1
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
2
|
Lucente E, Söderpalm B, Ericson M, Adermark L. Acute and chronic effects by nicotine on striatal neurotransmission and synaptic plasticity in the female rat brain. Front Mol Neurosci 2023; 15:1104648. [PMID: 36710931 PMCID: PMC9877298 DOI: 10.3389/fnmol.2022.1104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Tobacco use is in part a gendered activity, yet neurobiological studies outlining the effect by nicotine on the female brain are scarce. The aim of this study was to outline acute and sub-chronic effects by nicotine on the female rat brain, with special emphasis on neurotransmission and synaptic plasticity in the dorsolateral striatum (DLS), a key brain region with respect to the formation of habits. Methods In vivo microdialysis and ex vivo electrophysiology were performed in nicotine naïve female Wistar rats, and following sub-chronic nicotine exposure (0.36 mg/kg free base, 15 injections). Locomotor behavior was assessed at the first and last drug-exposure. Results Acute exposure to nicotine ex vivo depresses excitatory neurotransmission by reducing the probability of transmitter release. Bath applied nicotine furthermore facilitated long-term synaptic depression induced by high frequency stimulation (HFS-LTD). The cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 produced a robust synaptic depression of evoked potentials, and HFS-LTD was blocked by the CB1R antagonist AM251, suggesting that HFS-LTD in the female rat DLS is endocannabinoid mediated. Sub-chronic exposure to nicotine in vivo produced behavioral sensitization and electrophysiological recordings performed after 2-8 days abstinence revealed a sustained depression of evoked population spike amplitudes in the DLS, with no concomitant change in paired pulse ratio. Rats receiving sub-chronic nicotine exposure further demonstrated an increased neurophysiological responsiveness to nicotine with respect to both dopaminergic- and glutamatergic signaling. However, a tolerance towards the plasticity facilitating property of bath applied nicotine was developed during sub-chronic nicotine exposure in vivo. In addition, the dopamine D2 receptor agonist quinpirole selectively facilitate HFS-LTD in slices from nicotine naïve rats, suggesting that the tolerance may be associated with changes in dopaminergic signaling. Conclusion Nicotine produces acute and sustained effects on striatal neurotransmission and synaptic plasticity in the female rat brain, which may contribute to the establishment of persistent nicotine taking habits.
Collapse
Affiliation(s)
- Erika Lucente
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Integrative Neuroscience Unit, Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,*Correspondence: Louise Adermark, ✉
| |
Collapse
|
3
|
Herman M, Tarran R. E-cigarettes, nicotine, the lung and the brain: multi-level cascading pathophysiology. J Physiol 2020; 598:5063-5071. [PMID: 32515030 DOI: 10.1113/jp278388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022] Open
Abstract
Tobacco smoking is highly addictive and causes respiratory disease, cardiovascular disease and multiple types of cancer. Electronic-cigarettes (e-cigarettes) are non-combustible tobacco alternatives that aerosolize nicotine and flavouring agents in a propylene glycol-vegetable glycerine vehicle. They were originally envisaged as a tobacco cessation aid, but whether or not they help people to quit tobacco use is controversial. In this review, we have compared and contrasted what is known regarding the effects of nicotine on the lungs vs. the effects of nicotine in the brain in the context of addiction. Critically, both combustible tobacco products and e-cigarettes contain nicotine, a highly addictive, plant-derived alkaloid that binds to nicotinic acetylcholine receptors (nAChRs). Nicotine's reinforcing properties are primarily mediated by activation of the brain's mesolimbic reward circuitry and release of the neurotransmitter dopamine that contribute to the development of addiction. Moreover, nicotine addiction drives repeated intake that results in chronic pulmonary exposure to either tobacco smoke or e-cigarettes despite negative respiratory symptoms. Beyond the brain, nAChRs are also highly expressed in peripheral neurons, epithelia and immune cells, where their activation may cause harmful effects. Thus, nicotine, a key ingredient of both conventional and electronic cigarettes, produces neurological effects that drive addiction and may damage the lungs in the process, producing a complex, multilevel pathological state. We conclude that vaping needs to be studied by multi-disciplinary teams that include pulmonary and neurophysiologists as well as behaviourists and addiction specialists to fully understand their impact on human physiology.
Collapse
Affiliation(s)
- Melissa Herman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Addicott MA, Sweitzer MM, McClernon FJ. The Effects of Nicotine and Tobacco Use on Brain Reward Function: Interaction With Nicotine Dependence Severity. Nicotine Tob Res 2019; 21:764-771. [PMID: 29584917 PMCID: PMC6784410 DOI: 10.1093/ntr/nty059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022]
Abstract
INTRODUCTION This study investigated the effects of nicotine/tobacco on neural activation during performance of a monetary incentive delay task. AIMS AND METHODS Prior to each scan, nonsmokers received nicotine or placebo nasal spray, and smokers were smoking satiated or 24-hour withdrawn. During the scan, participants made timed responses to reward-related cues and received feedback. Parameter estimates from cue- and feedback-related activation in medial prefrontal regions and the nucleus accumbens were extracted and underwent within- and between-group analyses. Smokers' nicotine dependence severity was included as a continuous predictor variable for neural activation. RESULTS Among smokers (n = 21), withdrawal decreased cue-related activation in the supplementary motor area and ventromedial prefrontal cortex, and the difference in activation (satiety > withdrawal) in these regions negatively correlated with nicotine dependence severity (Fagerström Test for Nicotine Dependence). Among nonsmokers (n = 22), nicotine increased the difference in nucleus accumbens activation between rewarded and nonrewarded feedback phases. Tobacco withdrawal and acute nicotine also had widespread effects on activation throughout the brain during the feedback phase. CONCLUSIONS Acute nicotine in nonsmokers may have increased the salience of feedback information, but produced few effects on reward-related activation overall, perhaps reflecting nicotine's modest, indirect effects on reward processing. Conversely, tobacco withdrawal decreased activation compared with satiety, and this difference between conditions correlated with nicotine dependence severity. This suggests that as smokers become more dependent on nicotine, tobacco withdrawal has a more pronounced effect on reward processing. IMPLICATIONS Relative to the acute effects of nicotine in nonsmokers, withdrawal from daily tobacco use had more significant effects on reward-related brain activation. This study suggests that the effects of tobacco withdrawal on reward-related brain function interact with subjects' level of nicotine dependence severity. These are potentially important sources of variability that could contribute to smoking cessation outcomes.
Collapse
Affiliation(s)
- Merideth A Addicott
- Department of Psychiatry, University of Arkansas for Medical Science, Little Rock, AR
| | - Maggie M Sweitzer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, University of Arkansas for Medical Sciences, Durham, NC
| | - F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, University of Arkansas for Medical Sciences, Durham, NC
| |
Collapse
|
5
|
Duffy KA, McLaughlin KA, Green PA. Early life adversity and health-risk behaviors: proposed psychological and neural mechanisms. Ann N Y Acad Sci 2018; 1428:151-169. [PMID: 30011075 PMCID: PMC6158062 DOI: 10.1111/nyas.13928] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Early life adversity (ELA) is associated with poorer health in adulthood, an association explained, at least in part, by increased engagement in health-risk behaviors (HRBs). In this review, we make the case that ELA influences brain development in ways that increase the likelihood of engaging in HRBs. We argue that ELA alters neural circuitry underpinning cognitive control as well as emotional processing, including networks involved in processing threat and reward. These neural changes are associated psychologically and behaviorally with heightened emotional reactivity, blunted reward responsivity, poorer emotion regulation, and greater delay discounting. We then demonstrate that these adaptations to ELA are associated with an increased risk of smoking cigarettes, drinking alcohol, and eating high-fat, high-sugar foods. Furthermore, we explore how HRBs affect the brain in ways that reinforce addiction and further explain clustering of HRBs.
Collapse
Affiliation(s)
- Korrina A. Duffy
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Paige A. Green
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Wang S, Kim S, Cosgrove KP, Morris ED. A framework for designing dynamic lp-ntPET studies to maximize the sensitivity to transient neurotransmitter responses to drugs: Application to dopamine and smoking. Neuroimage 2016; 146:701-714. [PMID: 27743899 DOI: 10.1016/j.neuroimage.2016.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/05/2016] [Accepted: 10/12/2016] [Indexed: 11/28/2022] Open
Abstract
The "linear parametric neurotransmitter PET" (lp-ntPET) model was introduced to capture the time course of transient endogenous neurotransmitter response to drug stimulus from dynamic PET data. We previously used this novel analysis tool to probe the short-lived dopamine (DA) response induced by cigarette smoking in the PET scanner. It allowed us to find a sex difference in the DA signature of cigarette smoking. To make best use of this tool to characterize neurotransmitter response to drug stimulus, the sensitivity of lp-ntPET to detect such responses must be maximized. We designed a series of simulation studies to examine the impact of the following factors on the sensitivity of lp-ntPET using smoking-induced DA release as an example application: tracer delivery protocol, pre-processing for image denoising, timing of the smoking task, duration of the PET scan, and dose of the radiotracer. Our results suggest that a Bolus paradigm could replace a more difficult B/I paradigm without sacrificing the sensitivity of the method. Pre-processing the PET data with the de-noising algorithm HYPR could improve the sensitivity. The optimal timing to start the smoking task is 45min in a 90min scan and 35min in a 75min scan. A mild shortening of the scan time from 90mCi to 75min should be acceptable without loss of sensitivity. We suggest a lower dose limit of a bolus injection at 16mCi to limit underestimation of DA activation. This study established the framework to optimize the experimental design for reaching the full potential of lp-ntPET to detect neurotransmitter responses to drugs or even behavioral tasks.
Collapse
Affiliation(s)
- Shuo Wang
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Sujin Kim
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Evan D Morris
- Yale PET Center, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
de Kloet SF, Mansvelder HD, De Vries TJ. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem Pharmacol 2015. [PMID: 26208783 DOI: 10.1016/j.bcp.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nicotine addiction is highly prevalent in current society and is often comorbid with other diseases. In the central nervous system, nicotine acts as an agonist for nicotinic acetylcholine receptors (nAChRs) and its effects depend on location and receptor composition. Although nicotinic receptors are found in most brain regions, many studies on addiction have focused on the mesolimbic system and its reported behavioral correlates such as reward processing and reinforcement learning. Profound modulatory cholinergic input from the pedunculopontine and laterodorsal tegmentum to dopaminergic midbrain nuclei as well as local cholinergic interneuron projections to dopamine neuron axons in the striatum may play a major role in the effects of nicotine. Moreover, an indirect mesocorticolimbic feedback loop involving the medial prefrontal cortex may be involved in behavioral characteristics of nicotine addiction. Therefore, this review will highlight current understanding of the effects of nicotine on the function of mesolimbic and mesocortical dopamine projections in the mesocorticolimbic circuit.
Collapse
Affiliation(s)
- Sybren F de Kloet
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands.
| | - Taco J De Vries
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cogntive Research (CNCR), Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Measuring cigarette smoking-induced cortical dopamine release: A [¹¹C]FLB-457 PET study. Neuropsychopharmacology 2015; 40:1417-27. [PMID: 25502631 PMCID: PMC4397400 DOI: 10.1038/npp.2014.327] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 01/01/2023]
Abstract
Striatal dopamine (DA) is thought to have a fundamental role in the reinforcing effects of tobacco smoking and nicotine. Microdialysis studies indicate that nicotine also increases DA in extrastriatal brain areas, but much less is known about its role in addiction. High-affinity D2/3 receptor radiotracers permit the measurement of cortical DA in humans using positron emission tomography (PET). [(11)C]FLB-457 PET scans were conducted in 10 nicotine-dependent daily smokers after overnight abstinence and reinstatement of smoking. Voxel-wise [(11)C]-FLB-457-binding potential (BPND) in the frontal lobe, insula, and limbic regions was estimated in the two conditions. Paired t-tests showed BPND values were reduced following smoking (an indirect index of DA release). The overall peak t was located in the cingulate gyrus, which was part of a larger medial cluster (BPND change -12.1±9.4%) and this survived false discovery rate correction for multiple comparisons. Clusters were also identified in the left anterior cingulate cortex/medial frontal gyrus, bilateral prefrontal cortex (PFC), bilateral amygdala, and the left insula. This is the first demonstration of tobacco smoking-induced cortical DA release in humans; it may be the result of both pharmacological (nicotine) and non-pharmacological factors (tobacco cues). Abstinence increased craving but had minimal cognitive effects, thus limiting correlation analyses. However, given that the cingulate cortex, PFC, insula, and amygdala are thought to have important roles in tobacco craving, cognition, and relapse, these associations warrant investigation in a larger sample. [(11)C]FLB-457 PET imaging may represent a useful tool to investigate individual differences in tobacco addiction severity and treatment response.
Collapse
|
9
|
McClernon FJ, Addicott MA, Sweitzer MM. Smoking abstinence and neurocognition: implications for cessation and relapse. Curr Top Behav Neurosci 2015; 23:193-227. [PMID: 25655892 DOI: 10.1007/978-3-319-13665-3_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this chapter, we review the last decade of research on the effects of smoking abstinence on various forms of neurocognition, including executive function (working memory, sustained attention, response inhibition), reward processing, and cue-reactivity. In our review we identify smoking abstinence-induced deficits in executive function mediated by effects on frontal circuitry, which in turn is known to be affected by modulation of cholinergic, dopaminergic, and other neurotransmitter systems. We also review evidence that smoking abstinence blunts reactivity to non-drug reinforcers-a finding that is consistent with results in the animal literature. Finally, our review of cue-reactivity indicates that smoking abstinence does not appear to amplify cue-provoked craving, although it may increase attentional bias to smoking-related cues. Inconsistencies across findings and potential contributing factors are discussed. In addition, we review the literature on the effects of nicotine and non-nicotine factors in neurocognition. Finally, we provide a multi-factor model and an agenda for future research on the effects of smoking abstinence on neurocognition. The model includes four distinct yet interacting factors, including: Negative Reinforcement, Drug-Reward Bias, Goal and Skill Interference, and Non-Cognitive Factors. Additional research is needed to further evaluate the scope and time-course of abstinence-induced changes in neurocognition, the mechanisms that underlie these changes and the specific role of these processes in drug reinforcement, lapse, and relapse.
Collapse
Affiliation(s)
- F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 2608 Erwin Rd Box 3527, Lakeview Pavilion E Ste 300, Durham, NC, 27705-4596, USA,
| | | | | |
Collapse
|
10
|
Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology 2014; 96:223-34. [PMID: 25433149 DOI: 10.1016/j.neuropharm.2014.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023]
Abstract
Diseases associated with tobacco use constitute a major health problem worldwide. Upon cessation of tobacco use, an unpleasant withdrawal syndrome occurs in dependent individuals. Avoidance of the negative state produced by nicotine withdrawal represents a motivational component that promotes continued tobacco use and relapse after smoking cessation. With the modest success rate of currently available smoking cessation therapies, understanding mechanisms involved in the nicotine withdrawal syndrome are crucial for developing successful treatments. Animal models provide a useful tool for examining neuroadaptative mechanisms and factors influencing nicotine withdrawal, including sex, age, and genetic factors. Such research has also identified an important role for nicotinic receptor subtypes in different aspects of the nicotine withdrawal syndrome (e.g., physical vs. affective signs). In addition to nicotinic receptors, the opioid and endocannabinoid systems, various signal transduction pathways, neurotransmitters, and neuropeptides have been implicated in the nicotine withdrawal syndrome. Animal studies have informed human studies of genetic variants and potential targets for smoking cessation therapies. Overall, the available literature indicates that the nicotine withdrawal syndrome is complex, and involves a range of neurobiological mechanisms. As research in nicotine withdrawal progresses, new pharmacological options for smokers attempting to quit can be identified, and treatments with fewer side effects that are better tailored to the unique characteristics of patients may become available. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- K J Jackson
- Department of Psychiatry, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23219, USA
| | - P P Muldoon
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA
| | - M De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M I Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1220 E. Marshall St., Richmond, VA 23219, USA.
| |
Collapse
|
11
|
Jasinska AJ, Zorick T, Brody AL, Stein EA. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 2014; 84:111-22. [PMID: 23474015 PMCID: PMC3710300 DOI: 10.1016/j.neuropharm.2013.02.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/28/2012] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
Substantial evidence demonstrates both nicotine's addiction liability and its cognition-enhancing effects. However, the neurobiological mechanisms underlying nicotine's impact on brain function and behavior remain incompletely understood. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation as well as for a number of cognitive disorders such as schizophrenia. Neuroimaging techniques such as positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI), which make it possible to study the actions of nicotine in the human brain in vivo, play an increasingly important role in identifying these dual mechanisms of action. In this review, we summarize the current state of knowledge and discuss outstanding questions and future directions in human neuroimaging research on nicotine and tobacco. This research spans from receptor-level PET and SPECT studies demonstrating nicotine occupancy at nicotinic acetylcholine receptors (nAChRs) and upregulation of nAChRs induced by chronic smoking; through nicotine's interactions with the mesocorticolimbic dopamine system believed to mediate nicotine's reinforcing effects leading to dependence; to functional activity and connectivity fMRI studies documenting nicotine's complex behavioral and cognitive effects manifest by its actions on large-scale brain networks engaged both during task performance and at rest. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.
Collapse
Affiliation(s)
- Agnes J Jasinska
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| | - Todd Zorick
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States
| | - Arthur L Brody
- University of California at Los Angeles, Department of Psychiatry, 300 UCLA Medical Plaza, Los Angeles, CA 90095, United States; VA Greater Los Angeles Healthcare System, United States.
| | - Elliot A Stein
- National Institute on Drug Abuse, Intramural Research Program, 251 Bayview Blvd, Baltimore, MD 21224, United States.
| |
Collapse
|
12
|
Kim SJ, Sullivan JM, Wang S, Cosgrove KP, Morris ED. Voxelwise lp-ntPET for detecting localized, transient dopamine release of unknown timing: sensitivity analysis and application to cigarette smoking in the PET scanner. Hum Brain Mapp 2014; 35:4876-91. [PMID: 24700424 PMCID: PMC4303353 DOI: 10.1002/hbm.22519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/07/2022] Open
Abstract
The “linear parametric neurotransmitter PET” (lp‐ntPET) model estimates time variation in endogenous neurotransmitter levels from dynamic PET data. The pattern of dopamine (DA) change over time may be an important element of the brain's response to addictive substances such as cigarettes or alcohol. We have extended the lp‐ntPET model from the original region of interest (ROI) ‐ based implementation to be able to apply the model at the voxel level. The resulting endpoint is a dynamic image, or movie, of transient neurotransmitter changes. Simulations were performed to select threshold values to reduce the false positive rate when applied to real 11C‐raclopride PET data. We tested the new voxelwise method on simulated data, and finally, we applied it to 11C‐raclopride PET data of subjects smoking cigarettes in the PET scanner. In simulation, the temporal precision of neurotransmitter response was shown to be similar to that of ROI‐based lp‐ntPET (standard deviation ∼ 3 min). False positive rates for the voxelwise method were well controlled by combining a statistical threshold (the F‐test) with a new spatial (cluster‐size) thresholding operation. Sensitivity of detection for the new algorithm was greater than 80% for the case of short‐lived DA changes that occur in subregions of the striatum as might be the case with cigarette smoking. Finally, in 11C‐raclopride PET data, DA movies reveal for the first time that different temporal patterns of the DA response to smoking may exist in different subregions of the striatum. These spatiotemporal patterns of neurotransmitter change created by voxelwise lp‐ntPET may serve as novel biomarkers for addiction and/or treatment efficacy. Hum Brain Mapp 35:4876–4891, 2014. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Su Jin Kim
- Yale PET Center, Yale University, New Haven, Connecticut; Department of Diagnostic Radiology, Yale University, New Haven, Connecticut
| | | | | | | | | |
Collapse
|
13
|
Gallezot JD, Kloczynski T, Weinzimmer D, Labaree D, Zheng MQ, Lim K, Rabiner EA, Ridler K, Pittman B, Huang Y, Carson RE, Morris ED, Cosgrove KP. Imaging nicotine- and amphetamine-induced dopamine release in rhesus monkeys with [(11)C]PHNO vs [(11)C]raclopride PET. Neuropsychopharmacology 2014; 39:866-74. [PMID: 24220025 PMCID: PMC3924521 DOI: 10.1038/npp.2013.286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/09/2022]
Abstract
The radiotracer [(11)C]PHNO may have advantages over other dopamine (DA) D2/D3 receptor ligands because, as an agonist, it measures high-affinity, functionally active D2/D3 receptors, whereas the traditionally used radiotracer [(11)C]raclopride measures both high- and low-affinity receptors. Our aim was to take advantage of the strength of [(11)C]PHNO for measuring the small DA signal induced by nicotine, which has been difficult to measure in preclinical and clinical neuroimaging studies. Nicotine- and amphetamine-induced DA release in non-human primates was measured with [(11)C]PHNO and [(11)C]raclopride positron emission tomography (PET) imaging. Seven adult rhesus monkeys were imaged on a FOCUS 220 PET scanner after injection of a bolus of [(11)C]PHNO or [(11)C]raclopride in three conditions: baseline; preinjection of nicotine (0.1 mg/kg bolus+0.08 mg/kg infusion over 30 min); preinjection of amphetamine (0.4 mg/kg, 5 min before radiotracer injection). DA release was measured as change in binding potential (BPND). Nicotine significantly decreased BPND in the caudate (7 ± 8%), the nucleus accumbens (10 ± 7%), and in the globus pallidus (13 ± 15%) measured with [(11)C]PHNO, but did not significantly decrease BPND in the putamen or the substantia nigra or in any region when measured with [(11)C]raclopride. Amphetamine significantly reduced BPND in all regions with both radiotracers. In the striatum, larger amphetamine-induced changes were detected with [(11)C]PHNO compared with [(11)C]raclopride (52-64% vs 33-35%, respectively). We confirmed that [(11)C]PHNO is more sensitive than [(11)C]raclopride to nicotine- and amphetamine-induced DA release. [(11)C]PHNO PET may be more sensitive to measuring tobacco smoking-induced DA release in human tobacco smokers.
Collapse
Affiliation(s)
- Jean-Dominique Gallezot
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Tracy Kloczynski
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - David Weinzimmer
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - David Labaree
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ming-Qiang Zheng
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Brian Pittman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Evan D Morris
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Diagnostic Radiology, Yale PET Center, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, 2 Church Street South, Suite 511, New Haven, CT 06519, USA, Tel: +1 203 737 6969, E-mail:
| |
Collapse
|
14
|
Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology 2014; 39:415-24. [PMID: 23954846 PMCID: PMC3870776 DOI: 10.1038/npp.2013.209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/23/2022]
Abstract
Positron emission tomography (PET) has convincingly provided in vivo evidence that psychoactive drugs increase dopamine (DA) levels in human brain, a feature thought critical to their reinforcing properties. Some controversy still exists concerning the role of DA in reinforcing smoking behavior and no study has explored whether smoking increases DA concentrations at the D3 receptor, speculated to have a role in nicotine's addictive potential. Here, we used PET and [(11)C]-(+)-PHNO ([(11)C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol) to test the hypothesis that smoking increases DA release (decreases [(11)C]-(+)-PHNO binding) in D2-rich striatum and D3-rich extra-striatal regions and is related to craving, withdrawal and smoking behavior. Ten participants underwent [(11)C]-(+)-PHNO scans after overnight abstinence and after smoking a cigarette. Motivation to smoke (smoking topography), mood, and craving were recorded. Smoking significantly decreased self-reported craving, withdrawal, and [(11)C]-(+)-PHNO binding in D2 and D3-rich areas (-12.0 and -15.3%, respectively). We found that motivation to smoke (puff rate) predicted magnitude of DA release in limbic striatum, and the latter was correlated with decreased craving and withdrawal symptoms. This is the first report suggesting that, in humans, DA release is increased in D3-rich areas in response to smoking. Results also support the preferential involvement of the limbic striatum in motivation to smoke, anticipation of pleasure from cigarettes and relief of withdrawal symptoms. We propose that due to the robust effect of smoking on [(11)C]-(+)-PHNO binding, this radiotracer represents an ideal translational tool to investigate novel therapeutic strategies targeting DA transmission.
Collapse
|
15
|
Venugopalan VV, Casey KF, O'Hara C, O'Loughlin J, Benkelfat C, Fellows LK, Leyton M. Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 2011; 36:2469-76. [PMID: 21775977 PMCID: PMC3194074 DOI: 10.1038/npp.2011.135] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neurobiology of tobacco use is poorly understood, possibly in part because the relevant mechanisms might differ depending on past nicotine exposure and degree of addiction. In the present study we investigated whether these factors might affect the role of dopamine (DA). Using the acute phenylalanine/tyrosine depletion method (APTD), DA synthesis was transiently decreased in three groups of abstinent smokers (n=47): (1) early low-frequency smokers, who had smoked a maximum of five cigarettes per day for less than one year, (2) stable low-frequency smokers smoking at the same level as early low-frequency smokers for at least 3 years, and (3) stable high-frequency smokers, who smoked a minimum of 10 or more cigarettes per day for at least 5 years. Motivation to obtain tobacco was measured using a progressive ratio breakpoint schedule for nicotine-containing and de-nicotinized cigarettes. Compared with a nutritionally balanced control mixture, APTD decreased the self-administration of nicotine-containing cigarettes, and this occurred in all three groups of smokers. The results suggest that DA influenced the willingness to sustain effort for nicotine reward, and this was seen in participants at all three levels of cigarette addiction. In the transition from sporadic to addicted use, the role of DA in the motivation to seek drug may change less than previously proposed.
Collapse
|
16
|
Ohmura Y, Jutkiewicz EM, Zhang A, Domino EF. Dopamine D1/5 and D2/3 agonists differentially attenuate somatic signs of nicotine withdrawal in rats. Pharmacol Biochem Behav 2011; 99:552-6. [DOI: 10.1016/j.pbb.2011.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/05/2011] [Accepted: 05/13/2011] [Indexed: 11/25/2022]
|
17
|
L-DOPA attenuates nicotine withdrawal-induced behaviors in rats. Pharmacol Biochem Behav 2011; 98:552-8. [DOI: 10.1016/j.pbb.2011.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/27/2011] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
|
18
|
Zhu CZ, Chin CL, Rustay NR, Zhong C, Mikusa J, Chandran P, Salyers A, Gomez E, Simler G, Lewis LG, Gauvin D, Baker S, Pai M, Tovcimak A, Brown J, Komater V, Fox GB, Decker MW, Jacobson PB, Gopalakrishnan M, Lee CH, Honore P. Potentiation of analgesic efficacy but not side effects: co-administration of an α4β2 neuronal nicotinic acetylcholine receptor agonist and its positive allosteric modulator in experimental models of pain in rats. Biochem Pharmacol 2011; 82:967-76. [PMID: 21620806 DOI: 10.1016/j.bcp.2011.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/29/2022]
Abstract
Positive modulation of the neuronal nicotinic acetylcholine receptor (nAChR) α4β2 subtype by selective positive allosteric modulator NS-9283 has shown to potentiate the nAChR agonist ABT-594-induced anti-allodynic activity in preclinical neuropathic pain. To determine whether this benefit can be extended beyond neuropathic pain, the present study examined the analgesic activity and adverse effect profile of co-administered NS-9283 and ABT-594 in a variety of preclinical models in rats. The effect of the combined therapy on drug-induced brain activities was also determined using pharmacological magnetic resonance imaging. In carrageenan-induced thermal hyperalgesia, co-administration of NS-9283 (3.5 μmol/kg, i.p.) induced a 6-fold leftward shift of the dose-response of ABT-594 (ED(50)=26 vs. 160 nmol/kg, i.p.). In the paw skin incision model of post-operative pain, co-administration of NS-9283 similarly induced a 6-fold leftward shift of ABT-594 (ED(50)=26 vs. 153 nmol/kg). In monoiodo-acetate induced knee joint pain, co-administration of NS-9283 enhanced the potency of ABT-594 by 5-fold (ED(50)=1.0 vs. 4.6 nmol/kg). In pharmacological MRI, co-administration of NS-9283 was shown to lead to a leftward shift of ABT-594 dose-response for cortical activation. ABT-594 induced CNS-related adverse effects were not exacerbated in presence of an efficacious dose of NS-9283 (3.5 μmol/kg). Acute challenge of NS-9283 produced no cross sensitization in nicotine-conditioned animals. These results demonstrate that selective positive allosteric modulation at the α4β2 nAChR potentiates nAChR agonist-induced analgesic activity across neuropathic and nociceptive preclinical pain models without potentiating ABT-594-mediated adverse effects, suggesting that selective positive modulation of α4β2 nAChR by PAM may represent a novel analgesic approach.
Collapse
Affiliation(s)
- Chang Z Zhu
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-3500, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|