1
|
Su J, Dai Y, Wu X, Zhou X, Fang X, Ge X, Zhao L. Maslinic acid alleviates alcoholic liver injury in mice and regulates intestinal microbiota via the gut-liver axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7928-7938. [PMID: 38837352 DOI: 10.1002/jsfa.13624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/01/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Maslinic acid (MA), a pentacyclic triterpene acid, is widely distributed in natural plants and mainly found in the fruit and leaves of olives and hawthorn. MA has been reported as having many health-promoting functions, such as anticancer, anti-inflammation and neuroprotective activities. According to previous study, hawthorn extract has certain hepatoprotective effects. However, the detailed mechanism is still unclear, especially the effect of MA on gut microbiota. RESULTS Our study reveals that MA effectively counteracts alcohol-induced liver injury and oxidative stress. It mitigates alcohol-induced intestinal barrier damage, reverses increased permeability and reduces translocation of lipopolysaccharide (LPS). This prevents LPS/Toll-like receptor 4 activation, leading to decreased TNF-α and IL-1β production. Furthermore, MA rebalances gut microbiota by reversing harmful bacterial abundance and enhancing beneficial bacteria post-alcohol consumption. CONCLUSION MA, through modulation of gut microbiota, alleviates alcohol-induced liver injury via the gut-liver axis. These findings support the potential use of MA as a functional food ingredient for preventing or treating alcoholic liver disease. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwen Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yuan Dai
- Jiangsu Yanghe Distillery Co. Ltd, Suqian, China
| | - Xianyao Wu
- Jinling High School Hexi Campus International Department, Nanjing, China
| | - Xinhu Zhou
- Jiangsu Yanghe Distillery Co. Ltd, Suqian, China
| | - Xianying Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing, China
| | - Xiangyang Ge
- Jiangsu Yanghe Distillery Co. Ltd, Suqian, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jinpu Research institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Yan R, Liu L, Huang X, Quan ZS, Shen QK, Guo HY. Bioactivities and Structure-Activity Relationships of Maslinic Acid Derivatives: A Review. Chem Biodivers 2024; 21:e202301327. [PMID: 38108648 DOI: 10.1002/cbdv.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Maslinic acid has a variety of biological activities, such as anti-tumor, hypoglycemic, anti-inflammatory, and anti-parasitic. In order to enhance the biological activity of maslinic acid, scholars have carried out a lot of structural modifications, and found some more valuable maslinic acid derivatives. In this paper, the structural modification, biological activity, and structure-activity relationship of maslinic acid were reviewed, providing references for the development of maslinic acid.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, P. R. China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| |
Collapse
|
3
|
Cheng Y, Xia Q, Lu Z, Luan X, Fan L, Wang Z, Luo D. Maslinic acid attenuates UVB-induced oxidative damage in HFF-1 cells. J Cosmet Dermatol 2023. [PMID: 36943873 DOI: 10.1111/jocd.15730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Oxidative damage is one of the major mechanisms of ultraviolet B (UVB)-induced damage to the skin. Maslinic acid (MA) is a natural compound of pentacyclic triterpene acids. It has been proved to have anti-inflammatory and antioxidant properties. OBJECTIVE This study aimed to explore the effects of MA on oxidative damage in human foreskin fibroblast cells (HFF-1) and the potential molecular mechanisms. METHODS A specific dose of UVB radiation was used to induce oxidative damage in HFF-1. Based on this, we performed measurements of cell proliferation, reactive oxygen species (ROS) levels, antioxidant enzyme activity, inflammation-related mediators, and NF-κB nuclear localization with or without the addition of MA. RESULTS MA significantly promoted cell proliferation viability at 10 and 20 μM. The addition of MA 24 h before UVB irradiation was more effective at enhancing cell proliferation and also produced lower ROS levels compared to co-cultured fibroblasts and MA for 24 h after irradiation. However, there was no statistically significant difference between groups at concentrations of 10 and 20 μM. The pretreatment group with MA had elevated superoxide dismutase and catalase activities, decreased IL-6 generation, and lowered mRNA levels of IL-6, TNF-α and MMP3 in comparison with the UVB-irradiated group without additional MA. Meanwhile, the nuclear translocation of NF-κB and the degradation of IκB were inhibited by MA pretreatment. CONCLUSION Taken together, these findings suggest that MA may alleviate UVB-induced oxidative damage in HFF-1 by inhibiting the nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Yuxin Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qingyue Xia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyu Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
4
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
5
|
Lombrea A, Semenescu AD, Magyari-Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Muntean D, Dehelean CA, Dinu S, Danciu C. Comparison of In Vitro Antimelanoma and Antimicrobial Activity of 2,3-Indolo-betulinic Acid and Its Glycine Conjugates. PLANTS (BASEL, SWITZERLAND) 2023; 12:1253. [PMID: 36986941 PMCID: PMC10058300 DOI: 10.3390/plants12061253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Malignant melanoma is one of the most pressing problems in the developing world. New therapeutic agents that might be effective in treating malignancies that have developed resistance to conventional medications are urgently required. Semisynthesis is an essential method for improving the biological activity and the therapeutic efficacy of natural product precursors. Semisynthetic derivatives of natural compounds are valuable sources of new drug candidates with a variety of pharmacological actions, including anticancer ones. Two novel semisynthetic derivatives of betulinic acid-N-(2,3-indolo-betulinoyl)diglycylglycine (BA1) and N-(2,3-indolo-betulinoyl)glycylglycine (BA2)-were designed and their antiproliferative, cytotoxic, and anti-migratory activity against A375 human melanoma cells was determined in comparison with known N-(2,3-indolo-betulinoyl)glycine (BA3), 2,3-indolo-betulinic acid (BA4) and naturally occurring betulinic acid (BI). A dose-dependent antiproliferative effect with IC50 values that ranged from 5.7 to 19.6 µM was observed in the series of all five compounds including betulinic acid. The novel compounds BA1 (IC50 = 5.7 µM) and BA2 (IC50 = 10.0 µM) were three times and two times more active than the parent cyclic structure B4 and natural BI. Additionally, compounds BA2, BA3, and BA4 possess antibacterial activity against Streptococcus pyogenes ATCC 19615 and Staphylococcus aureus ATCC 25923 with MIC values in the range of 13-16 µg/mL and 26-32 µg/mL, respectively. On the other hand, antifungal activity toward Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019 was found for compound BA3 with MIC 29 µg/mL. This is the first report of antibacterial and antifungal activity of 2,3-indolo-betulinic acid derivatives and also the first extended report on their anti-melanoma activity, which among others includes data on anti-migratory activity and shows the significance of amino acid side chain on the observed activity. The obtained data justify further research on the anti-melanoma and antimicrobial activity of 2,3-indolo-betulinic acid derivatives.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Alexandra-Denisa Semenescu
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
| | - Uldis Peipiņš
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.); (U.P.)
- Nature Science Technologies Ltd., Rupnicu Str. 4, LV-2114 Olaine, Latvia
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.-D.S.); (D.M.); (C.A.D.)
| |
Collapse
|
6
|
de Oliveira LMG, Carreira RB, de Oliveira JVR, do Nascimento RP, Dos Santos Souza C, Trias E, da Silva VDA, Costa SL. Impact of Plant-Derived Compounds on Amyotrophic Lateral Sclerosis. Neurotox Res 2023; 41:288-309. [PMID: 36800114 DOI: 10.1007/s12640-022-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 09/23/2022] [Accepted: 12/29/2022] [Indexed: 02/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal illness characterized by progressive motor neuron degeneration. Conventional therapies for ALS are based on treatment of symptoms, and the disease remains incurable. Molecular mechanisms are unclear, but studies have been pointing to involvement of glia, neuroinflammation, oxidative stress, and glutamate excitotoxicity as a key factor. Nowadays, we have few treatments for this disease that only delays death, but also does not stop the neurodegenerative process. These treatments are based on glutamate blockage (riluzole), tyrosine kinase inhibition (masitinib), and antioxidant activity (edaravone). In the past few years, plant-derived compounds have been studied for neurodegenerative disorder therapies based on neuroprotection and glial cell response. In this review, we describe mechanisms of action of natural compounds associated with neuroprotective effects, and the possibilities for new therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Lucas Matheus Gonçalves de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Rodrigo Barreto Carreira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Juciele Valeria Ribeiro de Oliveira
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cell Biology, Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, 40110-100, Brazil.
| |
Collapse
|
7
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
8
|
Banerjee J, Hasan SN, Samanta S, Giri B, Bag BG, Dash SK. Self-Assembled Maslinic Acid Attenuates Doxorobucin Induced Cytotoxicity via Nrf2 Signaling Pathway: An In Vitro and In Silico Study in Human Healthy Cells. Cell Biochem Biophys 2022; 80:563-578. [PMID: 35849306 DOI: 10.1007/s12013-022-01083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
The clinical applications of some well-known chemotherapeutic drugs for cancer treatment have been restricted nowadays owing to their adverse effects on many physiological systems. In this experimental study, maslinic acid (MA) isolated from Olea europaea (Olive) fruit extract was used to mitigate the cytotoxicity induced by Doxorubicin (DOX) in human healthy peripheral blood mononuclear cells (hPBMCs). Self-assembled maslinic acid (SA-MA) was obtained in ethanol-water mixture (35.5 mM: 4:1 v/v). The morphology of SA-MA was analyzed by various physicochemical characterization techniques, which revealed its micro-metric vesicular architecture as well as nano-vesicular appearances. In this study, treatment of hPBMCs with DOX has been found to generate severe intracellular oxidative stress, which was significantly mitigated after pre-treatment with SA-MA. Alteration of hPBMC morphologies after DOX treatment was also restored notably by pre-treatment with SA-MA. Furthermore, pentoxifylline (TNF-α inhibitor) and indomethacin (COX-2 inhibitor) were used to investigate the responsible pathway by which SA-MA protected hPBMCs from DOX-induced cellular stress. Restoration of hPBMC viability above 92% in both cases confirmed that SA-MA protected the cells by inhibiting inflammatory pathways generated by DOX treatment. Subsequently, in molecular docking study, it was also evaluated that MA could successfully bind with the pocket region of Keap1, while Nrf2 was capable of upregulating cytoprotecting genes.
Collapse
Affiliation(s)
- Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sk Nurul Hasan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India.
| |
Collapse
|
9
|
Sun W, Choi HS, Kim CS, Bae EH, Ma SK, Kim SW. Maslinic Acid Attenuates Ischemia/Reperfusion-Induced Acute Kidney Injury by Suppressing Inflammation and Apoptosis Through Inhibiting NF-κB and MAPK Signaling Pathway. Front Pharmacol 2022; 13:807452. [PMID: 35496304 PMCID: PMC9039024 DOI: 10.3389/fphar.2022.807452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation and apoptosis are the major contributors to the mechanisms of acute kidney injury (AKI) due to renal ischemia-reperfusion injury (IRI). Maslinic acid (MA), a pentacyclic triterpene acid mostly found in dietary plants, the current study was to demonstrate the renoprotective effect of MA on IRI-induced AKI, and to investigate the role of inflammation and apoptosis-related signaling pathways as a molecular mechanism. C57BL/6J mice were subjected to IRI for 72 h, and MA was daily administered by intraperitoneal injection during this period. In parallel, rat renal proximal tubule cells (NRK52E) were prophylactically treated with MA and then exposed to hydrogen peroxide (H2O2). MA treatment significantly inhibited the mRNA expression of interleukin (IL-1β), tumor necrosis factor-α (TGF-α), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1(ICAM-1). Also, MA reduced the expression of Bax/Bcl2 ratio and cleaved caspase-3. In NRK52 cells, MA inhibited the IκBα degradation, blocked NF-κB/p65 phosphorylation, and nuclear translocation. The phosphorylation of ERK, JNK, and p38 was attenuated by MA in IRI-induced kidney injury and H2O2-stimulated NRK52 cells. The expression levels of IL-1β, MCP-1, and ICAM-1 were upregulated in H2O2-stimulated NRK52E cells, which was attenuated by NF-κB inhibitor. H2O2 treatment increased the Bax/Bcl2 ratio and cleaved caspase-3 in NRK52E cells, which was counteracted by MAPK inhibitors. Together, our data demonstrate that MA suppresses IR-induced AKI injury through NF-κB and MAPK signaling pathways and that MA is a promising agent in the treatment of kidney diseases.
Collapse
|
10
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
11
|
Biological properties and potential application of hawthorn and its major functional components: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Miranda RDS, Jesus BDSM, Silva Luiz SR, Viana CB, Adão Malafaia CR, Figueiredo FDS, Carvalho TDSC, Silva ML, Londero VS, Costa‐Silva TA, Lago JHG, Martins RCC. Antiinflammatory activity of natural triterpenes—An overview from 2006 to 2021. Phytother Res 2022; 36:1459-1506. [DOI: 10.1002/ptr.7359] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Rodrigo de Souza Miranda
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Sandra Regina Silva Luiz
- Institute of Microbiology Paulo de Góes Federal University of Rio de Janeiro (IMPG‐UFRJ) Rio de Janeiro Brazil
| | - Cristina Borges Viana
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Camila Rodrigues Adão Malafaia
- Laboratory of Natural Products and Biological Assays, Natural Products and Food Department, Faculty of Pharmacy Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | - Fabiana de Souza Figueiredo
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | | - Matheus Lopes Silva
- Center of Human and Natural Sciences Federal University of ABC (UFABC) Santo André Brazil
| | - Vinicius Silva Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences Federal University of São Paulo (UNIFESP) Diadema Brazil
| | | | | | - Roberto Carlos Campos Martins
- Institute of Natural Products Research Walter Mors Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| |
Collapse
|
13
|
Maslinic Acid Protects against Streptozotocin-Induced Diabetic Retinopathy by Activating Nrf2 and Suppressing NF-κB. J Ophthalmol 2022; 2022:3044202. [PMID: 35265366 PMCID: PMC8901311 DOI: 10.1155/2022/3044202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
This study tested the protective effect of maslinic acid (MA) against diabetic retinopathy (DR) in rats with type 1 diabetes mellitus (T1DM) and investigated possible mechanisms of action. DM was introduced by streptozotocin (STZ) (65 mg/kg, i.p.). Control and STZ (T1DM) were divided into 2 subgroups, which received either the vehicle or MA (80 mg/kg). Serum, pancreases, and retinas were collected for further use. MA significantly reduced fasting glucose levels in the control and T1DM rats but enhanced fasting insulin levels and partially increased the size of the islets of Langerhans and the number of β-cells in T1DM rats. In addition, MA significantly improved the retina structure by preventing the reduction in the area between the inner and outer limiting membranes (ILM and OLM, respectively) and increasing the number of cells forming the ganglion cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL). Associated with these effects, MA significantly reduced the total levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), as well as the nuclear levels of NF-κB p65, mRNA levels of Bax, and protein levels of cleaved caspase-3 in the retinas of T1DM rats. However, MA significantly lowered levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but significantly increased the nuclear levels of Nrf2, protein levels of Bcl2, and total levels of superoxide dismutase (SOD) and reduced glutathione (GSH) in the retinas of the control and T1DM rats. In conclusion, MA prevents DR by antioxidant potential mediated by the activation of Nrf2.
Collapse
|
14
|
Ma JT, Li DW, Liu JK, He J. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:573-609. [PMID: 34595735 PMCID: PMC8599787 DOI: 10.1007/s13659-021-00319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 05/03/2023]
Abstract
Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Da-Wei Li
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
15
|
Qian XP, Zhang XH, Sun LN, Xing WF, Wang Y, Sun SY, Ma MY, Cheng ZP, Wu ZD, Xing C, Chen BN, Wang YQ. Corosolic acid and its structural analogs: A systematic review of their biological activities and underlying mechanism of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153696. [PMID: 34456116 DOI: 10.1016/j.phymed.2021.153696] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The corosolic acid (CA), also known as plant insulin, is a pentacyclic triterpenoid extracted from plants such as Lagerstroemia speciosa. It has been shown to have anti-diabetic, anti-inflammatory and anti-tumor effects. Its structural analogs ursolic acid (UA), oleanolic acid (OA), maslinic acid (MA), asiatic acid (AA) and betulinic acid (BA) display similar individual pharmacological activities to those of CA. However, there is no systematic review documenting pharmacological activities of CA and its structural analogues. This study aims to fill this gap in literature. PURPOSE This systematic review aims to summarize the medical applications of CA and its analogues. METHODS A systematic review summarizes and compares the extraction techniques, pharmacokinetic parameters, and pharmacological effects of CA and its structural analogs. Hypoglycemic effect is one of the key inclusion criteria for searching Web of Science, PubMed, Embase and Cochrane databases up to October 2020 without language restrictions. 'corosolic acid', 'ursolic acid', 'oleanolic acid', 'maslinic acid', 'asiatic acid', 'betulinic acid', 'extraction', 'pharmacokinetic', 'pharmacological' were used to extract relevant literature. The PRISMA guidelines were followed. RESULTS At the end of the searching process, 140 articles were selected for the systematic review. Information of CA and five of its structural analogs including UA, OA, MA, AA and BA were included in this review. CA and its structural analogs are pentacyclic triterpenes extracted from plants and they have low solubilities in water due to their rigid scaffold and hydrophobic properties. The introduction of water-soluble groups such as sugar or amino groups could increase the solubility of CA and its structural analogs. Their biological activities and underlying mechanism of action are reviewed and compared. CONCLUSION CA and its structural analogs UA, OA, MA, AA and BA are demonstrated to show activities in lowering blood sugar, anti-inflammation and anti-tumor. Their oral absorption and bioavailability can be improved through structural modification and formulation design. CA and its structural analogs are promising natural product-based lead compounds for further development and mechanistic studies.
Collapse
Affiliation(s)
- Xu-Ping Qian
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Xue-Hui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Wei-Fan Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Yu Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Shi-Yu Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Meng-Yuan Ma
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Xuzhou Medical University, Xuzhou, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China
| | - Zu-Dong Wu
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Chen Xing
- Nanjing Chenxiang Pharmaceutical Research Co. Ltd
| | - Bei-Ning Chen
- Department of Chemistry, University of Sheffield, Brookhill, Sheffield S3 7HF, United Kingdom.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
16
|
Olanlokun JO, Olowofolahan AO, Bodede O, Adegbuyi AT, Prinsloo G, Steenkamp P, Olorunsogo OO. Anti-Inflammatory Potentials of the n-Hexane Fraction of Alstonia boonei Stem Bark in Lipopolysaccharide-Induced Inflammation in Wistar Rats. J Inflamm Res 2021; 14:3905-3920. [PMID: 34429627 PMCID: PMC8376584 DOI: 10.2147/jir.s304076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Inflammation is a protective response of the host to infections and tissue damage and medicinal plants have been used to regulate inflammatory response. The phytochemical contents of the n-hexane fraction of Alstonia boonei and their anti-inflammatory potentials in lipopolysaccharide-induced inflammation were investigated in rat liver. Materials and Methods A quantity of 5 mg/kg lipopolysaccharide (LPS) was used to induce inflammation in twenty-five male Wistar rats, grouped (n = 5) and treated as follows: negative control (10 mL/kg saline), positive control (1 mg/kg ibuprofen); 50, 100 and 20 mg/kg of the n-hexane fraction of Alstonia boonei were administered to test groups. In another experiment, twenty rats (n = 5, without LPS) were administered the same doses of the n-hexane fraction of A. boonei and ibuprofen for seven days. At the end of the experiment, animals were sacrificed, serum was obtained from blood and liver mitochondria isolated in a refrigerated centrifuge. Mitochondrial permeability transition (mPT) pore opening and mitochondrial F0F1 ATPase (mATPase) were determined spectrophotometrically. Serum interleukins 1β, 6 (IL-1β, IL-6), tumour necrosis factor alpha (TNF-α), C-reactive protein (CRP) and creatine kinase (CK), gamma glutamyl transferase (GGT), aspartate and alanine aminotransferases (AST and ALT,) of the animals in which inflammation was induced using LPS but treated with graded doses of n-hexane fraction of A. boonei were determined using the ELISA technique. The phytochemical contents of the n-hexane fraction of A. boonei were determined using ultra performance liquid chromatography-tandem mass spectrometer (UHPLC-MS). Results Calcium induced mPT in 8 fold and LPS induced mPT 14 fold in the negative control while the n-hexane fraction reversed mPT in the treated groups (50, 100 and 200 mg/kg) to 2, 4, 4 folds, respectively. LPS treatment of the negative group enhanced F0F1 mATPase activity, increased CRP, TNF-α, IL-1β, IL-6 levels as well as CK, AST, ALT and GGT activities. These values were significantly reduced by 100 and 200 mg/kg of the n-hexane fraction. UHPLC-MS analysis of the fraction revealed the presence of terpenoids, phenolics and sphingolipids. Conclusion These results showed that bioactive phytochemicals present in the n-hexane fraction of A. boonei were not toxic, have an anti-inflammatory effect and could be used for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeola Oluwakemi Olowofolahan
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olusola Bodede
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | | | - Gerhard Prinsloo
- Department of Agriculture and Animal Health, University of South Africa, Florida Campus, Florida, 1710, South Africa
| | - Paul Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Olufunso Olabode Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Huang Y, Xu J, Wang Y, Lei Y, Mai Y, He X. Q43, a new triterpenoid extracted from Chinese acorn, exhibits pronounced anti-neuroinflammatory activity through the MAPK and NF-κB pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Lin H, Wu X, Yang Y, Wang Z, Huang W, Wang LF, Liu QW, Guan XH, Deng KY, Li TS, Qian Y, Xin HB. Nicaraven inhibits TNFα-induced endothelial activation and inflammation through suppression of NF-κB signaling pathway. Can J Physiol Pharmacol 2021; 99:803-811. [PMID: 33356884 DOI: 10.1139/cjpp-2020-0558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inflammation-induced activation and dysfunction of endothelial cells play an important role in the pathology of multiple vascular diseases. Nicaraven, a potent hydroxyl radical scavenger, has recently been found to have anti-inflammatory roles; however, the mechanism of its action is not fully understood. Here we investigated the effects of Nicaraven on tumor necrosis factor α (TNFα) - induced inflammatory response in human umbilical vein endothelial cells and we explore the underlying mechanisms related to the nuclear factor-κB (NF-κB) signaling pathway. Our results showed that Nicaraven significantly reduced the reactive oxygen species production after TNFα stimulation. Nicaraven suppressed TNFα-induced mRNA expression of multiple adhesion molecules and pro-inflammatory cytokines, including vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, MCP-1, TNFα, interleukin-1β (IL-1β), IL-6, and IL-8. In addition, Nicaraven inhibited monocyte adhesion and reduced the protein levels of VCAM-1 and ICAM-1. Mechanistically, Nicaraven prevented TNFα-induced activation of NF-κB signaling pathway by suppressing the phosphorylation of NF-κB p65, IκBα, and IκB kinase (IKK)α/β, stabilizing IκBα, and inhibiting the translocation of p65 from cytosol to nucleus. Finally, we showed that Nicaraven improved the functions of endothelial cells, seen as the upregulation of endothelial nitric oxide synthase and increased nitric oxide levels. Our findings indicated that Nicaraven effectively inhibits TNFα-induced endothelial activation and inflammatory response at least partly through inhibiting NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuehan Wu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ziwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Weilu Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Quan-Wen Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
19
|
Jannus F, Medina-O’Donnell M, Neubrand VE, Marín M, Saez-Lara MJ, Sepulveda MR, Rufino-Palomares EE, Martinez A, Lupiañez JA, Parra A, Rivas F, Reyes-Zurita FJ. Efficient In Vitro and In Vivo Anti-Inflammatory Activity of a Diamine-PEGylated Oleanolic Acid Derivative. Int J Mol Sci 2021; 22:ijms22158158. [PMID: 34360922 PMCID: PMC8347335 DOI: 10.3390/ijms22158158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has shown that inflammation can contribute to all tumorigenic states. We have investigated the anti-inflammatory effects of a diamine-PEGylated derivative of oleanolic acid (OADP), in vitro and in vivo with inflammation models. In addition, we have determined the sub-cytotoxic concentrations for anti-inflammatory assays of OADP in RAW 264.7 cells. The inflammatory process began with incubation with lipopolysaccharide (LPS). Nitric oxide production levels were also determined, exceeding 75% inhibition of NO for a concentration of 1 µg/mL of OADP. Cell-cycle analysis showed a reversal of the arrest in the G0/G1 phase in LPS-stimulated RAW 264.7 cells. Furthermore, through Western blot analysis, we have determined the probable molecular mechanism activated by OADP; the inhibition of the expression of cytokines such as TNF-α, IL-1β, iNOS, and COX-2; and the blocking of p-IκBα production in LPS-stimulated RAW 264.7 cells. Finally, we have analyzed the anti-inflammatory action of OADP in a mouse acute ear edema, in male BL/6J mice treated with OADP and tetradecanoyl phorbol acetate (TPA). Treatment with OADP induced greater suppression of edema and decreased the ear thickness 14% more than diclofenac. The development of new derivatives such as OADP with powerful anti-inflammatory effects could represent an effective therapeutic strategy against inflammation and tumorigenic processes.
Collapse
Affiliation(s)
- Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Marta Medina-O’Donnell
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| | - Veronika E. Neubrand
- Department of Cell Biology, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (V.E.N.); (M.R.S.)
| | - Milagros Marín
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Maria J. Saez-Lara
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - M. Rosario Sepulveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (V.E.N.); (M.R.S.)
| | - Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Antonio Martinez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
| | - Jose A. Lupiañez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
| | - Andres Parra
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
| | - Francisco Rivas
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (A.M.); (A.P.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada, Spain; (F.J.); (M.M.); (M.J.S.-L.); (E.E.R.-P.); (J.A.L.)
- Correspondence: (M.M.-O.); (F.R.); (F.J.R.-Z.); Tel.: +34-958-243-252 (F.J.R.-Z.)
| |
Collapse
|
20
|
Shaik AH, Shaik SR, Shaik AS, Daoud A, Salim M, Kodidhela LD. Analysis of maslinic acid and gallic acid compounds as xanthine oxidase inhibitors in isoprenaline administered myocardial necrotic rats. Saudi J Biol Sci 2021; 28:2575-2580. [PMID: 33911968 PMCID: PMC8071899 DOI: 10.1016/j.sjbs.2021.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE This research designed to analyze the in vivo and in silico ameliorative action of maslinic acid (MA) and gallic acid (GA) on reactive oxygen species generating enzyme xanthine oxidase (XO) in isoprenaline or isoproterenol (ISO) induced myocardial infarcted rats. METHODS Albino Wistar rats were categorized into four groups with eight rats in each group. A dose of 15 mg/kg of MA and GA were pretreated to each MA and GA groups for seven days. A dose of 85 mg/kg of ISO administered to the ISO group along with MA and GA groups except normal group on two consecutive days of pretreatment. All animals sacrificed and the heart tissues were collected for the analysis of XO. The in silico molecular docking analysis of the compounds MA and GA with XO was analyzed by using Gold 3.0.1 software. RESULTS XO enzyme levels were significantly increased in the heart homogenate of ISO administered rats when compared to normal rats. Pretreatment of MA and GA to ISO treated rats significantly brought XO enzyme to the near normal levels which indicate the protective action of MA and GA against myocardial necrosis. The in vivo results were further supported by the in silico molecular docking study which revealed the inhibition of XO enzyme by the formation of enzyme and ligand complex with the compounds MA and GA. CONCLUSION MA and GA compounds manifested the ameliorative effect against ISO administrated myocardial necrosis by inhibiting the free radical generating enzyme XO which is evidenced by both in vivo and in silico studies.
Collapse
Affiliation(s)
- Althaf Hussain Shaik
- Central Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shajidha Ruksar Shaik
- Sri Adi Siva Sadguru Alli Saheb Sivaaryula Homeopathy Medical College, Guntakal, A.P., India
| | - Abdul Saheer Shaik
- Sri Ramakrishna Degree and P.G. College, Nandyal, Affiliated to Rayalaseema University, A.P., India
| | - Ali Daoud
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manoharadas Salim
- Central Laboratory, Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
21
|
Chen YL, Yan DY, Wu CY, Xuan JW, Jin CQ, Hu XL, Bao GD, Bian YJ, Hu ZC, Shen ZH, Ni WF. Maslinic acid prevents IL-1β-induced inflammatory response in osteoarthritis via PI3K/AKT/NF-κB pathways. J Cell Physiol 2021; 236:1939-1949. [PMID: 32730652 DOI: 10.1002/jcp.29977] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by destruction of articular cartilage. The inflammatory response is the most important factor affecting the disease process. As interleukin-1β (IL-1β) stimulates several key mediators in the inflammatory response, it plays a major role in the pathogenesis of OA. Maslinic acid (MA) is a natural compound distributed in olive fruit. Previous studies have found that maslinic acid has an inhibitory effect on inflammation, but its specific role in the progression of OA disease has not been studied so far. In this study, we aim to assess the protective effect of MA on OA progression by in vitro and in vivo experiments. Our results indicate that, in IL-1β-induced inflammatory response, MA is effective in attenuating some major inflammatory mediators such as nitric oxide (NO) and prostaglandin E2, and inhibits the expression of IL-6, inducible nitric oxide synthase, cyclooxygenase-2, and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner. Also, MA downregulated the expression levels of thrombospondin motif 5 (ADAMTS5) and matrix metalloproteinase 13 in chondrocytes, resulting in reduced degradation of its extracellular matrix. Mechanistically, MA exhibits an anti-inflammatory effect by inactivating the PI3K/AKT/NF-κB pathway. In vivo, the protective effect of MA on OA development can be detected in a surgically induced mouse OA model. In summary, these findings suggest that MA can be used as a safe and effective potential OA therapeutic strategy.
Collapse
Affiliation(s)
- Yan-Lin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - De-Yi Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Chen-Yu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jiang-Wei Xuan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Chen-Qiang Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xin-Li Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Guo-Dong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yu-Jie Bian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhi-Chao Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zhong-Hai Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wen-Fei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Lau WM, Subramaniam M, Goh HH, Lim YM. Temporal gene expression profiling of maslinic acid-treated Raji cells. Mol Omics 2021; 17:252-259. [PMID: 33346776 DOI: 10.1039/d0mo00168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maslinic acid is a novel phytochemical reported to target multiple signaling pathways. A complete gene expression profile was therefore constructed to illustrate the anti-tumourigenesis effects of maslinic acid in Raji cells across five time-points. Microarray analysis was used to identify genes that were differentially expressed in maslinic acid treated Raji cells at 0, 4, 8, 12, 24 and 48 h. Extracted RNA was hybridized using the AffymetrixGeneChip to obtain expression profiles. A total of 109 genes were found to be significantly expressed over a period of 48 hours. By 12 hours, maslinic acid regulates the majority of genes involved in the cell cycle, p53 and NF-κB signaling pathways. At the same time, XAF1, APAF1, SESN3, and TP53BP2 were evidently up-regulated, while oncogenes, FAIM, CD27, and RRM2B, were down-regulated by at least 2-fold. In conclusion, maslinic acid shows an hourly progression of gene expression in Raji cells.
Collapse
Affiliation(s)
- Wai Meng Lau
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Menaga Subramaniam
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Hoe Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia. and Department of Pre-Clinical Science, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
23
|
Zhou J, Zhang F, Lin H, Quan M, Yang Y, Lv Y, He Z, Qian Y. The Protein Kinase R Inhibitor C16 Alleviates Sepsis-Induced Acute Kidney Injury Through Modulation of the NF-κB and NLR Family Pyrin Domain-Containing 3 (NLPR3) Pyroptosis Signal Pathways. Med Sci Monit 2020; 26:e926254. [PMID: 33017381 PMCID: PMC7545781 DOI: 10.12659/msm.926254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Protein kinase R (PKR) is implicated in the inflammatory response to bacterial infection while the role of PKR in sepsis-induced acute kidney injury (AKI) is largely unknown. This study aimed to investigate the effects of the specific PKR inhibitor C16 (C13H8N4OS) on lipopolysaccharide (LPS)-induced AKI, and its mechanisms of action. Material/Methods C57BL/6J mice were injected intraperitoneally with C16 or vehicle 1 h before the LPS challenge and then injected intraperitoneally with LPS or 0.9% saline. After the LPS challenge, histopathological damage, renal function, and levels of proinflammatory cytokines were assessed. All the related signaling pathways were analyzed. Results C16 effectively inhibited LPS-induced renal elevation of proinflammatory cytokines and chemokines. C16 prevented NF-κB activation and suppressed the PKR/eIF2α signaling pathway in AKI after the LPS challenge. Furthermore, C16 significantly inhibited pyroptosis during AKI, as evidenced by decreased renal levels of apoptosis-associated speck-like protein; NACHT, LRR, NLR Family Pyrin Domain-Containing 3; caspase-1; interleukin (IL)-1β; and IL-18. Conclusions Our findings suggest that inhibition by C16 ameliorated LPS-induced renal inflammation and injury, at least partly through modulation of the pyroptosis signal pathway in the kidney.
Collapse
Affiliation(s)
- Jialu Zhou
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Fan Zhang
- Department of Respiratory Medicine, The Children's Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hongru Lin
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Minxue Quan
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yaqin Yang
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Zongnan He
- Department of Pediatrics, Pingxiang Maternity and Child Care Hospital, Pingxiang, Jiangxi, China (mainland)
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
24
|
Kim KM, Kim J, Baek MC, Bae JS. Novel factor Xa inhibitor, maslinic acid, with antiplatelet aggregation activity. J Cell Physiol 2020; 235:9445-9456. [PMID: 32356316 DOI: 10.1002/jcp.29749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/01/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
As antithrombotic effects of maslinic acid (MA) have not yet been studied, MA-mediated downregulation of coagulation factor Xa (FXa) and platelet aggregation was studied. We show that MA inhibited the enzymatic activity of FXa and platelet aggregation, induced by adenosine diphosphate (ADP) and a thromboxane A2 (TXA2 ) analog, U46619 with a similar antithrombotic efficacy to rivaroxaban, a direct FXa inhibitor used as a positive control. Mechanistically, MA suppressed U46619- or ADP-induced phosphorylation of myristoylated alanine-rich C kinase substrate, and the expression of P-selectin, and activated PAC-1 in platelets. MA increased generation of nitric oxide, but downregulated excessive secretion of endothelin-1 in ADP- or U46619-treated human umbilical vein endothelial cells. In arterial and pulmonary thrombosis mouse model, MA showed prominent anticoagulant and antithrombotic effects. Our data suggest MA as a candidate molecule for a new class of drugs targeting anti-FXa and antiplatelet.
Collapse
Affiliation(s)
- Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jong-Sup Bae
- Department of Pharmacy, College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
25
|
Maslinic acid suppresses macrophage foam cells formation: Regulation of monocyte recruitment and macrophage lipids homeostasis. Vascul Pharmacol 2020; 128-129:106675. [DOI: 10.1016/j.vph.2020.106675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
|
26
|
Lobine D, Ahmed S, Aschner M, Khan H, Mirzaei H, Mahomoodally MF. Antiurolithiatic effects of pentacyclic triterpenes: The distance traveled from therapeutic aspects. Drug Dev Res 2020; 81:671-684. [PMID: 32314397 DOI: 10.1002/ddr.21670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Globally, approximately 12% of the population is inflicted by various types of urolithiasis. Standard treatments are available both to avert and treat urolithiasis, but with significant adverse side effects. Pentacyclic triterpenes represent a group of naturally occurring compounds which holds immense potential as therapeutic for treating kidney stone. This review aims to provide an integrative description on how pentacyclic triterpenes can effectively treat calcium oxalate urolithiasis through various mechanisms such as antioxidant, anti-inflammatory, diuretic, and angiotensin-converting enzyme inhibition. Some of the pentacylic triterpenes which shows promising activities include lupeol, oleanolic acid, betulin, and taraxasterol. Moreover, future perspectives in the development of pentacyclic triterpenes in formulations/drugs for urinary stone prevention are highlighted. It is anticipated that compiled information would serve as a scientific baseline to advocate further investigations on the potential of pentacyclic triterpenes in urolithiasis remediation.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
27
|
Jeong SY, Kim J, Park EK, Baek MC, Bae JS. Inhibitory functions of maslinic acid on particulate matter-induced lung injury through TLR4-mTOR-autophagy pathways. ENVIRONMENTAL RESEARCH 2020; 183:109230. [PMID: 32058145 DOI: 10.1016/j.envres.2020.109230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM), the collection of all liquid and solid particles suspended in air, includes both organic and inorganic particles, many of which are health-hazards. PM particles with a diameter equal to or less than 2.5 μm (PM2.5) is a form of air pollutant that causes significant lung damage when inhaled. Maslinic acid (MA) prevents oxidative stress and pro-inflammatory cytokine generation, but there is little information available regarding its role in PM-induced lung injury. Therefore, the purpose of this study was to determine the protective activity of MA against PM2.5-induced lung injury. The mice were divided into seven groups (n = 10 each): a mock control group, an MA control (0.8 mg/kg mouse body weight) group, an opted PM2.5 produced from diesel (10 mg/kg mouse body weight) group, a diesel PM2.5+MA (0.2, 0.4, 0.6, and 0.8 mg/kg mouse body weight) groups. Mice were treated with MA via tail-vein injection 30 min after the intratracheal instillation of a diesel PM2.5. Changes in the wet/dry weight ratio of the lung tissue, total protein/total cell and lymphocyte counts, inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), vascular permeability, and histology were monitored in diesel PM2.5-treated mice. The results showed that MA reduced pathological lung injury, the wet/dry weight ratio of the lung tissue, and hyperpermeability caused by diesel PM2.5. MA also inhibited diesel PM2.5-induced myeloperoxidase (MPO) activity in the lung tissue, decreased the levels of diesel PM2.5-induced inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, reduced nitric oxide (NO) and total protein in the BALF, and effectively attenuated diesel PM2.5-induced increases in the number of lymphocytes in the BALF. In addition, MA increased the protein phosphorylation of the mammalian target of rapamycin (mTOR) and dramatically suppressed diesel PM2.5-stimulated expression of toll-like receptor 4 (TLR4), MyD88, and the autophagy-related proteins LC3 II and Beclin 1. In conclusion, these findings indicate that MA has a critical anti-inflammatory effect due to its ability to regulate both the TLR4-MyD88 and mTOR-autophagy pathways and may thus be a potential therapeutic agent against diesel PM2.5-induced lung injury.
Collapse
Affiliation(s)
- So Yeon Jeong
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
28
|
Wee HN, Neo SY, Singh D, Yew HC, Qiu ZY, Tsai XRC, How SY, Yip KYC, Tan CH, Koh HL. Effects of Vitex trifolia L. leaf extracts and phytoconstituents on cytokine production in human U937 macrophages. BMC Complement Med Ther 2020; 20:91. [PMID: 32188443 PMCID: PMC7081688 DOI: 10.1186/s12906-020-02884-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Dysregulation of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) form the basis of immune-mediated inflammatory diseases. Vitex trifolia L. is a medicinal plant growing in countries such as China, India, Australia and Singapore. Its dried ripe fruits are documented in Traditional Chinese Medicine to treat ailments like rhinitis and dizziness. Its leaves are used traditionally to treat inflammation-related conditions like rheumatic pain. Objective This study aimed to investigate the effects of V. trifolia leaf extracts prepared by different extraction methods (Soxhlet, ultrasonication, and maceration) in various solvents on cytokine production in human U937 macrophages, and identify phytoconstituents from the most active leaf extract. Methods Fresh leaves of V. trifolia were extracted using Soxhlet, ultrasonication, and maceration in hexane, dichloromethane, methanol, ethanol or water. Each extract was evaluated for its effects on TNF-α and IL-1β cytokine production by enzyme-linked immunosorbent assay in lipopolysaccharide-stimulated human U937 macrophages. The most active extract was analyzed and further purified by different chemical and spectroscopic techniques. Results Amongst 14 different leaf extracts investigated, extracts prepared by ultrasonication in dichloromethane and maceration in ethanol were most active in inhibiting TNF-α and IL-1β production in human U937 macrophages. Further purification led to the isolation of artemetin, casticin, vitexilactone and maslinic acid, and their effects on TNF-α and IL-1β production were evaluated. We report for the first time that artemetin suppressed TNF-α and IL-1β production. Gas chromatography-mass spectrometry analyses revealed the presence of eight other compounds. To the best of our knowledge, this is the first report of butylated hydroxytoluene, 2,4-di-tert-butylphenol, campesterol and maslinic acid in V. trifolia leaf extracts. Conclusions In conclusion, leaf extracts of V. trifolia obtained using different solvents and extraction methods were successfully investigated for their effects on cytokine production in human U937 macrophages. The findings provide scientific evidence for the traditional use of V. trifolia leaves (a sustainable resource) and highlight the importance of conservation of medicinal plants as resources for drug discovery. Our results together with others suggest further investigation on V. trifolia and constituents to develop novel treatment strategies in immune-mediated inflammatory conditions is warranted.
Collapse
Affiliation(s)
- Hai-Ning Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Soek-Ying Neo
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| | - Deepika Singh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Hui-Chuing Yew
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Zhi-Yu Qiu
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Xin-Rong Cheryl Tsai
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Sin-Yi How
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Keng-Yan Caleb Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Chay-Hoon Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, 16 Medical Drive, Block MD3, #04-01S, Singapore, 117600, Singapore
| | - Hwee-Ling Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
29
|
Pleiotropic Biological Effects of Dietary Phenolic Compounds and their Metabolites on Energy Metabolism, Inflammation and Aging. Molecules 2020; 25:molecules25030596. [PMID: 32013273 PMCID: PMC7037231 DOI: 10.3390/molecules25030596] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dietary phenolic compounds are considered as bioactive compounds that have effects in different chronic disorders related to oxidative stress, inflammation process, or aging. These compounds, coming from a wide range of natural sources, have shown a pleiotropic behavior on key proteins that act as regulators. In this sense, this review aims to compile information on the effect exerted by the phenolic compounds and their metabolites on the main metabolic pathways involved in energy metabolism, inflammatory response, aging and their relationship with the biological properties reported in high prevalence chronic diseases. Numerous in vitro and in vivo studies have demonstrated their pleiotropic molecular mechanisms of action and these findings raise the possibility that phenolic compounds have a wide variety of roles in different targets.
Collapse
|
30
|
Maslinic Acid Ameliorates Inflammation via the Downregulation of NF-κB and STAT-1. Antioxidants (Basel) 2020; 9:antiox9020106. [PMID: 31991739 PMCID: PMC7070941 DOI: 10.3390/antiox9020106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/03/2023] Open
Abstract
Maslinic acid (MA), a natural compound of the triterpenoid group derived from olive, prevents the generation of pro-inflammatory cytokines and oxidative stress. In human umbilical vein endothelial cells (HUVECs) treated with lipopolysaccharide (LPS), we characterized the effects of MA on the regulation of heme oxygenase (HO)-1, cyclooxygenase (COX-)2, and inducible nitric oxide synthase (iNOS). MA was tested in the lung tissues of LPS-treated mice, to determine its effect on levels of iNOS expression and representative inflammatory mediators such as interleukin (IL)-1α and tumor necrosis factor (TNF)-α. We show that MA induced the expression of HO-1, reduced LPS-induced NF-κB-luciferase activity, and inhibited iNOS/NO and COX-2/PGE2, resulting in the downregulation of STAT-1 phosphorylation. Furthermore, our data show that MA induced the nuclear translocation of Nrf2, increased the binding of Nrf2 to ARE, and decreased IL-1α production in LPS-treated HUVECs. The MA-induced reduction in iNOS/NO expression was reversed by RNAi suppression of HO-1. In mice treated with LPS, MA significantly downregulated levels of iNOS in lung tissue and TNF-α in the bronchoalveolar lavage fluid. Taken together, our findings indicate that MA exerts a critical anti-inflammatory effect by modulating iNOS via the downregulation of NF-κB and p-STAT-1. Thus, we propose that MA may be an ideal substance to treat inflammatory diseases.
Collapse
|
31
|
Multiple Targets Directed Multiple Ligands: An In Silico and In Vitro Approach to Evaluating the Effect of Triphala on Angiogenesis. Biomolecules 2020; 10:biom10020177. [PMID: 31979409 PMCID: PMC7072423 DOI: 10.3390/biom10020177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is critical in both physiological and pathological conditions and targeting angiogenesis is a promising strategy for the development of therapies against cancer; however, cells develop resistance to anti-angiogenic therapy, necessitating a more effective strategy. Natural medicines have been used in anti-cancer therapy for many years, but the mechanisms behind these have not generally been explored. Triphala churna (THL), an Indian ayurvedic herbal formulation made from the dried fruits of three medicinal plants, is used as a herbal drug for the treatment of various diseases, including cancer. THL contains over fifteen phytochemicals with different pharmacological effects, especially inhibition of tumor progression. In this study, we examined the effect of these compounds against different targets using docking and in vitro studies. Results showed that THL has a prediction efficacy of (−)436.7, and it inhibited angiogenesis by blocking multiple components of the VEGF/VEGFR2 signaling pathway. The anti-angiogenic effect was mediated by the combined effect of the two top ranked phytochemicals, punicalagin (−424.8) and chebulagic acid (−414.8). The new approach developed in this study to determine the potential efficacy of herbal formulation could be a useful strategy to assess the efficacy of different herbal formulations.
Collapse
|
32
|
Abstract
Olive-pomace oil is rich in oleic acid, and thus it can be an interesting dietary fat alternative as it can allow reaching the recommendation of consuming 20% of total diet energy in the form of monounsaturated fatty acids. In addition, olive-pomace oil also contains a wide range of minor components that may contribute to its healthy properties. The major components identified with healthy properties are triterpenic dialcohols and acids, squalene, tocopherols, sterols, fatty alcohols and phenolic compounds. The refining process, that the crude pomace-oil must undergo for commercial purposes, significantly reduces the content of phenolic compounds, while the other minor components remain at concentrations which can induce positive health effects, especially on cardiovascular health, outstanding pentacyclic triterpenes and aliphatic fatty alcohols in olive-pomace oil. Numerous in vitro and preclinical studies support that mainly the pure compounds, or extracts isolated from plant sources, play an important role in preventing cardiovascular disease and risk factors. Likewise, tocopherols, squalene and phytosterols, in addition to the minor fraction of phenolic compounds, have shown high biological activity with particular association to the cardiovascular function. In the light of the foregoing, and taking into consideration the absence of clinical studies with olive-pomace oil, it would be of great interest to develop randomized, crossover, controlled, double-blind studies to extend the knowledge and understanding on the health effects of olive-pomace olive.
Collapse
Affiliation(s)
- Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Beatriz Sarria
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| |
Collapse
|
33
|
Eldeen IM, Ringe J, Ismail N. Inhibition of Pro-inflammatory Enzymes and Growth of an Induced Rheumatoid Arthritis Synovial Fibroblast by Bruguiera cylindrica. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.916.925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Kahnt M, Loesche A, Serbian I, Hoenke S, Fischer L, Al-Harrasi A, Csuk R. The cytotoxicity of oleanane derived aminocarboxamides depends on their aminoalkyl substituents. Steroids 2019; 149:108422. [PMID: 31175922 DOI: 10.1016/j.steroids.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Several oligo-methylene diamine derived carboxamides of oleanolic and maslinic acid have been prepared, and substitutions of the terminal primary amine as well as variations of the length of alkyl chain of the diamine moiety were made. Biological evaluation of their cytotoxic activity was performed using photometric sulforhodamin B assays employing a panel of different human cancer cell lines. These experiments showed most of the carboxamides to be cytotoxic with EC50 values below 10 µM. Prolongation of the alkyl chain length initially reduced EC50 values to a minimum, but a decrease in cytotoxicity was observed for longer alkyl chains. Variation of substituents at the terminal nitrogen atom, however, did not influence EC50 values at all. Noteworthy results were obtained particularly for compounds 4, 6 and 23 as indicated by EC50 values lower than 2 µM, and in case of a maslinic derivative 23 even an increased tumor/non-tumor cell selectivity was observed. These compounds were further investigated using fluorescence microscopy and flow cytometry analysis, which revealed 6 to show indications of apoptosis.
Collapse
Affiliation(s)
- Michael Kahnt
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Lucie Fischer
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Natural and Medical Sciences Research Center, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
35
|
Pavel IZ, Csuk R, Danciu C, Avram S, Baderca F, Cioca A, Moacă EA, Mihali CV, Pinzaru I, Muntean DM, Dehelean CA. Assessment of the Antiangiogenic and Anti-Inflammatory Properties of a Maslinic Acid Derivative and its Potentiation using Zinc Chloride. Int J Mol Sci 2019; 20:ijms20112828. [PMID: 31185643 PMCID: PMC6600266 DOI: 10.3390/ijms20112828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/30/2019] [Accepted: 06/07/2019] [Indexed: 01/19/2023] Open
Abstract
Maslinic acid is a pentacyclic triterpene with a plethora of biological activities, including anti-inflammatory, antioxidant, antimicrobial, cardioprotective, and antitumor effects. New derivatives with improved properties and broad-spectrum activity can be obtained following structural changes of the compound. The present study was aimed to characterize a benzylamide derivative of maslinic acid—benzyl (2α, 3β) 2,3-diacetoxy-olean−12-en-28-amide (EM2)—with respect to the anti-angiogenic and anti-inflammatory effects in two in vivo experimental models. Consequently, the compound showed good tolerability and lack of irritation in the chorioallantoic membrane assay with no impairment of the normal angiogenic process during the tested stages of development. In the acute ear inflammation murine model, application of EM2 induced a mild anti-inflammatory effect that was potentiated by the association with zinc chloride (ZnCl2). A decrease in dermal thickness of mice ears was observed when EM2 and ZnCl2 were applied separately or in combination. Moreover, hyalinization of the dermis appeared only when EM2 was associated with ZnCl2, strongly suggesting the role of their combination in wound healing.
Collapse
Affiliation(s)
- Ioana Zinuca Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Rene Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Flavia Baderca
- Department of Microscopic Morphology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Andreea Cioca
- Department of Pathology, CFR Clinical Hospital, 13-15, Tudor Vladimirescu, Timişoara 300173, Romania.
| | - Elena-Alina Moacă
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Ciprian-Valentin Mihali
- "George Emil Palade" Electron Microscopy Center, Institute of Life Sciences, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, 86, Liviu Rebreanu St., Arad 310414, Romania.
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| | - Danina Mirela Muntean
- Department of Functional Sciences - Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
- Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq.,Timişoara 300041, Romania.
| | - Cristina Adriana Dehelean
- Department of Toxicology, Faculty of Pharmacy, "Victor Babeş" University of Medicine and Pharmacy, 2, Eftimie Murgu Sq., Timişoara 300041, Romania.
| |
Collapse
|
36
|
de-Almeida SCX, da-Silva ÂCF, Sousa NRT, Amorim IHF, Leite BG, Neves KRT, Costa JGM, Felipe CFB, de-Barros Viana GS. Antinociceptive and anti-inflammatory activities of a triterpene-rich fraction from Himatanthus drasticus. Braz J Med Biol Res 2019; 52:e7798. [PMID: 31116311 PMCID: PMC6526755 DOI: 10.1590/1414-431x20197798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/07/2019] [Indexed: 01/11/2023] Open
Abstract
Himatanthus drasticus (Mart.) Plumel belongs to the Apocynaceae family and the latex from its trunk bark (Hd) is known as “janaguba milk”. This latex is widely used in Northeast Brazil, mainly in the Cariri region, for its gastroprotective, anti-inflammatory, and antitumor properties. The objective of this study was to investigate a triterpene-rich fraction (FJNB) from H. drasticus latex on acute models of nociception and inflammation and to clarify its mechanisms of action. Wistar rats or Swiss mice were subjected to the carrageenan-induced paw edema test or the formalin test, respectively, after the acute oral treatment with FJNB. The inflamed paws from the carrageenan-induced paw edema and formalin tests were processed for histological and immunohistochemical assays, respectively. The results were analyzed by ANOVA and considered significant at P<0.05. FJNB (10 mg/kg) decreased the paw edema by 25% at the 3rd h after the carrageenan injection. Indomethacin, used as reference, inhibited the paw edema by 59% at the same time-point. In the formalin test, FJNB inhibited the 1st phase by 27, 49, and 52% and the 2nd phase by 37, 50, and 67%, at the doses of 1, 5, and 10 mg/kg, respectively. In addition, FJNB significantly inhibited the expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and the inflammatory cytokine tumor necrosis factor (TNF)-alpha. The histone deacetylase (HDAC) expression and the transcription factor nuclear factor kappa (NF-kB) were also inhibited at the same doses. In conclusion, the FJNB inhibitory actions on iNOS, COX-2, TNF-α, HDAC, and NF-kB could be involved with the drug anti-inflammatory activity.
Collapse
Affiliation(s)
- S C X de-Almeida
- Departamento de Química Biológica, Universidade Regional do Cariri (URCA), Crato, CE, Brasil
| | - Â C F da-Silva
- Laboratório de Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - N R T Sousa
- Laboratório de Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - I H F Amorim
- Laboratório de Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - B G Leite
- Laboratório de Farmacologia, Faculdade de Medicina Estácio de Juazeiro do Norte, Juazeiro do Norte, CE, Brasil
| | - K R T Neves
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina da Universidade Federal do Ceará (UFC), Fortaleza, CE, Brasil
| | - J G M Costa
- Departamento de Química Biológica, Universidade Regional do Cariri (URCA), Crato, CE, Brasil
| | - C F B Felipe
- Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | - G S de-Barros Viana
- Departamento de Química Biológica, Universidade Regional do Cariri (URCA), Crato, CE, Brasil.,Departamento de Fisiologia e Farmacologia, Faculdade de Medicina da Universidade Federal do Ceará (UFC), Fortaleza, CE, Brasil
| |
Collapse
|
37
|
Duyen Vu TP, Quan Khong T, Nguyet Nguyen TM, Kim YH, Kang JS. Phytochemical profile of Syzygium formosum (Wall.) Masam leaves using HPLC–PDA–MS/MS and a simple HPLC–ELSD method for quality control. J Pharm Biomed Anal 2019; 168:1-12. [DOI: 10.1016/j.jpba.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/23/2019] [Accepted: 02/09/2019] [Indexed: 12/18/2022]
|
38
|
Ampofo E, Berg JJ, Menger MD, Laschke MW. Maslinic acid alleviates ischemia/reperfusion-induced inflammation by downregulation of NFκB-mediated adhesion molecule expression. Sci Rep 2019; 9:6119. [PMID: 30992483 PMCID: PMC6467883 DOI: 10.1038/s41598-019-42465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 02/05/2019] [Indexed: 12/24/2022] Open
Abstract
Ischemia/reperfusion (I/R)-induced inflammation is associated with enhanced leukocyte rolling, adhesion and transmigration within the microcirculation. These steps are mediated by hypoxia-triggered signaling pathways, which upregulate adhesion molecule expression on endothelial cells and pericytes. We analyzed whether these cellular events are affected by maslinic acid (MA). Mitochondrial activity and viability of MA-exposed endothelial cells and pericytes were assessed by water-soluble tetrazolium (WST)-1 and lactate dehydrogenase (LDH) assays as well as Annexin V/propidium iodide (PI) stainings. Effects of MA on hypoxia and reoxygenation-induced expression of E-selectin, intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 were determined by flow cytometry. The subcellular localization of the NFκB subunit p65 was analyzed by immunofluorescence and Western blot. I/R-induced leukocytic inflammation was studied in MA- and vehicle-treated mouse dorsal skinfold chambers by intravital fluorescence microscopy and immunohistochemistry. MA did not affect viability, but suppressed the mitochondrial activity of endothelial cells. Furthermore, MA reduced adhesion molecule expression on endothelial cells and pericytes due to an inhibitory action on NFκB signaling. Numbers of adherent and transmigrated leukocytes were lower in post-ischemic tissue of MA-treated mice when compared to vehicle-treated controls. In addition, MA affected reactive oxygen species (ROS) formation, resulting in a diminished oxidative DNA damage. Hence, MA represents an attractive compound for the establishment of novel therapeutic approaches against I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.
| | - Julian J Berg
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| |
Collapse
|
39
|
Nagai N, Yagyu S, Hata A, Nirengi S, Kotani K, Moritani T, Sakane N. Maslinic acid derived from olive fruit in combination with resistance training improves muscle mass and mobility functions in the elderly. J Clin Biochem Nutr 2019; 64:224-230. [PMID: 31138956 PMCID: PMC6529705 DOI: 10.3164/jcbn.18-104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Maslinic acid, derived from olive fruit, reduces pro-inflammation cytokines, which are involved in muscle fiber atrophy. Therefore, the maslinic acid ingestion may enhance the muscular response to resistance training through anti-inflammatory action. We therefore conducted a parallel, double-blind, randomized, placebo-controlled trial that examined whether a combination of maslinic acid supplementation and resistance training improve mobility functions in community-dwelling elderly persons. Over a 12-week period, 36 participants underwent moderate resistance training and are assigned to the maslinic acid supplementation (n = 17, 60 mg/day) or the placebo (n = 19) group. At baseline and at 12-weeks, we assessed body composition, grip strength, walking speed, leg strength, mobility functions, and knee pain scores. Following the 12-weeks, skeletal muscle mass, segmental muscle mass (right arm, left arm, and trunk) and knee pain score of the right leg were significantly improved in the maslinic acid group, while there was no change or parameters had worsened in the placebo group. Grip strength of the better side significantly increased only in the maslinic acid group. These results suggest that maslinic acid supplementation combined with moderate resistance training may increase upper muscle mass and grip strength, and reduce knee pain, could be effective for preventing mobility-related disability in elderly persons. Clinical trial registration number: UMIN000017207.
Collapse
Affiliation(s)
- Narumi Nagai
- School of Human Science and Environment, University of Hyogo,1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Satomi Yagyu
- School of Human Science and Environment, University of Hyogo,1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Anna Hata
- School of Human Science and Environment, University of Hyogo,1-1-12 Shinzaike-honcho, Himeji, Hyogo 670-0092, Japan
| | - Shinsuke Nirengi
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| | - Kazuhiko Kotani
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan.,Division of Community and Family Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan
| | - Toshio Moritani
- Department of Sports Sociology and Health Sciences, Kyoto Sangyo University, Kamo-honmachi, Kita-ku, Kyoto 603-8555, Japan
| | - Naoki Sakane
- Division of Preventive Medicine, Clinical Research Institute, National Hospital Organization, Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto 612-8555, Japan
| |
Collapse
|
40
|
Sanchez-Rodriguez E, Biel-Glesson S, Fernandez-Navarro JR, Calleja MA, Espejo-Calvo JA, Gil-Extremera B, de la Torre R, Fito M, Covas MI, Vilchez P, Alche JDD, Martinez de Victoria E, Gil A, Mesa MD. Effects of Virgin Olive Oils Differing in Their Bioactive Compound Contents on Biomarkers of Oxidative Stress and Inflammation in Healthy Adults: A Randomized Double-Blind Controlled Trial. Nutrients 2019; 11:nu11030561. [PMID: 30845690 PMCID: PMC6470869 DOI: 10.3390/nu11030561] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
A regular consumption of virgin olive oil (VOO) is associated with a reduced risk of cardiovascular disease. We aimed to assess whether the raw intake of an optimized VOO (OVOO, 490 ppm of phenolic compounds and 86 ppm of triterpenes), and a functional olive oil (FOO, 487 ppm of phenolic compounds and enriched with 389 ppm of triterpenes) supplementation (30 mL per day) during three weeks would provide additional health benefits to those produced by a standard VOO (124 ppm of phenolic compounds and 86 ppm of triterpenes) on oxidative and inflammatory biomarkers. Fifty-one healthy adults participated in a randomized, crossover, and controlled study. Urinary 8-hidroxy-2′-deoxyguanosine, plasma interleukin-8 (IL-8), and tumor necrosis factor α (TNF- α) concentrations were lower after the intervention with the FOO than after the OVOO (p = 0.033, p = 0.011 and p = 0.020, respectively). In addition, IL-8 was lower after the intervention with FOO than after VOO intervention (p = 0.002). This study provides a first level of evidence on the in vivo health benefits of olive oil triterpenes (oleanolic and maslinic acids) in healthy humans, decreasing DNA oxidation and plasma inflammatory biomarkers. The trial was registered in ClinicalTrials.gov ID: NCT02520739.
Collapse
Affiliation(s)
- Estefania Sanchez-Rodriguez
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18016 Granada, Spain.
| | - Sara Biel-Glesson
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Avenida de Madrid 15, 18012 Granada, Spain.
| | - Jose R Fernandez-Navarro
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Avenida de Madrid 15, 18012 Granada, Spain.
| | - Miguel A Calleja
- Fundación Pública Andaluza para la Investigación Biosanitaria de Andalucía Oriental "Alejandro Otero" (FIBAO), Avenida de Madrid 15, 18012 Granada, Spain.
| | - Juan A Espejo-Calvo
- Instituto para la Calidad y Seguridad Alimentaria (ICSA), Avenida de la Hispanidad 17, 18320 Santa Fe, Granada, Spain.
| | - Blas Gil-Extremera
- Department of Medicine, University of Granada, Avenida de la Investigación 11, Armilla, 18016 Granada, Spain.
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM (Hospital del Mar Research Institute), Universitat Pompeu Fabra (CEXS-UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.
- Spanish Biomedical Research Networking Centre, Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - Montserrat Fito
- Spanish Biomedical Research Networking Centre, Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Maria-Isabel Covas
- Spanish Biomedical Research Networking Centre, Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
- NUPROAS Handelsbolag, Nackã, Sweden, NUPROAS HB, Apartado de Correos 93, 17242 Girona, Spain.
| | - Pedro Vilchez
- Laboratorio CEM Europa S.L., Polígono Industrial "Cañada de la Fuente", Carretera Fuensanta, s/n, 23600 Martos, Jaén, Spain.
| | - Juan de Dios Alche
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| | - Emilio Martinez de Victoria
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18100 Granada, Spain.
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18016 Granada, Spain.
- Spanish Biomedical Research Networking Centre, Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA). Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - Maria D Mesa
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, Armilla, 18016 Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA). Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| |
Collapse
|
41
|
Baba K, Hiramatsu R, Suradej B, Tanigaki R, Koeda S, Waku T, Kataoka T. Asiatic Acid, Corosolic Acid, and Maslinic Acid Interfere with Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1. Biol Pharm Bull 2018; 41:1757-1768. [DOI: 10.1248/bpb.b18-00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology
| | - Reiko Hiramatsu
- Department of Applied Biology, Kyoto Institute of Technology
| | | | - Riho Tanigaki
- Department of Applied Biology, Kyoto Institute of Technology
| | - Sayaka Koeda
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
42
|
Ben Nejma A, Znati M, Daich A, Othman M, Lawson AM, Ben Jannet H. Design and semisynthesis of new herbicide as 1,2,3-triazole derivatives of the natural maslinic acid. Steroids 2018; 138:102-107. [PMID: 30016641 DOI: 10.1016/j.steroids.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 01/11/2023]
Abstract
Interesting biological activities (anti-inflammatory, anticancer, antiviral, antioxidant, antidiabetic…) have been reported for maslinic acid (MA) and MA-based compounds. In continuation of our previous work on MA, herbicide potential of Tunisian plant extracts and 1,4-triazolyl derivatives of MA, we now wish to report semisynthesis of new MA-based triazole hybrid compounds with herbicide potential. These compounds were synthesized through Cu-catalyzed azide-alkyne cycloaddition (CuAAC) under microwave irradiation conditions between propargylated MA and a series of phthalimide azides. Here, the first partner of CuAAC reaction (propargylated MA) resulted from propargylation of C-28 carboxylic acid group of isolated MA from the well-known Mediterranean plant Olea europaea L. (Oleaceae). So far, phthalimide azide derivatives were achieved by trapping of N-acyliminium ion, in-situ generated under catalytic condition of Bi(OTf)3, by aromatic nucleophiles. The cycloaddition reaction afforded regiospecifically 1,4-disubstituted triazoles in good yields. The latter hybrid compounds were shown to exhibit a high inhibition potential of seed germination. This constitutes the first step in development of potent herbicides since one of the final semisynthesized structures can serve as a promising lead candidate for further studies.
Collapse
Affiliation(s)
- Aymen Ben Nejma
- Normandie Univ, France; UNILEHAVRE, URCOM, EA 3221, INC3M, FR 3038 CNRS, F-76600 Le Havre, France; Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Mansour Znati
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| | - Adam Daich
- Normandie Univ, France; UNILEHAVRE, URCOM, EA 3221, INC3M, FR 3038 CNRS, F-76600 Le Havre, France
| | - Mohamed Othman
- Normandie Univ, France; UNILEHAVRE, URCOM, EA 3221, INC3M, FR 3038 CNRS, F-76600 Le Havre, France
| | - Ata Martin Lawson
- Normandie Univ, France; UNILEHAVRE, URCOM, EA 3221, INC3M, FR 3038 CNRS, F-76600 Le Havre, France.
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
| |
Collapse
|
43
|
Wang YY, Diao BZ, Zhong LH, Lu BL, Cheng Y, Yu L, Zhu LY. Maslinic acid protects against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Microb Pathog 2018; 119:49-53. [PMID: 29627448 DOI: 10.1016/j.micpath.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Acute liver injury is a life-threatening syndrome that often caused by hepatocyte damage. In this study, we investigated the protective effects of maslinic acid (MA) on lipopolysaccharide (LPS)/d-galactosamine (D-gal)-induced acute liver injury and clarified its mechanism. Mice acute liver injury model was induced by given LPS and D-gal and MA was given intraperitoneally 1 h before LPS and D-gal. Our results showed that MA protected against liver injury by attenuating liver histopathologic changes, serum AST and ALT levels. The increased inflammatory cytokines TNF-α and IL-6 in serum and liver tissues were also inhibited by MA. The level of MDA and the activity of MPO in liver tissues were up-regulated by LPS/D-gal and dose-dependently inhibited by MA. Furthermore, MA attenuated hepatic NF-κB protein expression and increased hepatic Nrf2 and HO-1 protein expression. Taken together, MA offers a protective role against LPS/D-gal-induced liver injury through suppressing NF-κB and activating Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Zhong Diao
- Department of Pharmaceutical Preparations, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, China
| | - Li-Hua Zhong
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bao-Ling Lu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yu Cheng
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lei Yu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| | - Li-Ying Zhu
- Department of Infectious Disease, The Forth Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
44
|
Yap WH, Ooi BK, Ahmed N, Lim YM. Maslinic acid modulates secreted phospholipase A2-IIA (sPLA2-IIA)-mediated inflammatory effects in macrophage foam cells formation. J Biosci 2018. [DOI: 10.1007/s12038-018-9745-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Evaluation of maslinic acid with whole-body vibration training in elderly women with knee osteoarthritis. PLoS One 2018; 13:e0194572. [PMID: 29558490 PMCID: PMC5860762 DOI: 10.1371/journal.pone.0194572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose Maslinic acid (MA) is a component derived from a natural olive-based extract known to have pharmacological functions that include suppressing inflammation. This study examined how MA, in conjunction with whole-body vibration training (WBVT), can improve knee and muscle function in elderly women with knee osteoarthritis (OA). Methods The study was a double-blinded, placebo-controlled, randomized intervention study that enrolled individuals with knee pain. Participants were 26 females aged 65–85 years with knee OA. They performed WBVT and ingested either 16.7 mg of MA or a placebo daily for 20 weeks. We compared the effect of WBVT with placebo (WBVT/P) and WBVT with MA (WBVT/MA) in participants with various degrees of knee OA (Kellgren and Lawrence (K-L) grade) using the Japanese Orthopaedic Association (JOA) score and isokinetic dynamometer measurements to evaluate knee and muscle function with two-way ANOVA. Results Based on the results of two-way ANOVA analysis of muscle function measurements, there was significant interaction (time × group) (P = 0.03) in the “isokinetic extension peak torque” domain for severe OA (K-L grade ≥ 3). The simple main effect of time in the WBVT/MA group (P = 0.04) contributed to this interaction. The JOA score for WBVT/MA supported the main effect of group as having a significant correlation in the “pain on walking” (P = 0.04) and “range of motion” (P < 0.01) domains. Participants with severe knee OA in the WBVT/MA group improved in these domains, whereas the WBVT/P group had few positive results. Conclusions Participants with severe OA who ingested MA in conjunction with WBVT improved their knee and muscle function. This study suggests that ingesting the anti-inflammatory supplement MA while participating in WBVT, elderly women can reduce knee OA and improve their knee muscle strength.
Collapse
|
46
|
Asiatic acid and maslinic acid attenuated kainic acid-induced seizure through decreasing hippocampal inflammatory and oxidative stress. Epilepsy Res 2018; 139:28-34. [DOI: 10.1016/j.eplepsyres.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/13/2017] [Accepted: 11/11/2017] [Indexed: 01/13/2023]
|
47
|
Maslinic Acid Inhibits Proliferation of Renal Cell Carcinoma Cell Lines and Suppresses Angiogenesis of Endothelial Cells. J Kidney Cancer VHL 2017; 4:16-24. [PMID: 28405545 PMCID: PMC5364332 DOI: 10.15586/jkcvhl.2017.64] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC) remains a treatment-resistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1), endothelial cells (human umbilical vein endothelial cell line [HUVEC]), and primary cultures of kidney proximal tubular epithelial cells (PTEC) were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.
Collapse
|
48
|
Khanra R, Dewanjee S, Dua TK, Bhattacharjee N. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling. Biomed Pharmacother 2017; 88:918-923. [PMID: 28178622 DOI: 10.1016/j.biopha.2017.01.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
49
|
Azevedo LF, Silva SMD, Navarro LB, Yamaguchi LF, Nascimento CGO, Soncini R, Ishikawa T. Evidence of anti-inflammatory and antinociceptive activities of Plinia edulis leaf infusion. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:178-182. [PMID: 27377340 DOI: 10.1016/j.jep.2016.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/14/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plinia edulis (Vell.) Sobral (Myrtaceae) is native and endemic to the Brazilian Atlantic Rainforest. Popularly known as "cambucá", it has been used in folk medicine for the treatment of stomach disorders, diabetes, bronchitis, inflammation and as tonic. Although there are numerous records concerning its popular use as analgesic and anti-inflammatory, scientific information regarding these pharmacological activities is limited. Therefore, the aim of this study was to characterize the anti-inflammatory and antinociceptive activity of P. edulis leaf infusion (AEPe) in mice. MATERIALS AND METHODS The acetic acid-induced writhing response and mechanical nociceptive paw tests were used to evaluate the antinociceptive activity. Carrageenan-induced paw edema and lipopolysaccharide-induced peritonitis were used to investigate the anti-inflammatory activity. The substances in AEPe were identified by HPLC-MS analysis. RESULTS At the test doses 30-300mg/kg p.o., AEPe has clearly exhibited anti-inflammatory effects, reducing carrageenan-induced paw edema and inhibiting leukocyte recruitment into the peritoneal cavity. The infusion has shown significant antinociceptive activity in both models of nociception. Gallic acid, myricitrin, guaijaverin, quercitrin, quercetin, corosolic acid, maslinic acid, oleanolic acid and ursolic acid were identified in AEPe. CONCLUSION P. edulis infusion presented antinociceptive and anti-inflammatory activities in all experiments realized in this study, which could be related to the presence of triterpenoids and flavonoids. These results provide scientific support for the traditional use of this species in the management of pain and inflammation.
Collapse
Affiliation(s)
- Lara F Azevedo
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Simone Maria da Silva
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Lucas B Navarro
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05599-970 São Paulo, SP, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05599-970 São Paulo, SP, Brazil
| | - Carlos Giovani O Nascimento
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Roseli Soncini
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil
| | - Tati Ishikawa
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 37130-000 Alfenas, MG, Brazil.
| |
Collapse
|
50
|
Inhibition of Human Group IIA-Secreted Phospholipase A2 and THP-1 Monocyte Recruitment by Maslinic Acid. Lipids 2016; 51:1153-1159. [PMID: 27540737 DOI: 10.1007/s11745-016-4186-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Maslinic acid is a natural pentacyclic triterpenoid which has anti-inflammatory properties. A recent study showed that secretory phospholipase A2 (sPLA2) may be a potential binding target of maslinic acid. The human group IIA (hGIIA)-sPLA2 is found in human sera and their levels are correlated with severity of inflammation. This study aims to determine whether maslinic acid interacts with hGIIA-sPLA2 and inhibits inflammatory response induced by this enzyme. It is shown that maslinic acid enhanced intrinsic fluorescence of hGIIA-sPLA2 and inhibited its enzyme activity in a concentration-dependent manner. Molecular docking revealed that maslinic acid binds to calcium binding and interfacial phospholipid binding site, suggesting that it inhibit access of catalytic calcium ion for enzymatic reaction and block binding of the enzyme to membrane phospholipid. The hGIIA-sPLA2 enzyme is also responsible in mediating monocyte recruitment and differentiation. Results showed that maslinic acid inhibit hGIIA-sPLA2-induced THP-1 cell differentiation and migration, and the effect observed is specific to hGIIA-sPLA2 as cells treated with maslinic acid alone did not significantly affect the number of adherent and migrated cells. Considering that hGIIA-sPLA2 enzyme is known to hydrolyze glyceroacylphospholipids present in lipoproteins and cell membranes, maslinic acid may bind and inhibit hGIIA-sPLA2 enzymatic activity, thereby reduces the release of fatty acids and lysophospholipids which stimulates monocyte migration and differentiation. This study is the first to report on the molecular interaction between maslinic acid and inflammatory target hGIIA-sPLA2 as well as its effect towards hGIIA-sPLA2-induced THP-1 monocyte adhesive and migratory capabilities, an important immune-inflammation process in atherosclerosis.
Collapse
|