1
|
Asai H, Kato K, Miyasaka M, Hatsukawa K, Murakami N, Takeda N, Abe J, Aoyagi Y, Kohda Y, Gui MY, Jin YR, Li XW, Hitotsuyanagi Y, Takeya K, Andoh T, Kurosaki H, Fukuishi N. Kamebakaurin Suppresses Antigen-Induced Mast Cell Activation by Inhibition of FcεRI Signaling Pathway. Int Arch Allergy Immunol 2024; 185:836-847. [PMID: 38797160 DOI: 10.1159/000536334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/09/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Kamebakaurin is an active constituent of both Rabdosia japonica and Rabdosia excisa, which are utilized in Chinese traditional medicine for improving symptoms in patients with allergies. We investigated the molecular mechanisms of the anti-allergic effects of kamebakaurin using BMMCs. METHODS The degranulation ratio, histamine release, and the interleukin (IL)-4, leukotriene B4 (LTB4), and cysteinyl leukotriene productions on antigen-triggered BMMC were investigated. Additionally, the effects of kamebakaurin on signal transduction proteins were examined by Western blot and binding to the Syk and Lyn kinase domain was calculated. The effects of kamebakaurin on antigen-induced hyperpermeability were investigated using mouse model. RESULTS At 10 μm, kamebakaurin partially inhibited degranulation, histamine release, and IL-4 production. At 30 μm, kamebakaurin partially reduced LTB4 and cysteinyl leukotriene productions and suppressed degranulation, histamine release, and IL-4 production. Phosphorylation of both Syk Y519/520 and its downstream protein, Gab2, was reduced by kamebakaurin, and complete inhibition was observed with 30 μm kamebakaurin. In contrast, phosphorylation of Erk was only partially inhibited, even in the presence of 30 μm kamebakaurin. Syk Y519/520 is known to be auto-phosphorylated via intramolecular ATP present in its own ATP-binding site, and this auto-phosphorylation triggers degranulation, histamine release, and IL-4 production. Docking simulation study indicated kamebakaurin blocked ATP binding to the ATP-binding site in Syk. Therefore, inhibition of Syk auto-phosphorylation by kamebakaurin binding to the Syk ATP-binding site appeared to cause a reduction of histamine release and IL-4 production. Kamebakaurin inhibited antigen-induced vascular hyperpermeability in a dose-dependent fashion but did not reduce histamine-induced vascular hyperpermeability. CONCLUSION Kamebakaurin ameliorates allergic symptoms via inhibition of Syk phosphorylation; thus, kamebakaurin could be a lead compound for the new anti-allergic drug.
Collapse
Affiliation(s)
- Haruka Asai
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan,
| | - Koichi Kato
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Yokohama, Japan
| | - Mayu Miyasaka
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Kaho Hatsukawa
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Nanami Murakami
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Naoko Takeda
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Junna Abe
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Yutaka Aoyagi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Yuka Kohda
- Department of Pharmacotherapeutics, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Ming-Yu Gui
- Department of Chemistry, Jilin University, Jilin, China
| | - Yong-Ri Jin
- Department of Chemistry, Jilin University, Jilin, China
| | - Xu-Wen Li
- Department of Chemistry, Jilin University, Jilin, China
| | - Yukio Hitotsuyanagi
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Koichi Takeya
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Tsugunobu Andoh
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology and Pathophysiology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Hiromasa Kurosaki
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| | - Nobuyuki Fukuishi
- Department of Pharmacology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kinjo Gakuin University, Nagoya, Japan
| |
Collapse
|
2
|
Tang L, Xiang Q, Xiang J, Zhang Y, Li J. Tripterygium glycoside ameliorates neuroinflammation in a mouse model of Aβ25-35-induced Alzheimer's disease by inhibiting the phosphorylation of IκBα and p38. Bioengineered 2021; 12:8540-8554. [PMID: 34592905 PMCID: PMC8806986 DOI: 10.1080/21655979.2021.1987082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is acommon neurodegenerative disease in the aged population. Tripterygium glycoside (TG) has been reported to protect the nervous system. However, the effect of TG on AD is still unknown. We aimed to explore the effect of TG on AD. Thirty-two C57BL/6J mice were randomly selected and assigned to the normal control, AD model, AD+donepezil, and AD+TG groups. PC12 cells were assigned to the normal control, AD cell model, and AD+TG groups. The alterations in spatial memory and learning abilities of mice were measured by Morris water maze. Neuronal damage in mice was detected using Nissl staining. The expression levels of Aβ25-35, p-Tau, and CD11b in brain tissues were detected using immunohistochemistry. The expression levels of IL-1β, TNF-α, NO, p-P38, P38, p-IκBα, Caspase1, COX2, and iNOS were measured using ELISAs, qRT-PCR, and western blotting.TG significantly improved the spatial memory and learning abilities of AD mice. Compared toAD model group, significantly lower expression levels of Aβ25-35, p-Tau, and CD11b were observed in AD+TG group (p < 0.05). The neuron density significantly increased in AD+TG group (p < 0.05). Significantly lower expression levels of IL-1β, TNF-α, NO, caspase-1, COX2, iNOS, p-IκBα and p-P38 MAPK were detected in AD+TG group (p < 0.05). In summary, TG may exert aneuroprotective effect by suppressing the release of inflammatory factors and microglial activity and inhibiting the phosphorylation of IκBα and p38 MAPK. These findings may improve our understanding of the mechanism of TG intervention in AD.
Collapse
Affiliation(s)
- Liang Tang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Department of Basic Biology, Wuzhou Medical College, Wuzhou, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China.,Academics Working Station, Changsha Medical College, Changsha, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
| | - Ju Xiang
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China
| | - Yan Zhang
- Academics Working Station, Changsha Medical College, Changsha, China.,School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianming Li
- Department of Basic Biology, Changsha Medical College, Changsha, China.,Center for Neuroscience and Behavior, Changsha Medical College, Changsha, China.,Academics Working Station, Changsha Medical College, Changsha, China.,Department of Rehabilitation, Xiangya Boai Rehabilitation Hospital, Changsha, China
| |
Collapse
|
3
|
Iqubal A, Rahman SO, Ahmed M, Bansal P, Haider MR, Iqubal MK, Najmi AK, Pottoo FH, Haque SE. Current Quest in Natural Bioactive Compounds for Alzheimer's Disease: Multi-Targeted-Designed-Ligand Based Approach with Preclinical and Clinical Based Evidence. Curr Drug Targets 2021; 22:685-720. [PMID: 33302832 DOI: 10.2174/1389450121999201209201004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/23/2020] [Indexed: 12/06/2022]
Abstract
Alzheimer's disease is a common and most chronic neurological disorder (NDs) associated with cognitive dysfunction. Pathologically, Alzheimer's disease (AD) is characterized by the presence of β-amyloid (Aβ) plaques, hyper-phosphorylated tau proteins, and neurofibrillary tangles, however, persistence oxidative-nitrative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammatory cytokines, pro-apoptotic proteins along with altered neurotransmitters level are common etiological attributes in its pathogenesis. Rivastigmine, memantine, galantamine, and donepezil are FDA approved drugs for symptomatic management of AD, whereas tacrine has been withdrawn because of hepatotoxic profile. These approved drugs only exert symptomatic relief and exhibit poor patient compliance. In the current scenario, the number of published evidence shows the neuroprotective potential of naturally occurring bioactive molecules via their antioxidant, anti-inflammatory, antiapoptotic and neurotransmitter modulatory properties. Despite their potent therapeutic implications, concerns have arisen in context to their efficacy and probable clinical outcome. Thus, to overcome these glitches, many heterocyclic and cyclic hydrocarbon compounds inspired by natural sources have been synthesized and showed improved therapeutic activity. Computational studies (molecular docking) have been used to predict the binding affinity of these natural bioactive as well as synthetic compounds derived from natural sources for the acetylcholine esterase, α/β secretase Nuclear Factor kappa- light-chain-enhancer of activated B cells (NF-kB), Nuclear factor erythroid 2-related factor 2(Nrf2) and other neurological targets. Thus, in this review, we have discussed the molecular etiology of AD, focused on the pharmacotherapeutics of natural products, chemical and pharmacological aspects and multi-targeted designed ligands (MTDLs) of synthetic and semisynthetic molecules derived from the natural sources along with some important on-going clinical trials.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Syed Obaidur Rahman
- Department of Pharmaceutical Medicine, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Musheer Ahmed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Pratichi Bansal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal, University, P.O.BOX 1982, Damman, 31441, Saudi Arabia
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, JamiaHamdard, New Delhi-110062, India
| |
Collapse
|
4
|
Shi YX, Chen WS. Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:461-468. [PMID: 32489561 PMCID: PMC7239424 DOI: 10.22038/ijbms.2020.41045.9702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphilonoid pigment with potential anti-inflammatory effects; however, the effects in central nervous system have not been evaluated. Our goal in this project was to explore the therapeutic effect and the underlying mechanism of Monascin, which may be via anti-inflammatory action. Materials and Methods We used lipopolysaccharide to induce BV-2 microglial cells in order to form an inflammation model in vitro. The anti-inflammatory effects of Monascin were measured by enzyme-linked immunosorbent assay (ELISA), real time-polymerase chain reaction (RT-PCR), Western Blot and Immunofluorescent staining. Results Our data indicated that inflammatory cytokines including interleukin-1β (IL-1β), IL-6, tumor necrosis factor-alpha (TNF-α) and nitric oxide were suppressed by Monascin treatment. Furthermore, the related pro-inflammatory genes were inhibited consistent with the results of ELISA assay. Western blotting results showed that the phosphorylation of nuclear factor kappa B (NF-κB/p65) was reduced by Monascin treatment may be through suppressing the activation of IκB. Furthermore, immunofluorescence staining showed that the translocation of NF-κB/p65 to the cellular nuclear was blockaded after Monascin treatment. Conclusion Taken together, Monascin exerts anti-inflammatory effect and suppressed microglia activation, which suggested its potential therapeutic effect for inflammation-related diseases.
Collapse
Affiliation(s)
- Yong-Xiang Shi
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Wei-Shan Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Matsumoto T, Watanabe T. Isolation and structure elucidation of constituents of Citrus limon, Isodon japonicus, and Lansium domesticum as the cancer prevention agents. Genes Environ 2020; 42:17. [PMID: 32322316 PMCID: PMC7164196 DOI: 10.1186/s41021-020-00156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/04/2020] [Indexed: 11/10/2022] Open
Abstract
In the course of our research to investigate the cancer prevention potency of natural products derived from plant materials, we isolated fifty-five compounds, including twenty-one new compounds from the peels of Citrus limon, aerial parts of Isodon japonicus, and leaves of Lansium domesticum. The chemical structures of the isolated compounds were elucidated by chemical/physicochemical evidence, and nuclear magnetic resonance spectroscopy and mass spectrometry results. Moreover, the absolute stereochemistry of the new compounds were elucidated by various techniques such as chemical synthesis, modified Mosher’s method, Cu-Kα X-ray crystallographic analysis, and comparison of experimental and predicted electronic circular dichroism data. The antimutagenic effects of the isolated and structure-elucidated compounds against heterocyclic amines, 3-amino-1,4-dimethyl-5H-pyrido [4,3-b]indole (Trp-P-1) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), were evaluated by the Ames test and in vivo micronucleus test. In this review, we present the comprehensive results of the antimutagenic effects of the isolated natural products.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412 Japan
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412 Japan
| |
Collapse
|
6
|
Wang C, Lou Y, Xu J, Feng Z, Chen Y, Tang Q, Wang Q, Jin H, Wu Y, Tian N, Zhou Y, Xu H, Zhang X. Endoplasmic Reticulum Stress and NF-κB Pathway in Salidroside Mediated Neuroprotection: Potential of Salidroside in Neurodegenerative Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1459-1475. [PMID: 28946765 DOI: 10.1142/s0192415x17500793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microglial activation leads to increased production of proinflammatory enzymes and cytokines, which is considered to play crucial role in neurodegenerative diseases, however there are only a few drugs that target microglia activation. Recent studies have indicated that the Traditional Chinese Medicine, salidroside (Sal), exerted anti-inflammatory effects. According to this evidence, our present study aims to explore the effect of the Sal (a phenylpropanoid glycoside compound which is isolated from rhodiola), on microglia activation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Our results showed that Sal could significantly inhibit the excessive production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) in LPS-stimulated BV2 cells. Moreover, Sal treatment could suppress the mRNA and protein expressions of inflammatory enzymes, including Inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2). The mechanisms may be related to the inhibition of the activation of Nuclear Factor-kappaB (NF-[Formula: see text]B) and endoplasmic reticulum stress. Our study demonstrated that salidroside could inhibit lipopolysaccharide-induced microglia activation via the inhibition of the NF-[Formula: see text]B pathway and endoplasmic reticulum stress, which makes it a promising therapeutic agent for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yiting Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Jianxiang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Zhenhua Feng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Qian Tang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Qingqing Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, P. R. China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000, P. R. China
- Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, P. R. China
| |
Collapse
|
7
|
Matsumoto T, Nakamura S, Kojima N, Hasei T, Yamashita M, Watanabe T, Matsuda H. Antimutagenic activity of ent-kaurane diterpenoids from the aerial parts of Isodon japonicus. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Matsumoto T, Nakamura S, Nakashima S, Ohta T, Ogawa K, Fukaya M, Tsukioka J, Hasei T, Watanabe T, Matsuda H. Neolignan and megastigmane glucosides from the aerial parts of Isodon japonicus with cell protective effects on BaP-induced cytotoxicity. PHYTOCHEMISTRY 2017; 137:101-108. [PMID: 28209279 DOI: 10.1016/j.phytochem.2017.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Six neolignan glucosides, named isodonosides I-VI, and a megastigmane glucoside named isodonmegastigmane I, were isolated together with 15 known compounds from the methanolic extract of aerial parts of Isodon japonicus cultivated in Tokushima, Japan. The chemical structures of the compounds were elucidated based on their MS and NMR spectroscopic analysis. The absolute configurations of the neolignan and megastigmane glucosides were determined by derivatizations, by ECD (electronic circular dicroism) Cotton effect approximation, and by the modified Mosher's method. In addition, a significant cell protective effects of neolignan glucosides on benzo[a]pyrene-induced cytotoxicity was found.
Collapse
Affiliation(s)
- Takahiro Matsumoto
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Souichi Nakashima
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tomoe Ohta
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Keiko Ogawa
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masashi Fukaya
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Junko Tsukioka
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tomohiro Hasei
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan.
| |
Collapse
|
9
|
Sun HN, Shen GN, Jin YZ, Jin Y, Han YH, Feng L, Liu L, Jin MH, Luo YH, Kwon TH, Cui YD, Jin CH. 2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone inhibits LPS-induced BV2 microglial activation through MAPK/NF-kB signaling pathways. Heliyon 2016; 2:e00132. [PMID: 27512726 PMCID: PMC4971128 DOI: 10.1016/j.heliyon.2016.e00132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/03/2016] [Accepted: 07/12/2016] [Indexed: 01/20/2023] Open
Abstract
AIMS To verify the effects of several 5,8-dimethoxy-1,4-naphthoquinone (DMNQ) derivatives on LPS-induced NO production, cellular ROS levels and cytokine expression in BV-2 microglial cells. MAIN METHODS An MTT assay and FACS flow cytometry were performed to assess the cellular viability and apoptosis and cellular ROS levels, respectively. To examine the expression of pro-inflammatory cytokines and cellular signaling pathways, semi-quantitative RT-PCR and Western blotting were also used in this study. KEY FINDINGS Among the six newly synthesized DMNQ derivatives, 2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone (R6) significantly inhibited the NO production, cellular ROS levels and the cytokines expression in BV-2 microglial cells, which stimulated by LPS. Signaling study showed that compound R6 treatment also significantly down-regulated the LPS-induced phosphorylation of MAPKs (ERK, JNK and p38) and decreased the degradation of IκB-α in BV2 microglial cells. SIGNIFICANCE Our findings demonstrate that our newly synthesized compound derived from DMNQ, 2-cyclohexylamino-5,8-dimethoxy-1,4-naphthoquinone (R6), might be a therapeutic agent for the treatment of glia-mediated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Hu-Nan Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Gui-Nan Shen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yong-Zhe Jin
- Yan Bian University Health Science Center, Yanji 133000, China
| | - Yu Jin
- Yan Bian University Health Science Center, Yanji 133000, China
| | - Ying-Hao Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Feng
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lei Liu
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Mei-Hua Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Ying-Hua Luo
- College of Animal Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Tea-Ho Kwon
- New Drug Development Center, Osong Medical Innovation Foundation, 123 Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 363-951, Republic of Korea
| | - Yu-Dong Cui
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng-Hao Jin
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
10
|
Sun CL, Geng CA, Chen XL, Yang TH, Yin XJ, Huang XY, Peng H, Chen JJ. LC–MS guided isolation of ent-kaurane diterpenoids from Nouelia insignis. Fitoterapia 2016; 111:42-8. [DOI: 10.1016/j.fitote.2016.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
|
11
|
Islam MT, da Silva CB, de Alencar MVOB, Paz MFCJ, Almeida FRDC, Melo-Cavalcante AADC. Diterpenes: Advances in Neurobiological Drug Research. Phytother Res 2016; 30:915-28. [DOI: 10.1002/ptr.5609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/10/2016] [Accepted: 02/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Torequl Islam
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Pharmacy; Southern University Bangladesh; 22-Shahid Mirza Lane (E), Academic building-II, 1st floor, 739/A, Mehedibag Road, Mehedibag-4000 Chittagong Bangladesh
| | - Claucenira Bandeira da Silva
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Márcia Fernanda Correia Jardim Paz
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Fernanda Regina de Castro Almeida
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Northest Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology; Federal University of Piauí; 64.049-550 Teresina Brazil
- Department of Biochemistry and Pharmacology, Post-graduation Program in Pharmaceutical Science; Federal University of Piauí; 64.049-550 Teresina Brazil
| |
Collapse
|
12
|
Luo XL, Liu SY, Wang LJ, Zhang QY, Xu P, Pan LL, Hu JF. A tetramethoxychalcone from Chloranthus henryi suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia. Eur J Pharmacol 2016; 774:135-43. [PMID: 26852953 DOI: 10.1016/j.ejphar.2016.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
Neuroinflammation underlies the pathogenesis and progression of neurodegenerative diseases. 2׳-hydroxy-4,3׳,4׳,6׳-tetramethoxychalcone (HTMC) is a known chalcone derivative isolated from Chloranthus henryi with anti-inflammatory activities in BV2 macrophages. However, its pharmacological effects on microglial cells have not been demonstrated. To this end, we examined the effects of HTMC on lipopolysaccharide (LPS)-induced inflammatory responses in BV2 microglial cells. HTMC concentration-dependently inhibited LPS-induced expression of inflammatory enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nitric oxide (NO) production, and the secretion of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. In addition, HTMC inhibited reactive oxygen species (ROS) production by reducing NADPH oxidase (Nox) 2 and Nox4 expression. In addition, HTMC interfered LPS-induced c-Jun N-terminal kinase 1/2 (JNK) phosphorylation in a time- and concentration-dependent manner. By inhibiting phosphorylation and nuclear translocation of Jun, HTMC suppressed LPS-induced activator protein-1 (AP-1) activation. Taken together, our data indicate that HTMC suppresses inflammatory responses in LPS-stimulated BV2 microglial cells by modulating JNK-AP-1 and NADPH oxidases-ROS pathways. HTMC represents a promising therapeutic agent for neurodegenerative and related aging-associated diseases.
Collapse
Affiliation(s)
- Xiao-Ling Luo
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Si-Yu Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Jun Wang
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qiu-Yan Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Peng Xu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li-Long Pan
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
13
|
Kim HY, Hwang KW, Park SY. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells. Nutr Res 2015; 34:1008-16. [PMID: 25441150 DOI: 10.1016/j.nutres.2014.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/30/2022]
Abstract
The inflammatory response protects our body from bacteria and tumors, but chronic inflammation driven by the persistent activation of macrophages can lead to serious adverse effects including gastrointestinal problems, cardiac disorders, and a sore throat. Part of the ongoing research is focused on searching for antiinflammatory compounds from natural sources, so we investigated the effects of hardy kiwis (Actinidia arguta, Lauraceae) stems on inflammation induced by lipopolysaccharide (LPS) in Raw 264.7 cells to test the hypothesis that antiinflammatory effects of A. arguta stems were exerted through the inhibition of the nuclear factor (NF)-κB pathway. The methanol extract of A. arguta (20 μg/mL) stems lowered nitric oxide production in LPS-stimulated Raw 264.7 cells by 40%. It was then partitioned with hexane, chloroform, ethyl acetate, butanol, and water based on the polarity of each compound. Among the 5 layers, the chloroform layer had the greatest inhibitory effect on LPS-stimulated nitric oxide production and inducible nitric oxide synthase mRNA expression in Raw 264.7 cells. However, the levels of prostaglandin E2 and cyclooxygease 2 were not altered. On the other hand, treatment of cells with the chloroform layer of A. arguta before LPS stimulation also reduced them RNA expression of proinflammatory cytokines including tumor necrosis factor α and interleukin 1β. Nuclear translocation of NF-κB p50 and p65 subunits induced by LPS was also inhibited by treatment with the chloroform layer of A. arguta. This was accompanied with the reduced phosphorylation of mitogen-activated protein kinases including extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal protein kinase, and p38. Taken together, these results suggest that chloroform layer of A. arguta exerted antiinflammatory effects by the inhibition of mitogen-activated protein kinase phosphorylation and nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Hae-Young Kim
- World Class University, Department of Nanobiomedicine, Dankook University, Cheonan 330-714, Korea
| | | | | |
Collapse
|
14
|
Kim H, Youn K, Yun EY, Hwang JS, Jeong WS, Ho CT, Jun M. Oleic acid ameliorates Aβ-induced inflammation by downregulation of COX-2 and iNOS via NFκB signaling pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
15
|
Gangapuram M, Mazzio E, Eyunni S, Soliman KFA, Redda KK. Synthesis and biological evaluation of substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/benzene sulfonamides as anti-inflammatory agents. Arch Pharm (Weinheim) 2014; 347:360-9. [PMID: 24585402 PMCID: PMC4042835 DOI: 10.1002/ardp.201300379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives.
Collapse
Affiliation(s)
- Madhavi Gangapuram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
16
|
GBE50 Attenuates Inflammatory Response by Inhibiting the p38 MAPK and NF- κ B Pathways in LPS-Stimulated Microglial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:368598. [PMID: 24782908 PMCID: PMC3982279 DOI: 10.1155/2014/368598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/01/2014] [Accepted: 02/09/2014] [Indexed: 01/02/2023]
Abstract
Overactivated microglia contribute to a variety of pathological conditions in the central nervous system. The major goal of the present study is to evaluate the potential suppressing effects of a new type of Ginko biloba extract, GBE50, on activated microglia which causes proinflammatory responses and to explore the underlying molecular mechanisms. Murine BV2 microglia cells, with or without pretreatmentof GBE50 at various concentrations, were activated by incubation with lipopolysaccharide (LPS). A series of biochemical and microscopic assays were performed to measure cell viability, cell morphology, release of tumor necrosis factor- α (TNF- α ) and interleukin-1 β (IL-1 β ), and signal transduction via the p38 MAPK and nuclear factor-kappa B (NF- κ B) p65 pathways. We found that GBE50 pretreatment suppressed LPS-induced morphological changes in BV2 cells. Moreover, GBE50 treatment significantly reduced the release of proinflammatory cytokines, TNF- α and IL-1 β , and inhibited the associated signal transduction through the p38 MAPK and NF- κ B p65 pathways. These results demonstrated the anti-inflammatory effect of GBE50 on LPS-activated BV2 microglia cells, and indicated that GBE50 reduced the LPS-induced proinflammatory TNF- α and IL-1 β release by inhibiting signal transduction through the NF- κ B p65 and p38 MAPK pathways. Our findings reveal, at least in part, the molecular basis underlying the anti-inflammatory effects of GBE50.
Collapse
|
17
|
Kim J, Kim J, Shim J, Lee S, Kim J, Lim SS, Lee KW, Lee HJ. Licorice-derived dehydroglyasperin C increases MKP-1 expression and suppresses inflammation-mediated neurodegeneration. Neurochem Int 2013; 63:732-40. [PMID: 24083986 DOI: 10.1016/j.neuint.2013.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/16/2022]
Abstract
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.
Collapse
Affiliation(s)
- Jaekyoon Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Natarajan S, Shunmugiah KP, Kasi PD. Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. PHARMACEUTICAL BIOLOGY 2013; 51:492-523. [PMID: 23336528 DOI: 10.3109/13880209.2012.738423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT Epidemiological studies have shown that despite mortality due to communicable diseases, poverty and human conflicts, the incidence of dementia increases in the developing world in tandem with the ageing population. Although some FDA approved drugs are available for the treatment of dementia, the outcomes are often unsatisfactory. In traditional practices of medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer's disease (AD) and other memory-related disorders. In western medicine most of the drugs used for the treatment of neurodegenerative disorders are derived from plant sources. OBJECTIVE This article reviews plants and their active constituents that have been used for their reputed cognitive-enhancing and antidementia effects. METHODS A literature survey in Science Direct, Pubmed, and Google Scholar was performed to gather information regarding drug discovery from plants sources for the treatment of congnitive disorders and dementia. RESULTS More than forty herbal remedies were identified with cholinesterase inhibitory, anti-inflammatory, or antioxidant activities. Bioactive compounds include alkaloids, flavonoids, steroids, saponins, terpenoids, and essential oils. About eleven herbal plants with multipotent activity against AD are discussed. CONCLUSION Literature surveys show that most of the research has been conducted on herbal remedies effect on cholinesterase inhibitory and antioxidant activities. Studies regarding the effect of herbal drugs on β-secretase inhibitory activity and antiaggregation property are lacking. This review provides leads for identifying potential new drugs from plant sources for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Suganthy Natarajan
- Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | |
Collapse
|
19
|
Lijia Z, Zhao S, Wang X, Wu C, Yang J. A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int 2012; 61:1220-30. [PMID: 23000131 DOI: 10.1016/j.neuint.2012.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhang Lijia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Zhang F, Wang H, Wu Q, Lu Y, Nie J, Xie X, Shi J. Resveratrol protects cortical neurons against microglia-mediated neuroinflammation. Phytother Res 2012; 27:344-9. [PMID: 22585561 DOI: 10.1002/ptr.4734] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/20/2012] [Indexed: 01/03/2023]
Abstract
Neuroinflammation is closely associated with the pathogenesis of neurological disorders. The hallmark of neuroinflammation is considered to be microglial activation. Therefore, inhibition of microglial activation might hold a promising therapy for neurological disorders. Resveratrol, a natural non-flavonoid polyphenol found in grapes and red wine, has been recognized as a bioactive agent with potential benefit for health. Several lines of evidence show that resveratrol could exert neuroprotection against ischemia, seizure, and neurodegenerative diseases. However, the mechanisms underlying its beneficial neuroprotective effects are poorly defined. Here, by using rat primary cortical neuron-glia cultures, results showed that resveratrol attenuated lipopolysaccharide (LPS)-induced cortical neurotoxicity. Further studies revealed that microglia were responsible for resveratrol-mediated neuroprotection. Resveratrol significantly inhibited LPS-induced microglial activation and subsequent production of multiple pro-inflammatory and cytotoxic factors such as tumor necrosis factor-α, nitric oxide, and interleukin-1β. Collectively, resveratrol produced neuroprotection against microglia-induced neurotoxicity. Thus, resveratrol might represent a potential benefit for the treatment of inflammation-related neurological disorders.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology and Key Lab of Basic Pharmacology of Guizhou, Zunyi Medical College, Zunyi, 563099, PR China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhong LM, Zong Y, Sun L, Guo JZ, Zhang W, He Y, Song R, Wang WM, Xiao CJ, Lu D. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS One 2012; 7:e32195. [PMID: 22363816 PMCID: PMC3283735 DOI: 10.1371/journal.pone.0032195] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/24/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. METHODOLOGY/PRINCIPAL FINDINGS BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). CONCLUSION AND IMPLICATIONS This study indicates that resveratrol inhibited LPS-induced proinflammatory enzymes and proinflammatory cytokines via down-regulation phosphorylation of NF-κB, CREB and MAPKs family in a mTOR-dependent manner. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of resveratrol.
Collapse
Affiliation(s)
- Lian-Mei Zhong
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jia-Zhi Guo
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying He
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Rui Song
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wen-Min Wang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chun-Jie Xiao
- School of Life Science, Yunnan University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (DL); (CJX)
| |
Collapse
|
22
|
Himaya SWA, Ryu B, Qian ZJ, Li Y, Kim SK. 1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone [SE1] suppresses pro-inflammatory responses by blocking NF-κB and MAPK signaling pathways in activated microglia. Eur J Pharmacol 2011; 670:608-16. [PMID: 21951967 DOI: 10.1016/j.ejphar.2011.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 09/03/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Unregulated activation of microglia is a key risk factor contributes to neurodegenerative diseases and suppression of this phenomenon is considered as a potential therapeutic target. The compound isolated from sea horse Hippocampus kuda Bleeler; 1-(5-bromo-2-hydroxy-4-methoxyphenyl)ethanone [SE1] was characterized for its ability in suppressing LPS mediated activation of murine BV-2 cells. Despite the presence of various active molecular groups in the structure, SE1 has not well explored for its biological activities. The outcome of this study clearly indicated that SE1 inhibited the production of inflammatory mediators; nitric oxide, prostaglandin E(2) and pro-inflammatory cytokines. Furthermore, it inhibited the protein and gene expression levels of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β and interleukin-6. The responsible signaling mechanisms leading to these inhibitions were identified as SE1 mediated blocking of phosphorylation of mitogen activate protein kinase (MAPK) molecules; C-jun-N-terminal kinase (JNK), p38 and nuclear translocation of nuclear factor-κB (NF-κB) p65 and p50 subunits. These results suggest that SE1 has the potential to be further developed as therapeutic against neuro-inflammation.
Collapse
Affiliation(s)
- S W A Himaya
- Biochemistry and Molecular Biology Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, Ai QL, Liu YD, Sun J, Lu D. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PLoS One 2011; 6:e21891. [PMID: 21765922 PMCID: PMC3134470 DOI: 10.1371/journal.pone.0021891] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/08/2011] [Indexed: 01/10/2023] Open
Abstract
Background Microglial activation plays an important role in neurodegenerative diseases by producing several proinflammatory enzymes and proinflammatory cytokines. The phenolic glucoside gastrodin, a main constituent of a Chinese herbal medicine, has been known to display anti-inflammatory properties. The current study investigates the potential mechanisms whereby gastrodin affects the expression of potentially pro-inflammatory proteins by cultured murine microglial BV-2 cells stimulated with lipopolysaccharide (LPS). Methodology/Principal Findings BV-2 cells were pretreated with gastrodin (30, 40, and 60 µM) for 1 h and then stimulated with LPS (1 µg/ml) for another 4 h. The effects on proinflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and proinflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), are analysed by double-immunofluorescence labeling and RT-PCR assay. To reveal the mechanisms of action of gastrodin we investigated the involvement of mitogen-activated protein kinases (MAPKs) cascades and their downstream transcription factors, nuclear factor-κB (NF-κB) and cyclic AMP-responsive element (CRE)-binding protein (CREB). Gastrodin significantly reduced the LPS-induced protein and mRNA expression levels of iNOS, COX-2, TNF-α, IL-1β and NF-κB. LPS (1 µg/ml, 30 min)-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) and this was inhibited by pretreatment of BV-2 cells with different concentrations of gastrodin (30, 40, and 60 µM). In addition, gastrodin blocked LPS-induced phosphorylation of inhibitor κB-α (IκB-α) (and hence the activation of NF-κB) and of CREB, respectively. Conclusion and Implications This study indicates that gastrodin significantly attenuate levels of neurotoxic proinflammatory mediators and proinflammatory cytokines by inhibition of the NF-κB signaling pathway and phosphorylation of MAPKs in LPS-stimulated microglial cells. Arising from the above, we suggest that gastrodin has a potential as an anti-inflammatory drug candidate in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Nan Dai
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Yi Zong
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Lian-Mei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yue-Min Li
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Wei Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li-Gong Bian
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
| | - Qing-Long Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yi-Dan Liu
- Kunming Pharmaceutical Corporation, Kunming, Yunnan, China
| | - Jun Sun
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (JS); (DL)
| | - Di Lu
- Department of Anatomy, Kunming Medical University, Kunming, Yunnan, China
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (JS); (DL)
| |
Collapse
|
24
|
Choi DK, Koppula S, Suk K. Inhibitors of microglial neurotoxicity: focus on natural products. Molecules 2011; 16:1021-43. [PMID: 21350391 PMCID: PMC6259841 DOI: 10.3390/molecules16021021] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/02/2011] [Accepted: 01/17/2011] [Indexed: 02/06/2023] Open
Abstract
Microglial cells play a dual role in the central nervous system as they have both neurotoxic and neuroprotective effects. Uncontrolled and excessive activation of microglia often contributes to inflammation-mediated neurodegeneration. Recently, much attention has been paid to therapeutic strategies aimed at inhibiting neurotoxic microglial activation. Pharmacological inhibitors of microglial activation are emerging as a result of such endeavors. In this review, natural products-based inhibitors of microglial activation will be reviewed. Potential neuroprotective activity of these compounds will also be discussed. Future works should focus on the discovery of novel drug targets that specifically mediate microglial neurotoxicity rather than neuroprotection. Development of new drugs based on these targets may require a better understanding of microglial biology and neuroinflammation at the molecular, cellular, and systems levels.
Collapse
Affiliation(s)
- Dong Kug Choi
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
- Authors to whom correspondence should be addressed; E-Mails: (K.S.); (D.K.C.); Tel.: +82-53-420-4835 (K.S.); +82-43-840-3610 (D.K.C.); Fax: +82-53-256-1566 (K.S.); +82-43-852-3616 (D.K.C.)
| | - Sushruta Koppula
- Department of Biotechnology, Konkuk University, Chungju 380-701, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, Daegu 700-422, Korea
- Authors to whom correspondence should be addressed; E-Mails: (K.S.); (D.K.C.); Tel.: +82-53-420-4835 (K.S.); +82-43-840-3610 (D.K.C.); Fax: +82-53-256-1566 (K.S.); +82-43-852-3616 (D.K.C.)
| |
Collapse
|
25
|
Potential therapeutic agents against Alzheimer’s disease from natural sources. Arch Pharm Res 2010; 33:1589-609. [DOI: 10.1007/s12272-010-1010-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 01/27/2023]
|