1
|
Crowley K, Kiraga Ł, Miszczuk E, Skiba S, Banach J, Latek U, Mendel M, Chłopecka M. Effects of Cannabinoids on Intestinal Motility, Barrier Permeability, and Therapeutic Potential in Gastrointestinal Diseases. Int J Mol Sci 2024; 25:6682. [PMID: 38928387 PMCID: PMC11203611 DOI: 10.3390/ijms25126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids and their receptors play a significant role in the regulation of gastrointestinal (GIT) peristalsis and intestinal barrier permeability. This review critically evaluates current knowledge about the mechanisms of action and biological effects of endocannabinoids and phytocannabinoids on GIT functions and the potential therapeutic applications of these compounds. The results of ex vivo and in vivo preclinical data indicate that cannabinoids can both inhibit and stimulate gut peristalsis, depending on various factors. Endocannabinoids affect peristalsis in a cannabinoid (CB) receptor-specific manner; however, there is also an important interaction between them and the transient receptor potential cation channel subfamily V member 1 (TRPV1) system. Phytocannabinoids such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) impact gut motility mainly through the CB1 receptor. They were also found to improve intestinal barrier integrity, mainly through CB1 receptor stimulation but also via protein kinase A (PKA), mitogen-associated protein kinase (MAPK), and adenylyl cyclase signaling pathways, as well as by influencing the expression of tight junction (TJ) proteins. The anti-inflammatory effects of cannabinoids in GIT disorders are postulated to occur by the lowering of inflammatory factors such as myeloperoxidase (MPO) activity and regulation of cytokine levels. In conclusion, there is a prospect of utilizing cannabinoids as components of therapy for GIT disorders.
Collapse
Affiliation(s)
- Kijan Crowley
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Edyta Miszczuk
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Sergiusz Skiba
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Joanna Banach
- Department of Research and Processing Seed, Institute of Natural Fibers and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland;
| | - Urszula Latek
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Marta Mendel
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| | - Magdalena Chłopecka
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.C.); (E.M.); (U.L.); (M.M.)
| |
Collapse
|
2
|
Chioccarelli T, Falco G, Cappetta D, De Angelis A, Roberto L, Addeo M, Ragusa M, Barbagallo D, Berrino L, Purrello M, Ambrosino C, Cobellis G, Pierantoni R, Chianese R, Manfrevola F. FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cell Mol Life Sci 2021; 79:50. [PMID: 34936029 PMCID: PMC8739325 DOI: 10.1007/s00018-021-04054-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Circular RNA (circRNA) biogenesis requires a backsplicing reaction, promoted by inverted repeats in cis-flanking sequences and trans factors, such as RNA-binding proteins (RBPs). Among these, FUS plays a key role. During spermatogenesis and sperm maturation along the epididymis such a molecular mechanism has been poorly explored. With this in mind, we chose circCNOT6L as a study case and wild-type (WT) as well as cannabinoid receptor type-1 knock-out (Cb1−/−) male mice as animal models to analyze backsplicing mechanisms. Our results suggest that spermatozoa (SPZ) have an endogenous skill to circularize mRNAs, choosing FUS as modulator of backsplicing and under CB1 stimulation. A physical interaction between FUS and CNOT6L as well as a cooperation among FUS, RNA Polymerase II (RNApol2) and Quaking (QKI) take place in SPZ. Finally, to gain insight into FUS involvement in circCNOT6L biogenesis, FUS expression was reduced through RNA interference approach. Paternal transmission of FUS and CNOT6L to oocytes during fertilization was then assessed by using murine unfertilized oocytes (NF), one-cell zygotes (F) and murine oocytes undergoing parthenogenetic activation (PA) to exclude a maternal contribution. The role of circCNOT6L as an active regulator of zygote transition toward the 2-cell-like state was suggested using the Embryonic Stem Cell (ESC) system. Intriguingly, human SPZ exactly mirror murine SPZ.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Geppino Falco
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy.,Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy
| | - Donato Cappetta
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Antonella De Angelis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Luca Roberto
- Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy
| | - Martina Addeo
- Dipartimento di Biologia, Università di Napoli "Federico II", Napoli, Italy
| | - Marco Ragusa
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Davide Barbagallo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Liberato Berrino
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Michele Purrello
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Concetta Ambrosino
- Istituto di Ricerche Genetiche Gaetano Salvatore, Biogem scarl, Ariano Irpino, Avellino, Italy.,Dipartimento di Scienze e Tecnologie, Università del Sannio, Benevento, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy.
| | - Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Università degli Studi della Campania "L. Vanvitelli", Via Costantinopoli 16, 80138, Napoli, Italy
| |
Collapse
|
3
|
Hashiesh HM, Sharma C, Goyal SN, Jha NK, Ojha S. Pharmacological Properties, Therapeutic Potential and Molecular Mechanisms of JWH133, a CB2 Receptor-Selective Agonist. Front Pharmacol 2021; 12:702675. [PMID: 34393784 PMCID: PMC8363263 DOI: 10.3389/fphar.2021.702675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system has attracted attention as a pharmacological target for several pathological conditions. Cannabinoid (CB2)-selective agonists have been the focus of pharmacological studies because modulation of the CB2 receptor (CB2R) can be useful in the treatment of pain, inflammation, arthritis, addiction, and cancer among other possible therapeutic applications while circumventing CNS-related adverse effects. Increasing number of evidences from different independent preclinical studies have suggested new perspectives on the involvement of CB2R signaling in inflammation, infection and immunity, thus play important role in cancer, cardiovascular, renal, hepatic and metabolic diseases. JWH133 is a synthetic agonist with high CB2R selectivity and showed to exert CB2R mediated antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, and immunomodulatory activities. Cumulative evidences suggest that JWH133 protects against hepatic injury, renal injury, cardiotoxicity, fibrosis, rheumatoid arthritis, and cancer as well as against oxidative damage and inflammation, inhibits fibrosis and apoptosis, and acts as an immunosuppressant. This review provides a comprehensive overview of the polypharmacological properties and therapeutic potential of JWH133. This review also presents molecular mechanism and signaling pathways of JWH133 under various pathological conditions except neurological diseases. Based on the available data, this review proposes the possibilities of developing JWH133 as a promising therapeutic agent; however, further safety and toxicity studies in preclinical studies and clinical trials in humans are warranted.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
4
|
Makrane H, Aziz M, Mekhfi H, Ziyyat A, Legssyer A, Melhaoui A, Berrabah M, Bnouham M, Alem C, Elombo FK, Gressier B, Desjeux JF, Eto B. Origanum majorana L. extract exhibit positive cooperative effects on the main mechanisms involved in acute infectious diarrhea. JOURNAL OF ETHNOPHARMACOLOGY 2019; 239:111503. [PMID: 30217790 DOI: 10.1016/j.jep.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Origanum majorana L. (Lamiaceae) is commonly used in Moroccan folk medicine to treat infantile colic, abdominal discomfort and diarrhea. Liquid stools and abdominal discomfort observed in acute infectious diarrhea are the consequences of imbalance between intestinal water secretion and absorption in the lumen, and relaxation of smooth muscle surrounding the intestinal mucosa. AIM OF THE STUDY The objective of our study was to see if aqueous extract of Origanum majorana L. (AEOM) may exhibit an effect on those deleterious mechanisms. MATERIALS AND METHODS The effect of AEOM on electrogenic Cl- secretion and Na+ absorption, the two main mechanisms underlying water movement in the intestine, was assessed on intestinal pieces of mice intestine mounted, in vitro, in Ussing chambers. AEOM effect on muscle relaxation was measured on rat intestinal smooth muscle mounted in an isotonic transducer. RESULTS 1) AEOM placed on the serosal (i.e. blood) side of the piece of jejunum entirely inhibited in a concentration-dependent manner the Forskolin-induced electrogenic chloride secretion, with an IC50 = 654 ± 8 µg/mL. 2) AEOM placed on the mucosal (i.e. luminal) side stimulated in a concentration-dependent manner an electrogenic Na+ absorption, with an IC50 = 476.9 ± 1 µg/mL. 3) AEOM (1 mg/mL) inhibition of Forskolin-induced electrogenic secretion was almost entirely prevented by prior exposure to Ca++ channels or neurotransmitters inhibitors. 4) AEOM (1 mg/mL) proabsorptive effect was greater in the ileum and progressively declined in the jejunum, distal colon and proximal colon (minimal). 5) AEOM inhibited in a concentration-dependent manner smooth muscle Carbachol or KCl induced contraction, with an IC50 = 1.64 ± 0.2 mg/mL or 1.92 ± 0.8 mg/mL, respectively. CONCLUSION the present results indicate that aqueous extract of Origanum majorana L. exhibit positive cooperative effects on the main mechanisms that are involved in acute infectious diarrhea.
Collapse
Affiliation(s)
- Hanane Makrane
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohammed Aziz
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Hassane Mekhfi
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abderrahim Ziyyat
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Abdelkhaleq Legssyer
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Ahmed Melhaoui
- Laboratory of Organic Chemistry, Macromolecular and Natural Products, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Berrabah
- Laboratory of Chemistry, Mineral and Analytical Solid, Department of Chemistry, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Physiology, Genetic and Ethnopharmacology, Faculty of Sciences, Mohammed The First University, PB. 717, 60000 Oujda, Morocco
| | - Chakib Alem
- Laboratory of Biochemistry, Department of Biology, Faculty of Sciences & Techniques, Errachidia, Morocco
| | - Ferdinand Kouoh Elombo
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France; Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | - Bernard Gressier
- Laboratory of Pharmacology, Pharmacokinetics, and Clinical Pharmacy, Faculty of Pharmaceutical and Biological Sciences, Lille, France
| | | | - Bruno Eto
- Laboratoires TBC, Faculty of Pharmaceutical and Biological Sciences, Lille, France.
| |
Collapse
|
5
|
Amato A, Baldassano S, Caldara GF, Mulè F. Pancreatic polypeptide stimulates mouse gastric motor activity through peripheral neural mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 27381051 DOI: 10.1111/nmo.12901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/10/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Pancreatic polypeptide (PP) is supposed to be one of the major endogenous agonists of the neuropeptide Y4 receptor. Pancreatic polypeptide can influence gastrointestinal motility, acting mainly through vagal mechanisms, but whether PP acts directly on the stomach has not been explored yet. The aims of this study were to investigate the effects of PP on mouse gastric emptying, on spontaneous tone of whole stomach in vitro and to examine the mechanism of action. METHODS Gastric emptying was measured by red phenol method after i.p. PP administration (1-3 nmol per mouse). Responses induced by PP (1-300 mmol L-1 ) on gastric endoluminal pressure were analyzed in vitro in the presence of different drugs. Gastric genic expression of Y4 receptor was verified by RT-PCR. KEY RESULTS Pancreatic polypeptide dose-dependently increased non-nutrient liquid gastric emptying rate. In vitro, PP produced a concentration-dependent contraction that was abolished by tetrodotoxin, a neural blocker of Na+ voltage-dependent channels. The contractile response was significantly reduced by atropine, a muscarinic receptor antagonist, and by SR48968, an NK2 receptor antagonist, while it was potentiated by neostigmine, an inhibitor of acetylcholinesterase. The joint application of atropine and SR48968 fully abolished PP contractile effect. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of Y4 receptor mRNA in mouse stomach with a greater expression in antrum than in fundus. CONCLUSIONS & INFERENCES The present findings demonstrate that exogenous PP stimulates mouse gastric motor activity, by acting directly on the stomach. This effect appears due to the activation of enteric excitatory neurons releasing acetylcholine and tachykinins.
Collapse
Affiliation(s)
- A Amato
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - S Baldassano
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - G F Caldara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| | - F Mulè
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Palermo, Italy
| |
Collapse
|
6
|
Oláh T, Bodnár D, Tóth A, Vincze J, Fodor J, Reischl B, Kovács A, Ruzsnavszky O, Dienes B, Szentesi P, Friedrich O, Csernoch L. Cannabinoid signalling inhibits sarcoplasmic Ca 2+ release and regulates excitation-contraction coupling in mammalian skeletal muscle. J Physiol 2016; 594:7381-7398. [PMID: 27641745 DOI: 10.1113/jp272449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Marijuana was found to cause muscle weakness, although the exact regulatory role of its receptors (CB1 cannabinoid receptor; CB1R) in the excitation-contraction coupling (ECC) of mammalian skeletal muscle remains unknown. We found that CB1R activation or its knockout did not affect muscle force directly, whereas its activation decreased the Ca2+ -sensitivity of the contractile apparatus and made the muscle fibres more prone to fatigue. We demonstrate that CB1Rs are not connected to the inositol 1,4,5-trisphosphate pathway either in myotubes or in adult muscle fibres. By contrast, CB1Rs constitutively inhibit sarcoplasmic Ca2+ release and sarcoplasmic reticulum Ca2+ ATPase during ECC in a Gi/o protein-mediated way in adult skeletal muscle fibres but not in myotubes. These results help with our understanding of the physiological effects and pathological consequences of CB1R activation in skeletal muscle and may be useful in the development of new cannabinoid drugs. ABSTRACT Marijuana was found to cause muscle weakness, although it is unknown whether it affects the muscles directly or modulates only the motor control of the central nervous system. Although the presence of CB1 cannabinoid receptors (CB1R), which are responsible for the psychoactive effects of the drug in the brain, have recently been demonstrated in skeletal muscle, it is unclear how CB1R-mediated signalling affects the contraction and Ca²⁺ homeostasis of mammalian skeletal muscle. In the present study, we demonstrate that in vitro CB1R activation increased muscle fatigability and decreased the Ca2+ -sensitivity of the contractile apparatus, whereas it did not alter the amplitude of single twitch contractions. In myotubes, CB1R agonists neither evoked, nor influenced inositol 1,4,5-trisphosphate (IP3 )-mediated Ca2+ transients, nor did they alter excitation-contraction coupling. By contrast, in isolated muscle fibres of wild-type mice, although CB1R agonists did not evoke IP3 -mediated Ca2+ transients too, they significantly reduced the amplitude of the depolarization-evoked transients in a pertussis-toxin sensitive manner, indicating a Gi/o protein-dependent mechanism. Concurrently, on skeletal muscle fibres isolated from CB1R-knockout animals, depolarization-evoked Ca2+ transients, as well qas Ca2+ release flux via ryanodine receptors (RyRs), and the total amount of released Ca2+ was significantly greater than that from wild-type mice. Our results show that CB1R-mediated signalling exerts both a constitutive and an agonist-mediated inhibition on the Ca2+ transients via RyR, regulates the activity of the sarcoplasmic reticulum Ca2+ ATPase and enhances muscle fatigability, which might decrease exercise performance, thus playing a role in myopathies, and therefore should be considered during the development of new cannabinoid drugs.
Collapse
Affiliation(s)
- Tamás Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bodnár
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Tóth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Adrienn Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Olga Ruzsnavszky
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
8
|
Lin X, Wang H, Li Y, Chen C, Feng Y, Fichna J. Cannabinoids regulate intestinal motor function and electrophysiological activity of myocytes in rodents. Arch Med Res 2015; 46:439-47. [PMID: 26254701 DOI: 10.1016/j.arcmed.2015.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS This study aims to investigate the effects of cannabinoid (CB)1 and CB2 receptor ligands on intestinal motor function and muscular electrophysiological activity in rodent gastrointestinal (GI) tract. METHODS Lipopolysaccharide (LPS) was used to induce intestinal hypomotility. The effect of selective CB1 and CB2 agonists and antagonists on contractility of the muscle strips from rat jejunum was measured using organ bath, and the membrane potential of the jejunal smooth muscle cells was recorded with intracellular microelectrodes. The single cell patch clamp technique was applied to record delayed rectifying potassium currents (IKV) and spontaneous transient outward currents (STOC). RESULTS LPS significantly reduced contractility of the smooth muscle strips (p <0.010) and caused hyperpolarization of membrane potential of the smooth muscle cells (p <0.010). This LPS-induced effect was reversed by AM251 and AM630, selective CB1 and CB2 antagonists, respectively, which promoted contractions of smooth muscle strips and triggered cell depolarization (p <0.010). LPS-induced changes were further enhanced in the presence of CB agonists, HU210 and WIN55 (p <0.050 or p <0.010). No effect of HU210 or AM251 on IKV and STOC has been observed. This ex vivo study suggests that CB1 and CB2 receptors are involved in intestinal motor function in normal and LPS-induced pathological states and the regulation of the membrane potential of smooth muscle cells is very likely one of the effective mechanisms. CONCLUSIONS This is one of the first reports on neuronal regulation of intestinal motility through CB-dependent pathways with potential application in the treatment of inflammatory and functional GI disorders.
Collapse
Affiliation(s)
- Xuhong Lin
- Institute of Digestive Disease, Department of Pathophysiology, Tongji University School of Medicine, Siping Road, Shanghai, China; Department of Clinical Laboratory, Huaihe Hospital Affiliated to Henan University, Kaifeng City, Henan Province, China
| | - Huichao Wang
- Department of Nephrology, First Affiliated Hospital of Henan University, Kaifeng City, Henan Province, China
| | - Yongyu Li
- Institute of Digestive Disease, Department of Pathophysiology, Tongji University School of Medicine, Siping Road, Shanghai, China.
| | - Chunqiu Chen
- Institute of Digestive Disease, Department of Pathophysiology, Tongji University School of Medicine, Siping Road, Shanghai, China
| | - Yajing Feng
- Institute of Digestive Disease, Department of Pathophysiology, Tongji University School of Medicine, Siping Road, Shanghai, China
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Influence of muscarinic receptor modulators on interacerebroventricular injection of arachydonylcyclopropylamide induced antinociception in mice. Physiol Behav 2015; 138:273-8. [DOI: 10.1016/j.physbeh.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 05/29/2014] [Accepted: 10/09/2014] [Indexed: 11/15/2022]
|
10
|
Lowette K, Tack J, Vanden Berghe P. Role of corticosterone in the murine enteric nervous system during fasting. Am J Physiol Gastrointest Liver Physiol 2014; 307:G905-13. [PMID: 25214399 PMCID: PMC4216992 DOI: 10.1152/ajpgi.00233.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Food intake depends on a tightly controlled interplay of appetite hormones and the enteric (ENS) and central nervous system. Corticosterone (CORT) levels, which are mainly studied with regard to stress, are also increased during fasting. However, the role of CORT in the ENS remains elusive. Therefore, we investigated whether CORT modulates activity of enteric neurons and whether its intracellular regulator, 11β-hydroxysteroid dehydrogenase (HSD) type 1, is present in the myenteric plexus, using immunohistochemistry and RT-qPCR. Effects of CORT on neuronal activity and expression of neuronal markers in the myenteric plexus were assessed via Ca(2+) imaging and RT-qPCR, respectively, whereas modulations in mixing behavior were measured by video imaging. 11β-HSD-1 was present in enteric neurons along the gastrointestinal tract, and its expression increased after fasting (control: 0.58 ± 0.09 vs. fasted: 1.5 ± 0.23; P < 0.05). CORT incubation significantly reduced neuronal Ca(2+) transients in tissues stimulated by electrical pulses (control: 1.31 ± 0.01 vs. CORT: 1.27 ± 0.01, P < 0.01) and in cultured neurons (control: 1.85 ± 0.03 vs. CORT: 1.76 ± 0.03, P < 0.05). CORT decreased small intestinal mixing (P < 0.05). Incubation of muscle myenteric plexus preparations with CORT induced an increase in cannabinoid receptor 1 (CB1, P < 0.05) and synaptobrevin (P < 0.05) but not in 11β-HSD-1 mRNA expression. In addition, fasting induced significant elevations in synaptobrevin (P < 0.05) and CB1 (P < 0.01) mRNA expression. In conclusion, we suggest CORT to be a downstream factor in a feeding state-related pathway that modulates important proteins in the fine tuning of enteric neurotransmission and gastrointestinal motility.
Collapse
Affiliation(s)
- Katrien Lowette
- 1Laboratory for Enteric NeuroScience, University of Leuven, Leuven, Belgium; and ,2Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Jan Tack
- 2Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience, University of Leuven, Leuven, Belgium; and Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Yamane S, Kanno T, Nakamura H, Fujino H, Murayama T. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels. Eur J Pharmacol 2014; 740:112-20. [PMID: 25008073 DOI: 10.1016/j.ejphar.2014.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.
Collapse
Affiliation(s)
- Satoshi Yamane
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshio Kanno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
12
|
Amato A, Baldassano S, Serio R, Mulè F. Tetrodotoxin-dependent effects of menthol on mouse gastric motor function. Eur J Pharmacol 2013; 718:131-7. [DOI: 10.1016/j.ejphar.2013.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/27/2013] [Indexed: 01/16/2023]
|
13
|
Nomura R, Yanagihara M, Sato H, Matsumoto K, Tashima K, Horie S, Chen S, Fujino H, Ueno K, Murayama T. Bee venom phospholipase A2-induced phasic contractions in mouse rectum: Independent roles of eicosanoid and gap junction proteins and their loss in experimental colitis. Eur J Pharmacol 2013; 718:314-22. [DOI: 10.1016/j.ejphar.2013.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/19/2013] [Accepted: 08/24/2013] [Indexed: 12/14/2022]
|
14
|
Tang Y, Ho G, Li Y, Hall MA, Hills RL, Black SC, Liang Y, Demarest KT. Beneficial metabolic effects of CB1R anti-sense oligonucleotide treatment in diet-induced obese AKR/J mice. PLoS One 2012; 7:e42134. [PMID: 22870290 PMCID: PMC3411690 DOI: 10.1371/journal.pone.0042134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022] Open
Abstract
An increasing amount of evidence supports pleiotropic metabolic roles of the cannibinoid-1 receptor (CB1R) in peripheral tissues such as adipose, liver, skeletal muscle and pancreas. To further understand the metabolic consequences of specific blockade of CB1R function in peripheral tissues, we performed a 10-week-study with an anti-sense oligonucleotide directed against the CB1R in diet-induced obese (DIO) AKR/J mice. DIO AKR/J mice were treated with CB1R ASO Isis-414930 (6.25, 12.5 and 25 mg/kg/week) or control ASO Isis-141923 (25 mg/kg/week) via intraperitoneal injection for 10 weeks. At the end of the treatment, CB1R mRNA from the 25 mg/kg/week CB1R ASO group in the epididymal fat and kidney was decreased by 81% and 63%, respectively. Body weight gain was decreased in a dose-dependent fashion, significantly different in the 25 mg/kg/week CB1R ASO group (46.1±1.0 g vs veh, 51.2±0.9 g, p<0.05). Body fat mass was reduced in parallel with attenuated body weight gain. CB1R ASO treatment led to decreased fed glucose level (at week 8, 25 mg/kg/week group, 145±4 mg/dL vs veh, 195±10 mg/dL, p<0.05). Moreover, CB1R ASO treatment dose-dependently improved glucose excursion during an oral glucose tolerance test, whereas control ASO exerted no effect. Liver steatosis was also decreased upon CB1R ASO treatment. At the end of the study, plasma insulin and leptin levels were significantly reduced by 25 mg/kg/week CB1R ASO treatment. SREBP1 mRNA expression was decreased in both epididymal fat and liver. G6PC and fatty acid translocase/CD36 mRNA levels were also reduced in the liver. In summary, CB1R ASO treatment in DIO AKR/J mice led to improved insulin sensitivity and glucose homeostasis. The beneficial effects of CB1R ASO treatment strongly support the notion that selective inhibition of the peripheral CB1R, without blockade of central CB1R, may serve as an effective approach for treating type II diabetes, obesity and the metabolic syndrome.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Diet/adverse effects
- Dose-Response Relationship, Drug
- Fatty Liver/chemically induced
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Female
- Glucose/genetics
- Glucose/metabolism
- Insulin/genetics
- Insulin/metabolism
- Liver/metabolism
- Liver/pathology
- Male
- Metabolic Syndrome/chemically induced
- Metabolic Syndrome/genetics
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Mice
- Mice, Inbred AKR
- Obesity/chemically induced
- Obesity/drug therapy
- Obesity/genetics
- Obesity/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Organ Specificity/drug effects
- Organ Specificity/genetics
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Sterol Regulatory Element Binding Protein 1/genetics
- Sterol Regulatory Element Binding Protein 1/metabolism
Collapse
Affiliation(s)
- Yuting Tang
- Cardiovascular and Metabolism Therapeutic Area, Janssen Pharmaceutical Companies of Johnson and Johnson, Spring House, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zizzo MG, Mastropaolo M, Lentini L, Mulè F, Serio R. Adenosine negatively regulates duodenal motility in mice: role of A(1) and A(2A) receptors. Br J Pharmacol 2012; 164:1580-9. [PMID: 21615720 DOI: 10.1111/j.1476-5381.2011.01498.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Adenosine is considered to be an important modulator of intestinal motility. This study was undertaken to investigate the role of adenosine in the modulation of contractility in the mouse duodenum and to characterize the adenosine receptor subtypes involved. EXPERIMENTAL APPROACH RT-PCR was used to investigate the expression of mRNA encoding for A(1), A(2A), A(2B) and A(3) receptors. Contractile activity was examined in vitro as changes in isometric tension. KEY RESULTS In mouse duodenum, all four classes of adenosine receptors were expressed, with the A(2B) receptor subtype being confined to the mucosal layer. Adenosine caused relaxation of mouse longitudinal duodenal muscle; this was antagonized by the A(1) receptor antagonist and mimicked by N(6) -cyclopentyladenosine (CPA), selective A(1) agonist. The relaxation induced by A(1) receptor activation was insensitive to tetrodotoxin (TTX) or N(ω) -nitro-l-arginine methyl ester (l-NAME). Adenosine also inhibited cholinergic contractions evoked by neural stimulation, effect reversed by the A(1) receptor antagonist, but not myogenic contractions induced by carbachol. CPA and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride hydrate (CGS-21680), A(2A) receptor agonist, both inhibited the nerve-evoked cholinergic contractions. l-NAME prevented only the CGS-21680-induced effects. S-(4-Nitrobenzyl)-6-thioinosine, a nucleoside uptake inhibitor, reduced the amplitude of nerve-evoked cholinergic contractions, an effect reversed by an A(2A) receptor antagonist or l-NAME. CONCLUSIONS AND IMPLICATIONS Adenosine can negatively regulate mouse duodenal motility either by activating A(1) inhibitory receptors located post-junctionally or controlling neurotransmitter release via A(1) or A(2A) receptors. Both receptors are available for pharmacological recruitment, even if only A(2A) receptors appear to be preferentially stimulated by endogenous adenosine.
Collapse
Affiliation(s)
- M G Zizzo
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Laboratorio di Fisiologia Generale, Università di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
16
|
Hons IM, Storr MA, Mackie K, Lutz B, Pittman QJ, Mawe GM, Sharkey KA. Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling. Neurogastroenterol Motil 2012; 24:e113-24. [PMID: 22235973 PMCID: PMC3276688 DOI: 10.1111/j.1365-2982.2011.01860.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The enteric nervous system (ENS) possesses extensive synaptic connections which integrate information and provide appropriate outputs to coordinate the activity of the gastrointestinal tract. The regulation of enteric synapses is not well understood. Cannabinoid (CB)(1) receptors inhibit the release of acetylcholine (ACh) in the ENS, but their role in the synapse is not understood. We tested the hypothesis that enteric CB(1) receptors provide inhibitory control of excitatory neurotransmission in the ENS. METHODS Intracellular microelectrode recordings were obtained from mouse myenteric plexus neurons. Interganglionic fibers were stimulated with a concentric stimulating electrode to elicit synaptic events on to the recorded neuron. Differences between spontaneous and evoked fast synaptic transmission was examined within preparations from CB(1) deficient mice (CB(1)(-/-)) and wild-type (WT) littermate controls. KEY RESULTS Cannabinoid receptors were colocalized on terminals expressing the vesicular ACh transporter and the synaptic protein synaptotagmin. A greater proportion of CB(1)(-/-) neurons received spontaneous fast excitatory postsynaptic potentials than neurons from WT preparations. The CB(1) agonist WIN55,212 depressed WT synapses without any effect on CB(1)(-/-) synapses. Synaptic activity in response to depolarization was markedly enhanced at CB(1)(-/-) synapses and after treatment with a CB(1) antagonist in WT preparations. Activity-dependent liberation of a retrograde purine messenger was demonstrated to facilitate synaptic transmission in CB(1)(-/-) mice. CONCLUSIONS & INFERENCES Cannabinoid receptors inhibit transmitter release at enteric synapses and depress synaptic strength basally and in an activity-dependent manner. These actions help explain accelerated intestinal transit observed in the absence of CB(1) receptors.
Collapse
Affiliation(s)
- Ian M. Hons
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Martin A. Storr
- Snyder Institute of Infection, Immunity and Inflammation, Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Centre of Johannes Gutenberg, University Mainz, Germany
| | - Quentin J. Pittman
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Gary M. Mawe
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada,Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT, USA
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Infection, Immunity and Inflammation, Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Sarac B, Durmus N, Altun A, Turan M, Kaya T, Sencan M, Bagcivan I. Effects of cannabinoid agonists on sheep sphincter of oddi in vitro. Pancreatology 2011; 11:428-33. [PMID: 21921665 DOI: 10.1159/000330205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/17/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS According to recent studies, the endocannabinoid system plays an important role in both physiological and pathophysiological situations. The purpose of the present study was to investigate the effects of cannabinoid (CB) agonists on isolated sheep sphincter of Oddi (SO)in vitro. METHODS The isolated sheep SO tissues were mounted in organ baths and tested for isometric tension and cyclic GMP levels (cGMP) in response to the non-selective CB receptor agonist WIN 55,212-2 and the potent CB1 receptor agonist methanandamide in the presence and absence of the selective CB1 antagonist SR 141716A, the selective CB2 antagonist SR 144528 and the nonspecific inhibitor of nitric oxide (NO) synthase L-NAME. RESULTS CB agonists relaxed SO in a concentration-dependent manner. These relaxations did not reduce in the presence of SR 144528 but were significantly reduced by SR 141716A and L-NAME. Carbachol significantly increased the cGMP levels compared with the control group and both of the CB receptor agonists significantly increased the cGMP levels compared with the control and carbachol groups. On the other hand, L-NAME prevented the increase in cGMP levels caused by CB agonists. CONCLUSION These results show that the relaxation by the agonists may be through CB1 receptors. The decrease of CB relaxation responses by L-NAME, a nonspecific inhibitor of NO synthase, and the increase of cGMP levels in the SO tissues by CB agonists which decreased by L-NAME show that the relaxation effects of these agonists may also partially be via increasing the NO synthesis or release.
Collapse
Affiliation(s)
- Bulent Sarac
- Departement of Pharmacology, University of Cumhuriyet, Sivas, Turkey.
| | | | | | | | | | | | | |
Collapse
|
18
|
Amato A, Rotondo A, Cinci L, Baldassano S, Vannucchi MG, Mulè F. Role of cholinergic neurons in the motor effects of glucagon-like peptide-2 in mouse colon. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1038-44. [PMID: 20705903 DOI: 10.1152/ajpgi.00282.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) reduces mouse gastric tone and small intestine transit, but its action on large intestine motility is still unknown. The purposes of the present study were 1) to examine the influence of GLP-2 on spontaneous mechanical activity and on neurally evoked responses, by recording intraluminal pressure from mouse isolated colonic segments; 2) to characterize GLP-2 mechanism of action; and 3) to determine the distribution of GLP-2 receptor (GLP-2R) in the mouse colonic muscle coat by immunohistochemistry. Exogenous GLP-2 (0.1-300 nM) induced a concentration-dependent reduction of the spontaneous mechanical activity, which was abolished by the desensitization of GLP-2 receptor or by tetrodotoxin, a voltage-dependent Na(+)-channel blocker. GLP-2 inhibitory effect was not affected by N(ω)-nitro-l-arginine methyl ester (a nitric oxide synthase inhibitor), apamin (a blocker of small conductance Ca(2+)-dependent K(+) channels), or [Lys1,Pro2,5,Arg3,4,Tyr6]VIP(7-28) (a VIP receptor antagonist), but it was prevented by atropine or pertussis toxin (PTX), a G(i/o) protein inhibitor. Proximal colon responses to electrical field stimulation were characterized by nitrergic relaxation, which was followed by cholinergic contraction. GLP-2 reduced only the cholinergic evoked contractions. This effect was almost abolished by GLP-2 receptor desensitization or PTX. GLP-2 failed to affect the contractile responses to exogenous carbachol. GLP-2R immunoreactivity (IR) was detected only in the neuronal cells of both plexuses of the colonic muscle coat. More than 50% of myenteric GLP-2R-IR neurons shared the choline acetyltransferase IR. In conclusion, the activation of GLP-2R located on cholinergic neurons may modulate negatively the colonic spontaneous and electrically evoked contractions through inhibition of acetylcholine release. The effect is mediated by G(i) protein.
Collapse
Affiliation(s)
- Antonella Amato
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1423-39. [PMID: 20861277 DOI: 10.1152/ajpregu.00126.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract serves as a portal sensing incoming nutrients and relays mechanical and chemosensory signals of a meal to higher brain centers. Prolonged consumption of dietary fat causes adaptive changes within the alimentary, metabolic, and humoral systems that promote a more efficient process for energy metabolism from this rich source, leading to storage of energy in the form of adipose tissue. Furthermore, prolonged ingestion of dietary fats exerts profound effects on responses to signals involved in termination of a meal. This article reviews the effects of ingested fat on gastrointestinal motility, hormone release, and neuronal substrates. It focuses on changes in sensitivity to satiation signals resulting from chronic ingestion of high-fat diet, which may lead to disordered appetite and dysregulation of body weight.
Collapse
Affiliation(s)
- Mihai Covasa
- L'Institute National de la Recherche Agronomique, Centre de Recherche, Microbiologie de l'Alimentation au service de la Santé Humaine (MICALIS), Neurobiology of Ingestive Behavior, Jouy-en-Josas, France.
| |
Collapse
|
20
|
Baldassano S, Tesoriere L, Rotondo A, Serio R, Livrea MA, Mulè F. Inhibition of the mechanical activity of mouse ileum by cactus pear (Opuntia Ficus Indica, L, Mill.) fruit extract and its pigment indicaxanthin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7565-7571. [PMID: 20518499 DOI: 10.1021/jf100434e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We investigated, using an organ bath technique, the effects of a hydrophilic extract from Opuntia ficus indica fruit pulp (cactus fruit extract, CFE) on the motility of mouse ileum, and researched the extract component(s) responsible for the observed responses. CFE (10-320 mg of fresh fruit pulp equivalents/mL of organ bath) reduced dose-dependently the spontaneous contractions. This effect was unaffected by tetrodotoxin, a neuronal blocker, N(omega)-nitro-l-arginine methyl ester, a nitric oxide synthase blocker, tetraethylammonium, a potassium channel blocker, or atropine, a muscarinic receptor antagonist. CFE also reduced the contractions evoked by carbachol, without affecting the contractions evoked by high extracellular potassium. Indicaxanthin, but not ascorbic acid, assayed at concentrations comparable with their content in CFE, mimicked the CFE effects. The data show that CFE is able to exert direct antispasmodic effects on the intestinal motility. The CFE inhibitory effects do not involve potassium channels or voltage-dependent calcium channels but rather pathways of calcium intracellular release. The fruit pigment indicaxanthin appears to be the main component responsible for the CFE-induced effects.
Collapse
Affiliation(s)
- S Baldassano
- Dipartimento di Biologia cellulare e dello Sviluppo, Università di Palermo, 90128 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Storr MA, Bashashati M, Hirota C, Vemuri VK, Keenan CM, Duncan M, Lutz B, Mackie K, Makriyannis A, MacNaughton WK, Sharkey KA. Differential effects of CB(1) neutral antagonists and inverse agonists on gastrointestinal motility in mice. Neurogastroenterol Motil 2010; 22:787-96, e223. [PMID: 20180825 PMCID: PMC2943391 DOI: 10.1111/j.1365-2982.2010.01478.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabinoid type 1 (CB(1)) receptors are involved in the regulation of gastrointestinal (GI) motility and secretion. Our aim was to characterize the roles of the CB(1) receptor on GI motility and secretion in vitro and in vivo by using different classes of CB(1) receptor antagonists. METHODS Immunohistochemistry was used to examine the localization of CB(1) receptor in the mouse ileum and colon. Organ bath experiments on mouse ileum and in vivo motility testing comprising upper GI transit, colonic expulsion, and whole gut transit were performed to characterize the effects of the inverse agonist/antagonist AM251 and the neutral antagonist AM4113. As a marker of secretory function we measured short circuit current in vitro using Ussing chambers and stool fluid content in vivo in mouse colon. We also assessed colonic epithelial permeability in vitro using FITC-labeled inulin. KEY RESULTS In vivo, the inverse agonist AM251 increased upper GI transit and whole gut transit, but it had no effect on colonic expulsion. By contrast, the neutral antagonist AM4113 increased upper GI transit, but unexpectedly reduced both colonic expulsion and whole gut transit at high, but not lower doses. CONCLUSIONS & INFERENCES Cannabinoid type 1 receptors regulate small intestinal and colonic motility, but not GI secretion under physiological conditions. Cannabinoid type 1 inverse agonists and CB(1) neutral antagonists have different effects on intestinal motility. The ability of the neutral antagonist not to affect whole gut transit may be important for the future development of CB(1) receptor antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Martin A. Storr
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Division of Gastroenterology, Department of Medicine, University Calgary, Calgary, Alberta, Canada
| | - Mohammad Bashashati
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Christina Hirota
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - V. Kiran Vemuri
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Catherine M. Keenan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Marnie Duncan
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Beat Lutz
- Department of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | | | - Wallace K. MacNaughton
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| | - Keith A. Sharkey
- Snyder Institute of Infection, Immunity & Inflammation, University Calgary, Calgary, Alberta, Canada,Hotchkiss Brain Institute, University Calgary, Calgary, Alberta, Canada,Department of Physiology & Pharmacology, University Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Abalo R, Cabezos PA, López-Miranda V, Vera G, González C, Castillo M, Fernández-Pujol R, Martín MI. Selective lack of tolerance to delayed gastric emptying after daily administration of WIN 55,212-2 in the rat. Neurogastroenterol Motil 2009; 21:1002-e80. [PMID: 19413685 DOI: 10.1111/j.1365-2982.2009.01315.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The use of cannabinoids to treat gastrointestinal (GI) motor disorders has considerable potential. However, it is not clear if tolerance to their actions develops peripherally, as it does centrally. The aim of this study was to examine the chronic effects of the cannabinoid agonist WIN 55,212-2 (WIN) on GI motility, as well as those in the central nervous and cardiovascular systems. WIN was administered for 14 days, at either non-psychoactive or psychoactive doses. Cardiovascular parameters were measured in anaesthetized rats, whereas central effects and alterations in GI motor function were assessed in conscious animals using the cannabinoid tetrad and non-invasive radiographic methods, respectively. Tests were performed after first (acute effects) and last (chronic effects) administration of WIN, and 1 week after discontinuing treatment (residual effects). Food intake and body weight were also recorded throughout treatment. Blood pressure and heart rate remained unchanged after acute or chronic administration of WIN. Central activity and GI motility were acutely depressed at psychoactive doses, whereas non-psychoactive doses only slightly reduced intestinal transit. Most effects were reduced after the last administration. However, delayed gastric emptying was not and could, at least partially, account for a concomitant reduction in food intake and body weight gain. The remaining effects of WIN administration in GI motility were blocked by the CB1 antagonist AM 251, which slightly accelerated motility when administered alone. No residual effects were found 1 week after discontinuing cannabinoid treatment. The different systems show differential sensitivity to cannabinoids and tolerance developed at different rates, with delayed gastric emptying being particularly resistant to attenuation upon chronic treatment.
Collapse
Affiliation(s)
- R Abalo
- Departamento de Ciencias de la Salud III, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Baldassano S, Zizzo MG, Serio R, Mulè F. Interaction between cannabinoid CB1 receptors and endogenous ATP in the control of spontaneous mechanical activity in mouse ileum. Br J Pharmacol 2009; 158:243-51. [PMID: 19466981 DOI: 10.1111/j.1476-5381.2009.00260.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Although it is well accepted that cannabinoids modulate intestinal motility by reducing cholinergic neurotransmission mediated by CB(1) receptors, it is not known whether the endocannabinoids are involved in more complex circuits and if they interact with other systems. The aim of the present study was to examine possible interactions between cannabinoid CB(1) receptors and purines in the control of spontaneous contractility of longitudinal muscle in mouse ileum. EXPERIMENTAL APPROACH The mechanical activity of longitudinally oriented ileal segments from mice was recorded as isometric contractions. KEY RESULTS The selective CB(1) receptor agonist, N-(2-chloroethyl)5,8,11,14-eicosaetraenamide (ACEA) reduced, concentration dependently, spontaneous contractions in mouse ileum. This effect was almost abolished by tetrodotoxin (TTX) or atropine. Inhibition by ACEA was not affected by theophylline (P1 receptor antagonist) or by P2Y receptor desensitization with adenosine 5'[beta-thio]diphosphate trilithium salt, but was significantly reversed by pyridoxal phosphate-6-azo(benzene-2,4-disulphonic acid) (P2 receptor antagonist), by P2X receptor desensitization with alpha,beta-methyleneadenosine 5'-triphosphate lithium salt (alpha,beta-MeATP) or by 8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino) bis(1,3,5-naphthalenetrisulphonic acid)] (P2X receptor antagonist). Contractile responses to alpha,beta-MeATP (P2X receptor agonist) were virtually abolished by TTX or atropine, suggesting that they were mediated by acetylcholine released from neurones, and significantly reduced by ACEA. CONCLUSION AND IMPLICATIONS In mouse ileum, activation of CB(1) receptors, apart from reducing acetylcholine release from cholinergic nerves, was able to modulate negatively, endogenous purinergic effects, mediated by P2X receptors, on cholinergic neurons. Our study provides evidence for a role of cannabinoids in the modulation of interneuronal purinergic transmission.
Collapse
Affiliation(s)
- S Baldassano
- Dipartimento di Biologia cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, Palermo, Italy
| | | | | | | |
Collapse
|
24
|
Borrelli F, Izzo AA. Role of acylethanolamides in the gastrointestinal tract with special reference to food intake and energy balance. Best Pract Res Clin Endocrinol Metab 2009; 23:33-49. [PMID: 19285259 DOI: 10.1016/j.beem.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acylethanolamides (AEs) are a group of lipids occurring in both plants and animals. The best-studied AEs are the endocannabinoid anandamide (AEA), the anti-inflammatory compound palmitoylethanolamide (PEA), and the potent anorexigenic molecule oleoylethanolamide (OEA). AEs are biosynthesized in the gastrointestinal tract, and their levels may change in response to noxious stimuli, food deprivation or diet-induced obesity. The biological actions of AEs within the gut are not limited to the modulation of food intake and energy balance. For example, AEs exert potential beneficial effects in the regulation of intestinal motility, secretion, inflammation and cellular proliferation. Molecular targets of AEs, which have been identified in the gastrointestinal tract, include cannabinoid CB(1) and CB(2) receptors (activated by AEA), transient receptor potential vanilloid type 1 (TRPV1, activated by AEA and OEA), the nuclear receptor peroxisome proliferators-activated receptor-alpha (PPAR-alpha, activated by OEA and, to a less extent, by PEA), and the orphan G-coupled receptors GPR119 (activated by OEA) and GPR55 (activated by PEA and, with lower potency, by AEA and OEA). Modulation of AE levels in the gut may provide new pharmacological strategies not only for the treatment of feeding disorders but also for the prevention or cure of widespread intestinal diseases such as inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Francesca Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II and Endocannabinoid Research Group, via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|