at doses that eliminated responding. Smaller doses of spiradoline and CP55940 in mixtures (3:1, 1:1, and 1:3 spiradoline:CP55940) had effects comparable to those observed with larger doses of either drug administered alone: the interaction was additive for antinociception and additive or greater than additive for hypothermia and food-maintained responding. Collectively, these data fail to provide support for the use of these mixtures for treating acute pain; however, κ opioid/cannabinoid mixtures might be useful for treating pain under other conditions (e.g., chronic pain), but only if the adverse effects of both drugs are not enhanced in mixtures.
Collapse
Affiliation(s)
- Vanessa Minervini
- Departments of Pharmacology (V.M., S.D., C.P.F.) and Psychiatry (C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Sujata Dahal
- Departments of Pharmacology (V.M., S.D., C.P.F.) and Psychiatry (C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Charles P France
- Departments of Pharmacology (V.M., S.D., C.P.F.) and Psychiatry (C.P.F.), University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
12
|
Gilbert MT, Sulik KK, Fish EW, Baker LK, Dehart DB, Parnell SE. Dose-dependent teratogenicity of the synthetic cannabinoid CP-55,940 in mice. Neurotoxicol Teratol 2015; 58:15-22. [PMID: 26708672 DOI: 10.1016/j.ntt.2015.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Potent synthetic cannabinoids (SCBs) are illegally distributed drugs of abuse that are frequently consumed in spite of their adverse consequences. This study was designed to determine if the toxicity observed in adults also extends to the prenatal period by examining the developmental toxicity/teratogenicity of one of these SCBs, CP-55,940, in a mammalian model. First, immunohistochemistry was employed for cannabinoid receptor 1 (CB1) localization within gestational day (GD) 8 mouse embryos; this receptor was identified in the cranial neural plate, suggesting that the endogenous cannabinoid system may be involved in normal development. Based on this information and on previous avian teratogenicity studies, the current investigation focused on cannabinoid exposure during neurulation. The treatment paradigm involved acute i.p. administration of vehicle, 0.0625, 0.125, 0.25, 0.5, 1.0, or 2.0mg/kg CP-55,940 to time-mated C57Bl/6J mice on their 8th day of pregnancy (n>10 litters per treatment group). On GD 17, litters were harvested and examined for numbers of live, dead, or resorbed fetuses, as well as for fetal weight, length, and gross morphological abnormalities. No effect on litter size, fetal weight, or crown rump length was seen at any of the CP-55,940 dosages tested. Major malformations involving the craniofacies and/or eyes were noted in all drug-treated groups. Selected fetuses with craniofacial malformations were histologically sectioned and stained, allowing investigation of brain anomalies. Observed craniofacial, ocular, and brain abnormalities in drug-treated fetuses included lateral and median facial clefts, cleft palate, microphthalmia, iridial coloboma, anophthalmia, exencephaly, holoprosencephaly, and cortical dysplasia. With the most commonly observed defects involving the eyes, the incidence and severity of readily identifiable ocular malformations were utilized as a basis for dose-response analyses. Ocular malformation ratings revealed dose-dependent CP-55,940 teratogenicity within the full range of dosages tested. While examination of additional critical periods and in depth mechanistic studies is warranted, the results of this investigation clearly show the dose-dependent teratogenicity of this SCB.
Collapse
Affiliation(s)
- Marcoita T Gilbert
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Kathleen K Sulik
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599-7255, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, United States
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Lorinda K Baker
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Deborah B Dehart
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599-7178, United States; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC 27599-7255, United States; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599-7545, United States.
| |
Collapse
|
13
|
Chakravarti B, Ravi J, Ganju RK. Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget 2015; 5:5852-72. [PMID: 25115386 PMCID: PMC4171598 DOI: 10.18632/oncotarget.2233] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The pharmacological importance of cannabinoids has been in study for several years. Cannabinoids comprise of (a) the active compounds of the Cannabis sativa plant, (b) endogenous as well as (c) synthetic cannabinoids. Though cannabinoids are clinically used for anti-palliative effects, recent studies open a promising possibility as anti-cancer agents. They have been shown to possess anti-proliferative and anti-angiogenic effects in vitro as well as in vivo in different cancer models. Cannabinoids regulate key cell signaling pathways that are involved in cell survival, invasion, angiogenesis, metastasis, etc. There is more focus on CB1 and CB2, the two cannabinoid receptors which are activated by most of the cannabinoids. In this review article, we will focus on a broad range of cannabinoids, their receptor dependent and receptor independent functional roles against various cancer types with respect to growth, metastasis, energy metabolism, immune environment, stemness and future perspectives in exploring new possible therapeutic opportunities.
Collapse
Affiliation(s)
- Bandana Chakravarti
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India; These authors contributed equally to this work
| | - Janani Ravi
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA; These authors contributed equally to this work
| | - Ramesh K Ganju
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
14
|
Slosky LM, Largent-Milnes TM, Vanderah TW. Use of Animal Models in Understanding Cancer-induced Bone Pain. CANCER GROWTH AND METASTASIS 2015; 8:47-62. [PMID: 26339191 PMCID: PMC4552039 DOI: 10.4137/cgm.s21215] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/14/2015] [Accepted: 06/16/2015] [Indexed: 12/13/2022]
Abstract
Many common cancers have a propensity to metastasize to bone. Although malignancies often go undetected in their native tissues, bone metastases produce excruciating pain that severely compromises patient quality of life. Cancer-induced bone pain (CIBP) is poorly managed with existing medications, and its multifaceted etiology remains to be fully elucidated. Novel analgesic targets arise as more is learned about this complex and distinct pain state. Over the past two decades, multiple animal models have been developed to study CIBP’s unique pathology and identify therapeutic targets. Here, we review animal models of CIBP and the mechanistic insights gained as these models evolve. Findings from immunocompromised and immunocompetent host systems are discussed separately to highlight the effect of model choice on outcome. Gaining an understanding of the unique neuromolecular profile of cancer pain through the use of appropriate animal models will aid in the development of more effective therapeutics for CIBP.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tally M Largent-Milnes
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
15
|
Carbonic anhydrase-8 regulates inflammatory pain by inhibiting the ITPR1-cytosolic free calcium pathway. PLoS One 2015; 10:e0118273. [PMID: 25734498 PMCID: PMC4347988 DOI: 10.1371/journal.pone.0118273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.
Collapse
|
16
|
Hua B, Gao Y, Kong X, Yang L, Hou W, Bao Y. New insights of nociceptor sensitization in bone cancer pain. Expert Opin Ther Targets 2014; 19:227-43. [PMID: 25547644 DOI: 10.1517/14728222.2014.980815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Numerous studies have shown that an intact CNS is required for the conscious perception of cancer-induced bone pain (CIBP) and that changes in the CNS are clearly evident. Accordingly, the blockage of nociceptive stimulus into the CNS can effectively relieve or markedly attenuate CIBP, revealing the clinical implication of the blockage of ongoing peripheral inputs for the control of CIBP. AREAS COVERED In this review, the heterogeneity and excitability of nociceptors in bone are covered. Furthermore, their role in initiating and maintaining CIBP is also described. EXPERT OPINION Developing mechanistic therapies to treat CIBP is a challenge, but they have the potential to fundamentally change our ability to effectively block/relieve CIBP and increase the functional status and quality of life of patients with bone metastasis. Further studies are desperately needed at both the preclinical and clinical levels to determine whether the targets as mentioned in this review are viable and feasible for patient populations.
Collapse
Affiliation(s)
- Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Department of Oncology , Beixiange 5, Xicheng District, Beijing 100053 , China +86 10 88001221 ; +86 10 88001340 ;
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The global burden of cancer pain is enormous and opioids, despite their side effects, remain the primary therapeutic approach. The cause of cancer pain is unknown. Mechanisms driving cancer pain differ from those mechanisms responsible for inflammatory and neuropathic pain. The prevailing hypothesis put forward to explain cancer pain posits that cancers generate and secrete mediators which sensitize and activate primary afferent nociceptors in the cancer microenvironment. Moreover, cancers induce neurochemical reorganization of the spinal cord, which contributes to spontaneous activity and enhanced responsiveness. The purpose of this review, which covers clinical and preclinical studies, is to highlight those peripheral and central mechanisms responsible for cancer pain. The challenges facing neuroscientists and clinicians studying and ultimately treating cancer pain are discussed.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA Bluestone Center for Clinical Research, New York University, NY, USA
| |
Collapse
|
18
|
Uhelski ML, Cain DM, Harding-Rose C, Simone DA. The non-selective cannabinoid receptor agonist WIN 55,212-2 attenuates responses of C-fiber nociceptors in a murine model of cancer pain. Neuroscience 2013; 247:84-94. [PMID: 23673278 DOI: 10.1016/j.neuroscience.2013.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Pain from cancer can be severe, difficult to treat, and greatly diminishes patients' quality of life. It is therefore important to gain new information on the mechanisms of cancer pain and develop new treatment strategies. We have used a murine model of bone cancer pain to investigate underlying peripheral neural mechanisms and novel treatment approaches. In this model, implantation of fibrosarcoma cells into and around the calcaneous bone produces mechanical and thermal hyperalgesia in mice. C-fiber nociceptors in tumor-bearing mice develop spontaneous ongoing activity and sensitization to thermal stimuli. However, it is unclear whether sensitization of nociceptors to mechanical stimuli underlies the mechanical hyperalgesia seen in tumor-bearing mice. We therefore examined responses of C-fiber nociceptors to suprathreshold mechanical stimuli in tumor-bearing mice and found they did not differ from those of C-nociceptors in control mice. Thus, sensitization of C-fiber nociceptors to mechanical stimulation does not appear to underlie tumor-evoked mechanical hyperalgesia in this murine model of bone cancer pain. We also examined the effect of the non-selective cannabinoid receptor agonist, WIN 55,212-2, on spontaneous activity and responses evoked by mechanical stimuli of C-fiber nociceptors innervating the tumor-bearing paw. Selective CB1 and CB2 antagonists were administered to determine the contribution of each receptor subtype to the effects of WIN 55,212-2. Intraplantar administration of WIN 55,212-2 attenuated spontaneous discharge and responses evoked by mechanical stimulation of C-fiber nociceptors. These effects were inhibited by prior intraplantar administration of selective CB1 (AM281) or CB2 (AM630) receptor antagonists but not by vehicle. These results indicate that activation of either CB1 or CB2 receptors reduced the spontaneous activity of C-fiber nociceptors associated with tumor growth as well as their evoked responses. Our results provide further evidence that activation of peripheral cannabinoid receptors may be a useful target for the treatment of cancer pain.
Collapse
Affiliation(s)
- M L Uhelski
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55447, United States
| | | | | | | |
Collapse
|
19
|
Pharmacological effects of cannabinoids on the reference and working memory functions in mice. Psychopharmacology (Berl) 2013; 225:483-94. [PMID: 22903389 DOI: 10.1007/s00213-012-2834-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE Evidence indicates cannabinoid receptor agonists impair performance in procedures to assess memory that may also be confounded by motivational or motor effects, both of which occur with cannabinoids. Thus, convergence of evidence from a variety of procedures that differ in motivation, attention, arousal and response requirements, but share a common reliance on memory, is required. There are no current reports on cannabinoid effects on mice tested in the radial arm maze. OBJECTIVES The objective was to determine the effects of the cannabinoid agonist CP 55940 and the dependence of any such effects on the CB1 receptor using the CB1 receptor antagonist SR 141716A on two strains of mice in the eight-arm radial maze procedure. METHODS Male C57BL/6J (N = 36) and C3H/HEJ (N = 12) mice were trained to a criterion and then were treated (IP) with vehicle + vehicle, SR 141716A + vehicle, vehicle + CP 55940 and SR 141716A + CP 55940 in a fully balanced mixed design prior to further tests in the maze. Reference (long-term) and working (short-term) memory were assessed. RESULTS CP 55940 impaired performance of the reference memory task in the C57BL/6J strain but not the C3H/HEJ strain; SR 141716A reversed the effect of CP 55940 on these measures. CP 55940 also increased working memory errors in the C57BL/6J mice only, which was not affected by SR 141716A. CONCLUSION The present study provides evidence for a strain-specific effect of a dose of CP 55940 on reference memory. While the cannabinoid agonist also impaired working memory in one strain, this effect was apparently not mediated by CB1 receptors.
Collapse
|
20
|
Cui JH, Ju J, Yoon MH. Pharmacology of Cannabinoid Receptor Agonists and a Cyclooxygenase-2 Inhibitor in Rat Bone Tumor Pain. Pharmacology 2013; 92:150-7. [DOI: 10.1159/000354296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
|
21
|
Ramos JA, Bianco FJ. The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications. Indian J Urol 2012; 28:9-14. [PMID: 22557710 PMCID: PMC3339795 DOI: 10.4103/0970-1591.94942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is a global public health problem, and it is the most common cancer in American men and the second cause for cancer-related death. Experimental evidence shows that prostate tissue possesses cannabinoid receptors and their stimulation results in anti-androgenic effects. To review currently relevant findings related to effects of cannabinoid receptors in prostate cancer. PubMed search utilizing the terms “cannabis,” “cannabinoids,” “prostate cancer,” and “cancer pain management,” giving preference to most recent publications was done. Articles identified were screened for their relevance to the field of prostate cancer and interest to both urologist and pain specialists. Prostate cancer cells possess increased expression of both cannabinoid 1 and 2 receptors, and stimulation of these results in decrease in cell viability, increased apoptosis, and decreased androgen receptor expression and prostate-specific antigen excretion. It would be of interest to conduct clinical studies utilizing cannabinoids for patients with metastatic prostate cancer, taking advantage not only of its beneficial effects on prostate cancer but also of their analgesic properties for bone metastatic cancer pain.
Collapse
Affiliation(s)
- Juan A Ramos
- Universidad de Carabobo, School of Health Sciences, Bárbula, Venezuela
| | | |
Collapse
|
22
|
Zheng Q, Fang D, Cai J, Wan Y, Han JS, Xing GG. Enhanced excitability of small dorsal root ganglion neurons in rats with bone cancer pain. Mol Pain 2012; 8:24. [PMID: 22472208 PMCID: PMC3379961 DOI: 10.1186/1744-8069-8-24] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 04/03/2012] [Indexed: 01/06/2023] Open
Abstract
Background Primary and metastatic cancers that affect bone are frequently associated with severe and intractable pain. The mechanisms underlying the development of bone cancer pain are largely unknown. The aim of this study was to determine whether enhanced excitability of primary sensory neurons contributed to peripheral sensitization and tumor-induced hyperalgesia during cancer condition. In this study, using techniques of whole-cell patch-clamp recording associated with immunofluorescent staining, single-cell reverse-transcriptase PCR and behavioral test, we investigated whether the intrinsic membrane properties and the excitability of small-sized dorsal root ganglion (DRG) neurons altered in a rat model of bone cancer pain, and whether suppression of DRG neurons activity inhibited the bone cancer-induced pain. Results Our present study showed that implantation of MRMT-1 tumor cells into the tibial canal in rats produced significant mechanical and thermal hyperalgesia in the ipsilateral hind paw. Moreover, implantation of tumor cells provoked spontaneous discharges and tonic excitatory discharges evoked by a depolarizing current pulse in small-sized DRG neurons. In line with these findings, alterations in intrinsic membrane properties that reflect the enhanced neuronal excitability were observed in small DRG neurons in bone cancer rats, of which including: 1) depolarized resting membrane potential (RMP); 2) decreased input resistance (Rin); 3) a marked reduction in current threshold (CT) and voltage threshold (TP) of action potential (AP); 4) a dramatic decrease in amplitude, overshot, and duration of evoked action potentials as well as in amplitude and duration of afterhyperpolarization (AHP); and 5) a significant increase in the firing frequency of evoked action potentials. Here, the decreased AP threshold and increased firing frequency of evoked action potentials implicate the occurrence of hyperexcitability in small-sized DRG neurons in bone cancer rats. In addiotion, immunofluorescent staining and single-cell reverse-transcriptase PCR revealed that in isolated small DRG neurons, most neurons were IB4-positive, or expressed TRPV1 or CGRP, indicating that most recorded small DRG neurons were nociceptive neurons. Finally, using in vivo behavioral test, we found that blockade of DRG neurons activity by TTX inhibited the tumor-evoked mechanical allodynia and thermal hyperalgesia in bone cancer rats, implicating that the enhanced excitability of primary sensory neurons underlied the development of bone cancer pain. Conclusions Our present results suggest that implantation of tumor cells into the tibial canal in rats induces an enhanced excitability of small-sized DRG neurons that is probably as results of alterations in intrinsic electrogenic properties of these neurons. Therefore, alterations in intrinsic membrane properties associated with the hyperexcitability of primary sensory neurons likely contribute to the peripheral sensitization and tumor-induced hyperalgesia under cancer condition.
Collapse
Affiliation(s)
- Qin Zheng
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Cain DM, Vang D, Simone DA, Hebbel RP, Gupta K. Mouse models for studying pain in sickle disease: effects of strain, age, and acuteness. Br J Haematol 2011; 156:535-44. [PMID: 22171826 DOI: 10.1111/j.1365-2141.2011.08977.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The clinical management of severe pain associated with sickle cell disease (SCD) remains challenging. Development of an optimal therapy would be facilitated by use of murine model(s) with varying degrees of sickling and pain tests that are most sensitive to vaso-occlusion. We found that young (≤3 months old) NY1DD and S+S(Antilles) mice (having modest and moderate sickle phenotype, respectively) exhibited evidence of deep tissue/musculoskeletal pain. Deep tissue pain and cold sensitivity in S+S(Antilles) mice increased significantly with both age and incitement of hypoxia/reoxygenation (H/R). C57/BL6 mice (genetic background strain of NY1DD and S+S(Antilles) ) were hypersensitive to mechanical and heat stimuli, even without the sickle transgene. H/R treatment of HbSS-BERK mice with severe sickle phenotype resulted in significantly decreased withdrawal thresholds and enhanced mechanical, thermal and deep tissue hyperalgesia. Deep hyperalgesia incited by H/R in HbSS-BERK was ameliorated by CP 55940, a cannabinoid receptor agonist. Thus, assessment of deep tissue pain appears to be the most sensitive measure for studying pain mechanisms across mouse models of SCD, and HbSS-BERK mice may be the best model for vaso-occlusive and chronic pain of SCD.
Collapse
Affiliation(s)
- David M Cain
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
24
|
CB1 and CB2 receptor agonists promote analgesia through synergy in a murine model of tumor pain. Behav Pharmacol 2011; 22:607-16. [PMID: 21610490 DOI: 10.1097/fbp.0b013e3283474a6d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In light of the adverse side-effects of opioids, cannabinoid receptor agonists may provide an effective alternative for the treatment of cancer pain. This study examined the potency and efficacy of synthetic CB1 and CB2 receptor agonists in a murine model of tumor pain. Intraplantar injection of the CB1 receptor agonist arachidonylcyclopropylamide (ED(50) of 18.4 μg) reduced tumor-related mechanical hyperalgesia by activation of peripheral CB1 but not CB2 receptors. Similar injection of the CB2 receptor agonist AM1241 (ED50 of 19.5 μg) reduced mechanical hyperalgesia by activation of peripheral CB2 but not CB1 receptors. Both agonists had an efficacy comparable with that of morphine (intraplantar), but their analgesic effects were independent of opioid receptors. Isobolographic analysis of the coinjection of arachidonylcyclopropylamide and AM1241 determined that the CB1 and CB2 receptor agonists interacted synergistically to reduce mechanical hyperalgesia in the tumor-bearing paw. These data extend our previous findings that the peripheral cannabinoid receptors are a promising target for the management of cancer pain and mixed cannabinoid receptor agonists may have a therapeutic advantage over selective agonists.
Collapse
|
25
|
Guindon J, Hohmann AG. The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol 2011; 163:1447-63. [PMID: 21410463 PMCID: PMC3165955 DOI: 10.1111/j.1476-5381.2011.01327.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer. This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed. Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients. Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted.
Collapse
Affiliation(s)
- Josée Guindon
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
26
|
Gu X, Mei F, Liu Y, Zhang R, Zhang J, Ma Z. Intrathecal administration of the cannabinoid 2 receptor agonist JWH015 can attenuate cancer pain and decrease mRNA expression of the 2B subunit of N-methyl-D-aspartic acid. Anesth Analg 2011; 113:405-11. [PMID: 21519057 DOI: 10.1213/ane.0b013e31821d1062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cannabinoids bind to cannabinoid receptors type 1 and 2 and produce analgesia in several pain models, but central side effects from cannabinoid 1 receptors limit their clinical use. Because of the pain-relieving effects of cannabinoid 2 (CB2) receptor agonists in inflammation pain, incision pain, and neuropathic pain models, we tested whether spinal CB2 receptor activation would induce antihyperalgesia in cancer pain. Our previous study showed that the 2B subunit of N-methyl-D-aspartate (NR2B) receptor in the spinal cord participates in bone cancer pain in mice. In the present study, we also tested the cannabinoid effect on the expression of NR2B. METHODS Seventy-two mice were randomly allocated to 7 different groups: (1) control; (2) sham and tumor-bearing mice, which include (3) V; (4) J1; (5) J2; (6) J3; and (7) J4. In the groups of tumor-bearing mice, C(3)H/Hej mice were implanted with NCTC2472 fibrosarcoma cells into the femur bone to induce bone cancer-related pain behaviors. The sham mice were implanted with minimal essential medium α modification, whereas the control mice received no injection. On day 14 after implantation, tumor-invoked tactile allodynia and thermal hyperalgesia were assessed. Tumor-bearing mice were assigned to intrathecal administration of the CB2 receptor agonist JWH015 (0.5, 1, and 2 μg), CB2 receptor antagonist AM630 (2 μg), or vehicle, and the assessment of withdrawal thresholds was then performed. Tactile allodynia and thermal hyperalgesia were assessed before administration and at 1 hour, 6 hours, 12 hours, 24 hours, 48 hours, and 72 hours after administration. Spinal NR2B activation of all tumor-bearing mice at 12 hours and 72 hours were determined by reverse transcription-polymerase chain reaction analyses. RESULTS At day 14 after operation, tumor-evoked tactile allodynia and thermal hyperalgesia were higher in tumor-bearing mice compared with the sham and control mice. Intrathecal administration of JWH015 dose dependently attenuated tumor-evoked tactile allodynia and thermal hyperalgesia but this effect was prevented by intrathecal administration of AM630 30 minutes before. The mRNA expression of NR2B was similar to this result. At 12 hours after administration, the expression of NR2B mRNA in the spinal cord was lower in mice that were administered JWH015 compared with the vehicle group. However, this phenomenon was reversed in the group that was preadministered AM630. CONCLUSION These data indicated that intrathecal administration of cannabinoid receptor agonists might relieve cancer pain, probably by reducing NR2B-dependent activity in the spinal cord. These results also suggested that cannabinoids might be a useful alternative or adjunct therapy for relieving cancer pain.
Collapse
Affiliation(s)
- Xiaoping Gu
- Department of Anesthesiology, Drum-Tower Hospital, Medical College of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
27
|
Khasabova IA, Chandiramani A, Harding-Rose C, Simone DA, Seybold VS. Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain. Pharmacol Res 2011; 64:60-7. [PMID: 21440630 DOI: 10.1016/j.phrs.2011.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 01/01/2023]
Abstract
Metastatic and primary bone cancers are usually accompanied by severe pain that is difficult to manage. In light of the adverse side effects of opioids, manipulation of the endocannabinoid system may provide an effective alternative for the treatment of cancer pain. The present study determined that a local, peripheral increase in the endocannabinoid 2-arachidonoyl glycerol (2-AG) reduced mechanical hyperalgesia evoked by the growth of a fibrosarcoma tumor in and around the calcaneous bone. Intraplantar (ipl) injection of 2-AG attenuated hyperalgesia (ED(50) of 8.2 μg) by activation of peripheral CB2 but not CB1 receptors and had an efficacy comparable to that of morphine. JZL184 (10 μg, ipl), an inhibitor of 2-AG degradation, increased the local level of 2-AG and mimicked the anti-hyperalgesic effect of 2-AG, also through a CB2 receptor-dependent mechanism. These effects were accompanied by an increase in CB2 receptor protein in plantar skin of the tumor-bearing paw as well as an increase in the level of 2-AG. In naïve mice, intraplantar administration of the CB2 receptor antagonist AM630 did not alter responses to mechanical stimuli demonstrating that peripheral CB2 receptor tone does not modulate mechanical sensitivity. These data extend our previous findings with anandamide in the same model and suggest that the peripheral endocannabinoid system is a promising target for the management of cancer pain.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | | | |
Collapse
|
28
|
McDougall JJ. Peripheral analgesia: Hitting pain where it hurts. Biochim Biophys Acta Mol Basis Dis 2011; 1812:459-67. [DOI: 10.1016/j.bbadis.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 12/09/2010] [Accepted: 12/15/2010] [Indexed: 10/18/2022]
|
29
|
Abstract
Ongoing and breakthrough pain is a primary concern for the cancer patient. Although the etiology of cancer pain remains unclear, animal models of cancer pain have allowed investigators to unravel some of the cancer-induced neuropathologic processes that occur in the region of tumor growth and in the dorsal horn of the spinal cord. Within the cancer microenvironment, cancer and immune cells produce and secrete mediators that activate and sensitize primary afferent nociceptors. Pursuant to these peripheral changes, nociceptive secondary neurons in spinal cord exhibit increased spontaneous activity and enhanced responsiveness to three modes of noxious stimulation: heat, cold, and mechanical stimuli. As our understanding of the peripheral and central mechanisms that underlie cancer pain improves, targeted analgesics for the cancer patient will likely follow.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of California San Francisco, USA.
| | | | | | | |
Collapse
|
30
|
Shen L, Yang XJ, Qian W, Hou XH. The role of peripheral cannabinoid receptors type 1 in rats with visceral hypersensitivity induced by chronic restraint stress. J Neurogastroenterol Motil 2010; 16:281-90. [PMID: 20680167 PMCID: PMC2912121 DOI: 10.5056/jnm.2010.16.3.281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background/Aims This study was designed to investigate the possibility that the enhanced nociceptive responsiveness associated with canabonoid type 1 receptors (CB1Rs) and identify its role in mediating visceral hypersensitivity induced by chronic restraint stress. Methods Rats were exposed to daily partial restraint stress or sham partial restraint stress with intraperitoneal injection of the vehicle, CB1R agonist or antagonist for 4 consecutive days. We tested the visceromotor reflex to colorectal distention at day 0 and 5. Reverse-transcription polymerase chain reaction and Western blot were used to assess the expression of CB1Rs. Results Intraperitoneal CB1 agonist (ACEA) injection significantly diminished (p < 0.05) the enhanced visceromotor reflex to colorectal distention at day 5 in stressed rats. Change in electromyogram response after ACEA over baseline, at pressure of 40 mmHg (+13.3 ± 2.2), 60 mmHg (+15.3 ± 2.8) and 80 mmHg (+17.0 ± 4.0) were much lower than in the control animals, which were +35.9 ± 5.1, +41.1 ± 6.3 and +54.1 ± 9.6, respectively. Whereas, CB1 antagonist (SR141716A) had an opposite effect. Compared with control group, the change in electromyogram response after SR141716A over baseline was significantly enhanced (p < 0.05) for the distending pressure of 40 mmHg (+56.0 ± 10.3), 60 mmHg (+74.6 ± 12.3) and 80 mmHg (+82.9 ± 11.0), respectively. Reverse-transcription polymerase chain reaction and Western blotting demonstrated the stress-induced up-regulation of colon CB1Rs (p < 0.05). Conclusions Our results suggest there is a key contribution of peripheral CB1Rs involved in the maintenance of visceral hyperalgesia after repeated restraint stress, providing a novel mechanism for development of peripheral visceral sensitization.
Collapse
Affiliation(s)
- Lei Shen
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
31
|
Pain-related behaviors and neurochemical alterations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood 2010; 116:456-65. [PMID: 20304807 DOI: 10.1182/blood-2010-01-260372] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sickle cell disease causes severe pain. We examined pain-related behaviors, correlative neurochemical changes, and analgesic effects of morphine and cannabinoids in transgenic mice expressing human sickle hemoglobin (HbS). Paw withdrawal threshold and withdrawal latency (to mechanical and thermal stimuli, respectively) and grip force were lower in homozygous and hemizygous Berkley mice (BERK and hBERK1, respectively) compared with control mice expressing human hemoglobin A (HbA-BERK), indicating deep/musculoskeletal and cutaneous hyperalgesia. Peripheral nerves and blood vessels were structurally altered in BERK and hBERK1 skin, with decreased expression of mu opioid receptor and increased calcitonin gene-related peptide and substance P immunoreactivity. Activators of neuropathic and inflammatory pain (p38 mitogen-activated protein kinase, STAT3, and mitogen-activated protein kinase/extracellular signal-regulated kinase) showed increased phosphorylation, with accompanying increase in COX-2, interleukin-6, and Toll-like receptor 4 in the spinal cord of hBERK1 compared with HbA-BERK. These neurochemical changes in the periphery and spinal cord may contribute to hyperalgesia in mice expressing HbS. In BERK and hBERK1, hyperalgesia was markedly attenuated by morphine and cannabinoid receptor agonist CP 55940. We show that mice expressing HbS exhibit characteristics of pain observed in sickle cell disease patients, and neurochemical changes suggestive of nociceptor and glial activation. Importantly, cannabinoids attenuate pain in mice expressing HbS.
Collapse
|
32
|
Curto-Reyes V, Llames S, Hidalgo A, Menéndez L, Baamonde A. Spinal and peripheral analgesic effects of the CB2 cannabinoid receptor agonist AM1241 in two models of bone cancer-induced pain. Br J Pharmacol 2010; 160:561-73. [PMID: 20233215 DOI: 10.1111/j.1476-5381.2009.00629.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of CB(2) receptors induces analgesia in experimental models of chronic pain. The present experiments were designed to study whether the activation of peripheral or spinal CB(2) receptors relieves thermal hyperalgesia and mechanical allodynia in two models of bone cancer pain. EXPERIMENTAL APPROACH NCTC 2472 osteosarcoma or B16-F10 melanoma cells were intratibially inoculated to C3H/He and C57BL/6 mice. Thermal hyperalgesia was assessed by the unilateral hot plate test and mechanical allodynia by the von Frey test. AM1241 (CB(2) receptor agonist), AM251 (CB(1) receptor antagonist), SR144528 (CB(2) receptor antagonist) and naloxone were used. CB(2) receptor expression was measured by Western blot. KEY RESULTS AM1241 (0.3-10 mg.kg(-1)) abolished thermal hyperalgesia and mechanical allodynia in both tumour models. The antihyperalgesic effect was antagonized by subcutaneous, intrathecal or peri-tumour administration of SR144528. In contrast, the antiallodynic effect was inhibited by systemic or intrathecal, but not peri-tumour, injection of SR144528. The effects of AM1241 were unchanged by AM251 but were prevented by naloxone. No change in CB(2) receptor expression was found in spinal cord or dorsal root ganglia. CONCLUSIONS AND IMPLICATIONS Spinal CB(2) receptors are involved in the antiallodynic effect induced by AM1241 in two neoplastic models while peripheral and spinal receptors participate in the antihyperalgesic effects. Both effects were mediated by endogenous opiates. The use of drugs that activate CB(2) receptors could be a useful strategy to counteract bone cancer-induced pain symptoms.
Collapse
Affiliation(s)
- V Curto-Reyes
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
33
|
Elikottil J, Gupta P, Gupta K. The analgesic potential of cannabinoids. J Opioid Manag 2009; 5:341-357. [PMID: 20073408 PMCID: PMC3728280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Historically and anecdotally cannabinoids have been used as analgesic agents. In recent years, there has been an escalating interest in developing cannabis-derived medications to treat severe pain. This review provides an overview of the history of cannabis use in medicine, cannabinoid signaling pathways, and current data from preclinical as well as clinical studies on using cannabinoids as potential analgesic agents. Clinical and experimental studies show that cannabis-derived compounds act as antiemetic, appetite modulating, and analgesic agents. However, the efficacy of individual products is variable and dependent upon the route of administration. As opioids are the only therapy for severe pain, analgesic ability of cannabinoids may provide a much-needed alternative to opioids. Moreover, cannabinoids act synergistically with opioids and act as opioid sparing agents, allowing lower doses and fewer side effects from chronic opioid therapy. Thus, rational use of cannabis-based medications deserves serious consideration to alleviate the suffering of patients due to severe pain.
Collapse
Affiliation(s)
| | - Pankaj Gupta
- Department of Medicine, Minneapolis VA Medical Center
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation and the Vascular Biology Center, University of Minnesota
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Historically cannabinoids have been used for both therapy and recreation, yet the elucidation of the endocannabinoid system and their chemistry has been relatively recent. Prohibition of cannabis has meant few clinical trials, especially in cancer pain. This review will consider previous animal and clinical data and assess more recent investigations of clinical effectiveness of cannabinoids in pain and specifically cancer pain. RECENT FINDINGS Meta-analyses based on historical studies question the utility of cannabinoids in pain due to modest analgesia and problematic central side effects. However, there has been a resurgence in clinical trials of cannabis extracts and analogues. New data have contributed to the understanding of how cannabinoids work and proposed how to obtain analgesia unfettered by adverse effects. Moreover, recent clinical trials have demonstrated the current role of cannabinoids may be to attain small but significant benefit in refractory chronic and cancer pain. SUMMARY Cannabinoids may be a useful addition to current analgesic treatments. The evidence supports a possible role for cannabinoids in refractory cancer pain. However, to realize the full potential of cannabinoids suggested by preclinical data, it is likely that peripheral CB1 or CB2 receptors or modulation of endocannabinoids will have to be targeted to achieve analgesia without dose limiting side effects.
Collapse
|
35
|
A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 2008; 28:11141-52. [PMID: 18971457 DOI: 10.1523/jneurosci.2847-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumors in bone are associated with pain in humans. Data generated in a murine model of bone cancer pain suggest that a disturbance of local endocannabinoid signaling contributes to the pain. When tumors formed after injection of osteolytic fibrosarcoma cells into the calcaneus bone of mice, cutaneous mechanical hyperalgesia was associated with a decrease in the level of anandamide (AEA) in plantar paw skin ipsilateral to tumors. The decrease in AEA occurred in conjunction with increased degradation of AEA by fatty acid amide hydrolase (FAAH). Intraplantar injection of AEA reduced the hyperalgesia, and intraplantar injection of URB597, an inhibitor of FAAH, increased the local level of AEA and also reduced hyperalgesia. An increase in FAAH mRNA and enzyme activity in dorsal root ganglia (DRG) L3-L5 ipsilateral to the affected paw suggests DRG neurons contribute to the increased FAAH activity in skin in tumor-bearing mice. Importantly, the anti-hyperalgesic effects of AEA and URB597 were blocked by a CB1 receptor antagonist. Increased expression of CB1 receptors by DRG neurons ipsilateral to tumor-bearing limbs may contribute to the anti-hyperalgesic effect of elevated AEA levels. Furthermore, CB1 receptor protein-immunoreactivity as well as inhibitory effects of AEA and URB597 on the depolarization-evoked Ca(2+) transient were increased in small DRG neurons cocultured with fibrosarcoma cells indicating that fibrosarcoma cells are sufficient to evoke phenotypic changes in AEA signaling in DRG neurons. Together, the data provide evidence that manipulation of peripheral endocannabinoid signaling is a promising strategy for the management of bone cancer pain.
Collapse
|
36
|
Hamamoto DT, Khasabov SG, Cain DM, Simone DA. Tumor-evoked sensitization of C nociceptors: a role for endothelin. J Neurophysiol 2008; 100:2300-11. [PMID: 18684911 DOI: 10.1152/jn.01337.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary and metastatic cancers that effect bone are frequently associated with pain. Sensitization of primary afferent C nociceptors innervating tissue near the tumor likely contributes to the chronic pain and hyperalgesia accompanying this condition. This study focused on the role of the endogenous peptide endothelin-1 (ET-1) as a potential peripheral algogen implicated in the process of cancer pain. Electrophysiological response properties, including ongoing activity and responses evoked by heat stimuli, of C nociceptors were recorded in vivo from the tibial nerve in anesthetized control mice and mice exhibiting mechanical hyperalgesia following implantation of fibrosarcoma cells into and around the calcaneus bone. ET-1 (100 microM) injected into the receptive fields of C nociceptors innervating the plantar surface of the hind paw evoked an increase in ongoing activity in both control and tumor-bearing mice. Moreover, the selective ETA receptor antagonist, BQ-123 (3 mM), attenuated tumor-evoked ongoing activity in tumor-bearing mice. Whereas ET-1 produced sensitization of C nociceptors to heat stimuli in control mice, C nociceptors in tumor-bearing mice were sensitized to heat, and their responses were not further increased by ET-1. Importantly, administration of BQ-123 attenuated tumor-evoked sensitization of C nociceptors to heat. We conclude that ET-1 at the tumor site contributes to tumor-evoked excitation and sensitization of C nociceptors through an ETA receptor mediated mechanism.
Collapse
Affiliation(s)
- Darryl T Hamamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota, 515 Delaware St. SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
37
|
Potenzieri C, Harding-Rose C, Simone DA. The cannabinoid receptor agonist, WIN 55, 212-2, attenuates tumor-evoked hyperalgesia through peripheral mechanisms. Brain Res 2008; 1215:69-75. [PMID: 18486111 DOI: 10.1016/j.brainres.2008.03.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that cannabinoids can attenuate various types of pain and hyperalgesia through peripheral mechanisms. The development of rodent cancer pain models has provided the opportunity to investigate novel approaches to treat this common form of pain. In the present study, we examined the ability of peripherally administered cannabinoids to attenuate tumor-evoked mechanical hyperalgesia in a murine model of cancer pain. Unilateral injection of osteolytic fibrosarcoma cells into and around the calcaneus bone resulted in tumor formation and mechanical hyperalgesia in the injected hindpaw. Mechanical hyperalgesia was defined as an increase in the frequency of paw withdrawals to a suprathreshold von Frey filament (3.4 mN) applied to the plantar surface of the hindpaw. WIN 55, 212-2 (1.5 to 10 microg) injected subcutaneously into the tumor-bearing hindpaw produced a dose-dependent decrease in paw withdrawal frequencies to suprathreshold von Frey filament stimulation. Injection of WIN 55,212-2 (10 microg) into the contralateral hindpaw did not decrease paw withdrawal frequencies in the tumor-bearing hindpaw. Injection of the highest antihyperalgesic dose of WIN 55,212-2 (10 microg) did not produce catalepsy as determined by the bar test. Co-administration of WIN 55,212-2 with either cannabinoid 1 (AM251) or cannabinoid 2 (AM630) receptor antagonists attenuated the antihyperalgesic effects of WIN 55, 212-2. In conclusion, peripherally administered WIN 55,212-2 attenuated tumor-evoked mechanical hyperalgesia by activation of both peripheral cannabinoid 1 and cannabinoid 2 receptors. These results suggest that peripherally-administered cannabinoids may be effective in attenuating cancer pain.
Collapse
Affiliation(s)
- Carl Potenzieri
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
38
|
Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology 2008; 54:767-75. [PMID: 18289614 DOI: 10.1016/j.neuropharm.2008.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/03/2008] [Accepted: 01/07/2008] [Indexed: 01/29/2023]
Abstract
A number of previous reviews have very eloquently summarized pain models and endpoints in animals. Many of these reviews also discuss how animal models have enhanced our understanding of pain mechanisms and make forward-looking statements as to our proximity to the development of effective mechanism-based treatments. While a number of reports cite failures of animal pain models to predict efficacy in humans, few have actually analyzed where these models have been successful. This review gives a brief overview of those successes, both backward, providing validation of the models, and forward, predicting clinical efficacy. While the largest dataset is presented on treatments for neuropathic pain, this review also discusses acute and inflammatory pain models. Key to prediction of clinical efficacy is a lack of side effects, which may incorrectly suggest efficacy in animals and an understanding of how pharmacokinetic parameters translate from animals to man. As such, this review focuses on a description of the pharmacokinetic-pharmacodynamic relationship for a number of pain treatments that are effective in both animals and humans. Finally we discuss where and why animal pain models have failed and summarize improvements to pain models that should expand and improve their predictive power.
Collapse
Affiliation(s)
- G T Whiteside
- Neuroscience Discovery Research, Wyeth Research, CN 8000, Princeton, NJ 08543, USA.
| | | | | |
Collapse
|
39
|
Guerrero AV, Quang P, Dekker N, Jordan RCK, Schmidt BL. Peripheral cannabinoids attenuate carcinoma-induced nociception in mice. Neurosci Lett 2008; 433:77-81. [PMID: 18242856 DOI: 10.1016/j.neulet.2007.12.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/10/2007] [Accepted: 12/19/2007] [Indexed: 01/22/2023]
Abstract
We investigated the cannabinoid receptor (CBr) agonists Win55,212-2 (non-selective) and AM1241 (CBr2 selective) and the peripheral receptor (CBr1) in carcinoma-induced pain using a mouse model. Tumors were induced in the hind paw of female mice by local injection of a human oral squamous cell carcinoma (SCC). Significant pain, as indicated by reduction in withdrawal thresholds in response to mechanical stimulation, began at 4 days after SCC inoculation and lasted to 18 days. Local administration of Win55,212-2 (10 mg/kg) and AM1241 (10 mg/kg) significantly elevated withdrawal thresholds, indicating an antinociceptive effect. Ipsilateral expression of CBr1 protein in L5 DRG was significantly upregulated compared to ipsilateral L4 DRG and in normal tissue. These findings support the suggestion that cannabinoids are capable of producing antinociception in carcinoma-induced pain.
Collapse
Affiliation(s)
- Andre V Guerrero
- UCSF School of Dentistry, University of California, Sa Francisco, CA 94143-0440, United States
| | | | | | | | | |
Collapse
|
40
|
Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res 2007; 1180:7-19. [PMID: 17935703 PMCID: PMC2701262 DOI: 10.1016/j.brainres.2007.08.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize changes in response properties of nociceptive dorsal horn neurons following implantation of fibrosarcoma cells into and around the calcaneus bone, an established model of cancer pain. Extracellular electrophysiological recordings were made from wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons in mice with tumor-evoked hyperalgesia and control mice. WDR and HT neurons were examined for ongoing activity and responses to mechanical, heat, and cold stimuli applied to the plantar surface of the hind paw. Behavioral experiments showed that mice exhibited hyperalgesia to mechanical and heat stimuli applied to their tumor-bearing hind paw. WDR, but not HT, nociceptive dorsal horn neurons in tumor-bearing mice exhibited sensitization to mechanical, heat, and cold stimuli and may contribute to tumor-evoked hyperalgesia. Specifically, the proportion of WDR neurons that exhibited ongoing activity and their evoked discharge rates were greater in tumor-bearing than in control mice. In addition, WDR neurons exhibited lower response thresholds for mechanical and heat stimuli, and increased responses to suprathreshold mechanical, heat, and cold stimuli. Our findings show that sensitization of WDR neurons contributes to cancer pain and supports the notion that the mechanisms underlying cancer pain differ from those that contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Darryl T. Hamamoto
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Catherine Harding-Rose
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| |
Collapse
|
41
|
Depletion of capsaicin-sensitive afferents prevents lamina-dependent increases in spinal N-methyl-D-aspartate receptor subunit 1 expression and phosphorylation associated with thermal hyperalgesia in neuropathic rats. Eur J Pain 2007; 12:552-63. [PMID: 17933570 DOI: 10.1016/j.ejpain.2007.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 08/17/2007] [Accepted: 09/03/2007] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the N-methyl-D-aspartate (NMDA) receptor NR1 subunit (pNR1) in the spinal cord is associated with increased neuronal responsiveness, which underlies the process of central sensitization. Because of the importance of NR1 in central sensitization, the first goal of this study was to examine both time- and lamina-dependent changes in spinal NR1 and pNR1 expression in a chronic constriction injury (CCI) model of neuropathic pain. Increased excitability of capsaicin sensitive primary afferents (CSPAs), which express TRPV1 receptors, also contributes to central sensitization. Thus, we next examined whether the depletion of CSPAs with resiniferatoxin (RTX) modified the change of spinal NR1 and pNR1 expression induced by CCI. Experimental rats were euthanized at 1, 3, 7, 14, and 28 days post-CCI surgery and spinal cords processed for NR1 or pNR1 immunostaining. The number of NR1 or pNR1-immunoreactive neurons was significantly increased in all lamina (I-VI) of the ipsilateral L4/L5 dorsal horn from 1 or 7 days post-CCI, respectively. Pretreatment with RTX (0.3mg/kg, s.c. in the scruff of the neck or intraplantar) 2 days prior to CCI completely prevented induction of thermal hyperalgesia, but not mechanical allodynia in neuropathic rats. Interestingly, RTX treatment significantly attenuated the CCI-induced upregulation of NR1 and pNR1 in spinal laminae I-II and V-VI, but not laminae III-IV as compared with that of vehicle-treated CCI rats. These findings demonstrate that the increased expression of NR1 and pNR1 in spinal laminae I-II and V-VI is dependent on activation of CSPAs, which ultimately contribute to the development of thermal hyperalgesia in neuropathic rats.
Collapse
|
42
|
Lynch JL, Gallus NJ, Ericson ME, Beitz AJ. Analysis of nociception, sex and peripheral nerve innervation in the TMEV animal model of multiple sclerosis. Pain 2007; 136:293-304. [PMID: 17766043 PMCID: PMC2673489 DOI: 10.1016/j.pain.2007.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 06/20/2007] [Accepted: 07/16/2007] [Indexed: 11/21/2022]
Abstract
Although pain was previously not considered an important element of multiple sclerosis (MS), recent evidence indicates that over 50% of MS patients suffer from chronic pain. In the present study, we utilized the Theiler's murine encephalomyelitis virus (TMEV) model of MS to examine whether changes in nociception occur during disease progression and to investigate whether sex influences the development of nociception or disease-associated neurological symptoms. Using the rotarod assay, TMEV infected male mice displayed increased neurological deficits when compared to TMEV infected female mice, which mimics what is observed in human MS. While both male and female TMEV infected mice exhibited thermal hyperalgesia and mechanical allodynia, female mice developed mechanical allodynia at a faster rate and displayed significantly more mechanical allodynia than male mice. Since neuropathic symptoms have been described in MS patients, we quantified sensory nerve fibers in the epidermis of TMEV-infected and non-infected mice to determine if there were alterations in epidermal nerve density. There was a significantly higher density of PGP9.5 and CGRP-immunoreactive axons in the epidermis of TMEV-infected mice versus controls. Collectively these results indicate that the TMEV model is well suited to study the mechanisms of MS-induced nociception and suggest that alterations in peripheral nerve innervation may contribute to MS pain.
Collapse
Affiliation(s)
- Jessica L. Lynch
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Nathan J. Gallus
- Department of Dermatology, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Marna E. Ericson
- Department of Dermatology, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| | - Alvin J. Beitz
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine and School of Medicine, St. Paul, MN, 55108
| |
Collapse
|