1
|
Watts SW, Garver H, Morisset-Lopez S, Suzenet F, Fink GD. β-arrestin biased signaling is not involved in the hypotensive actions of 5-HT 7 receptor stimulation: use of Serodolin. Pharmacol Res 2024; 199:107047. [PMID: 38157998 DOI: 10.1016/j.phrs.2023.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The 5-hydroxytryptamine 7 receptor (5-HT7) is necessary for 5-HT to cause a concentration-dependent vascular relaxation and hypotension. 5-HT7 is recognized as having biased signaling, transduced through either Gs or β -arrestin. It is unknown whether 5-HT7 signals in a biased manner to cause vasorelaxation/hypotension. We used the recently described β-arrestin selective 5-HT7 receptor agonist serodolin to test the hypothesis that 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway. Isolated abdominal aorta (no functional 5-HT7) and vena cava (functional 5-HT7) from male Sprague Dawley rats were used in isometric contractility studies. Serodolin (1 nM - 10 μM) did not change baseline tone of isolated tissues and did not relax the endothelin-1 (ET-1)-contracted vena cava or aorta. In the aorta, serodolin acted as a 5-HT2A receptor antagonist, evidenced by a rightward shift in 5-HT-induced concentration response curve [pEC50 5-HT [M]: Veh = 5.2 +/- 0.15; Ser (100 nM) = 4.49 +/- 0.08; p < 0.05]. In the vena cava, serodolin acted as a 5-HT7 receptor antagonist, shifting the concentration response curve to 5-HT left and upward (%10 μM NE contraction; Veh = 3.2 +/- 1.7; Ser (10 nM) = 58 +/- 11; p < 0.05) and blocking relaxation of pre-contracted tissue to the 5-HT1A/7 agonist 5-carboxamidotryptamine. In anesthetized rats, 5-HT or serodolin was infused at 5, 25 and 75 μg/kg/min, iv. Though 5-HT caused concentration-dependent depressor responses, serodolin caused an insignificant small depressor responses at all three infusion rates. With the final dose of serodolin on board, 5-HT was unable to reduce blood pressure. Collectively the data indicate that serodolin functions as a 5-HT7 antagonist with additional 5-HT2A blocking properties. 5-HT7 activation does not cause vascular relaxation or hypotension via the β -arrestin pathway.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA.
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | - Severine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS, Unité Propre de Recherche 4301, Université d'Orléans, Orléans Cedex 2 45071 France
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS UMR 7311, rue de Chartres, 45067 Orléans, France
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| |
Collapse
|
2
|
Salkin H, Satir-Basaran G, Korkmaz S, Burcin Gonen Z, Erdem Basaran K. Mesenchymal stem cell-derived conditioned medium and Methysergide give rise to crosstalk inhibition of 5-HT2A and 5-HT7 receptors in neuroblastoma cells. Brain Res 2023; 1808:148354. [PMID: 36997105 DOI: 10.1016/j.brainres.2023.148354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/04/2022] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
OBJECTIVE (s): We aimed to investigate the effects of mesenchymal stem cell secretome and methysergide combination on 5-hydroxytryptamine 2A, (5-HT2AR), 5-hydroxytryptamine 7 (5-HT7R), adenosine 2A (A2AR) receptors and CD73 on neuroblastoma cell line and how they affect biological characteristics. Methysergide was used as a serotonin antagonist on the neuroblastoma cells. MATERIALS AND METHODS Human dental pulp-derived stem cells (hDPSCs) used to obtain conditioned medium (CM). Methysergide drug was prepared in CM and applied to neuroblastoma cells. Analysis of 5-HT7R, 5-HT2AR, A2AR and CD73 expressions was performed by western blot and immunofluorescence staining. Total apoptosis, mitochondrial membrane depolarization, Ki-67 proliferation test, viability analysis, DNA damage and cell cycle analysis were performed in accordance with the product procedure by using biological activity test kits. RESULTS Our results showed that neuroblastoma cancer cells are normally on the Gs signaling axis via the serotonin 7 receptor and the adenosine 2A receptor. CM and Methysergide inhibited the 5-HT7 and A2A receptor levels in neuroblastoma cells. We found that CM and methysergide formed crosstalk inhibition between 5-HT2AR, 5-HT7R, A2AR and CD73. CM and Methysergide increased the total apoptosis in neuroblastoma cells and induced the mitochondrial membrane depolarization. CM and Methysergide induced the DNA damage and arrested in G0/G1 phase of cell cycle of the neuroblastoma cells. CONCLUSION These findings suggest that the combination of CM and methysergite may exert a therapeutic effect on neuroblastoma cancer cells, and future in vivo studies may be important in area of neuroblastoma research to support the findings.
Collapse
Affiliation(s)
- Hasan Salkin
- Beykent University, Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Istanbul, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey.
| | - Guzide Satir-Basaran
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Seyda Korkmaz
- Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Zeynep Burcin Gonen
- Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Kayseri, Turkey
| | - Kemal Erdem Basaran
- Erciyes University, Faculty of Medicine, Department of Physiology, Kayseri, Turkey
| |
Collapse
|
3
|
Skin Vascular Resistance Decreases during 5-HT-Induced Hypotension in the Rat. Biomedicines 2023; 11:biomedicines11020547. [PMID: 36831083 PMCID: PMC9953042 DOI: 10.3390/biomedicines11020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A recognized vasodilator, the infusion of 5-hydroxytryptamine (5-HT, serotonin) decreases blood pressure through the reduction of total peripheral resistance in the rat. It is not clear which vascular beds/tissues are responsible for this fall. We hypothesized that an increase in blood flow within the skin, measured as an elevated temperature (T) in the thermoregulatory tail and paws, enables at least part of 5-HT-induced reduction in blood pressure through active vasodilation. The temperature of thermoregulatory regions of the skin of an anesthetized male, Sprague Dawley rats were measured using a Optris PI640 thermal camera. The blood pressure of the animal and the temperature of each paw and four locations along the tail (TL1-4) were recorded before, during, and after the infusion of 5-HT at a rate of 25 mg/min into a femoral vein. Contrary to our hypothesis, the temperature of the paws and tail was stable before and during 5-HT infusion and actually increased during the 15-min recovery period. This finding suggests that hyperemia of the skin circulation is not necessary for the fall in blood pressure observed with infused 5-HT, but that a reduction in cutaneous vascular resistance plays a part in the fall in total peripheral resistance.
Collapse
|
4
|
Watts SW, Flood ED, Thompson JM. Is the 5-hydroxytryptamine 7 Receptor Constitutively Active in the Vasculature? A Study in Veins/Vein. J Cardiovasc Pharmacol 2022; 80:314-322. [PMID: 35939654 PMCID: PMC9373064 DOI: 10.1097/fjc.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/17/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The 5-hydroxytryptamine 7 (5-HT 7 ) receptor is reported to have considerable constitutive activity when transfected into cells. Constitutive activity-receptor activity in the absence of known agonist-is important for understanding the contributions of a receptor to (patho)physiology. We test the hypothesis that the 5-HT 7 receptor possesses constitutive activity in a physiological situation. Isolated veins from male and female Sprague Dawley rats were used as models for measuring isometric force; the abdominal vena cava possesses a functional 5-HT 7 receptor that mediates relaxation, whereas the small mesenteric vein does not. Compounds reported to act as inverse agonists were investigated for their ability to cause contraction (moving a constitutively active relaxant receptor to an inactive state, removing relaxation). Compared with a vehicle control, clozapine, risperidone, ketanserin, and SB269970 caused no contraction in the isolated male abdominal vena cava. By contrast, methiothepin caused a concentration-dependent contraction of the male but not female abdominal vena cava, although with low potency (-log EC 50 [M] = 5.50 ± 0.45) and efficacy (∼12% of contraction to endothelin-1). Methiothepin-induced contraction was not reduced by the 5-HT 7 receptor antagonist (SB269970, 1 μM, not active in the vena cava). These same compounds showed little to no effect in the isolated mesenteric vein. We conclude that the 5-HT 7 receptor in the isolated veins of the Sprague Dawley rat does not possess constitutive activity. We raise the question of the physiological relevance of constitutive activity of this receptor important to such diverse physiological functions as sleep, circadian rhythm, temperature, and blood pressure regulation.
Collapse
Affiliation(s)
- Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | | | | |
Collapse
|
5
|
Abstract
Lasmiditan, an antimigraine drug with selective 5-HT1F receptor affinity, prejunctionally inhibits calcitonin gene-related peptide release in peripheral and central trigeminal nerve terminals of rodents. Migraine headache pathophysiology involves trigeminovascular system activation, calcitonin gene-related peptide (CGRP) release, and dysfunctional nociceptive transmission. Triptans are 5-HT1B/1D/(1F) receptor agonists that prejunctionally inhibit trigeminal CGRP release, but their vasoconstrictor properties limit their use in migraine patients with cardiovascular disease. By contrast, lasmiditan is a novel antimigraine and selective 5-HT1F receptor agonist devoid of vasoconstrictor properties. On this basis, this study has investigated the modulation of trigeminal CGRP release by lasmiditan. For this purpose, we have comparatively analysed the inhibition of several components of the trigeminovascular system induced by lasmiditan and sumatriptan through: ex vivo KCl-induced CGRP release from isolated dura mater, trigeminal ganglion, and trigeminal nucleus caudalis of mice; and in vivo dural vasodilation in the rat closed-cranial window model induced by endogenous (electrical stimulation and capsaicin) and exogenous CGRP. The ex vivo release of CGRP was similarly inhibited by sumatriptan and lasmiditan in all trigeminovascular system components. In vivo, intravenous (i.v.) lasmiditan or higher doses of sumatriptan significantly attenuated the vasodilatory responses to endogenous CGRP release, but not exogenous CGRP effects. These data suggest that lasmiditan prejunctionally inhibits CGRP release in peripheral and central trigeminal nerve terminals. Because lasmiditan is a lipophilic drug that crosses the blood–brain barrier, additional central sites of action remain to be determined.
Collapse
|
6
|
Napoletani G, Vigli D, Cosentino L, Grieco M, Talamo MC, Lacivita E, Leopoldo M, Laviola G, Fuso A, d'Erme M, De Filippis B. Stimulation of the Serotonin Receptor 7 Restores Brain Histone H3 Acetylation and MeCP2 Corepressor Protein Levels in a Female Mouse Model of Rett Syndrome. J Neuropathol Exp Neurol 2021; 80:265-273. [PMID: 33598674 DOI: 10.1093/jnen/nlaa158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene, characterized by severe behavioral and physiological impairments for which no cure is available. The stimulation of serotonin receptor 7 (5-HT7R) with its selective agonist LP-211 (0.25 mg/kg/day for 7 days) was proved to rescue neurobehavioral alterations in a mouse model of RTT. In the present study, we aimed at gaining insight into the mechanisms underpinning the efficacy of 5-HT7R pharmacological stimulation by investigating its epigenetic outcomes in the brain of RTT female mice bearing a truncating MeCP2 mutation. Treatment with LP-211 normalized the reduced histone H3 acetylation and HDAC3/NCoR levels, and increased HDAC1/Sin3a expression in RTT mouse cortex. Repeated 5-HT7R stimulation also appeared to strengthen the association between NCoR and MeCP2 in the same brain region. A different profile was found in RTT hippocampus, where LP-211 rescued H3 hyperacetylation and increased HDAC3 levels. Overall, the present data highlight a new scenario on the relationship between histone acetylation and serotoninergic pathways. 5-HT7R is confirmed as a pivotal therapeutic target for the recovery of neuronal function supporting the translational value of this promising pharmacological approach for RTT.
Collapse
Affiliation(s)
- Giorgia Napoletani
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Daniele Vigli
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy.,Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Maddalena Grieco
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Maria Cristina Talamo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "Aldo Moro", Bari, Italy
| | | | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Roma, Roma, Italy
| | - Maria d'Erme
- From the Department of Biochemical Sciences, Sapienza University of Roma, Roma, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
7
|
de Vries T, Villalón CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans. Pharmacol Ther 2020; 211:107528. [PMID: 32173558 DOI: 10.1016/j.pharmthera.2020.107528] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/08/2020] [Indexed: 01/08/2023]
Abstract
Migraine is a highly disabling neurovascular disorder characterized by a severe headache (associated with nausea, photophobia and/or phonophobia), and trigeminovascular system activation involving the release of calcitonin-gene related peptide (CGRP). Novel anti-migraine drugs target CGRP signaling through either stimulation of 5-HT1F receptors on trigeminovascular nerves (resulting in inhibition of CGRP release) or direct blockade of CGRP or its receptor. Lasmiditan is a highly selective 5-HT1F receptor agonist and, unlike the triptans, is devoid of vasoconstrictive properties, allowing its use in patients with cardiovascular risk. Since lasmiditan can actively penetrate the blood-brain barrier, central therapeutic as well as side effects mediated by 5-HT1F receptor activation should be further investigated. Other novel anti-migraine drugs target CGRP signaling directly. This neuropeptide can be targeted by the monoclonal antibodies eptinezumab, fremanezumab and galcanezumab, or by CGRP-neutralizing L-aptamers called Spiegelmers. The CGRP receptor can be targeted by the monoclonal antibody erenumab, or by small-molecule antagonists called gepants. Currently, rimegepant and ubrogepant have been developed for acute migraine treatment, while atogepant is studied for migraine prophylaxis. Of these drugs targeting CGRP signaling directly, eptinezumab, erenumab, fremanezumab, galcanezumab, rimegepant and ubrogepant have been approved for clinical use, while atogepant is in the last stage before approval. Although all of these drugs seem highly promising for migraine treatment, their safety should be investigated in the long-term. Moreover, the exact mechanism(s) of action of these drugs need to be elucidated further, to increase both safety and efficacy and to increase the number of responders to the different treatments, so that all migraine patients can satisfactorily be treated.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands
| | - Carlos M Villalón
- Deptartment de Farmacobiología, Cinvestav-Coapa, C.P. 14330 Ciudad de México, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, PO Box 2040, 3000, CA, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Thirumaran SL, Lepailleur A, Rochais C. Structure-activity relationships of serotonin 5-HT7 receptors ligands: A review. Eur J Med Chem 2019; 183:111705. [DOI: 10.1016/j.ejmech.2019.111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 01/30/2023]
|
9
|
Blattner KM, Canney DJ, Pippin DA, Blass BE. Pharmacology and Therapeutic Potential of the 5-HT 7 Receptor. ACS Chem Neurosci 2019; 10:89-119. [PMID: 30020772 DOI: 10.1021/acschemneuro.8b00283] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well-documented that serotonin (5-HT) exerts its pharmacological effects through a series of 5-HT receptors. The most recently identified member of this family, 5-HT7, was first identified in 1993. Over the course of the last 25 years, this receptor has been the subject of intense investigation, and it has been demonstrated that 5-HT7 plays an important role in a wide range of pharmacological processes. As a result of these findings, modulation of 5-HT7 activity has been the focus of numerous drug discovery and development programs. This review provides an overview of the roles of 5-HT7 in normal physiology and the therapeutic potential of this interesting drug target.
Collapse
Affiliation(s)
- Kevin M. Blattner
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Daniel J. Canney
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| | - Douglas A. Pippin
- Praeventix, LLC, 665 Stockton Drive, Suite 200H, Exton, Pennsylvania 19341, United States
| | - Benjamin E. Blass
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery Research, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
10
|
Rua R, McGavern DB. Advances in Meningeal Immunity. Trends Mol Med 2018; 24:542-559. [PMID: 29731353 PMCID: PMC6044730 DOI: 10.1016/j.molmed.2018.04.003] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/26/2022]
Abstract
The central nervous system (CNS) is an immunologically specialized tissue protected by a blood-brain barrier. The CNS parenchyma is enveloped by a series of overlapping membranes that are collectively referred to as the meninges. The meninges provide an additional CNS barrier, harbor a diverse array of resident immune cells, and serve as a crucial interface with the periphery. Recent studies have significantly advanced our understanding of meningeal immunity, demonstrating how a complex immune landscape influences CNS functions under steady-state and inflammatory conditions. The location and activation state of meningeal immune cells can profoundly influence CNS homeostasis and contribute to neurological disorders, but these cells are also well equipped to protect the CNS from pathogens. In this review, we discuss advances in our understanding of the meningeal immune repertoire and provide insights into how this CNS barrier operates immunologically under conditions ranging from neurocognition to inflammatory diseases.
Collapse
Affiliation(s)
- Rejane Rua
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
12
|
Barbanti P, Aurilia C, Egeo G, Fofi L, Palmirotta R. Serotonin receptor targeted therapy for migraine treatment: an overview of drugs in phase I and II clinical development. Expert Opin Investig Drugs 2017; 26:269-277. [PMID: 28103158 DOI: 10.1080/13543784.2017.1283404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Piero Barbanti
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - C. Aurilia
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - G. Egeo
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - L. Fofi
- Headache and Pain Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | - R. Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, Bari, Italy
| |
Collapse
|
13
|
Wang X, Hu R, Liang J, Li Z, Sun W, Pan X. 5-HT7 Receptors Are Not Involved in Neuropeptide Release in Primary Cultured Rat Trigeminal Ganglion Neurons. J Mol Neurosci 2016; 59:251-9. [PMID: 26892478 DOI: 10.1007/s12031-016-0727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
Migraine is a common but complex neurological disorder. Its precise mechanisms are not fully understood. Increasing indirect evidence indicates that 5-HT7 receptors may be involved; however, their role remains unknown. Our previous in vivo study showed that selective blockade of 5-HT7 receptors caused decreased serum levels of calcitonin gene-related peptide (CGRP) in the external jugular vein following electrical stimulation of the trigeminal ganglion (TG) in an animal model of migraine. In the present study, we used an in vitro model of cultured TG cells to further investigate whether 5-HT7 receptors are directly responsible for the release of CGRP and substance P from TG neurons. We stimulated rat primary cultured TG neurons with capsaicin or potassium chloride (KCl) to mimic neurogenic inflammation, resulting in release of CGRP and substance P. 5-HT7 receptors were abundantly expressed in TG neurons. Greater than 93 % of 5-HT7 receptor-positive neurons co-expressed CGRP and 56 % co-expressed substance P. Both the capsaicin- and KCl-induced release of CGRP and substance P were unaffected by pretreatment of cultured TG cells with the selective 5-HT7 receptor agonist AS19 and antagonist SB269970. This study demonstrates for the first time that 5-HT7 receptors are abundantly co-expressed with CGRP and substance P in rat primary TG neurons and suggests that they are not responsible for the release of CGRP and substance P from cultured TG neurons evoked by capsaicin or KCl.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Rong Hu
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Jianbo Liang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ze Li
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China
| | - Weiwen Sun
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neurosciences and the Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang Dong Road, Guangzhou, 510260, China
| | - Xiaoping Pan
- Department of Neurology, Guangzhou First People's Hospital, Affiliated to Guangzhou Medical University, No. 1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
14
|
Norouzi-Javidan A, Javanbakht J, Barati F, Fakhraei N, Mohammadi F, Dehpour AR. Serotonin 5-HT7 receptor agonist, LP-211, exacerbates Na(+), K(+)-ATPase/Mg(2+)-ATPase imbalances in spinal cord-injured male rats. Diagn Pathol 2015; 10:157. [PMID: 26369408 PMCID: PMC4570585 DOI: 10.1186/s13000-015-0397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/28/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The observed controversy that N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211), a selective serotonin (5-HT7) receptor agonist, may either modify or exacerbate imbalances in serum electrolyte concentrations and renal tissue of spinal cord trauma cases has not been reported yet. The aim of this study was to better understand the effects of a new 5-HT7 receptor agonist, LP-211, on serum electrolyte changes in spinal cord injured- (SCI) rats. METHODS Sixty male rats were assigned to the following groups: A) Intact (saline as vehicle, 1 ml/kg, i.p.), B) Intact [LP-211, (0.003-0.3 mg/kg, i.p.)], C) Sham-operated [laminectomy + vehicle (1 ml/kg, i.p.)], D) Sham-operated [laminectomy + LP-211 (0.003-0.3 mg/kg, i.p.)], E) Treatment [laminectomy + spinal trauma (SCI) + vehicle (1 ml/kg, i.p.)], F) Treatment [laminectomy + spinal trauma + LP-211 (0.003-0.3 mg/kg, i.p.)]. SCI was performed by placing an aneurysm clip, extradurally at the level of T10. After two weeks, LP-211 was administered cumulatively and each dose was injected (i.p.) with 20 min interval. At the end of the experiment, blood samples were collected for biochemical evaluations of the electrolytes employing standard commercial kits. RESULTS The present results indicate elevated serum levels of Na(+), K(+), and Mg(2+) in SCI rats and significant differences demonstrated between the groups [P < 0.001, F(5, 35) = 23.92], [P < 0.001, F(5, 35) = 67.63], [P < 0.001, F(5, 35) = 71.144], respectively. So that, in groups B, D and F, there was a significant increase in K(+) and Mg(2+) serum levels compared to the groups A, C, and E (P < 0.001). Furthermore, Na(+) serum levels in SCI (LP-211), laminectomy (LP-211), and intact (LP-211) groups tended to be statistically lower than SCI (saline), laminectomy (saline) and intact (saline) groups. Infact, hyponatremia, hyperkalemia and hypermagnesemia was obtained in group F. Nevertheless, in the remaining measured serum electrolytes such as calcium (Ca(2+)), iron (Fe(2+)) and phosphorus (P(3-)), chlorine (Cl(-)), copper (Cu(+)), and zinc (Zu(+)), no significant changes were observed. CONCLUSION It was shown that acute additive LP-211 treatments in the SCI group led to hyponatremia, hyperkalemia and hypermagnesemia, it may be stated that LP-211 treatment as a promising candidate for treating SCI complications in some systems especially urinary tract might take into consideration and further studies would be needed to clarify its benefits or drawbacks. The observed discrepancies, nevertheless; will also pose new questions. Altogether, this will ultimately contribute to further understanding the pathophysiological role regarding 5-HT7 receptor activation.
Collapse
Affiliation(s)
- Abbas Norouzi-Javidan
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Javanbakht
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Barati
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Fakhraei
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
15
|
|
16
|
Cooper WM, Kaniecki RG, Taylor FR. Abstracts and Citations. Headache 2015. [DOI: 10.1111/head.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date. CNS Drugs 2015; 29:265-75. [PMID: 25721336 PMCID: PMC4555343 DOI: 10.1007/s40263-015-0236-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders.
Collapse
|
18
|
Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X. 5-HT7 Receptors Are Involved in Neurogenic Dural Vasodilatation in an Experimental Model of Migraine. J Mol Neurosci 2014; 54:164-70. [DOI: 10.1007/s12031-014-0268-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/17/2014] [Indexed: 11/24/2022]
|
19
|
Ramírez Rosas MB, Labruijere S, Villalón CM, Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs. Expert Opin Pharmacother 2013; 14:1599-610. [PMID: 23815106 DOI: 10.1517/14656566.2013.806487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The introduction of the triptans (5-hydroxytryptamine (5-HT)1B/1D receptor agonists) was a great improvement in the acute treatment of migraine. However, shortcomings of the triptans have prompted research on novel serotonergic targets for the treatment of migraine. AREAS COVERED In this review the different types of antimigraine drugs acting at 5-HT receptors, their discovery and development are discussed. The first specific antimigraine drugs were the ergot alkaloids, consisting of ergotamine, dihydroergotamine and methysergide, which are agonists at 5-HT receptors, but can also bind α-adrenoceptors and dopamine receptors. In the 1990s, the triptans became available on the market. They are 5-HT1B/1D receptor agonists, showing fewer side effects due to their receptor specificity. In the last years, compounds that bind specifically to 5-HT1D, 5-HT1F and 5-HT7 receptors have been explored for their antimigraine potential. Furthermore, the serotonergic system seems to act in tight connection with the glutamatergic as well as the CGRP-ergic systems, which may open novel therapeutic avenues. EXPERT OPINION Although the triptans are very effective in treating migraine attacks, their shortcomings have stimulated the search for novel drugs. Currently, the focus is on 5-HT1F receptor agonists, which seem devoid of vascular side effects. Moreover, novel compounds that affect multiple transmitter and/or neuropeptide systems that are involved in migraine could be of therapeutic relevance.
Collapse
Affiliation(s)
- Martha B Ramírez Rosas
- Erasmus Medical Centre, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Kovács A, Hársing LG, Szénási G. Vasoconstrictor 5-HT receptors in the smooth muscle of the rat middle cerebral artery. Eur J Pharmacol 2012; 689:160-4. [PMID: 22659115 DOI: 10.1016/j.ejphar.2012.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/07/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
Serotonin (5-HT) can constrict cerebral arteries via activation of 5-HT(1B) and 5-HT(2A) receptors. Our goal was to reveal the importance and relative contribution of the two 5-HT receptor subtypes to the serotonin-induced vasoconstriction in the rat middle cerebral artery. The vasoconstrictor effects of 5-carboxamidotryptamine, sumatriptan and 5-HT were measured without and with pre-treatment with SB 216641 (5-HT(1B) antagonist), or ritanserin, (5-HT(2A) antagonist), in endothelium-denuded arteries, in vitro. All agonists caused vasoconstrictions. The order of potency (EC(50)) of the compounds was: 5-carboxamidotryptamine (14±3 nM)>5-HT (270±30 nM)>sumatriptan (5.8±1.9 μM). The concentration-response curve of 5-carboxamidotryptamine resembled the sum of two sigmoid curves (EC(50) 14±3 nM and 15±7 μM), and SB 216641 and ritanserin antagonized its low and high concentration components, respectively. Vasoconstrictions evoked by 5-HT at low and high concentrations were also fully antagonized by SB 216641 and ritanserin, respectively. Sumatriptan constricted the middle cerebral artery exclusively via 5-HT(1B) receptors. The efficacy of 5-carboxamidotryptamine and sumatriptan was low in comparison to the maximum contractile force elicited by 120 mmol/l KCl, reaching only 18-23% for 5-HT(1B) and 14% for 5-HT(2A) receptor activation. In conclusion, 5-HT produced small vasoconstrictions in the rat middle cerebral artery that were mediated by 5-HT(1B) receptors with high potency and by 5-HT(2A) receptors with low potency. Thus, 5-HT may have a minor physiological role in blood flow regulation via 5-HT(1B) receptor activation while 5-HT(2A) receptors seem to have a pathophysiological role in this vessel.
Collapse
Affiliation(s)
- Anikó Kovács
- EGIS Pharmaceuticals Plc., Division of Preclinical Research, 1106 Keresztúri út 30-38, Budapest, Hungary
| | | | | |
Collapse
|
21
|
Sokolov AY, Lyubashina OA, Panteleev SS. The role of serotonin receptors in migraine headaches. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411020085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Matthys A, Haegeman G, Van Craenenbroeck K, Vanhoenacker P. Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol Neurobiol 2011; 43:228-53. [PMID: 21424680 DOI: 10.1007/s12035-011-8175-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Pharmacological and genetic tools targeting the 5-hydroxytryptamine (5-HT)7 receptor in preclinical animal models have implicated this receptor in diverse (patho)physiological processes of the central nervous system (CNS). Some data obtained with 5-HT7 receptor knockout mice, selective antagonists, and, to a lesser extent, agonists, however, are quite contradictory. In this review, we not only discuss in detail the role of the 5-HT7 receptor in the CNS but also propose some hypothetical models, which could explain the observed inconsistencies. These models are based on two novel concepts within the field of G protein-coupled receptors (GPCR), namely biphasic signaling and G protein-independent signaling, which both have been shown to be mediated by GPCR dimerization. This led us to suggest that the 5-HT7 receptor could reside in different dimeric contexts and initiate different signaling pathways, depending on the neuronal circuitry and/or brain region. In conclusion, we highlight GPCR dimerization and G protein-independent signaling as two promising future directions in 5-HT7 receptor research, which ultimately might lead to the development of more efficient dimer- and/or pathway-specific therapeutics.
Collapse
Affiliation(s)
- Anne Matthys
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Department of Physiology, Ghent University (UGent), Ghent, Belgium
| | | | | | | |
Collapse
|
23
|
PYTLIAK M, VARGOVÁ V, MECHÍROVÁ V, FELŠÖCI M. Serotonin Receptors – From Molecular Biology to Clinical Applications. Physiol Res 2011; 60:15-25. [DOI: 10.33549/physiolres.931903] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Serotonin (5-hydroxytryptamine) is an ubiquitary monoamine acting as one of the neurotransmitters at synapses of nerve cells. Serotonin acts through several receptor types and subtypes. The profusion of 5-HT receptors should eventually allow a better understanding of the different and complex processes in which serotonin is involved. Its role is expected in the etiology of several diseases, including depression, schizophrenia, anxiety and panic disorders, migraine, hypertension, pulmonary hypertension, eating disorders, vomiting and irritable bowel syndromes. In the past 20 years, seven distinct families of 5-HT receptors have been identified and various subpopulations have been described for several of them. Increasing number of 5-HT receptors has made it difficult to unravel the role of 5-HT receptor subpopulations due to the lack of suitable selective agents. The present review describes the different populations and nomenclature of recently discovered 5-HT receptors and their pharmacological relevance.
Collapse
Affiliation(s)
- M. PYTLIAK
- First Internal Clinic, Louis Pasteur University Hospital and Faculty of Medicine, Šafárik University, Košice, Slovak Republic
| | | | | | | |
Collapse
|
24
|
|
25
|
Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 2010; 129:120-48. [PMID: 20923682 DOI: 10.1016/j.pharmthera.2010.08.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
Abstract
Since its discovery in the 1940s in serum, the mammalian intestinal mucosa, and in the central nervous system, serotonin (5-HT) has been shown to be involved in virtually all cognitive and behavioral human functions, and alterations in its neurochemistry have been implicated in the etiology of a plethora of neuropsychiatric disorders. The cloning of 5-HT receptor subtypes has been of importance in enabling them to be classified as specific protein molecules encoded by specific genes. The 5-HT(7) receptor is the most recently classified member of the serotonin receptor family. Since its identification, it has been the subject of intense research efforts driven by its presence in functionally relevant regions of the brain. The availability of some selective antagonists and agonists, in combination with genetically modified mice lacking the 5-HT(7) receptor, has allowed for a better understanding of the pathophysiological role of this receptor. This paper reviews data on localization and pharmacological properties of the 5-HT(7) receptor, and summarizes the results of structure-activity relationship studies aimed at the discovery of selective 5-HT(7) receptor ligands. Additionally, an overview of the potential therapeutic applications of 5-HT(7) receptor agonists and antagonists in central nervous system disorders is presented.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari "A. Moro", via Orabona, 4, 70125 Bari, Italy.
| | | | | | | | | |
Collapse
|
26
|
Leopoldo M, Lacivita E, Berardi F, Perrone R. 5-HT(7) receptor modulators: a medicinal chemistry survey of recent patent literature (2004 - 2009). Expert Opin Ther Pat 2010; 20:739-54. [PMID: 20476847 DOI: 10.1517/13543776.2010.484802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD The 5-HT(7) receptors are discretely localized within the CNS (thalamus, hypothalamus, limbic and cortical regions). The 5-HT(7) receptors are also present in smooth muscle cells from blood vessels and have been reported in gastrointestinal tract as well as in rat lumbar dorsal root and sympathetic ganglia. The 5-HT(7) receptors have been implicated in depression, disorders related to circadian rhythms, pain and migraine. Thus, there is a great interest in developing potent and selective 5-HT(7) receptor modulators. AREAS COVERED IN THIS REVIEW This review article highlights the research advances published in the patent literature between January 2004 and December 2009, giving emphasis to the medicinal chemist's standpoint. WHAT THE READER WILL GAIN Readers will rapidly gain an overview of the various 5-HT(7) receptor modulators reported in the patent literature in the past 6 years. Furthermore, the readers will learn which structure type can interact with 5-HT(7) receptor and also the different companies that are the main players in the field. TAKE HOME MESSAGE Although no 5-HT(7) modulator has entered clinical trials, the development and future use of different agonists and antagonists suitable for use in vivo seem very promising.
Collapse
Affiliation(s)
- Marcello Leopoldo
- Dipartimento Farmaco-Chimico, Università degli Studi di Bari A. Moro, via Orabona 4, Bari 70125, Italy.
| | | | | | | |
Collapse
|
27
|
Wang X, Fang Y, Liang J, Yin Z, Miao J, Luo N. Selective Inhibition of 5-HT7Receptor Reduces CGRP Release in an Experimental Model for Migraine. Headache 2010; 50:579-87. [DOI: 10.1111/j.1526-4610.2010.01632.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl) 2009; 206:345-54. [PMID: 19649616 PMCID: PMC2841472 DOI: 10.1007/s00213-009-1626-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/14/2009] [Indexed: 12/20/2022]
Abstract
RATIONALE The 5-HT(7) receptor is a more recently discovered G-protein-coupled receptor for serotonin. The functions and possible clinical relevance of this receptor are not yet fully understood. OBJECTIVE The present paper reviews to what extent the use of animal models of human psychiatric and neurological disorders have implicated the 5-HT(7) receptor in such disorders. The studies have used a combination of pharmacological and genetic tools targeting the receptor to evaluate effects on behavior. RESULTS Models of anxiety and schizophrenia have yielded mixed results with no clear role for the 5-HT(7) receptor described in these disorders. Some data are available for epilepsy, migraine, and pain but it is still very early to draw any definitive conclusions. There is a considerable amount of evidence supporting a role for the 5-HT(7) receptor in depression. Both blockade and inactivation of the receptor have resulted in an antidepressant-like profile in models of depression. Supporting evidence has also been obtained in sleep studies. Especially interesting are the augmented effects achieved by combining antidepressants and 5-HT(7) receptor antagonists. The antidepressant effect of amisulpride has been shown to most likely be mediated by the 5-HT(7) receptor. CONCLUSIONS The use of pharmacological and genetic tools in preclinical animal models strongly supports a role for the 5-HT(7) receptor in depression. Indirect evidence exists showing that 5-HT(7) receptor antagonism is clinically useful in the treatment of depression. Available data also indicate a possible involvement of the 5-HT(7) receptor in anxiety, epilepsy, pain, and schizophrenia.
Collapse
|
29
|
Martínez-García E, García-Iglesias B, Terrón JA. Effect of central serotonin depletion on 5-HT receptor-mediated vasomotor responses in the middle meningeal artery of anaesthetized rats. ACTA ACUST UNITED AC 2009; 29:43-50. [PMID: 19302555 DOI: 10.1111/j.1474-8673.2009.00430.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1 It has been hypothesized that craniovascular 5-HT receptors mediating dilatation of cranial vessels undergo sensitization on decreased serotonergic transmission in migraine. This study analysed the effect of chemical lesion of the 5-HT system in the brain with 5,7-dihydroxytryptamine (5,7-DHT) on 5-HT receptor-mediated dilator responses to 5-carboxamidotryptamine (5-CT) in the middle meningeal artery of anaesthetized rats. 5-CT has recently been shown to elicit dilator responses in this cranial vessel via 5-HT(7) receptors and, to a much lesser extent, 5-HT(1B/1D) receptors. 2 Pretreatment with 5,7-DHT produced a drastic and selective decrease of 5-HT levels in the brain (78 +/- 6% and 94 +/- 2% in dorsal raphe and hypothalamic paraventricular nuclei, respectively) compared with controls (1% ascorbic acid). 3 Topical application of 5-CT (1-1000 microm) to exposed dura mater encephali produced concentration-dependent decreases in diastolic blood pressure and dilator responses in the middle meningeal artery that were similar in vehicle- and 5,7-DHT-pretreaed animals. 4 Hypotensive and meningeal dilator responses to 5-CT were unaltered by the 5-HT(1B/1D) receptor antagonist, GR-127935 (1 mg kg(-1), i.v.), but were strongly inhibited by the 5-HT(7) receptor antagonist, SB-269970 (1 mg kg(-1), i.v.), with similar efficacy, in both groups of animals. Treatment with GR-127935 + SB-269970 (1 mg kg(-1), i.v. each), produced a stronger inhibitory effect than individual treatments on hypotensive but not on meningeal responses to 5-CT. Meningeal 5-HT(7) receptor-mediated responses (i.e. in GR-127935-pretreated animals) were unchanged by 5,7-DHT pretreatment. 5 Results suggest that the sensitivity of craniovascular 5-HT(7) receptors mediating dilatation is unaffected by a decrease of 5-HT levels in the brain. A neuronal involvement of 5-HT in migraine seems more likely, therefore.
Collapse
Affiliation(s)
- E Martínez-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Zacatenco, Mexico D.F., Mexico
| | | | | |
Collapse
|
30
|
Terrón JA, Sánchez-Maldonado C, Martínez-García E. Pharmacological evidence that 5-HT(1B/1D) receptors mediate hypotension in anesthetized rats. Eur J Pharmacol 2007; 576:132-5. [PMID: 17727836 DOI: 10.1016/j.ejphar.2007.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 11/28/2022]
Abstract
5-Carboxamidotryptamine (5-CT; 0.003-310 microg/kg, i.v.) produced dose-dependent hypotensive responses which were blocked in a complex manner by the 5-HT(7) receptor antagonist, (R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl) ethyl] pyrrolidine (SB-269970; 1 mg/kg, i.v.), in anesthetized vagosympathectomized rats. Interestingly, the 5-HT(1B/1D) receptor antagonist, N-[4-methoxy-3-(4-methyl-1-piperazinyl) phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl) [1,1-biphenyl]-4-carboxamide hydrochloride monohydrate GR-127935 (1 mg/kg, i.v.), also inhibited 5-CT-induced hypotension but the effect was clearly noncompetitive. Finally, the combination of GR-127935+SB-269970 (1 mg/kg, i.v., each) produced a further decreased of 5-CT-induced responses as compared to the effect of individual treatments. These data suggest that, in addition to 5-HT(7) receptors, 5-HT(1B/1D) receptors may also mediate hypotension in rats.
Collapse
Affiliation(s)
- José A Terrón
- Sección Externa de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apdo. Postal 14-740, Zacatenco 07000, México D.F., Mexico.
| | | | | |
Collapse
|