1
|
Balog E, Jenei G, Berkó AM, Lőrinczi B, Szatmári I, Vécsei L, Toldi J, Kis Z. Age-dependent changes in NMDA-induced excitotoxicity and neuromodulatory effects of kynurenic acid and its analogue in mouse brain slices. Neurosci Lett 2025; 854:138220. [PMID: 40154656 DOI: 10.1016/j.neulet.2025.138220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/01/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Kynurenic acid (KYNA) is one of the main neuroprotective substances of the kynurenine pathway. KYNA plays an important role in various neurodegenerative and psychiatric diseases. Although KYNA has been shown to have neuroprotective effects, it cannot be used as a peripherally administered drug due to its poor ability to cross the blood-brain barrier. To address this limitation, chemically modified KYNA analogues are being developed: SZR72 is one such analogue and has been shown to be protective in various animal models. Glutamate-induced excitotoxicity is a key factor in many neurodegenerative diseases. Therefore, we used the N-methyl-D-aspartate (NMDA)-induced excitotoxicity model to investigate the neuromodulatory agents. Using acute hippocampal slices from mouse brains, we investigated the potential neuroprotective effect of KYNA and its analogue, SZR72 on NMDA-induced excitotoxicity across different age groups of mice. The degree of tissue damage was assessed using biochemical and histological methods. In young animals (1- and 4-week-old), NMDA treatment caused no significant changes, and the cells were found to be resistant. However, in older animals (8-week-old and 1-year-old), NMDA caused significant damage in cells and tissue structure, which was reduced by KYNA and SZR72 treatment. To our knowledge, this is the first study to compare the neuroprotective effects of KYNA and SZR72 in animals of different ages using an in vitro NMDA excitotoxicity model.
Collapse
Affiliation(s)
- Emma Balog
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Gyula Jenei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Anikó Magyariné Berkó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Stereochemistry Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Kis
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Simon P, Lőrinczi B, Szatmári I. Alkoxyalkylation of Electron-Rich Aromatic Compounds. Int J Mol Sci 2024; 25:6966. [PMID: 39000077 PMCID: PMC11241777 DOI: 10.3390/ijms25136966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.
Collapse
Affiliation(s)
- Péter Simon
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN REN SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Grishanova AY, Perepechaeva ML. Kynurenic Acid/AhR Signaling at the Junction of Inflammation and Cardiovascular Diseases. Int J Mol Sci 2024; 25:6933. [PMID: 39000041 PMCID: PMC11240928 DOI: 10.3390/ijms25136933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630060, Russia;
| |
Collapse
|
4
|
Simon P, Lőrinczi B, Szatmári I. C-3 alkoxymethylation of 4-oxo-1,4-dihydroquinoline 2-carboxylic acid esters via organic additives. Heliyon 2024; 10:e32188. [PMID: 38882378 PMCID: PMC11176925 DOI: 10.1016/j.heliyon.2024.e32188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Esters of kynurenic acid, a known neuroprotective agent were reacted with cyclic amino acids to yield novel alkoxymethylated products under optimized reaction conditions. The importance of amino acid based (primary, secondary, biogenic and synthetic) organic additives was proven by the conduction of numerous test reactions. Thoroughly extended investigations, directly focusing on amino acid catalysis, which is an emerging and up-to-date field of catalysis and green chemical processes, have been conducted. The mechanism of the alkoxymethylation reaction was proposed and later the findings supported the hypothesis of the first retro-Mannich step (formation of the ortho-quinone methide intermediate) and subsequent formation of the alkoxymethylated derivatives. As a preparative result, two novel kynurenic acid derivatives bearing an alkoxymethyl moiety and two additional derivatives having amino acid residues at the site C-3 were synthesized, thus setting the scope and limitations of the modified Mannich reaction of kynurenic acid derivatives using amino acid nucleophiles. The mechanistic investigations highlighted the significant physicochemical effects of used nucleophiles on the amino-acid driven one-pot retro-Mannich initiated alkoxylation of kynurenic acid.
Collapse
Affiliation(s)
- Péter Simon
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
- HUN-REN SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| |
Collapse
|
5
|
Sheibani M, Shayan M, Khalilzadeh M, Soltani ZE, Jafari-Sabet M, Ghasemi M, Dehpour AR. Kynurenine pathway and its role in neurologic, psychiatric, and inflammatory bowel diseases. Mol Biol Rep 2023; 50:10409-10425. [PMID: 37848760 DOI: 10.1007/s11033-023-08859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Tryptophan metabolism along the kynurenine pathway is of central importance for the immune function. It prevents hyperinflammation and induces long-term immune tolerance. Accumulating evidence also demonstrates cytoprotective and immunomodulatory properties of kynurenine pathway in conditions affecting either central or peripheral nervous system as well as other conditions such as inflammatory bowel disease (IBD). Although multilevel association exists between the inflammatory bowel disease (IBD) and various neurologic (e.g., neurodegenerative) disorders, it is believed that the kynurenine pathway plays a pivotal role in the development of both IBD and neurodegenerative disorders. In this setting, there is strong evidence linking the gut-brain axis with intestinal dysfunctions including IBD which is consistent with the fact that the risk of neurodegenerative diseases is higher in IBD patients. This review aims to highlight the role of kynurenine metabolic pathway in various neurologic and psychiatric diseases as well as relationship between IBD and neurodegenerative disorders in the light of the kynurenine metabolic pathway.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, Lahey Hospital and Medical Center, 41 Mall Road, Burlington, MA, 01803, USA.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Centre, Tehran University of Medical Sciences, Tehran, MS, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bakker L, Ramakers IHGB, J P M Eussen S, Choe K, van den Hove DLA, Kenis G, Rutten BPF, van Oostenbrugge RJ, Staals J, Ulvik A, Ueland PM, Verhey FRJ, Köhler S. The role of the kynurenine pathway in cognitive functioning after stroke: A prospective clinical study. J Neurol Sci 2023; 454:120819. [PMID: 37852105 DOI: 10.1016/j.jns.2023.120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The kynurenine pathway is the main metabolic pathway of tryptophan degradation and has been associated with stroke and impaired cognitive functioning, but studies on its role in post-stroke cognitive impairment (PSCI) are scarce. We aimed to investigate associations between metabolites of the kynurenine pathway at baseline and post-stroke cognitive functioning over time. METHODS Baseline plasma kynurenines were quantified in 198 stroke patients aged 65.4 ± 10.8 years, 138 (69.7%) men, who were followed up over a period of three years after stroke. Baseline and longitudinal associations of kynurenines with PSCI and cognitive domain scores were investigated using linear mixed models, adjusted for several confounders. RESULTS No evidence of associations between kynurenines and odds of PSCI were found. However, considering individual cognitive domains, higher plasma levels of anthranilic acid (AA) were associated with better episodic memory at baseline (β per SD 0.16 [0.05, 0.28]). Additionally, a linear-quadratic association was found for the kynurenic acid/ quinolinic acid ratio (KA/QA), a neuroprotective index, with episodic memory (Wald χ2 = 8.27, p = .016). Higher levels of KA were associated with better processing speed in women only (pinteraction = .008; β per SD 0.15 [95% CI 0.02, 0.27]). These associations did not change over time. CONCLUSIONS Higher levels of KA, AA and KA/QA were associated with better scores on some cognitive domains at baseline. These associations did not change over time. Given the exploratory nature and heterogeneity of findings, these results should be interpreted with caution, and verified in other prospective studies.
Collapse
Affiliation(s)
- Lieke Bakker
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Inez H G B Ramakers
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Simone J P M Eussen
- Department of Epidemiology, Maastricht University, 6229 HA Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), 6229 ER Maastricht, the Netherlands.
| | - Kyonghwan Choe
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Daniel L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands; Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, 97080 Wuerzburg, Germany.
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, the Netherlands.
| | - Julie Staals
- School for Cardiovascular Diseases (CARIM), 6229 ER Maastricht, the Netherlands; Department of Neurology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, the Netherlands.
| | | | | | - Frans R J Verhey
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| | - Sebastian Köhler
- Alzheimer Center Limburg, Maastricht University, 6229 ET Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, Maastricht University, 6229 ER Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, the Netherlands; EURON European Graduate School of Neuroscience, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
7
|
Domoki F, Tóth-Szűki V, Kovács V, Remzső G, Körmöczi T, Vécsei L, Berkecz R. Differential Effects of Hypothermia and SZR72 on Cerebral Kynurenine and Kynurenic Acid in a Piglet Model of Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2023; 24:14522. [PMID: 37833970 PMCID: PMC10572886 DOI: 10.3390/ijms241914522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Kynurenic acid (KYNA), an endogenous neuroprotectant with antiexcitotoxic, antioxidant, and anti-inflammatory effects, is synthesized through the tryptophan-kynurenine (KYN) pathway. We investigated whether brain KYN or KYNA levels were affected by asphyxia in a translational piglet model of hypoxic-ischemic encephalopathy (HIE). We also studied brain levels of the putative blood-brain barrier (BBB) permeable neuroprotective KYNA analogue SZR72, and whether SZR72 or therapeutic hypothermia (TH) modified KYN or KYNA levels. KYN, KYNA, and SZR72 levels were determined using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry in five brain regions 24 h after 20 min of asphyxia in vehicle-, SZR72- and TH-treated newborn piglets (n = 6-6-6) and naive controls (n = 4). Endogenous brain KYN levels (median range 311.2-965.6 pmol/g) exceeded KYNA concentrations (4.5-6.0 pmol/g) ~100-fold. Asphyxia significantly increased cerebral KYN and KYNA levels in all regions (1512.0-3273.9 and 16.9-21.2 pmol/g, respectively), increasing the KYN/Tryptophan-, but retaining the KYNA/KYN ratio. SZR72 treatment resulted in very high cerebral SZR72 levels (13.2-33.2 nmol/g); however, KYN and KYNA levels remained similar to those of the vehicle-treated animals. However, TH virtually ameliorated asphyxia-induced elevations in brain KYN and KYNA levels. The present study reports for the first time that the KYN pathway is altered during HIE development in the piglet. SZR72 readily crosses the BBB in piglets but fails to affect cerebral KYNA levels. Beneficial effects of TH may include restoration of the tryptophan metabolism to pre-asphyxia levels.
Collapse
Affiliation(s)
- Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Viktória Kovács
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Gábor Remzső
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary; (V.T.-S.); (V.K.); (G.R.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - László Vécsei
- ELKH-SZTE-Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Center, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| |
Collapse
|
8
|
Vanhorebeek I, Gunst J, Casaer MP, Derese I, Derde S, Pauwels L, Segers J, Hermans G, Gosselink R, Van den Berghe G. Skeletal Muscle Myokine Expression in Critical Illness, Association With Outcome and Impact of Therapeutic Interventions. J Endocr Soc 2023; 7:bvad001. [PMID: 36726836 PMCID: PMC9879715 DOI: 10.1210/jendso/bvad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Indexed: 01/09/2023] Open
Abstract
Context Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Jan Gunst
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Michaël P Casaer
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Clinical Division of Intensive Care Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Inge Derese
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sarah Derde
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Lies Pauwels
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Johan Segers
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium,Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Rik Gosselink
- Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Greet Van den Berghe
- Correspondence: Prof. Ilse Vanhorebeek, MEng, PhD, Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;. ; or Prof. Greet Van den Berghe, MD, PhD, Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Wyant GA, Yu W, Doulamis IIP, Nomoto RS, Saeed MY, Duignan T, McCully JD, Kaelin WG. Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 2022; 377:621-629. [PMID: 35926043 DOI: 10.1126/science.abm1638] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kynurenic acid (KynA) is tissue protective in cardiac, cerebral, renal, and retinal ischemia models, but the mechanism is unknown. KynA can bind to multiple receptors, including the aryl hydrocarbon receptor, the a7 nicotinic acetylcholine receptor (a7nAChR), multiple ionotropic glutamate receptors, and the orphan G protein-coupled receptor GPR35. Here, we show that GPR35 activation was necessary and sufficient for ischemic protection by KynA. When bound by KynA, GPR35 activated Gi- and G12/13-coupled signaling and trafficked to the outer mitochondria membrane, where it bound, apparantly indirectly, to ATP synthase inhibitory factor subunit 1 (ATPIF1). Activated GPR35, in an ATPIF1-dependent and pertussis toxin-sensitive manner, induced ATP synthase dimerization, which prevented ATP loss upon ischemia. These findings provide a rationale for the development of specific GPR35 agonists for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Gregory A Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - IIias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Rio S Nomoto
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
10
|
Ala M, Eftekhar SP. The Footprint of Kynurenine Pathway in Cardiovascular Diseases. Int J Tryptophan Res 2022; 15:11786469221096643. [PMID: 35784899 PMCID: PMC9248048 DOI: 10.1177/11786469221096643] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 12/30/2022] Open
Abstract
Kynurenine pathway is the main route of tryptophan metabolism and produces several metabolites with various biologic properties. It has been uncovered that several cardiovascular diseases are associated with the overactivation of kynurenine pathway and kynurenine and its metabolites have diagnostic and prognostic value in cardiovascular diseases. Furthermore, it was found that several kynurenine metabolites can differently affect cardiovascular health. For instance, preclinical studies have shown that kynurenine, xanthurenic acid and cis-WOOH decrease blood pressure; kynurenine and 3-hydroxyanthranilic acid prevent atherosclerosis; kynurenic acid supplementation and kynurenine 3-monooxygenase (KMO) inhibition improve the outcome of stroke. Indoleamine 2,3-dioxygenase (IDO) overactivity and increased kynurenine levels improve cardiac and vascular transplantation outcomes, whereas exacerbating the outcome of myocardial ischemia, post-ischemic myocardial remodeling, and abdominal aorta aneurysm. IDO inhibition and KMO inhibition are also protective against viral myocarditis. In addition, dysregulation of kynurenine pathway is observed in several conditions such as senescence, depression, diabetes, chronic kidney disease (CKD), cirrhosis, and cancer closely connected to cardiovascular dysfunction. It is worth defining the exact effect of each metabolite of kynurenine pathway on cardiovascular health. This narrative review is the first review that separately discusses the involvement of kynurenine pathway in different cardiovascular diseases and dissects the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
11
|
Martos D, Tuka B, Tanaka M, Vécsei L, Telegdy G. Memory Enhancement with Kynurenic Acid and Its Mechanisms in Neurotransmission. Biomedicines 2022; 10:biomedicines10040849. [PMID: 35453599 PMCID: PMC9027307 DOI: 10.3390/biomedicines10040849] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is an endogenous tryptophan (Trp) metabolite known to possess neuroprotective property. KYNA plays critical roles in nociception, neurodegeneration, and neuroinflammation. A lower level of KYNA is observed in patients with neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases or psychiatric disorders such as depression and autism spectrum disorders, whereas a higher level of KYNA is associated with the pathogenesis of schizophrenia. Little is known about the optimal concentration for neuroprotection and the threshold for neurotoxicity. In this study the effects of KYNA on memory functions were investigated by passive avoidance test in mice. Six different doses of KYNA were administered intracerebroventricularly to previously trained CFLP mice and they were observed for 24 h. High doses of KYNA (i.e., 20–40 μg/2 μL) significantly decreased the avoidance latency, whereas a low dose of KYNA (0.5 μg/2 μL) significantly elevated it compared with controls, suggesting that the low dose of KYNA enhanced memory function. Furthermore, six different receptor blockers were applied to reveal the mechanisms underlying the memory enhancement induced by KYNA. The series of tests revealed the possible involvement of the serotonergic, dopaminergic, α and β adrenergic, and opiate systems in the nootropic effect. This study confirmed that a low dose of KYNA improved a memory component of cognitive domain, which was mediated by, at least in part, four systems of neurotransmission in an animal model of learning and memory.
Collapse
Affiliation(s)
- Diána Martos
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - Masaru Tanaka
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged (MTA-SZTE), Semmelweis u. 6, H-6725 Szeged, Hungary; (D.M.); (B.T.); (M.T.)
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-342-361
| | - Gyula Telegdy
- Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 5, H-6725 Szeged, Hungary;
| |
Collapse
|
12
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
13
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Bumbu AG, Andronie-Cioara FL, Nechifor AC, Gitea D, Bungau AF, Toma MM, Bungau SG. The Footprint of Kynurenine Pathway in Neurodegeneration: Janus-Faced Role in Parkinson's Disorder and Therapeutic Implications. Int J Mol Sci 2021; 22:6737. [PMID: 34201647 PMCID: PMC8268239 DOI: 10.3390/ijms22136737] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Progressive degeneration of neurons and aggravation of dopaminergic neurons in the substantia nigra pars compacta results in the loss of dopamine in the brain of Parkinson's disease (PD) patients. Numerous therapies, exhibiting transient efficacy have been developed; however, they are mostly accompanied by side effects and limited reliability, therefore instigating the need to develop novel optimistic treatment targets. Significant therapeutic targets have been identified, namely: chaperones, protein Abelson, glucocerebrosidase-1, calcium, neuromelanin, ubiquitin-proteasome system, neuroinflammation, mitochondrial dysfunction, and the kynurenine pathway (KP). The role of KP and its metabolites and enzymes in PD, namely quinolinic acid (QUIN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), kunurenine-3-monooxygenase (KMO), etc. has been reported. The neurotoxic QUIN, N-methyl-D-aspartate (NMDA) receptor agonist, and neuroprotective KYNA-which antagonizes QUIN actions-primarily justify the Janus-faced role of KP in PD. Moreover, KP has been reported to play a biomarker role in PD detection. Therefore, the authors detail the neurotoxic, neuroprotective, and immunomodulatory neuroactive components, alongside the upstream and downstream metabolic pathways of KP, forming a basis for a therapeutic paradigm of the disease while recognizing KP as a potential biomarker in PD, thus facilitating the development of a suitable target in PD management.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122412, India;
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616 Birkat Al Mouz, Nizwa 611, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya 42130, Turkey;
| | - Adrian Gheorghe Bumbu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania;
| | - Aurelia Cristina Nechifor
- Analytical Chemistry and Environmental Engineering Department, Polytechnic University of Bucharest, 011061 Bucharest, Romania;
| | - Daniela Gitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
| | | | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; (D.G.); (M.M.T.)
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
14
|
Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the Kynurenine Pathway in CNS Disease: Molecular Mechanisms and Therapeutic Implications. Cells 2021; 10:1548. [PMID: 34205235 PMCID: PMC8235708 DOI: 10.3390/cells10061548] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Diseases of the central nervous system (CNS) remain a significant health, social and economic problem around the globe. The development of therapeutic strategies for CNS conditions has suffered due to a poor understanding of the underlying pathologies that manifest them. Understanding common etiological origins at the cellular and molecular level is essential to enhance the development of efficacious and targeted treatment options. Over the years, neuroinflammation has been posited as a common link between multiple neurological, neurodegenerative and neuropsychiatric disorders. Processes that precipitate neuroinflammatory conditions including genetics, infections, physical injury and psychosocial factors, like stress and trauma, closely link dysregulation in kynurenine pathway (KP) of tryptophan metabolism as a possible pathophysiological factor that 'fuel the fire' in CNS diseases. In this study, we aim to review emerging evidence that provide mechanistic insights between different CNS disorders, neuroinflammation and the KP. We provide a thorough overview of the different branches of the KP pertinent to CNS disease pathology that have therapeutic implications for the development of selected and efficacious treatment strategies.
Collapse
Affiliation(s)
- Mustafa N. Mithaiwala
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Danielle Santana-Coelho
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Grace A. Porter
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
| | - Jason C. O’Connor
- Integrated Biomedical Sciences Program, Graduate School of Biomedical Sciences, UT Health San Antonio, San Antonio, TX 78229, USA; (M.N.M.); (D.S.-C.); (G.A.P.)
- Department of Pharmacology, Long School of Medicine, UT Health San Antonio, Mail Code 8864, San Antonio, TX 78229, USA
- Department of Research, Audie L. Murphy VA Hospital, South Texas Veterans Heath System, San Antonio, TX 78229, USA
| |
Collapse
|
15
|
Bellucci M, Pompa A, De Marcos Lousa C, Panfili E, Orecchini E, Maricchiolo E, Fraternale D, Orabona C, De Marchis F, Pallotta MT. Human Indoleamine 2,3-dioxygenase 1 (IDO1) Expressed in Plant Cells Induces Kynurenine Production. Int J Mol Sci 2021; 22:5102. [PMID: 34065885 PMCID: PMC8151846 DOI: 10.3390/ijms22105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 01/07/2023] Open
Abstract
Genetic engineering of plants has turned out to be an attractive approach to produce various secondary metabolites. Here, we attempted to produce kynurenine, a health-promoting metabolite, in plants of Nicotiana tabacum (tobacco) transformed by Agrobacterium tumefaciens with the gene, coding for human indoleamine 2,3-dioxygenase 1 (IDO1), an enzyme responsible for the kynurenine production because of tryptophan degradation. The presence of IDO1 gene in transgenic plants was confirmed by PCR, but the protein failed to be detected. To confer higher stability to the heterologous human IDO1 protein and to provide a more sensitive method to detect the protein of interest, we cloned a gene construct coding for IDO1-GFP. Analysis of transiently transfected tobacco protoplasts demonstrated that the IDO1-GFP gene led to the expression of a detectable protein and to the production of kynurenine in the protoplast medium. Interestingly, the intracellular localisation of human IDO1 in plant cells is similar to that found in mammal cells, mainly in cytosol, but in early endosomes as well. To the best of our knowledge, this is the first report on the expression of human IDO1 enzyme capable of secreting kynurenines in plant cells.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
| | - Andrea Pompa
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Carine De Marcos Lousa
- Centre for Biomedical Sciences, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS13HE, UK;
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK
| | - Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Elena Orecchini
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Elisa Maricchiolo
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University Carlo Bo, 61029 Urbino, Italy; (E.M.); (D.F.)
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources, National Research Council of Italy, 06128 Perugia, Italy; (M.B.); (A.P.)
| | - Maria Teresa Pallotta
- Department of Medicine and Surgery, University of Perugia, 06128 Perugia, Italy; (E.P.); (E.O.); (C.O.)
| |
Collapse
|
16
|
Kovács V, Remzső G, Körmöczi T, Berkecz R, Tóth-Szűki V, Pénzes A, Vécsei L, Domoki F. The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy. Int J Mol Sci 2021; 22:4822. [PMID: 34062911 PMCID: PMC8125407 DOI: 10.3390/ijms22094822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = -17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.
Collapse
Affiliation(s)
- Viktória Kovács
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Gábor Remzső
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary; (T.K.); (R.B.)
| | - Valéria Tóth-Szűki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - Andrea Pénzes
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, 6720 Szeged, Hungary;
- MTA-SZTE Neuroscience Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Ferenc Domoki
- Department of Physiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; (V.K.); (G.R.); (V.T.-S.); (A.P.)
| |
Collapse
|
17
|
Park JH, Kim DW, Shin MJ, Park J, Han KH, Lee KW, Park JK, Choi YJ, Yeo HJ, Yeo EJ, Sohn EJ, Kim HC, Shin EJ, Cho SW, Kim DS, Cho YJ, Eum WS, Choi SY. Tat-indoleamine 2,3-dioxygenase 1 elicits neuroprotective effects on ischemic injury. BMB Rep 2020. [PMID: 32684242 PMCID: PMC7704220 DOI: 10.5483/bmbrep.2020.53.11.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.
Collapse
Affiliation(s)
- Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 Plus Center, College of Medicine, Soonchunhyang University, Cheonan 31538, Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon 24253, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
19
|
Torrens-Spence MP, Liu CT, Weng JK. Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast. ACS Synth Biol 2019; 8:2735-2745. [PMID: 31714755 DOI: 10.1021/acssynbio.9b00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kynurenine pathway, named after its nonproteinogenic amino acid precursor l-kynurenine, is responsible for the de novo biosynthesis of nicotinamide adenine dinucleotide (NAD+) in eukaryotes. Oxo-(2-aminophenyl) and quinoline molecules downstream from l-kynurenine also serve as antagonists of several receptors of the central nervous system in mammals. In this study, we engineered new biosynthetic routes in yeast Saccharomyces cerevisiae to produce a suite of l-kynurenine-derived natural products. Overexpression of Homo sapiens l-tryptophan 2,3-dioxygenase (HsTDO2) in S. cerevisiae led to a marked increase in the production of l-kynurenine and downstream metabolites. Using this background, new branch points to the kynurenine pathway were added through the incorporation of a Psilocybe cubensis noncanonical L-aromatic amino acid decarboxylase (PcncAAAD) capable of catalyzing both decarboxylation and decarboxylation-dependent oxidative-deamination reactions of l-kynurenine and 3-hydroxy-l-kynurenine to yield their corresponding monoamines, aldehydes, and downstream nonenzymatically cyclized quinolines. The PcncAAAD-catalyzed decarboxylation products, kynuramine and 3-hydroxykynuramine, could further be converted to quinoline scaffolds through the addition of H. sapiens monoamine oxidase A (HsMAO-A). Finally, by incorporating upstream regiospecific l-tryptophan halogenases into the engineering scheme, we produced a number of halogenated oxo-(2-aminophenyl) and quinoline compounds. This work illustrates a synthetic biology approach to expand primary metabolic pathways in the production of novel natural-product-like scaffolds amenable for downstream functionalization.
Collapse
Affiliation(s)
| | - Chun-Ting Liu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Colpo GD, Venna VR, McCullough LD, Teixeira AL. Systematic Review on the Involvement of the Kynurenine Pathway in Stroke: Pre-clinical and Clinical Evidence. Front Neurol 2019; 10:778. [PMID: 31379727 PMCID: PMC6659442 DOI: 10.3389/fneur.2019.00778] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background: Stroke is the second leading cause of death after ischemic heart disease and the third leading cause of disability-adjusted life-years lost worldwide. There is a great need for developing more effective strategies to treat stroke and its resulting impairments. Among several neuroprotective strategies tested so far, the kynurenine pathway (KP) seems to be promising, but the evidence is still sparse. Methods: Here, we performed a systematic review of preclinical and clinical studies evaluating the involvement of KP in stroke. We searched for the keywords: (“kynurenine” or “kynurenic acid” or “quinolinic acid”) AND (“ischemia” or “stroke” or “occlusion) in the electronic databases PubMed, Scopus, and Embase. A total of 1,130 papers was initially retrieved. Results: After careful screening, forty-five studies were included in this systematic review, being 39 pre-clinical and six clinical studies. Despite different experimental models of cerebral ischemia, the results are concordant in implicating the KP in the pathophysiology of stroke. Preclinical evidence also suggests that treatment with kynurenine and KMO inhibitors decrease infarct size and improve behavioral and cognitive outcomes. Few studies have investigated the KP in human stroke, and results are consistent with the experimental findings that the KP is activated after stroke. Conclusion: Well-designed preclinical studies addressing the expression of KP enzymes and metabolites in specific cell types and their potential effects at cellular levels alongside more clinical studies are warranted to confirm the translational potential of this pathway as a pharmacological target for stroke and related complications.
Collapse
Affiliation(s)
- Gabriela D Colpo
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Venugopal R Venna
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Louise D McCullough
- BRAINS Lab, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
21
|
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer's Disease: Recent Concepts on the Relation of Mitochondrial Disturbances, Excitotoxicity, Neuroinflammation, and Kynurenines. J Alzheimers Dis 2019; 62:523-547. [PMID: 29480191 DOI: 10.3233/jad-170929] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathomechanism of Alzheimer's disease (AD) certainly involves mitochondrial disturbances, glutamate excitotoxicity, and neuroinflammation. The three main aspects of mitochondrial dysfunction in AD, i.e., the defects in dynamics, altered bioenergetics, and the deficient transport, act synergistically. In addition, glutamatergic neurotransmission is affected in several ways. The balance between synaptic and extrasynaptic glutamatergic transmission is shifted toward the extrasynaptic site contributing to glutamate excitotoxicity, a phenomenon augmented by increased glutamate release and decreased glutamate uptake. Neuroinflammation in AD is predominantly linked to central players of the innate immune system, with central nervous system (CNS)-resident microglia, astroglia, and perivascular macrophages having been implicated at the cellular level. Several abnormalities have been described regarding the activation of certain steps of the kynurenine (KYN) pathway of tryptophan metabolism in AD. First of all, the activation of indolamine 2,3-dioxygenase, the first and rate-limiting step of the pathway, is well-demonstrated. 3-Hydroxy-L-KYN and its metabolite, 3-hydroxy-anthranilic acid have pro-oxidant, antioxidant, and potent immunomodulatory features, giving relevance to their alterations in AD. Another metabolite, quinolinic acid, has been demonstrated to be neurotoxic, promoting glutamate excitotoxicity, reactive oxygen species production, lipid peroxidation, and microglial neuroinflammation, and its abundant presence in AD pathologies has been demonstrated. Finally, the neuroprotective metabolite, kynurenic acid, has been associated with antagonistic effects at glutamate receptors, free radical scavenging, and immunomodulation, giving rise to potential therapeutic implications. This review presents the multiple connections of KYN pathway-related alterations to three main domains of AD pathomechanism, such as mitochondrial dysfunction, excitotoxicity, and neuroinflammation, implicating possible therapeutic options.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
22
|
Mangas A, Heredia M, Riolobos A, De la Fuente A, Criado JM, Yajeya J, Geffard M, Coveñas R. Overexpression of kynurenic acid and 3-hydroxyanthranilic acid after rat traumatic brain injury. Eur J Histochem 2018; 62:2985. [PMID: 30426733 PMCID: PMC6275464 DOI: 10.4081/ejh.2018.2985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Using an immunohistochemical technique, we have studied the distribution of kynuneric acid (KYNA) and 3-hydroxyanthranilic acid (3-HAA) in a rat brain injury model (trauma). The study was carried out inducing a cerebral ablation of the frontal motor cortex. Two mouse monoclonal specific antibodies previously developed by our group directed against KYNA and 3-HAA were used. In control animals (sham-operated), the expression of both KYNA and 3-HAA was not observed. In animals in which the ablation was performed, the highest number of immunoreactive cells containing KYNA or 3-HAA was observed in the region surrounding the lesion and the number of these cells decreased moving away from the lesion. KYNA and 3-HAA were also observed in the white matter (ipsilateral side) located close to the injured region and in some cells placed in the white matter of the contralateral side. The distribution of KYNA and 3-HAA perfectly matched with the peripheral injured regions. The results found were identical independently of the perfusion date of animals (17, 30 or 54 days after brain injury). For the first time, the presence of KYNA and 3-HAA has been described in a rat trauma model. Moreover, by using a double immunocytochemistry protocol, it has been demonstrated that both metabolites were located in astrocytes. The findings observed suggest that, in cerebral trauma, KYNA and 3-HAA are involved in tissue damage and that these compounds could act, respectively, as a neuroprotector and a neurotoxic. This means that, in trauma, a counterbalance occurs and that a regulation of the indoleamine 2,3 dioxygenase (IDO) pathway could be required after a brain injury in order to decrease the deleterious effects of ending metabolites (the neurotoxic picolinic acid). Moreover, the localization of KYNA and 3-HAA in the contralateral side of the lesion suggests that the IDO pathway is also involved in the sprouting and pathfinding that follows a traumatic brain injury.
Collapse
Affiliation(s)
- Arturo Mangas
- Gemacbio, France; University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bo L, Guojun T, Li G. An Expanded Neuroimmunomodulation Axis: sCD83-Indoleamine 2,3-Dioxygenase-Kynurenine Pathway and Updates of Kynurenine Pathway in Neurologic Diseases. Front Immunol 2018; 9:1363. [PMID: 29963055 PMCID: PMC6013554 DOI: 10.3389/fimmu.2018.01363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
Many neurologic diseases are related to autoimmune dysfunction and a variety of molecules or reaction pathways are involved in the regulation of immune function of the nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker of mature dendritic cell, which has recently been shown to have an immunomodulatory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan kynurenine pathway (KP) participates in the immunoregulation through a variety of mechanisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, a previously known immunomodulatory axis, this review focused on an expanded neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system diseases.
Collapse
Affiliation(s)
- Li Bo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tan Guojun
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Polyzos KA, Ketelhuth DFJ. The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. Hamostaseologie 2017; 35:128-36. [DOI: 10.5482/hamo-14-10-0052] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
SummaryCoronary heart disease and stroke, the deadliest forms of cardiovascular disease (CVD), are mainly caused by atherosclerosis, a chronic inflammatory disease of the artery wall driven by maladaptive immune responses in the vessel wall. Various risk factors for CVD influence this pathogenic process, including diabetes mellitus, hypertension, dyslipidaemia, and obesity. Indoleamine 2,3-dioxygenase (IDO), an enzyme catalyzing the rate-limiting step in the kynurenine pathway of tryptophan degradation, is strongly induced by inflammation in several tissues, including the artery wall. An increasing body of evidence indicates that IDO promotes immune tolerance, decreases inflammation, and functions as a homeostatic mechanism against excessive immune reactions.This review provides an overview of the emerging field of the kynurenine pathway of tryptophan degradation in CVD, emphasizing the role of IDO-mediated tryptophan metabolism and its metabolites in the modulation of ‘classical’ cardiovascular risk factors, such as hypertension, obesity, lipid metabolism, diabetes mellitus, and in the development of atherosclerotic CVD.
Collapse
|
25
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
26
|
Mangas A, Yajeya J, González N, Ruiz I, Pernìa M, Geffard M, Coveñas R. Gemst: a taylor-made combination that reverts neuroanatomical changes in stroke. Eur J Histochem 2017; 61:2790. [PMID: 28735520 PMCID: PMC5452634 DOI: 10.4081/ejh.2017.2790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023] Open
Abstract
In a single transient middle cerebral artery occlusion model of stroke and using immunohistochemical techniques, the effects of a new therapeutic approach named Gemst (a member of the Poly-L-Lysine innovative therapies) have been studied in the rat brain. The expression of inflammatory (CD45, CD11b), oxidative (NO-tryptophan, NO2-tyrosine) and indoleamine 2, 3-dioxygenase pathway (kynurenic acid, 3-hydroxy anthranilic acid) markers has been evaluated in early and late phases of stroke. For this purpose, we have developed eight highly specific monoclonal antibodies directed against some of these markers. In the early phase (3 and 5 days of the stroke, we observed no effect of Gemst treatment (7.5 mg/day, subcutaneously for 3, 5 days). In the late phase (21 days) of stroke and exclusively in the ipsilateral side of non-treated animals an overexpression of kynurenic acid, 3-hydroxy anthranilic acid, CD45, CD11b, GFAP and ionized calcium-binding adapter molecule 1 (IBA-1) was found. In treated animals, the overexpression of the four former markers was completely abolished whereas the overexpression of the two latter ones was decreased down to normal levels. Gemst reversed the pathological conditions of stroke to normal situations. Gemst exerts a multifunctional action: down-regulates the indoleamine 2, 3-dioxygenase pathway and abolishes brain infiltration, microglial activation and gliosis. Moreover, Gemst has no effect on the expression of doublecortin, a protein involved in neuronal migration. Gemst could be a new drug for the treatment of stroke since it reverses the pathological findings of stroke and normalizes brain tissue conditions following the ischemic insult.
Collapse
|
27
|
Mangas A, Yajeya J, González N, Ruiz I, Duleu S, Geffard M, Coveñas R. Overexpression of kynurenic acid in stroke: An endogenous neuroprotector? Ann Anat 2017; 211:33-38. [PMID: 28163204 DOI: 10.1016/j.aanat.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/08/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
It is known that kynurenic acid (KYNA) exerts a neuroprotective effect against the neuronal loss induced by ischemia; acting as a scavenger, and exerting antioxidant action. In order to study the distribution of KYNA, a highly specific monoclonal antibody directed against KYNA was developed. This distribution was studied in control rats and in animals in which a middle cerebral artery occlusion (stroke model) was induced. By double immunohistochemistry, astrocytes containing KYNA and GFAP were exclusively found in the ipsilateral cerebral cortex and/or striatum, at 2, 5 and 21days after the induction of stroke. In control animals and in the contralateral side of the stroke animals, no immunoreactivity for KYNA was found. Under pathological conditions, the presence of KYNA is reported for the first time in the mammalian brain from early phases of stroke. The distribution of KYNA matches perfectly with the infarcted regions suggesting that, in stroke, this overexpressed molecule could be involved in neuroprotective/scavenger/antioxidant mechanisms.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France; Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain.
| | - J Yajeya
- School of Medicine, Department of Physiology, University of Salamanca, Salamanca, Spain
| | - N González
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - I Ruiz
- Gemacbio, Saint Jean d'Illac, France
| | - S Duleu
- Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - M Geffard
- Gemacbio, Saint Jean d'Illac, France; Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), Talence, France
| | - R Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, Salamanca, Spain
| |
Collapse
|
28
|
Majláth Z, Török N, Toldi J, Vécsei L. Memantine and Kynurenic Acid: Current Neuropharmacological Aspects. Curr Neuropharmacol 2016; 14:200-9. [PMID: 26564141 PMCID: PMC4825950 DOI: 10.2174/1570159x14666151113123221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/22/2015] [Accepted: 12/03/2015] [Indexed: 12/31/2022] Open
Abstract
Glutamatergic neurotransmission, of special importance in the human brain, is implicated in key brain functions such as synaptic plasticity and memory. The excessive activation of N-methyl- D-aspartate (NMDA) receptors may result in excitotoxic neuronal damage; this process has been implicated in the pathomechanism of different neurodegenerative disorders, such as Alzheimer’s disease (AD). Memantine is an uncompetitive antagonist of NMDA receptors with a favorable pharmacokinetic profile, and is therefore clinically well tolerated. Memantine is approved for the treatment of AD, but may additionally be beneficial for other dementia forms and pain conditions. Kynurenic acid
(KYNA) is an endogenous antagonist of NMDA receptors which has been demonstrated under experimental conditions to be neuroprotective. The development of a well-tolerated NMDA antagonist may offer a novel therapeutic option for the treatment of neurodegenerative disease and pain syndromes. KYNA may be a valuable candidate for future drug development.
Collapse
Affiliation(s)
| | | | | | - László Vécsei
- Department of Neurology, Faculty of Medicine, University of Szeged, Albert Szent-Györgyi Clinical Center, Semmelweis u. 6. H-6725 Szeged, Hungary.
| |
Collapse
|
29
|
Cuartero MI, de la Parra J, García-Culebras A, Ballesteros I, Lizasoain I, Moro MÁ. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia. Curr Pharm Des 2016; 22:1060-73. [PMID: 25248805 DOI: 10.2174/1381612822666151214125950] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Kynurenines are a wide range of catabolites which derive from tryptophan through the "Kynurenine Pathway" (KP). In addition to its peripheral role, increasing evidence shows a role of the KP in the central nervous system (CNS), mediating both physiological and pathological functions. Indeed, an imbalance in this route has been associated with several neurodegenerative disorders such as Alzheimer´s and Huntington´s diseases. Altered KP catabolism has also been described during both acute and chronic phases of stroke; however the contribution of the KP to the pathophysiology of acute ischemic damage and of post-stroke disorders during the chronic phase including depression and vascular dementia, and the exact mechanisms implicated in the regulation of the KP after stroke are not well established yet. A better understanding of the regulation and activity of the KP after stroke could provide new pharmacological tools in both acute and chronic phases of stroke. In this review, we will make an overview of CNS modulation by the KP. We will detail the KP contribution in the ischemic damage, how the unbalance of the KP might trigger an alteration of the cognitive function after stroke as well as potential targets for the development of new drugs.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Veres G, Fejes-Szabó A, Zádori D, Nagy-Grócz G, László AM, Bajtai A, Mándity I, Szentirmai M, Bohár Z, Laborc K, Szatmári I, Fülöp F, Vécsei L, Párdutz Á. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: a behavioral, immunohistochemical and pharmacokinetic study. J Neural Transm (Vienna) 2016; 124:99-112. [PMID: 27629500 DOI: 10.1007/s00702-016-1615-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
Kynurenic acid (KYNA) has well-established protective properties against glutamatergic neurotransmission, which plays an essential role in the activation and sensitization process during some primary headache disorders. The goal of this study was to compare the effects of two KYNA analogs, N-(2-N,N-dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-1) and N-(2-N-pyrrolidinylethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (KA-2), in the orofacial formalin test of trigeminal pain. Following pretreatment with KA-1 or KA-2, rats were injected with subcutaneous formalin solution in the right whisker pad. Thereafter, the rubbing activity and c-Fos immunoreactivity changes in the spinal trigeminal nucleus pars caudalis (TNC) were investigated. To obtain pharmacokinetic data, KA-1, KA-2 and KYNA concentrations were measured following KA-1 or KA-2 injection. Behavioral tests demonstrated that KA-2 induced larger amelioration of formalin-evoked alterations as compared with KA-1 and the assessment of c-Fos immunoreactivity in the TNC yielded similar results. Although KA-1 treatment resulted in approximately four times larger area under the curve values in the serum relative to KA-2, the latter resulted in a higher KYNA elevation than in the case of KA-1. With regard to TNC, the concentration of KA-1 was under the limit of detection, while that of KA-2 was quite small and there was no major difference in the approximately tenfold KYNA elevations. These findings indicate that the differences between the beneficial effects of KA-1 and KA-2 may be explained by the markedly higher peripheral KYNA levels following KA-2 pretreatment. Targeting the peripheral component of trigeminal pain processing would provide an option for drug design which might prove beneficial in headache conditions.
Collapse
Affiliation(s)
- Gábor Veres
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| | - Anna M László
- Department of Biometrics and Agricultural Informatics, Faculty of Horticultural Science, Szent Istvan University, Budapest, Hungary
| | - Attila Bajtai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Márton Szentirmai
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - Zsuzsanna Bohár
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Klaudia Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary. .,MTA-SZTE Neuroscience Research Group, Szeged, Hungary.
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725, Szeged, Hungary
| |
Collapse
|
31
|
Kincses ZT, Király A, Veréb D, Vécsei L. Structural Magnetic Resonance Imaging Markers of Alzheimer's Disease and Its Retranslation to Rodent Models. J Alzheimers Dis 2016; 47:277-90. [PMID: 26401552 DOI: 10.3233/jad-143195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The importance of imaging biomarkers has been acknowledged in the diagnosis and in the follow-up of Alzheimer's disease (AD), one of the major causes of dementia. Next to the molecular biomarkers and PET imaging investigations, structural MRI approaches provide important information about the disease progression and about the pathomechanism. Furthermore,a growing body of literature retranslates these imaging biomarkers to various rodent models of the disease. The goal of this review is to provide an overview of the macro- and microstructural imaging biomarkers of AD, concentrating on atrophy measures and diffusion MRI alterations. A survey is also given of the imaging approaches used in rodent models of dementias that can promote drug development.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, University of Szeged, Szeged, Hungary.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - András Király
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Dániel Veréb
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
32
|
Varga D, Herédi J, Kánvási Z, Ruszka M, Kis Z, Ono E, Iwamori N, Iwamori T, Takakuwa H, Vécsei L, Toldi J, Gellért L. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice. Front Behav Neurosci 2015; 9:157. [PMID: 26136670 PMCID: PMC4468612 DOI: 10.3389/fnbeh.2015.00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/01/2015] [Indexed: 01/31/2023] Open
Abstract
L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.
Collapse
Affiliation(s)
- Dániel Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Judit Herédi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Zita Kánvási
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Marian Ruszka
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| | - Zsolt Kis
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Naoki Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Tokuko Iwamori
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan ; Center of Biomedical Research, Research Center for Human Disease Modeling, Department of Physiological Sciences, Graduate School of Medical Sciences, Kyushu University Fukuoka, Japan
| | - Hiroki Takakuwa
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama Kita, Kyoto, Japan
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary ; Department of Neurology, University of Szeged, Hungary Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| | - Levente Gellért
- Department of Physiology, Anatomy and Neuroscience, University of Szeged Szeged, Hungary ; Department of Neurology, Faculty of Medicine, MTA-SZTE Neuroscience Research Group, University of Szeged Szeged, Hungary
| |
Collapse
|
33
|
Kassai F, Kedves R, Gyertyán I, Tuka B, Fülöp F, Toldi J, Lendvai B, Vécsei L. Effect of a kynurenic acid analog on home-cage activity and body temperature in rats. Pharmacol Rep 2015; 67:1188-92. [PMID: 26481540 DOI: 10.1016/j.pharep.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-(2-N,N-Dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide hydrochloride (SzR-72) is a kynurenic acid (KYNA) amide analog that displays neuroprotective action. Whereas its brain penetration ability and its solubility limit the therapeutic use of KYNA: the corresponding properties of the analog exceed those of the parent compound. Although SzR-72 has been extensively studied, its exact mechanism of action has not yet been fully clarified. As KYNA induces hypothermia in laboratory rodents, it may be hypothesized that SzR-72 may have a similar effect. This would be of major importance, since the hypothermia generated by external cooling is neuroprotective, thus a putative hypothermic effect of SzR-72 could contribute to its neuroprotective action. METHODS The effects of SzR-72 on the body temperature and home-cage activity of rats were studied by using a telemetry system. In order to follow the longitudinal changes in the effects of the compound, subchronic drug administration was applied. RESULTS The initial administration of the compound induced substantial hypothermia and reduced the home-cage activity. During the 5 days of SzR-72 administration, partial tolerance developed to the hypothermic effect, while the inhibition of home-cage activity detected after the acute administration was completely tolerated. CONCLUSIONS On the basis of these results, it cannot be excluded that the hypothermic effect of SzR-72 contributes to its neuroprotective action.
Collapse
Affiliation(s)
- Ferenc Kassai
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary; MTA SE NAP B Cognitive Translational Behavioral Pharmacology Group, Budapest, Hungary.
| | - Rita Kedves
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary
| | - István Gyertyán
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary; MTA SE NAP B Cognitive Translational Behavioral Pharmacology Group, Budapest, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and Stereochemistry Research Group of the Hungarian Academy of Sciences, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc, Pharmacology and Drug Safety Department, Budapest, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Szeged, Hungary; Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| |
Collapse
|
34
|
Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 2015; 16:9772-93. [PMID: 25938971 PMCID: PMC4463617 DOI: 10.3390/ijms16059772] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases.
Collapse
|
35
|
Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 2014; 169:1211-27. [PMID: 23647169 DOI: 10.1111/bph.12230] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognized in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition - glutamate and acetylcholine. Since this pathway - the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress, it also stands in a unique position to mediate the effects of environmental factors on cognition and behaviour. Targeting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
36
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|
37
|
Majláth Z, Toldi J, Vécsei L. The potential role of kynurenines in Alzheimer's disease: pathomechanism and therapeutic possibilities by influencing the glutamate receptors. J Neural Transm (Vienna) 2013; 121:881-9. [PMID: 24346138 DOI: 10.1007/s00702-013-1135-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022]
Abstract
The pathomechanism of neurodegenerative disorders still poses a challenge to neuroscientists, and continuous research is under way with the aim of attaining an understanding of the exact background of these devastating diseases. The pathomechanism of Alzheimer's disease (AD) is associated with characteristic neuropathological features such as extracellular amyloid-β and intracellular tau deposition. Glutamate excitotoxicity and neuroinflammation are also factors that are known to contribute to the neurodegenerative process, but a cerebrovascular dysfunction has recently also been implicated in AD. Current therapeutic tools offer moderate symptomatic treatment, but fail to reduce disease progression. The kynurenine pathway (KP) has been implicated in the development of neurodegenerative processes, and alterations in the KP have been demonstrated in both acute and chronic neurological disorders. Kynurenines have been suggested to be involved in the regulation of neurotransmission and in immunological processes. Targeting the KP, therefore, offers a valuable strategic option for the attenuation of glutamatergic excitotoxicity, and for neuroprotection.
Collapse
Affiliation(s)
- Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | |
Collapse
|
38
|
Kvist T, Steffensen TB, Greenwood JR, Mehrzad Tabrizi F, Hansen KB, Gajhede M, Pickering DS, Traynelis SF, Kastrup JS, Bräuner-Osborne H. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site. J Biol Chem 2013; 288:33124-35. [PMID: 24072709 DOI: 10.1074/jbc.m113.480210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glycine sites of GluN1 and GluN3 subunits would be valuable pharmacological tools for studies on the function and physiological roles of NMDA receptor subtypes. In a virtual screening for antagonists that exploit differences in the orthosteric binding site of GluN1 and GluN3 subunits, we identified a novel glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21-63 nM at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40 displayed >100-fold selectivity for GluN1/N2 NMDA receptors over GluN3A- and GluN3B-containing NMDA receptors and no appreciable effects at AMPA receptors. Binding experiments on rat brain membranes and the purified GluN1 ligand-binding domain using glycine site GluN1 radioligands further confirmed the competitive interaction and high potency. To delineate the binding mechanism, we have solved the crystal structure of the GluN1 ligand-binding domain in complex with TK40 and show that TK40 binds to the orthosteric binding site of the GluN1 subunit with a binding mode that was also predicted by virtual screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an α-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design.
Collapse
Affiliation(s)
- Trine Kvist
- From the Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Paradox effects of kynurenines on LTP induction in the Wistar rat. An in vivo study. Neurosci Lett 2013; 553:138-41. [PMID: 23978510 DOI: 10.1016/j.neulet.2013.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 11/20/2022]
Abstract
Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan that acts on different receptors (e.g. those of N-methyl-D-aspartate (NMDA) and presynaptic α7 nicotinic acetylcholine (nACh)), exerts fundamentally antiglutamatergic effects. In view of its antiglutamatergic properties, an elevation of the KYNA level within the brain might result in neuroprotection. However, the use of KYNA as a neuroprotective agent is rather limited, because it crosses the blood-brain barrier (BBB) to only a poor extent. During recent years, new KYNA derivatives have been developed which can readily traverse the BBB and also exert neuroprotection. However, as KYNA and its derivatives are able to interfere with glutamatergic and cholinergic transmission, the potential risks of interfering with cognitive functions cannot be excluded. This in vivo study on anesthetized rats therefore tested the effects of the administration of KYNA and a KYNA derivative (SZR72) (in a dosage that exerted neuroprotection) on long-term potentiation (LTP) and pure field excitatory postsynaptic potentials induced by contralateral CA3 region stimulation and recorded in the pyramidal layer of the CA1 region of the hippocampus. Surprisingly, KYNA and this derivative did not reduce, but rather increased the induceability of LTP. The possible explanation is discussed in detail. In brief: an elevated KYNA level in the perisynaptic area produced, for example, by exogenous prodrug or derivative administration exerts preferential effects on the extrasynaptic NMDA receptors and the nACh receptors on presynaptic glutamatergic terminals, while sparing the currents mediated by synaptic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors. This might be the explanation why the treatment with the prodrug of KYNA or the KYNA derivative in a dosage which induced neuroprotection did not reduce the cognitive functions or the LTP.
Collapse
|
40
|
Gellért L, Knapp L, Németh K, Herédi J, Varga D, Oláh G, Kocsis K, Menyhárt A, Kis Z, Farkas T, Vécsei L, Toldi J. Post-ischemic treatment with L-kynurenine sulfate exacerbates neuronal damage after transient middle cerebral artery occlusion. Neuroscience 2013; 247:95-101. [PMID: 23685169 DOI: 10.1016/j.neuroscience.2013.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/27/2013] [Accepted: 04/30/2013] [Indexed: 11/28/2022]
Abstract
Since brain ischemia is one of the leading causes of adult disability and death, neuroprotection of the ischemic brain is of particular importance. Acute neuroprotective strategies usually have the aim of suppressing glutamate excitotoxicity and an excessive N-methyl-d-aspartate (NMDA) receptor function. Clinically tolerated antagonists should antagonize an excessive NMDA receptor function without compromising the normal synaptic function. Kynurenic acid (KYNA) an endogenous metabolite of the tryptophan metabolism, may be an attractive neuroprotectant in this regard. The manipulation of brain KYNA levels was earlier found to effectively enhance the histopathological outcome of experimental ischemic/hypoxic states. The present investigation of the neuroprotective capacity of L-kynurenine sulfate (L-KYNs) administered systemically after reperfusion in a novel distal middle cerebral artery occlusion (dMCAO) model of focal ischemia/reperfusion revealed that in contrast with earlier results, treatment with L-KYNs worsened the histopathological outcome of dMCAO. This contradictory result indicates that post-ischemic treatment with L-KYNs may be harmful.
Collapse
Affiliation(s)
- L Gellért
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Amaral M, Outeiro TF, Scrutton NS, Giorgini F. The causative role and therapeutic potential of the kynurenine pathway in neurodegenerative disease. J Mol Med (Berl) 2013; 91:705-13. [PMID: 23636512 DOI: 10.1007/s00109-013-1046-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/11/2013] [Accepted: 04/17/2013] [Indexed: 12/16/2022]
Abstract
Metabolites of the kynurenine pathway (KP), which arise from the degradation of tryptophan, have been studied in detail for over a century and garnered the interest of the neuroscience community in the late 1970s and early 1980s with work uncovering the neuromodulatory potential of this pathway. Much research in the following decades has found that perturbations in the levels of KP metabolites likely contribute to the pathogenesis of several neurodegenerative diseases. More recently, it has become apparent that targeting KP enzymes, in particular kynurenine 3-monooxygenase (KMO), may hold substantial therapeutic potential for these disorders. Here we provide an overview of the KP, the neuroactive properties of KP metabolites and their role in neurodegeneration. We also discuss KMO as a therapeutic target for these disorders, and our recent resolution of the crystallographic structure of KMO, which will permit the development of new and improved KMO inhibitors which may ultimately expedite clinical application of these compounds.
Collapse
Affiliation(s)
- Marta Amaral
- Department of Genetics, University of Leicester, Leicester, LE1 7RH, UK
| | | | | | | |
Collapse
|
42
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
43
|
Fuzik J, Gellért L, Oláh G, Herédi J, Kocsis K, Knapp L, Nagy D, Kincses ZT, Kis Z, Farkas T, Toldi J. Fundamental interstrain differences in cortical activity between Wistar and Sprague-Dawley rats during global ischemia. Neuroscience 2012; 228:371-81. [PMID: 23103797 DOI: 10.1016/j.neuroscience.2012.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Four-vessel occlusion (4VO), a frequently used model of global cerebral ischemia in rats, results in a dysfunction in wide brain areas, including the cerebral cortex and hippocampus. However, there are pronounced differences in response to global ischemia between the laboratory rat strains used in these studies. In the present work, the immediate acute effects of 4VO-induced global ischemia on the spontaneous electrocorticogram (ECoG) signals were analyzed in Wistar and Sprague-Dawley rats. The ECoG was isoelectric during the 10 min of global cerebral ischemia in Wistar rats and the first burst (FB) was seen 10-13 min after the start of reperfusion. In Sprague-Dawley rats, the FB was detected immediately after the start of 4VO or a few seconds later. The burst suppression ratio (BSR) in Wistar rats decreased to 45% in 5 min after FB, and after 25 min it was approximately 40%. In Sprague-Dawley rats, the BSR was 55% immediately after the FB and it decreased steeply to reach 0% by 10 min. There was also a significant difference between the two strains in the frequency composition of the ECoG pattern. The power spectral densities of the two strains differed virtually throughout the post-ischemic state. The histological results (Evans Blue, Cresyl Violet and Fluoro Jade C stainings) supplemented the electrophysiological data: the neuronal damage in the CA1 pyramids in Wistar rats was severe, whereas in the Sprague-Dawley animals it was only partial. These observations clearly demonstrate that the use of different rat strains (e.g. Wistar vs. Sprague-Dawley) can be a source of considerable variability in the results of acute experiments on global ischemia and it is important that the laboratory rats used in such experiments should be carefully chosen.
Collapse
Affiliation(s)
- J Fuzik
- University of Szeged, Department of Physiology, Anatomy and Neuroscience, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L. Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 2012; 322:187-91. [PMID: 22749004 DOI: 10.1016/j.jns.2012.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/08/2012] [Indexed: 12/25/2022]
Abstract
A mitochondrial dysfunction causes an abatement in ATP production, the induction of oxidative damage and the propagation of cell death pathways. It is additionally closely related to both glutamate excitotoxicity and neuroinflammation. All of these interconnected aspects of a cellular dysfunction are involved in the pathogenesis of numerous neurological disorders, including those with an acute (e.g. ischemic stroke) or a chronic (e.g. Huntington's disease) onset. Both acute and chronic neurodegenerative disorders have been demonstrated to involve multiple imbalances of the kynurenine pathway metabolism in the pathogenesis of the disease. As regards neuroactive compounds featuring in the pathway, quinolinic acid is a specific agonist of N-methyl-d-aspartate receptors, and a potent neurotoxin with additional and marked free radical-producing and lipid peroxidation-inducing properties. The toxic effects of 3-hydroxy-L-kynurenine are mediated by free radicals. Besides the possibility of increasing brain kynurenic acid concentrations, L-kynurenine may have vasoactive properties, too. Kynurenic acid has proven to be neuroprotective in several experimental settings, but in consequence of its pharmacokinetic properties it is not applicable as systemic administration in human cases. The aim of this short review is to emphasize the common features of cerebral ischemia and Huntington's disease and to highlight therapeutic strategies targeting the kynurenine pathway.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
45
|
Is Ro 61-8048 a potential fast-acting antidepressant? J Neurol Sci 2012; 315:180; author reply 181-2. [DOI: 10.1016/j.jns.2011.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/18/2011] [Accepted: 11/29/2011] [Indexed: 11/18/2022]
|
46
|
A novel kynurenic acid analog (SZR104) inhibits pentylenetetrazole-induced epileptiform seizures. An electrophysiological study : special issue related to kynurenine. J Neural Transm (Vienna) 2012; 119:151-4. [PMID: 22231843 DOI: 10.1007/s00702-011-0755-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
The concentration of kynurenic acid (KYNA) in the cerebrospinal fluid, which is in the nanomolar range, is known to decrease in epilepsy. The experimental data suggest that treatment with L: -KYN dose dependently increases the concentration of the neuroprotective KYNA in the brain, which itself hardly crosses the blood-brain barrier. However, it is suggested that new synthetic KYNA analogs may readily cross the blood-brain barrier. In this study, we tested the hypothesis that a new KYNA analog administered systemically in a sufficient dose results in a decreased population spike activity recorded from the pyramidal layer of area CA1 of the hippocampus, and also provides protection against pentylenetetrazole-induced epileptiform seizures.
Collapse
|
47
|
Fülöp F, Szatmári I, Toldi J, Vécsei L. Modifications on the carboxylic function of kynurenic acid. J Neural Transm (Vienna) 2011; 119:109-14. [DOI: 10.1007/s00702-011-0721-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/28/2011] [Indexed: 11/30/2022]
|
48
|
Behavioural studies with a newly developed neuroprotective KYNA-amide. J Neural Transm (Vienna) 2011; 119:165-72. [PMID: 21818601 DOI: 10.1007/s00702-011-0692-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/16/2011] [Indexed: 12/29/2022]
Abstract
The neuroactive properties and neuroprotective potential of endogenous L: -kynurenine, kynurenic acid (KYNA) and its derivatives are well established. KYNA acts as an antagonist on the obligatory co-agonist glycine site, and has long been at the focus of neuroprotective trials. Unfortunately, KYNA is barely able to cross the blood-brain barrier. Accordingly, the development and synthesis of KYNA analogs which can readily cross the BBB have been at the focus of research interest with the aim of neuroprotection. Earlier we reported a new KYNA-amide crosses the BBB and proved neuroprotective in several experiments. In the present study, we investigated the locomotor activity, working memory performance, and also the long-lasting, consolidated reference memory of animals treated intraperitoneally (i.p.) with the novel analog. The effects of the novel analog on the spatial orientation and learning ability of rats were assessed in the Morris water maze (MWM) paradigm. The effects on locomotor activity of mice was assessed in the open field (OF) paradigm, and those on the spatial orientation and learning ability of mice were investigated in the radial arm maze (RAM) paradigm. It emerged that there is a dose of this KYNA-amide which is neuroprotective, but does not worsen the cognitive function of the brain. This result is significant in that a putative neuroprotectant without adverse cognitive side-effects is of great benefit.
Collapse
|