1
|
Grunstein MM. Homeostatic glucocorticoid signaling in airway smooth muscle: A roadmap to asthma pathogenesis. Front Endocrinol (Lausanne) 2023; 13:1077389. [PMID: 36686425 PMCID: PMC9846750 DOI: 10.3389/fendo.2022.1077389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Homeostasis is the self-regulating process by which the body maintains internal stability within a narrow physiological range (i.e., "normality") as it dynamically adjusts to disruptive influences. Thus, whereas homeostasis maintains bodily health, disrupted homeostasis at the tissue or systemic level leads to disease. Airway smooth muscle (ASM) is the pivotal site of disrupted homeostasis in asthma. While extensive research has greatly expanded our understanding of ASM behavior under pro-asthmatic conditions, the cellular signaling mechanisms that underlie ASM homeostasis under these conditions remain elusive. Based on a broad collection of published studies, a homeostasis mechanism intrinsic to ASM and exhibited under inflammatory and non-inflammatory pro-asthmatic conditions is identified herein. Central to this mechanism is the novel unifying concept that the pro-asthmatic-exposed ASM can independently generate its own active glucocorticoid (i.e., cortisol), produce its own newly activated glucocorticoid receptors for the steroid, and, accordingly, use this molecular strategy to homeostatically prevent induction of the asthmatic state. This article addresses the experimental evidence that underlies the proposed homeostatic glucocorticoid signaling mechanism in ASM, followed by a discussion and depiction of the feed-forward and feedback intrinsic ASM signaling circuitry that constitutes the homeostatic state. The proposed mechanism offers a practical roadmap for future basic and translational research aimed at identifying potential key site(s) of disrupted ASM homeostasis leading to asthma.
Collapse
Affiliation(s)
- Michael M. Grunstein
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Craparo EF, Cabibbo M, Scialabba C, Giammona G, Cavallaro G. Inhalable Formulation Based on Lipid-Polymer Hybrid Nanoparticles for the Macrophage Targeted Delivery of Roflumilast. Biomacromolecules 2022; 23:3439-3451. [PMID: 35899612 PMCID: PMC9364311 DOI: 10.1021/acs.biomac.2c00576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here, novel lipid–polymer hybrid nanoparticles
(LPHNPs),
targeted to lung macrophages, were realized as potential carriers
for Roflumilast administration in the management of chronic obstructive
pulmonary disease (COPD). To achieve this, Roflumilast-loaded fluorescent
polymeric nanoparticles, based on a polyaspartamide-polycaprolactone
graft copolymer, and lipid vesicles, made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-distearoyl-sn-glycero-phosphoethanolamine-N-(polyethylene glycol)-mannose,
were properly combined using a two-step method, successfully obtaining
Roflumilast-loaded hybrid fluorescent nanoparticles (Man-LPHFNPs@Roflumilast).
These exhibit colloidal size and a negative ζ potential, 50
wt % phospholipids, and a core–shell-type morphology; they
slowly release the entrapped drug in a simulated physiological fluid.
The surface analysis also demonstrated their high surface PEG density,
which confers mucus-penetrating properties. Man-LPHFNPs@Roflumilast
show high cytocompatibility toward human bronchial epithelium cells
and macrophages and are uptaken by the latter through an active mannose-mediated
targeting process. To achieve an inhalable formulation, the nano-into-micro
strategy was applied, encapsulating Man-LPHFNPs@Roflumilast in poly(vinyl
alcohol)/leucine-based microparticles by spray-drying.
Collapse
Affiliation(s)
- Emanuela F Craparo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy
| | - Marta Cabibbo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Cinzia Scialabba
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Gaetano Giammona
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, Palermo 90123, Italy.,Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy.,Advanced Technology and Network Center (ATeN Center), Università di Palermo, Palermo 90133, Italy
| |
Collapse
|
3
|
Roflumilast Powders for Chronic Obstructive Pulmonary Disease: Formulation Design and the Influence of Device, Inhalation Flow Rate, and Storage Relative Humidity on Aerosolization. Pharmaceutics 2021; 13:pharmaceutics13081254. [PMID: 34452215 PMCID: PMC8400286 DOI: 10.3390/pharmaceutics13081254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 11/21/2022] Open
Abstract
Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C/15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance.
Collapse
|
4
|
Mfengu MOM, Shauli M, Engwa GA, Musarurwa HT, Sewani-Rusike CR. Lippia javanica (Zumbani) herbal tea infusion attenuates allergic airway inflammation via inhibition of Th2 cell activation and suppression of oxidative stress. BMC Complement Med Ther 2021; 21:192. [PMID: 34225706 PMCID: PMC8256649 DOI: 10.1186/s12906-021-03361-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lippia javanica (lemon bush) is commonly used in the treatment of respiratory ailments, including asthma in southern African countries but there is no scientific evidence to support this claim. This study investigated the anti-inflammatory, antioxidant and anti-asthmatic effects of L. javanica using a rat model of asthma. METHODS A 5% w/v L. javanica tea infusion was prepared and characterised by liquid chromatography-mass spectrometer (LC-MS). Animals were intraperitoneally sensitized with ovalbumin (OVA) and subsequently challenged intranasal with OVA on day 15 except the control group. Animals were grouped (n = 5/group) for treatment: unsensitised control, sensitised control, sensitised + prednisolone and sensitised + L. javanica at 50 mg/kg/day and 100 mg/kg/day - equivalent to 1 and 2 cups of tea per day, respectively. After 2 weeks of treatment, bronchoalveolar lavage fluid (BALF) was collected for total and differential white blood cell (WBC) count. Nitric oxide (NO), lipid peroxidation and antioxidants were also assessed in BALF. Ovalbumin specific IgE antibody and inflammatory cytokines: IL-4, IL-5, IL-13 and TNF-alpha were measured in serum. Lung and muscle tissues were histological examined. RESULTS L. javanica was rich in phenolic compounds. OVA sensitisation resulted in development of allergic asthma in rats. L. javanica treatment resulted in a reduction in total WBC count as well as eosinophils, lymphocytes and neutrophils in BALF. L. javanica inhibited Th2-mediated immune response, which was evident by a decrease in serum IgE and inflammatory cytokines: IL-4, IL-5, IL-13 and TNF-α. L. javanica treatment also reduced malondialdehyde (MDA) and NO, and increased superoxide dismutase, glutathione and total antioxidant capacity. Histology showed significant attenuation of lung infiltration of inflammatory cells, alveolar thickening, and bronchiole smooth muscle thickening. CONCLUSION L. javanica suppressed allergic airway inflammation by reducing Th2-mediated immune response and oxidative stress in OVA-sensitized rats which may be attributed to the presence of phenolic compound in the plant. This finding validates the traditional use of L. javanica in the treatment of respiratory disorders.
Collapse
Affiliation(s)
- Mvuyisi O M Mfengu
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Mathulo Shauli
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Godwill A Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Hannibal T Musarurwa
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, 5117, Mthatha, South Africa.
| |
Collapse
|
5
|
Zhang S, Wu P, Liu J, Du Y, Yang Z. Roflumilast Attenuates Doxorubicin-Induced Cardiotoxicity by Targeting Inflammation and Cellular Senescence in Cardiomyocytes Mediated by SIRT1. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:87-97. [PMID: 33469262 PMCID: PMC7810683 DOI: 10.2147/dddt.s269029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
Background and Purpose Cardiotoxicity is an important side effect of the treatment of a malignant tumor with Doxorubicin. Currently, decreasing the dosage of Doxorubicin to alleviate the side effects on cardiac function is the common method to deal with the cardiotoxicity induced by Doxorubicin. The present study aims to investigate the therapeutic effects of Roflumilast on Doxorubicin-induced inflammation and cellular senescence, as well as the potential mechanism in H9c2 myocardial cells. Methods The injured cardiac cell model was established by incubation with 5 μmol/L Doxorubicin. MTT was used to evaluate the cell viability of treated H9c2 cardiac cells. The expression of 4-HNE was determined using an immunofluorescence assay. The gene expression levels of IL-17, IL-6, TNF-α, IL-4, PAI-1, p21, and SIRT1 were evaluated using qRT-PCR and the protein levels of Gpx4, PAI-1, p21, and SIRT1 were determined using Western blot analysis. Secretions of IL-17, IL-6, TNF-α, IL-4, CK-MB, and cTnI were measured using ELISA. Cellular senescence was assessed using SA-β-Gal staining. Si-RNA technology was used to knockdown the expression of SIRT1 in H9c2 cardiac cells. Results Cell viability of H9c2 cardiac cells was significantly inhibited by Doxorubicin but rescued by Roflumilast. The upregulated 4-HNE and downregulated Gpx4 were reversed by Roflumilast. The secretions of IL-6 and IL-17 were promoted by Doxorubicin and suppressed by Roflumilast. The increased SA-β-Gal staining induced by Doxorubicin was inhibited by Roflumilast. P21 and PAI-1 were significantly upregulated and SIRT1 was greatly downregulated by Doxorubicin, all of which were reversed by Roflumilast. The anti-senescent effect of Roflumilast was abolished by knocking down SIRT1. Conclusion Roflumilast might attenuate Doxorubicin-induced inflammation and cellular senescence in cardiomyocytes by upregulating SIRT1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China.,Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213004, People's Republic of China
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| |
Collapse
|
6
|
El Tabaa MM, El Tabaa MM. New putative insights into neprilysin (NEP)-dependent pharmacotherapeutic role of roflumilast in treating COVID-19. Eur J Pharmacol 2020; 889:173615. [PMID: 33011243 PMCID: PMC7527794 DOI: 10.1016/j.ejphar.2020.173615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Nowadays, coronavirus disease 2019 (COVID-19) represents the most serious inflammatory respiratory disease worldwide. Despite many proposed therapies, no effective medication has yet been approved. Neutrophils appear to be the key mediator for COVID-19-associated inflammatory immunopathologic, thromboembolic and fibrotic complications. Thus, for any therapeutic agent to be effective, it should greatly block the neutrophilic component of COVID-19. One of the effective therapeutic approaches investigated to reduce neutrophil-associated inflammatory lung diseases with few adverse effects was roflumilast. Being a highly selective phosphodiesterase-4 inhibitors (PDE4i), roflumilast acts by enhancing the level of cyclic adenosine monophosphate (cAMP), that probably potentiates its anti-inflammatory action via increasing neprilysin (NEP) activity. Because activating NEP was previously reported to mitigate several airway inflammatory ailments; this review thoroughly discusses the proposed NEP-based therapeutic properties of roflumilast, which may be of great importance in curing COVID-19. However, further clinical studies are required to confirm this strategy and to evaluate its in vivo preventive and therapeutic efficacy against COVID-19.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
7
|
Effects of a novel roflumilast and formoterol fumarate dry powder inhaler formulation in experimental allergic asthma. Int J Pharm 2020; 588:119771. [PMID: 32805379 DOI: 10.1016/j.ijpharm.2020.119771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022]
Abstract
In this study we aimed to develop a roflumilast (R) and formoterol fumarate (F) dry powder inhaler formulation (DPI) incorporating HPβCD by spray drying and evaluated if it attenuates the inflammatory process and improves lung function in a murine model of ovalbumin induced allergic asthma. The DPI was characterized by powder X-ray diffraction, thermal analysis, scanning electron microscopy, particle size, density, specific surface area and dynamic vapor sorption analyses. In vitro deposition studies were performed using a NGI, while transepithelial permeability and in vivo effects on lung mechanics and inflammation in a model of allergic asthma were also assessed. The R:F formulation was amorphous with high glass transition temperatures, comprised of wrinkled particles, had low bulk and tapped densities, high surface area, suitable particle size for pulmonary delivery and exhibited no recrystallization even at high relative humidities. MMAD were statistically similar of 4.22 ± 0.19 and 4.32 ± 0.13 µm for F and R, respectively. Fine particle fractions (<5 µm) were of more than 50% of the emitted dose. The R:F formulation led to reduced eosinophil infiltration and airway collagen fiber content, yielding decreased airway hyperresponsiveness. In the current asthma model, the R:F formulation combination decreased inflammation and remodeling, thus improving lung mechanics.
Collapse
|
8
|
Suzuki ÉY, Amaro MI, de Almeida GS, Cabral LM, Healy AM, de Sousa VP. Development of a new formulation of roflumilast for pulmonary drug delivery to treat inflammatory lung conditions. Int J Pharm 2018; 550:89-99. [DOI: 10.1016/j.ijpharm.2018.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 11/25/2022]
|
9
|
Mahmoud AA, Elkasabgy NA, Abdelkhalek AA. Design and characterization of emulsified spray dried alginate microparticles as a carrier for the dually acting drug roflumilast. Eur J Pharm Sci 2018; 122:64-76. [PMID: 29928985 DOI: 10.1016/j.ejps.2018.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/19/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022]
Abstract
Roflumilast is a selective inhibitor of phosphodiesterase-4 isoenzyme in lung cells. Having psychiatric adverse reactions when administered orally affects negatively the patients' adherence to the drug. This work aimed to prepare emulsified spray dried alginate microparticles for the pulmonary delivery of roflumilast. Sodium alginate was used as microparticle-forming material, isopropyl myristate as an oil, Tween®80 as surfactant and calcium beta-glycerophosphate as cross-linking agent to enhance the mechanical properties of the particles. The prepared particles were evaluated for their encapsulation efficiency, particle size and in-vitro drug release. From the studied carriers, beta-cyclodextrin (CD) was the best regarding giving formulation with smaller particle size and more sustained drug release. The inhalation profile of CD-based microparticles was investigated using Anderson cascade impactor. The aerosolization profile of CD-based microparticles suggested their efficiency to deliver the drug deep in the lung. The CD-based microparticles possessed more inhibitory effects on the viability of A549 cells and on the pro-inflammatory cytokines (TNF-α, IL-6 and IL-10) compared to the pure drug. Hence, CD-based microparticles could regulate the tumorigenesis besides tumor-associated inflammation. Finally, CD-based microparticles showed more sustained bronchodilatation properties in healthy human volunteers when compared to Ventolin®HFA. CD-based microparticles proved to be a promising carrier for inhaled roflumilast in human.
Collapse
Affiliation(s)
- Azza A Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt; Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, Egypt.
| | - Abdelfattah A Abdelkhalek
- Department of Microbiology of Supplementry General Science, Faculty of Oral & Dental Medicine, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
10
|
Beute J, Lukkes M, Koekoek EP, Nastiti H, Ganesh K, de Bruijn MJ, Hockman S, van Nimwegen M, Braunstahl GJ, Boon L, Lambrecht BN, Manganiello VC, Hendriks RW, KleinJan A. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight 2018; 3:94888. [PMID: 29367458 DOI: 10.1172/jci.insight.94888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 01/04/2023] Open
Abstract
Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation, reported side effects preclude its application as an antiasthma drug in humans. Case reports showed that enoximone, which is a smooth muscle relaxant that inhibits PDE3, is beneficial and lifesaving in status asthmaticus and is well tolerated. However, clinical observations also showed antiinflammatory effects of PDE3 inhibition. In this study, we investigated the role of PDE3 in a house dust mite-driven (HDM-driven) allergic airway inflammation (AAI) model that is characterized by T helper 2 cell activation, eosinophilia, and reduced mucosal barrier function. Compared with wild-type (WT) littermates, mice with a targeted deletion of the PDE3A or PDE3B gene showed significantly reduced HDM-driven AAI. Therapeutic intervention in WT mice showed that all hallmarks of HDM-driven AAI were abrogated by the PDE3 inhibitors enoximone and milrinone. Importantly, we found that enoximone also reduced the upregulation of the CD11b integrin on mouse and human eosinophils in vitro, which is crucial for their recruitment during allergic inflammation. This study provides evidence for a hitherto unknown antiinflammatory role of PDE3 inhibition in allergic airway inflammation and offers a potentially novel treatment approach.
Collapse
Affiliation(s)
- Jan Beute
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Ewout P Koekoek
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Hedwika Nastiti
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Keerthana Ganesh
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Steve Hockman
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | | | - Louis Boon
- Epirus Biopharmaceuticals Netherlands Yalelaan, Utrecht, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands.,VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
| | - Vince C Manganiello
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland USA
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, 's-Gravendijkwal, Rotterdam, Netherlands
| |
Collapse
|
11
|
Fioni A, Selg E, Cenacchi V, Acevedo F, Brogin G, Gerde P, Puccini P. Investigation of Lung Pharmacokinetic of the Novel PDE4 Inhibitor CHF6001 in Preclinical Models: Evaluation of the PreciseInhale Technology. J Aerosol Med Pulm Drug Deliv 2017; 31:61-70. [PMID: 28768120 DOI: 10.1089/jamp.2017.1369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Preclinical evaluation of new chemical entities (NCEs) designed to be administered by inhalation route requires lung administration to rodents, especially in the discovery phase. Different administration methods have been used until now, but more efforts are required to obtain controlled and reproducible lung deposition when only small amounts of neat powder material are available. METHODS The PreciseInhale platform used in the present study enables well-controlled powder aerosol exposures with only small amounts of micronized neat material, providing data on inhalation pharmacokinetic (PK) of NCEs at a very early stage. The DustGun aerosol technology uses compressed air to generate a respirable aerosol from milligram-amounts of powder that is delivered to one animal at a time. The new methodology was used to investigate the inhalation PK and lung retention in the rat of the novel Chiesi PDE4 inhibitor CHF6001 in three exposure models of the PreciseInhale platform: nose-only, intratracheally intubated rat, and the isolated, ventilated, and perfused rat lung. Results were compared with data from two other pulmonary delivery systems commonly used in preclinical studies: liquid instillation and powder insufflation. RESULTS Administration of micronized CHF6001 using the PreciseInhale system yielded lung exposures in the same range as the other tested devices, but the reproducibility in lung deposition was improved. The initial amount of CHF6001 in lungs at the first sampling time point was close to the predetermined target dose. Tracheal deposition with PreciseInhale (0.36 ± 0.22 μg) was significantly less than with other tested delivery systems: PennCentury (23.7 ± 3.2 μg) and Airjet (25.6 ± 7.2 μg). CONCLUSIONS The PreciseInhale platform enabled the administration of CHF6001 powder with good accuracy and reproducibility, with low tracheal deposition. The new platform can be used at an early discovery stage to obtain inhalatory PK data for respirable aerosols of neat NCE powder without excipients and with minimal use of dry powder formulation work.
Collapse
Affiliation(s)
| | - Ewa Selg
- 2 Inhalation Sciences Sweden AB , Stockholm, Sweden
| | | | | | | | - Per Gerde
- 2 Inhalation Sciences Sweden AB , Stockholm, Sweden .,3 Division of Physiology, Institute of Environmental Medicine, Karolinska Institutet , Stockholm, Sweden
| | | |
Collapse
|
12
|
Murad HA, Habib HS, Rafeeq MM, Sulaiman MI, Abdulrahman AS, Khabaz MN. Co-inhalation of roflumilast, rather than formoterol, with fluticasone more effectively improves asthma in asthmatic mice. Exp Biol Med (Maywood) 2017; 242:516-526. [PMID: 28056550 PMCID: PMC5367656 DOI: 10.1177/1535370216685006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
Roflumilast is approved as an add-on therapy for chronic obstructive pulmonary disease. The inflammation in chronic obstructive pulmonary disease is mainly neutrophilic, while in asthma it is mainly eosinophilic, studies addressing role of roflumilast in eosinophilic inflammation are recommended. Also in severe asthma, the dominant inflammatory cells are neutrophils. Thus, roflumilast has a potential off-label use in the treatment of asthma. This study was designed to evaluate the effects of co-inhalation of roflumilast and fluticasone compared to that of formoterol and fluticasone in ovalbumin-sensitized and-challenged BALB/c mice. Besides normal control group, the ovalbumin-asthmatic mice were randomly divided into seven groups (n = 8): positive control, vehicle-treated, and five drug-treated groups. Treatments (µg/kg) were given as 15 min-inhalation once/day for five days as follows: roflumilast (500), formoterol (50), fluticasone (1000), roflumilast + fluticasone (500 + 1000), and formoterol + fluticasone (50 + 1000). Penh values were measured in conscious unrestrained mice using the single-chamber whole-body plethysmography. Airway hyperreactivity to inhaled methacholine was evaluated. Bronchoalveolar lavage fluid was used for the measurements of levels of IL-4, IL-5, TNF-α, OVA-specific IgE, and total and differential white cells. Lung sections were stained with hematoxylin and eosin and periodic acid-Schiff. The asthmatic mice showed significant increases in airway hyperreactivity which were significantly reversed by the combination treatments. The asthmatic mice showed significant increases in levels of IL-4, IL-5, TNF-α, ovalbumin-specific IgE, and total and differential white cells in bronchoalveolar lavage fluid. All treatments (except formoterol) significantly reversed these changes mainly with roflumilast + fluticasone. The asthmatic mice showed severe inflammatory infiltration and goblet cell hyperplasia which were maximally reversed by roflumilast + fluticasone, while minimally reversed by formoterol. In conclusion, co-inhalation of roflumilast + fluticasone more significantly improved inflammation and histopathological changes than co-inhalation of formoterol + fluticasone in ovalumin-asthmatic mice. Further studies are needed to help confirm the potential off-label add-on use of roflumilast in typical and atypical asthma and asthma-chronic obstructive pulmonary disease overlap syndrome. Impact statement Roflumilast, a selective phosphodiesterase-4 inhibitor, was approved for the treatment of chronic obstructive pulmonary disease (COPD). This study showed that co-inhalation of roflumilast and fluticasone significantly decreased airway hyperresponsiveness in ovalumin-asthmatic mice. Also, it more significantly improved inflammation and histopathological changes than co-inhalation of formoterol and fluticasone. The current results showed that inhaled roflumilast reduced counts of eosinophils, neutrophils, and macrophages in bronchoalveolar lavage fluid. Consequently, inhaled roflumilast might be of potential off-label benefit in treatment of eosinophilic and neutrophilic asthma and asthma-COPD overlap syndrome (ACOS). These results could also support other experimental and clinical studies addressing the same issue.
Collapse
Affiliation(s)
- Hussam A Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| | - Hamed S Habib
- Department of Pediatrics, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Misbahuddin M Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Mansour I Sulaiman
- Department of Pharmacology, Faculty of Medicine, KAU, Jeddah 21589, Saudi Arabia
| | - Amer S Abdulrahman
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| | - Mohamad Nidal Khabaz
- Department of Pathology, Faculty of Medicine, Rabigh, KAU, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Hu A, Diener BL, Josephson MB, Grunstein MM. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells. PLoS One 2015; 10:e0118712. [PMID: 25742624 PMCID: PMC4351001 DOI: 10.1371/journal.pone.0118712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/09/2015] [Indexed: 02/02/2023] Open
Abstract
Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4) activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM), as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM) cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.
Collapse
Affiliation(s)
- Aihua Hu
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Barry L. Diener
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Maureen B. Josephson
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Influence of Roflumilast on Airway Reactivity and Apoptosis in Ovalbumin-Sensitized Guinea Pigs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 838:11-8. [DOI: 10.1007/5584_2014_77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Beghè B, Rabe KF, Fabbri LM. Phosphodiesterase-4 inhibitor therapy for lung diseases. Am J Respir Crit Care Med 2013; 188:271-8. [PMID: 23656508 DOI: 10.1164/rccm.201301-0021pp] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that catalyze the breakdown of cAMP and/or cyclic guanosine monophosphate (GMP) to their inactive form. PDE4 is the main selective cAMP-metabolizing enzyme in inflammatory and immune cells. Because PDE4 is highly expressed in leukocytes and other inflammatory cells involved in the pathogenesis of inflammatory lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), inhibition of PDE4 has been predicted to have an antiinflammatory effect and thus therapeutic efficacy. The limited and inconsistent efficacy and side effects of the early compounds made their further development less desirable in asthma, given the excellent efficacy/tolerability ratio of inhaled steroids. The lack of effective antiinflammatory drug treatment for COPD has thus shifted the interest in development toward COPD. Roflumilast, the only PDE4 inhibitor that has reached the market because of the good efficacy/tolerability ratio, is recommended for patients with COPD with severe airflow limitation, symptoms of chronic bronchitis, and a history of exacerbations, whose disease is not adequately controlled by long-acting bronchodilators. Albeit safe, it maintains significant side effects (diarrhea, nausea, weight loss) that make it intolerable in some patients. Future developments of PDE4 inhibitors include extended indications of roflumilast (1) in patients with COPD, and (2) in other respiratory (e.g., asthma) and nonrespiratory chronic inflammatory/metabolic conditions (e.g., diabetes), as well as (3) the development of new molecules with PDE4 inhibitory properties with an improved efficacy/tolerability profile.
Collapse
Affiliation(s)
- Bianca Beghè
- Section of Respiratory Diseases, Department of Oncology, Haematology, and Respiratory Diseases, University of Modena and Reggio Emilia, Policlinico di Modena, Modena, Italy
| | | | | |
Collapse
|
16
|
Guillon A, Montharu J, Vecellio L, Schubnel V, Roseau G, Guillemain J, Diot P, de Monte M. Pulmonary delivery of dry powders to rats: tolerability limits of an intra-tracheal administration model. Int J Pharm 2012; 434:481-7. [PMID: 22609125 DOI: 10.1016/j.ijpharm.2012.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 11/26/2022]
Abstract
The inhaled route is increasingly developed to deliver locally acting or systemic therapies, and rodent models are used to assess tolerance before clinical studies. Endotracheal intubation of rats with a probe which generates powder aerosols enables controlled administration of drug directly into the respiratory tract. However, preliminary observations of intratracheal powder administration procedures have raised concerns with regard to pulmonary safety. The aim of the present work was to evaluate the safety of intra-tracheal administration of dry powder in a rat model. Sixty animals were administered various volumes of air alone, lactose or magnesium stearate through a Microsprayer(®) (Pencentury, USA). The mass of powder actually delivered to each animal was calculated. Rats were sacrificed immediately after administration, and the lungs, trachea and larynx were removed and examined for gross pathology. The mass of powder delivered varied, the full dose being rarely delivered. About one third of the administration procedures resulted in respiratory failure, and macroscopic pulmonary lesions were observed in about 55% of animals. Lung damages were observed with air alone, lactose and magnesium stearate. In conclusion, artifacts observed with this technique may limit the relevance of the model. These observations are particularly important in the context of regulatory toxicity studies.
Collapse
Affiliation(s)
- A Guillon
- Université François Rabelais, EA 6305, F-37032 Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nino G, Hu A, Grunstein JS, McDonough J, Kreiger PA, Josephson MB, Choi JK, Grunstein MM. G Protein βγ-subunit signaling mediates airway hyperresponsiveness and inflammation in allergic asthma. PLoS One 2012; 7:e32078. [PMID: 22384144 PMCID: PMC3284547 DOI: 10.1371/journal.pone.0032078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/23/2012] [Indexed: 01/11/2023] Open
Abstract
Since the Gβγ subunit of Gi protein has been importantly implicated in regulating immune and inflammatory responses, this study investigated the potential role and mechanism of action of Gβγ signaling in regulating the induction of airway hyperresponsiveness (AHR) in a rabbit model of allergic asthma. Relative to non-sensitized animals, OVA-sensitized rabbits challenged with inhaled OVA exhibited AHR, lung inflammation, elevated BAL levels of IL-13, and increased airway phosphodiesterase-4 (PDE4) activity. These proasthmatic responses were suppressed by pretreatment with an inhaled membrane-permeable anti-Gβγ blocking peptide, similar to the suppressive effect of glucocorticoid pretreatment. Extended mechanistic studies demonstrated that: 1) corresponding proasthmatic changes in contractility exhibited in isolated airway smooth muscle (ASM) sensitized with serum from OVA-sensitized+challenged rabbits or IL-13 were also Gβγ-dependent and mediated by MAPK-upregulated PDE4 activity; and 2) the latter was attributed to Gβγ-induced direct stimulation of the non-receptor tyrosine kinase, c-Src, resulting in downstream activation of ERK1/2 and its consequent transcriptional upregulation of PDE4. Collectively, these data are the first to identify that a mechanism involving Gβγ-induced direct activation of c-Src, leading to ERK1/2-mediated upregulation of PDE4 activity, plays a decisive role in regulating the induction of AHR and inflammation in a rabbit model of allergic airway disease.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Pediatric Pulmonary and Sleep Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Aihua Hu
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Judith S. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph McDonough
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Portia A. Kreiger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Pathology, Nemours/A.I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Maureen B. Josephson
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John K. Choi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Steroidal C-21 heteroaryl thioethers (Part 2): Discovery of orally bioavailable selective glucocorticoid receptor modulators (dissociated steroids). Bioorg Med Chem Lett 2012; 22:1086-90. [DOI: 10.1016/j.bmcl.2011.11.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 10/14/2022]
|
19
|
Niimi K, Ge Q, Moir LM, Ammit AJ, Trian T, Burgess JK, Black JL, Oliver BGG. β2-Agonists upregulate PDE4 mRNA but not protein or activity in human airway smooth muscle cells from asthmatic and nonasthmatic volunteers. Am J Physiol Lung Cell Mol Physiol 2011; 302:L334-42. [PMID: 22101762 DOI: 10.1152/ajplung.00163.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β(2)-Adrenergic receptor (β2AR) agonists induce airway relaxation via cAMP. Phosphodiesterase (PDE)s degrade and regulate cAMP, and in airway smooth muscle (ASM) cells PDE4D degrades cAMP. Long-acting β(2)-agonists are now contraindicated as monotherapy for asthma, and increased PDE4D has been speculated to contribute to this phenomenon. In this study we investigated the expression of PDE4D in asthmatic and nonasthmatic ASM cells and its regulation by formoterol and budesonide. Primary ASM cells from people with or without asthma were stimulated with transforming growth factor (TGF)-β(1), formoterol, and/or budesonide. PDE4D mRNA was assessed by real-time PCR, or PCR to assess splice variant production. PDE4D protein was assessed by Western blotting, and we investigated the effect of formoterol on cAMP production and PDE activity. Interleukin (IL)-6 was assessed using ELISA. PDE4D mRNA was dose dependently upregulated by formoterol, with a single splice variant, PDE4D5, present. Formoterol did not induce PDE4D protein at time points between 3 to 72 h, whereas it did induce and increase IL-6 secretion. We pretreated cells with actinomycin D and a proteasome inhibitor, MG132, and found no evidence of alterations in mRNA, protein expression, or degradation of PDE4D. Finally PDE activity was not altered by formoterol. This study shows, for the first time, that PDE4D5 is predominantly expressed in human ASM cells from people with and without asthma and that formoterol does not upregulate PDE4D protein production. This leads us to speculate that continual therapy with β2AR agonists is unlikely to cause PDE4-mediated tachyphylaxis.
Collapse
Affiliation(s)
- Kyoko Niimi
- Cell Biology Group, Woolcock Institute of Medical Research, School of Medical Sciences, The Univ. of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kumar D, Bhujbal SS, Deoda RS, Mudgade SC. Bronchodilator activity of aqueous extract of stem bark of Ailanthus excelsa Roxb. Pharmacognosy Res 2011; 2:102-6. [PMID: 21808549 PMCID: PMC3140105 DOI: 10.4103/0974-8490.62955] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/30/2010] [Accepted: 05/04/2010] [Indexed: 11/04/2022] Open
Abstract
Biologically active compounds from natural sources are of interest as possible new drugs for infectious diseases. Ailanthus excelsa Roxb. has been used in Indian system of medicine in the treatment of asthma, bronchitis, cold, colic pain, etc. Stem bark of A. excelsa Roxb. has been used as a decoction in traditional claims. So, our traditional claims enforced us to evaluate its bronchodilator activity. We have evaluated its bronchodilator activity in milk-induced leukocytosis and eosinophilia, clonidine-induced mast cell degranulation, bronchoalveolar lavage fluid (BALF), and lung histopathology models. The aqueous extract of stem bark in doses of 100, 200, 400 mg/kg showed significant activity.
Collapse
Affiliation(s)
- Dinesh Kumar
- Rayat Institute of Pharmacy, Railmajra, S.B.S. Nagar, Punjab, India
| | | | | | | |
Collapse
|
21
|
Biju P, McCormick K, Aslanian R, Berlin M, Solomon D, Chapman R, McLeod R, Prelusky D, Eckel S, Kelly G, Natiello M, House A, Fernandez X, Bitar R, Phillips J, Anthes J. Steroidal C-21 mercapto derivatives as dissociated steroids: discovery of an inhaled dissociated steroid. Bioorg Med Chem Lett 2011; 21:6343-7. [PMID: 21944381 DOI: 10.1016/j.bmcl.2011.08.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/19/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022]
Abstract
A series of C-21 mercapto derivatives of hydrocortisone have been synthesized and evaluated in cell based transrepression and transactivation assays. The benzothiazole derivative, compound 6 not only showed a dissociated profile in vitro functional assays but also a pharmacological profile in a Brown-Norway rat therapeutic index model of asthma that dissociated side effects (thymolysis) while maintaining efficacy against pulmonary inflammation and lung function.
Collapse
Affiliation(s)
- Purakkattle Biju
- Merck Research Laboratories, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cada DJ, Levien TL, Baker DE. Roflumilast. Hosp Pharm 2011. [DOI: 10.1310/hpj4608-597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. Subscribers to The Formulary Monograph Service also receive access to a pharmacy bulletin board, The Formulary Information Exchange (The F.I.X.). All topics pertinent to clinical and hospital pharmacy are discussed on The F.I.X. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service or The F.I.X., call The Formulary at 800-322-4349. The August 2011 monograph topics are on fidaxomicin, boceprevir, telaprevir, rilpivirine hydrochloride, and gabapentin enacarbil. The DUE/MUE is on fidaxomicin.
Collapse
Affiliation(s)
| | - Terri L. Levien
- Drug Information Center, Washington State University, Spokane, Washington
| | - Danial E. Baker
- Drug Information Center, and College of Pharmacy, Washington State University Spokane, PO Box 1495, Spokane, Washington 99210-1495
| |
Collapse
|
23
|
Wadibhasme PG, Ghaisas MM, Thakurdesai PA. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. PHARMACEUTICAL BIOLOGY 2011; 49:508-515. [PMID: 21501099 DOI: 10.3109/13880209.2010.521754] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Chrysin, a flavonoid obtained from various natural sources, has been reported to act as an anti-inflammatory and antioxidant agent. However, its anti-allergic action is not fully understood. OBJECTIVE In this study, we investigated the in vivo anti-asthmatic activity of chrysin. MATERIALS AND METHODS The effects of chrysin were evaluated using ovalbumin (OVA) (two subcutaneous 1 mL injections of 20 μg) to induce bronchoalveolar hyperresponsiveness in rats. Chrysin, when administered at 3, 10, and 30 mg/kg, p.o., respectively, before OVA challenge, reduced inflammatory cell (total and differential cell count) infiltration into the lungs measured from bronchoalveolar lavage fluid as supported by lung histology. RESULTS The total lung injury score was reduced in a dose-dependent manner, evaluated in six different categories (infiltration of leucocytes, type of inflammatory exudates, status of bronchi, perivascular status of lung blood vessels, integrity of alveoli and activation of alveolar macrophages). Various cellular injury parameters such as alkaline phosphatase, lactate dehydrogenase, and total protein were estimated and found to be reduced by chrysin pretreatment. Further, chrysin was found to reduce nitrite concentration (NO) and lipid peroxidation, suggesting its antioxidant activity. DISCUSSION AND CONCLUSION Chrysin showed anti-asthmatic potential, probably due to the alteration of Th1/Th2 polarization via the suppression of inducible nitric oxide synthase, nuclear factor-κB, and activation protein.
Collapse
Affiliation(s)
- Pankaj G Wadibhasme
- Department of Pharmacology, Padmashree Dr D Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | | | | |
Collapse
|
24
|
Antoniu SA. New therapeutic options in the management of COPD - focus on roflumilast. Int J Chron Obstruct Pulmon Dis 2011; 6:147-55. [PMID: 21468165 PMCID: PMC3064419 DOI: 10.2147/copd.s7336] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Indexed: 12/17/2022] Open
Abstract
In chronic obstructive pulmonary disease (COPD) the inflammation occurring in the airways and in other lung tissues is complex and is orchestrated by various mediators including the isoenzyme 4 of the phosphodiesterases family (PDE4), which contributes to bronchoconstriction and inflammation. Various PDE4 inhibitors have been evaluated as potential therapies in asthma or COPD but among these only roflumilast have been authorized in Europe to be used in patients with severe COPD as an add-on to the bronchodilator therapy. This review discusses the existing preclinical and clinical data supporting the use of roflumilast for this therapeutic indication and tackles some of the pending issues related to PDE4 in general and to roflumilast in particular.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- University of Medicine and Pharmacy, Pulmonary Disease Division, Pulmonary Disease University Hospital, Iasi, Romania.
| |
Collapse
|
25
|
Nials AT, Tralau-Stewart CJ, Gascoigne MH, Ball DI, Ranshaw LE, Knowles RG. In vivo characterization of GSK256066, a high-affinity inhaled phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther 2011; 337:137-44. [PMID: 21205924 DOI: 10.1124/jpet.110.173641] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Oral phosphodiesterase (PDE) 4 inhibitors have demonstrated clinical efficacy in chronic obstructive pulmonary disease and asthma. Preclinical and clinical investigation of inhaled PDE4 inhibitors is ongoing. 6-({3-[(Dimethylamino)carbonyl]phenyl}sulfonyl)-8-methyl-4-{[3-methyloxy)phenyl]amino}-3-quinolinecarboxamide (GSK256066) is an exceptionally high-affinity and selective inhibitor of PDE4 designed for inhaled delivery. The aim of these studies was to investigate the potency, duration of action, and therapeutic index of GSK256066 in animal models of pulmonary inflammation. The effects of intratracheally administered GSK256066 were investigated in rat lipopolysaccharide (LPS)- and ovalbumin (OVA)-induced models of acute pulmonary inflammation. In some studies, fluticasone propionate (FP) was included as a comparator. The therapeutic index (anti-inflammatory effect versus emesis) of GSK256066 was studied in ferrets where acute pulmonary inflammation was induced with inhaled LPS. In rats, GSK256066 and FP caused significant (p < 0.05) inhibition of LPS-induced pulmonary neutrophilia. The duration of action of GSK256066 at 10 × ED(50) dose (10 μg/kg) was 12 h. GSK256066 and FP also inhibited LPS-induced increases in exhaled nitric oxide (ED(50) 35 and 92 μg/kg, respectively). In addition, GSK256066 inhibited pulmonary eosinophilia in rats exposed to OVA (ED(50) 0.4 μg/kg). In ferrets, inhaled GSK256066 inhibited LPS-induced pulmonary neutrophilia (ED(50) 18 μg/kg), and no emetic episodes were observed. Thus, GSK256066 may have an improved therapeutic index compared with oral PDE4 inhibitors, e.g., cilomilast and roflumilast. In summary, GSK256066 demonstrates potent and long-lasting anti-inflammatory effects in animal models of pulmonary inflammation and does not induce emetic episodes in ferrets. GSK256066 has potential as an inhaled therapeutic for the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Anthony T Nials
- UK Discovery Biology, Respiratory Centre of Excellence for Drug Discovery, GlaxoSmithKline Research and Development Ltd, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, United Kingdom SG1 2NY.
| | | | | | | | | | | |
Collapse
|
26
|
Chapman RW, Curran AK, House A, Richard J, Salisbury B, Hunter JC, Anthes JC, Phillips JE. Effect of mometasone furoate (MF)/formoterol fumarate (F) combination (MF/F) on late-phase responses in allergen-challenged Brown Norway rats. Pulm Pharmacol Ther 2010; 24:67-73. [PMID: 20937404 DOI: 10.1016/j.pupt.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 09/29/2010] [Accepted: 10/02/2010] [Indexed: 10/19/2022]
Abstract
Mometasone furoate (MF)/formoterol fumarate (F) combination is a new inhaIed corticosteroid/long-acting β₂-adrenergic agonist (ICS/LABA). The purpose of this study was to evaluate the effects of different dose combinations of MF/F on a variety of late-phase responses to aerosolized antigen challenge in ovalbumin sensitized Brown Norway rats. Late-phase responses were assessed by reductions in lung function, measured by forced vital capacity (FVC) and increased numbers of inflammatory cells and pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid of ovalbumin challenged rats. Intratracheal administration of MF/F 5 h before aerosolized ovalbumin challenge inhibited the increase in inflammatory cells, including eosinophils and levels of interleukin (IL)-4, IL-5, IL-13 and tumour necrosis factor-α (TNF-α) appearing in the bronchoalveolar lavage fluid 24 h after the antigen challenge. The combination index for inhibition of both inflammatory cells and cytokines was consistently <1 suggesting a synergistic interaction between MF and F. Intratracheal MF/F given 24 h after the aerosolized ovalbumin challenge reversed the reduction in FVC with statistically significant effects seen over a 24 h period after drug whereas MF and F alone reversed the antigen-induced reduction in FVC at selected times only. At 5 h after drug administration, when both MF and F were partially active, the combination index for MF/F was <1 suggesting a synergistic interaction between MF and F for reversal of the lung function. These results demonstrate that MF/F combination inhibits a variety of late-phase responses induced by allergen challenge and it is likely that MF/F will have a significant benefit in clinical asthma to suppress lung inflammation and improve lung function.
Collapse
Affiliation(s)
- Richard W Chapman
- Department of Bone, Respiratory, Immunology and Dermatology, Merck Research Laboratories, 2000 Galloping Hill Road, Kenilworth, NJ 07033-0539, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chapman RW, House A, Richard J, Prelusky D, Lamca J, Wang P, Lundell D, Wu P, Ting PC, Lee JF, Aslanian R, Phillips JE. Pharmacology of a potent and selective inhibitor of PDE4 for inhaled administration. Eur J Pharmacol 2010; 643:274-81. [PMID: 20621091 DOI: 10.1016/j.ejphar.2010.06.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 12/16/2022]
Abstract
A strategy to overcome the side effect liabilities of oral PDE4 inhibitors has been to deliver the drugs by inhalation. In this report, we identify 1-[[5-(1(S)-aminoethly)-2-[8-methoxy-2-(triflurormethyl)-5-quinolinyl]-4-oxazolyl] carbonyl]-4(R)-[(cyclopropylcarbonyl)amino]-L-proline, ethyl ester xinafoate salt, (COMPOUND 1) as a potent and selective inhibitor of PDE4 with biological and pharmacokinetic properties suitable for delivery by the inhaled route. COMPOUND 1 potently inhibits human PDE4 (IC(50)=70pM) with little or no activity against other PDEs. It is highly potent against PDE4B and PDE4D which are important isoforms of PDE4 controlling inflammation and airway functions. In an allergen-challenged Brown Norway rat model of asthma, COMPOUND 1 inhibited the late phase influx of inflammatory cells and reductions in lung function following its administration by the intratracheal or nose-only routes of administration. Important differences were seen between intratracheal COMPOUND 1 and our previously published results with the oral PDE4 inhibitor roflumilast (Celly et al., 2005), as COMPOUND 1 rapidly (within 1h) reversed the decline in lung function when it was given therapeutically to rats already challenged with antigen. COMPOUND 1 was weakly active by the oral route which is a finding consistent with results showing this compound has poor oral bioavailability in animals. Positive interactions between COMPOUND 1 and albuterol, and COMPOUND 1 and mometasone furoate were seen on the improvement in lung functions in allergen-challenged rats. These results identify COMPOUND 1 as a potent and selective inhibitor of PDE4 with properties suitable for delivery by inhalation.
Collapse
Affiliation(s)
- Richard W Chapman
- Department of Bone, Respiratory, Immunology and Dermatology, Merck Research Laboratories, Kenilworth, New Jersey 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nino G, Grunstein MM. Current concepts on the use of glucocorticosteroids and beta-2-adrenoreceptor agonists to treat childhood asthma. Curr Opin Pediatr 2010; 22:290-5. [PMID: 20164771 PMCID: PMC2997654 DOI: 10.1097/mop.0b013e328337cb0c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW This article reviews current concepts regarding the clinical and scientific rationale for the combined use of glucocorticosteroids and beta-2-adrenoreceptor (beta2AR) agonists in the treatment of childhood asthma. RECENT FINDINGS Several studies have demonstrated that inhaled corticosteroids (ICS) and beta2AR agonists are the most effective medications for the management of asthma in children. Given substantial evidence of an increased clinical benefit when these agents are used together, new studies are being pursued to establish the efficacy and safety of this combinational therapy in infants and children. Ongoing research is also investigating the mechanisms of beta2AR and glucocorticosteroids signaling and their molecular interactions. This new knowledge will likely lead to novel therapeutic approaches to asthma control. SUMMARY There is increasing evidence demonstrating that the combination of long-acting beta2AR agonists and ICS may be more effective than high-dose ICS therapy alone in the management of children with uncontrolled asthma. In addition, the use of a single inhaler containing ICS and a quick-acting beta2AR agonist might be a convenient alternative to prevent and treat asthma exacerbations. Future investigations should be designed to more specifically evaluate the efficacy and safety of these therapies in the different asthmatic phenotypes of infants and children.
Collapse
Affiliation(s)
- Gustavo Nino
- Division of Pediatric Pulmonology, Penn State Milton S. Hershey Children's Hospital, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, USA.
| | | |
Collapse
|
29
|
Nino G, Hu A, Grunstein JS, Grunstein MM. Mechanism of glucocorticoid protection of airway smooth muscle from proasthmatic effects of long-acting beta2-adrenoceptor agonist exposure. J Allergy Clin Immunol 2010; 125:1020-7. [PMID: 20392484 DOI: 10.1016/j.jaci.2010.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic use of long-acting beta2-adrenergic receptor agonists (LABAs), resulting in beta2-adrenergic receptor desensitization, has been associated with increased asthma morbidity. When LABAs are used in combination with inhaled glucocorticoids, however, asthma control is improved, raising the following question: Do glucocorticoids inhibit the proasthmatic mechanism that mediates altered contractility in LABA-exposed airway smooth muscle (ASM)? OBJECTIVE This study aimed to identify the potential protective role and mechanism of action of glucocorticoids in mitigating the effects of prolonged LABA exposure on ASM constrictor and relaxation responsiveness. METHODS Cultured human ASM cells and isolated rabbit ASM tissues were examined for induced changes in agonist-mediated cyclic adenosine monophosphate accumulation, constrictor and relaxation responsiveness, and expression of specific glucocorticoid-regulated molecules after 24-hour exposure to the LABA salmeterol in the absence and presence of dexamethasone. RESULTS Salmeterol-exposed ASM exhibited impaired cyclic adenosine monophosphate and relaxation responses to isoproterenol and increased acetylcholine-induced contractility. These proasthmatic effects of prolonged LABA exposure were attributed to upregulated phosphodiesterase 4 (PDE4) activity and were ablated by pretreatment with dexamethasone. Further studies demonstrated that (1) dexamethasone suppressed activation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2), which upregulate PDE4 expression in salmeterol-exposed ASM; and (2) the inhibitory actions of dexamethasone on salmeterol-induced ERK1/2 activation and resultant PDE4-mediated changes in ASM responsiveness were prevented by gene silencing or pharmacologic inhibition of dexamethasone-induced expression of mitogen-activated protein kinase phosphatase 1, an endogenous deactivator of ERK1/2 signaling. CONCLUSION Glucocorticoids prevent the adverse proasthmatic effects of prolonged LABA exposure on airway responsiveness as a result of glucocorticoid-induced upregulation of mitogen-activated protein kinase phosphatase 1, which inhibits proasthmatic ERK1/2 signaling in the LABA-exposed ASM.
Collapse
Affiliation(s)
- Gustavo Nino
- Children's Hospital of Philadelphia Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
30
|
Nino G, Hu A, Grunstein JS, Grunstein MM. Mechanism regulating proasthmatic effects of prolonged homologous beta2-adrenergic receptor desensitization in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2009; 297:L746-57. [PMID: 19666775 DOI: 10.1152/ajplung.00079.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Use of long-acting beta(2)-adrenergic receptor (beta2AR) agonists to treat asthma incurs an increased risk of asthma morbidity with impaired bronchodilation and heightened bronchoconstriction, reflecting the adverse effects of prolonged homologous beta2AR desensitization on airway smooth muscle (ASM) function. Since phosphodiesterase 4 (PDE4) regulates ASM relaxation and contractility, we examined whether the changes in ASM function induced by prolonged homologous beta2AR desensitization are attributed to altered expression and action of PDE4. Cultured human ASM cells and isolated rabbit ASM tissues exposed for 24 h to the long-acting beta2AR agonist salmeterol exhibited impaired acute beta2AR-mediated cAMP accumulation and relaxation, respectively, together with ASM constrictor hyperresponsiveness. These proasthmatic-like changes in ASM function were associated with upregulated PDE4 activity due to enhanced expression of the PDE4D5 isoform and were prevented by pretreating the ASM preparations with the PDE4 inhibitor rolipram or with inhibitors of either PKA or ERK1/2 signaling. Extended studies using gene silencing and pharmacological approaches demonstrated that: 1) the mechanism underlying upregulated PDE4D5 expression following prolonged beta2AR agonist exposure involves PKA-dependent activation of G(i) protein signaling via its betagamma-subunits, which elicits downstream activation of ERK1/2 and its induction of PDE4D5 transcription; and 2) the induction of PDE4 activity and consequent changes in ASM responsiveness are prevented by pretreating the beta2AR agonist-exposed ASM preparations with inhibitors of G(i)-betagamma signaling. Collectively, these findings identify that the proasthmatic changes in ASM function resulting from prolonged homologous beta2AR desensitization are attributed to upregulated PDE4 expression induced by G(i)-betagamma-mediated cross-talk between the PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Gustavo Nino
- Joseph Stokes Jr. Research Institute, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
31
|
De Backer JW, Vos WG, Burnell P, Verhulst SL, Salmon P, De Clerck N, De Backer W. Study of the variability in upper and lower airway morphology in Sprague-Dawley rats using modern micro-CT scan-based segmentation techniques. Anat Rec (Hoboken) 2009; 292:720-7. [PMID: 19322825 DOI: 10.1002/ar.20877] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Animal models are being used extensively in pre-clinical and safety assessment studies to assess the effectiveness and safety of new chemical entities and delivery systems. Although never entirely replacing the need for animal testing, the use of computer simulations could eventually reduce the amount of animals needed for research purposes and refine the data acquired from the animal studies. Computational fluid dynamics is a powerful tool that makes it possible to simulate flow and particle behavior in animal or patient-specific respiratory models, for purposes of inhaled delivery. This tool requires an accurate representation of the respiratory system, respiration and dose delivery attributes. The aim of this study is to develop a representative airway model of the Sprague-Dawley rat using static and dynamic micro-CT scans. The entire respiratory tract was modeled, from the snout and nares down to the central airways at the point where no distinction could be made between intraluminal air and the surrounding tissue. For the selection of the representative model, variables such as upper airway movement, segmentation length, airway volume and size are taken into account. Dynamic scans of the nostril region were used to illustrate the characteristic morphology of this region in anaesthetized animals. It could be concluded from this study that it was possible to construct a highly detailed representative model of a Sprague-Dawley rat based on imaging modalities such as micro-CT scans.
Collapse
|
32
|
A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 2009; 10:39. [PMID: 19457265 PMCID: PMC2696437 DOI: 10.1186/1465-9921-10-39] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/20/2009] [Indexed: 11/17/2022] Open
Abstract
Background Recent development in the field of COPD has focused on strategies aimed at reducing the underlying inflammation through selective inhibition of the phosphodiesterase type IV (PDE4) isoform. Although the anti-inflammatory and bronchodilator activity of selective PDE4 inhibitors has been well documented, their low therapeutic ratio and dose-dependent systemic side effects have limited their clinical utility. This study examined the effect of 2'-deoxy-2'-Fluoro-β-D-Arabinonucleic Acid (FANA)-containing antisense oligonucleotides (AON) targeting the mRNA for the PDE4B/4D and 7A subtypes on lung inflammatory markers, both in vitro and in vivo. Methods Normal human bronchial epithelial (NHBE) cells were transfected with FANA AON against PDE4B/4D and 7A alone or in combination. mRNA levels for target PDE subtypes, as well as secretion of pro-inflammatory chemokines were then measured following cell stimulation. Mice were treated with combined PDE4B/4D and 7A AON via endo-tracheal delivery, or with roflumilast via oral delivery, and exposed to cigarette smoke for one week. Target mRNA inhibition, as well as influx of inflammatory cells and mediators were measured in lung lavages. A two-week smoke exposure protocol was also used to test the longer term potency of PDE4B/4D and 7A AONs. Results In NHBE cells, PDE4B/4D and 7A AONs dose-dependently and specifically inhibited expression of their respective target mRNA. When used in combination, PDE4B/4D and 7A AONs significantly abrogated the cytokine-induced secretion of IL-8 and MCP-1 to near baseline levels. In mice treated with combined PDE4B/4D and 7A AONs and exposed to cigarette smoke, significant protection against the smoke-induced recruitment of neutrophils and production of KC and pro-MMP-9 was obtained, which was correlated with inhibition of target mRNA in cells from lung lavages. In this model, PDE AONs exerted more potent and broader anti-inflammatory effects against smoke-induced lung inflammation than roflumilast. Moreover, the protective effect of PDE4B/4D and 7A AON was maintained when a once-weekly treatment schedule was used. Conclusion These results indicate that inhaled AON against PDE4B/4D and 7A have unique effects on biomarkers that are believed to be important in the pathophysiology of COPD, which supports further development as a potential therapy in this disease.
Collapse
|
33
|
Press NJ, Banner KH. PDE4 inhibitors - a review of the current field. PROGRESS IN MEDICINAL CHEMISTRY 2009; 47:37-74. [PMID: 19328289 DOI: 10.1016/s0079-6468(08)00202-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Neil J Press
- Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, UK
| | | |
Collapse
|
34
|
Scriabine A, Rabin DU. New Developments in the Therapy of Pulmonary Fibrosis. ADVANCES IN PHARMACOLOGY 2009; 57:419-64. [DOI: 10.1016/s1054-3589(08)57011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Manual and automated leukocyte differentiation in bronchoalveolar lavage fluids from rodent models of pulmonary inflammation. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s00580-008-0772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Hu A, Nino G, Grunstein JS, Fatma S, Grunstein MM. Prolonged heterologous beta2-adrenoceptor desensitization promotes proasthmatic airway smooth muscle function via PKA/ERK1/2-mediated phosphodiesterase-4 induction. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1055-67. [PMID: 18359889 DOI: 10.1152/ajplung.00021.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta2-adrenergic receptor (beta2AR) agonists acutely relieve bronchoconstriction via cAMP-mediated relaxation of airway smooth muscle (ASM). Airway constrictor responsiveness may be significantly heightened, however, following protracted exposure to these agents, presumably reflecting the effects of beta2AR desensitization in ASM accompanying prolonged cAMP signaling. Because cAMP phosphodiesterase (PDE) activity can significantly modulate ASM contractility, we investigated the mechanism regulating PDE expression and its potential role in mediating changes in agonist-induced constrictor and relaxation responsiveness in ASM following its heterologous beta2AR desensitization by prolonged exposure to cAMP-elevating agents. Isolated rabbit ASM tissues and cultured human ASM cells treated for 24 h with the receptor- or nonreceptor-coupled cAMP-stimulating agent, prostaglandin E(2) (PGE(2)) or forskolin, respectively, exhibited constrictor hyperresponsiveness to acetylcholine and impaired beta2AR-mediated relaxation and cAMP accumulation. These proasthmatic-like changes in ASM function were associated with upregulated PDE4 activity, reflective of increased transcription of the PDE4D5 isoform, and were prevented by pretreatment of the ASM with a PDE4 inhibitor. Extended studies using gene silencing and pharmacological approaches to inhibit specific intracellular signaling molecules demonstrated that the mechanism underlying PGE(2)-induced transcriptional upregulation of PDE4D5 involves PKA-dependent activation of G(i) protein signaling via the betagamma-subunits, the latter eliciting downstream activation of ERK1/2 and its consequent induction of PDE4D5 transcription. Collectively, these findings identify that beta2AR desensitization in ASM following prolonged exposure to cAMP-elevating agents is associated with proasthmatic-like changes in ASM responsiveness that are mediated by upregulated PDE4 expression induced by activated cross talk between the PKA and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Aihua Hu
- The Joseph Stokes Jr. Research Institute, Division of Pulmonary Medicine, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|