1
|
Cui D, Zhang Y, Zhang M. The effect of cannabinoid type 2 receptor agonist on morphine tolerance. IBRO Neurosci Rep 2024; 16:43-50. [PMID: 38145173 PMCID: PMC10733637 DOI: 10.1016/j.ibneur.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Pain highly impacts the quality of life of patients. Morphine is used for pain treatment; however, its side effects, especially morphine tolerance, limit its use in the clinic. The problem of morphine tolerance has plagued health workers and patients for years. Unfortunately, the exact mechanism of morphine tolerance has not been fully clarified. The mechanisms of morphine tolerance that are currently being studied may include μ-opioid receptor (MOR) desensitization and internalization, mitogen-activated protein kinase (MAPK) pathway activation and crosstalk, the effects of microglia and the increase in inflammatory factors. Morphine tolerance can be alleviated by improving the pathophysiological changes that lead to morphine tolerance. Previous studies have shown that a cannabinoid type 2 (CB2) receptor agonist could attenuate morphine tolerance in a variety of animal models. Many studies have shown an interaction between the cannabinoid system and the opioid system. The CB2 receptor may modulate the effect of morphine through a pathway that is common to the MOR, since both receptors are G protein-coupled receptors (GPCRs). This study introduces the potential mechanism of morphine tolerance and the effect of CB2 receptor agonists on reducing morphine tolerance, which can provide new ideas for researchers studying morphine and provide beneficial effects for patients suffering from morphine tolerance.
Collapse
Affiliation(s)
- Di Cui
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingyue Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Wang L, Wang X, Liu C, Xu W, Kuang W, Bu Q, Li H, Zhao Y, Jiang L, Chen Y, Qin F, Li S, Wei Q, Liu X, Liu B, Chen Y, Dai Y, Wang H, Tian J, Cao G, Zhao Y, Cen X. Morphine Re-arranges Chromatin Spatial Architecture of Primate Cortical Neurons. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:551-572. [PMID: 37209997 PMCID: PMC10787020 DOI: 10.1016/j.gpb.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/22/2023]
Abstract
The expression of linear DNA sequence is precisely regulated by the three-dimensional (3D) architecture of chromatin. Morphine-induced aberrant gene networks of neurons have been extensively investigated; however, how morphine impacts the 3D genomic architecture of neurons is still unknown. Here, we applied digestion-ligation-only high-throughput chromosome conformation capture (DLO Hi-C) technology to investigate the effects of morphine on the 3D chromatin architecture of primate cortical neurons. After receiving continuous morphine administration for 90 days on rhesus monkeys, we discovered that morphine re-arranged chromosome territories, with a total of 391 segmented compartments being switched. Morphine altered over half of the detected topologically associated domains (TADs), most of which exhibited a variety of shifts, followed by separating and fusing types. Analysis of the looping events at kilobase-scale resolution revealed that morphine increased not only the number but also the length of differential loops. Moreover, all identified differentially expressed genes from the RNA sequencing data were mapped to the specific TAD boundaries or differential loops, and were further validated for changed expression. Collectively, an altered 3D genomic architecture of cortical neurons may regulate the gene networks associated with morphine effects. Our finding provides critical hubs connecting chromosome spatial organization and gene networks associated with the morphine effects in humans.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaojie Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China; Shenzhen Key Laboratory of Drug Addiction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Feng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaocong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Bin Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Ciapała K, Rojewska E, Pawlik K, Ciechanowska A, Mika J. Analgesic Effects of Fisetin, Peimine, Astaxanthin, Artemisinin, Bardoxolone Methyl and 740 Y-P and Their Influence on Opioid Analgesia in a Mouse Model of Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24109000. [PMID: 37240346 DOI: 10.3390/ijms24109000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases-fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)-in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Krakow, Poland
| |
Collapse
|
4
|
Avci O, Ozdemir E, Taskiran AS, Inan ZDS, Gursoy S. Metformin prevents morphine-induced apoptosis in rats with diabetic neuropathy: a possible mechanism for attenuating morphine tolerance. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1449-1462. [PMID: 36050544 DOI: 10.1007/s00210-022-02283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Morphine is a drug of choice for the treatment of severe and chronic pain, but tolerance to the antinociceptive effect limits its use. The development of tolerance to morphine has recently been associated with neuronal apoptosis. In this study, our aim was to investigate the effects of metformin on morphine-induced neuronal apoptosis and antinociceptive tolerance in diabetic rats. Three days of cumulative dosing were administered to establish morphine tolerance in rats. The antinociceptive effects of metformin (50 mg/kg) and test dose of morphine (5 mg/kg) were considered at 30-min intervals by thermal antinociceptive tests. To induce diabetic neuropathy, streptozotocin (STZ, 65 mg/kg) was injected intraperitoneally. ELISA kits were used to measure caspase-3, bax, and bcl-2 levels from dorsal root ganglion (DRG) tissue. Semi-quantitative scoring system was used to evaluate apoptotic cells with the the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method. The findings suggest that co-administration of metformin with morphine to diabetic rats showed a significant increase in antinociceptive effect compared to morphine alone. The antinociceptive tests indicated that metformin significantly attenuated morphine antinociceptive tolerance in diabetic rats. In addition, metformin decreased the levels of apoptotic proteins caspase 3 and Bax in DRG neurons, while significantly increased the levels of antiapoptotic Bcl-2. Semi-quantitative scoring showed that metformin provided a significant reduction in apoptotic cell counts in diabetic rats. These data revealed that metformin demonstrated antiapoptotic activity in diabetic rat DRG neurons and attenuated morphine tolerance. The antiapoptotic activity of metformin probably plays a significant role in reducing morphine tolerance.
Collapse
Affiliation(s)
- Onur Avci
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey
| | - Ercan Ozdemir
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey.
| | - Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Zeynep Deniz Sahin Inan
- Department of Histology and Embryology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey
| | - Sinan Gursoy
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University School of Medicine, 58140, Sivas, Turkey
| |
Collapse
|
5
|
Porta A, Rodríguez L, Bai X, Batallé G, Roch G, Pouso-Vázquez E, Balboni G, Pol O. Hydrogen Sulfide Inhibits Inflammatory Pain and Enhances the Analgesic Properties of Delta Opioid Receptors. Antioxidants (Basel) 2021; 10:antiox10121977. [PMID: 34943080 PMCID: PMC8750936 DOI: 10.3390/antiox10121977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic inflammatory pain is present in many pathologies and diminishes the patient's quality of life. Moreover, most current treatments have a low efficacy and significant side effects. Recent studies demonstrate the analgesic properties of slow-releasing hydrogen sulfide (H2S) donors in animals with osteoarthritis or neuropathic pain, but their effects in inflammatory pain and related pathways are not completely understood. Several treatments potentiate the analgesic actions of δ-opioid receptor (DOR) agonists, but the role of H2S in modulating their effects and expression during inflammatory pain remains untested. In C57BL/6J male mice with inflammatory pain provoked by subplantar injection of complete Freund's adjuvant, we evaluated: (1) the antiallodynic and antihyperalgesic effects of different doses of two slow-releasing H2S donors, i.e., diallyl disulfide (DADS) and phenyl isothiocyanate (P-ITC) and their mechanism of action; (2) the pain-relieving effects of DOR agonists co-administered with H2S donors; (3) the effects of DADS and P-ITC on the oxidative stress and molecular changes caused by peripheral inflammation. Results demonstrate that both H2S donors inhibited allodynia and hyperalgesia in a dose-dependent manner, potentiated the analgesic effects and expression of DOR, activated the antioxidant system, and reduced the nociceptive and apoptotic pathways. The data further demonstrate the possible participation of potassium channels and the Nrf2 transcription factor signaling pathway in the pain-relieving activities of DADS and P-ITC. This study suggests that the systemic administration of DADS and P-ITC and local application of DOR agonists in combination with slow-releasing H2S donors are two new strategies for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Aina Porta
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Laura Rodríguez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerad Roch
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Enric Pouso-Vázquez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
6
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
7
|
Ferreira-Chamorro P, Redondo A, Riego G, Pol O. Treatment with 5-fluoro-2-oxindole Increases the Antinociceptive Effects of Morphine and Inhibits Neuropathic Pain. Cell Mol Neurobiol 2021; 41:995-1008. [PMID: 32880099 DOI: 10.1007/s10571-020-00952-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The efficacy of µ-opioid receptors (MOR) in neuropathic pain is low and with numerous side effects that limited their use. Chronic neuropathic pain is also linked with emotional disorders that aggravate the sensation of pain and which treatment has not been resolved. This study investigates whether the administration of an oxindole, 5-fluoro-2-oxindole, could inhibit the nociceptive and emotional behaviors and increase the effectiveness of morphine via modulating the microglia and activating the nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway and MOR expression. In C57BL/6 mice with neuropathic pain provoked by the total constriction of sciatic nerve we studied the effects of 10 mg/kg 5-fluoro-2-oxindole in: (i) the allodynia and hyperalgesia caused by the injury; (ii) the anxiety- and depressive-like behaviors; (iii) the local antinociceptive actions of morphine; (iv) the expression of CD11b/c (a microglial marker), the antioxidant and detoxificant enzymes Nrf2, heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1), and of MOR in the spinal cord and hippocampus. Results showed that the inhibition of the main nociceptive symptoms and the anxiety- and depressive-like behaviors induced by 5-fluoro-2-oxindole were accompanied with the suppression of microglial activation and the activation of Nrf2/HO-1/NQO1 signaling pathway in the spinal cord and/or hippocampus. This treatment also potentiated the pain-relieving activities of morphine by normalizing the reduced MOR expression. This work demonstrates the antinociceptive, anxiolytic and antidepressant effects of 5-fluoro-2-oxindole, suggests a new strategy to enhance the antinociceptive actions of morphine and proposes a new mechanism of action of oxindoles during chronic neuropathic pain.
Collapse
Affiliation(s)
- Pablo Ferreira-Chamorro
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain.
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau & Institut de Neurociències, Facultat de Medicina. Edifici M2, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
8
|
Gledhill LJ, Babey AM. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol Neurobiol 2021; 41:927-948. [PMID: 33704603 DOI: 10.1007/s10571-021-01065-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/12/2021] [Indexed: 10/21/2022]
Abstract
The use of morphine as a first-line agent for moderate-to-severe pain is limited by the development of analgesic tolerance. Initially opioid receptor desensitization in response to repeated stimulation, thought to underpin the establishment of tolerance, was linked to a compensatory increase in adenylate cyclase responsiveness. The subsequent demonstration of cross-talk between N-methyl-D-aspartate (NMDA) glutamate receptors and opioid receptors led to the recognition of a role for nitric oxide (NO), wherein blockade of NO synthesis could prevent tolerance developing. Investigations of the link between NO levels and opioid receptor desensitization implicated a number of events including kinase recruitment and peroxynitrite-mediated protein regulation. Recent experimental advances and the identification of new cellular constituents have expanded the potential signaling candidates to include unexpected, intermediary compounds not previously linked to this process such as zinc, histidine triad nucleotide-binding protein 1 (HINT1), micro-ribonucleic acid (mi-RNA) and regulator of G protein signaling Z (RGSZ). A further complication is a lack of consistency in the protocols used to create tolerance, with some using acute methods measured in minutes to hours and others using days. There is also an emphasis on the cellular changes that are extant only after tolerance has been established. Although a review of the literature demonstrates a lack of spatio-temporal detail, there still appears to be a pivotal role for nitric oxide, as well as both intracellular and intercellular cross-talk. The use of more consistent approaches to verify these underlying mechanism(s) could provide an avenue for targeted drug development to rescue opioid efficacy.
Collapse
Affiliation(s)
- Laura J Gledhill
- CURA Pharmacy, St. John of God Hospital, Bendigo, VIC, 3550, Australia
| | - Anna-Marie Babey
- Faculty of Medicine and Health, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
9
|
The Endogenous Cannabinoid and the Nitricoxidergic Systems Differently Influence Heat and Cold Stress-Induced Analgesia. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Stress-induced analgesia (SIA) is a well-known phenomenon, in which mechanisms of development opioid and non-opioid components take part. The endogenous cannabinoid system (ECS) takes part in the non-opioid pathways and modulates nociception. Nitric oxide (NO) is also proverbial to interfere with pain perception. The present study was performed to investigate the effects from interaction between the ECS and NO after heat (heat stress) or cold (cold stress) exposure. Male Wistar rats subjected to one hour of heat or cold stress were injected with different combinations of cannabinoid receptor type 1 (CB1) agonist anandamide (AEA) or antagonist (AM251) along with NO-donor, NO-precursor or inhibitor of the NO-synthase (NOS). Nociception was evaluated using Paw pressure (Randall-Selitto) test. The results showed that AEA-administration immediately after the end of stress let to a tendency to increase cold-SIA, but decreased heat-SIA. AEA along with NO-donor increased both cold- and heat-SIA but to a different degree. AM251 and NOS-inhibitor decreased SIA. Our experiments confirmed that the endogenous cannabinoid and the nitricoxidergic systems interact between them in the modulation of SIA. The ECS exerts a more prominent influence on cold rather than heat SIA. Differences in modulation probably depend on the type of stress, due to the different participation of ECS in the mechanisms of SIA development.
Collapse
|
10
|
Okerman T, Jurgenson T, Moore M, Klein AH. Inhibition of the phosphoinositide 3-kinase-AKT-cyclic GMP-c-Jun N-terminal kinase signaling pathway attenuates the development of morphine tolerance in a mouse model of neuropathic pain. Mol Pain 2021; 17:17448069211003375. [PMID: 33745380 PMCID: PMC7983416 DOI: 10.1177/17448069211003375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance. Afterwards, spinal cord, dorsal root ganglia, and sciatic nerves were isolated for quantifying total and phosphorylated- JNK levels, cGMP, and gene expression analysis of Pik3cg, Akt1, Pten, and nNos1. This pathway was downregulated in the spinal cord with increased expression in the sciatic nerve of morphine tolerant and morphine tolerant mice after SNL. We also observed a significant increase in phosphorylated- JNK levels in the sciatic nerve of morphine tolerant mice with SNL. Pharmacological inhibition of PI3K or JNK, using thalidomide, quercetin, or SP600125, attenuated the development of morphine tolerance in mice with SNL as measured by thermal paw withdrawal. Overall, the PI3K/AKT intracellular signaling pathway is a potential target for reducing the development of morphine tolerance in the peripheral nervous system. Continued research into this pathway will contribute to the development of new analgesic drug therapies.
Collapse
Affiliation(s)
- Travis Okerman
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Taylor Jurgenson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Madelyn Moore
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
| | - Amanda H Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN, USA
- Amanda H Klein, 232 Life Sciences, 1110 Kirby Drive, Duluth, MN 55812, USA.
| |
Collapse
|
11
|
Pol O. The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids. Med Res Rev 2020; 41:136-155. [PMID: 32820550 DOI: 10.1002/med.21726] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain and its associated comorbidities are difficult to treat, even when the most potent analgesic compounds are used. Thus, research on new strategies to effectively relieve nociceptive and/or emotional disorders accompanying chronic pain is essential. Several studies have demonstrated the anti-inflammatory and antinociceptive effects of different carbon monoxide-releasing molecules (CO-RMs), inducible heme oxygenase 1 (HO-1), and nuclear factor-2 erythroid factor-2 (Nrf2) transcription factor activators in several models of acute and chronic pain caused by inflammation, nerve injury or diabetes. More recently, the antidepressant and/or anxiolytic effects of several Nrf2 transcription factor inducers were demonstrated in a model of chronic neuropathic pain. These effects are mainly produced by inhibition of oxidative stress, inflammation, glial activation, mitogen-activated protein kinases and/or phosphoinositide 3-kinase/phospho-protein kinase B phosphorylation in the peripheral and/or central nervous system. Other studies also demonstrated that the analgesic effects of opioids and cannabinoids are improved when these drugs are coadministered with CO-RMs, HO-1 or Nrf2 activators in different preclinical pain models and that these improvements are generally mediated by upregulation or prevention of the downregulation of µ-opioid receptors, δ-opioid receptors and/or cannabinoid 2 receptors in the setting of chronic pain. We reviewed all these studies as well as studies on the mechanisms of action underlying the effects of CO-RMs, HO-1, and Nrf2 activators in chronic pain. In summary, activation of the Nrf2/HO-1/carbon monoxide signaling pathway alone and/or in combination with the administration of specific analgesics is a valid strategy for the treatment of chronic pain and some associated emotional disorders.
Collapse
Affiliation(s)
- Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
c-Jun N terminal kinase signaling pathways mediate cannabinoid tolerance in an agonist-specific manner. Neuropharmacology 2019; 164:107847. [PMID: 31758947 DOI: 10.1016/j.neuropharm.2019.107847] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CB1R), with CB1R desensitization occurring via phosphorylation of CB1Rs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ9-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics. In the current study, we found that pretreatment with the JNK inhibitor SP600125 (3 mg/kg) attenuates tolerance to the antinociceptive in the formalin test and to the anti-allodynic effects of Δ9-THC (6 mg/kg) in cisplatin-evoked neuropathic pain using wild-type mice. We also find that SP600125 causes an especially robust reduction in tolerance to the antinociceptive effects of Δ9-THC (30 mg/kg), but not WIN 55,212-2 (10 mg/kg) in the tail-flick assay using S426A/S430A mice. Interestingly, SP600125 pretreatment accelerated tolerance to the antinociceptive and anti-allodynic effects of (-)-CP55,940 (0.3 mg/kg) in mice with acute and neuropathic pain. These results demonstrate that inhibition of JNK signaling pathways delay tolerance to Δ9-THC, but not to CP55,940 or WIN55,212-2, demonstrating that the mechanisms of cannabinoid tolerance are agonist-specific.
Collapse
|
13
|
Jung YK, Park HR, Cho HJ, Jang JA, Lee EJ, Han MS, Kim GW, Han S. Degrading products of chondroitin sulfate can induce hypertrophy-like changes and MMP-13/ADAMTS5 production in chondrocytes. Sci Rep 2019; 9:15846. [PMID: 31676809 PMCID: PMC6825126 DOI: 10.1038/s41598-019-52358-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022] Open
Abstract
Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in articular cartilage and the loss of CS-GAG occurs early in OA. As a major component of perichondral matrix interacting directly with chondrocytes, the active turnover of CS can affect to break the homeostasis of chondrocytes. Here we employ CS-based 3-dimensional (3D) hydrogel scaffold system to investigate how the degradation products of CS affect the catabolic phenotype of chondrocytes. The breakdown of CS-based ECM by the chondroitinase ABC (ChABC) resulted in a hypertrophy-like morphologic change in chondrocytes, which was accompanied by catabolic phenotypes, including increased MMP-13 and ADAMTS5 expression, nitric oxide (NO) production and oxidative stress. The inhibition of Toll-like receptor 2 (TLR2) or TLR4 with OxPAPC (TLR2 and TLR4 dual inhibitor) and LPS-RS (TLR4-MD2 inhibitor) ameliorated these catabolic phenotypes of chondrocytes by CS-ECM degradation, suggesting a role of CS breakdown products as damage-associated molecular patterns (DAMPs). As downstream signals of TLRs, MAP kinases, NF-kB, NO and STAT3-related signals were responsible for the catabolic phenotypes of chondrocytes associated with ECM degradation. NO in turn reinforced the activation of MAP kinases as well as NFkB signaling pathway. Thus, these results propose that the breakdown product of CS-GAG can recapitulate the catabolic phenotypes of OA.
Collapse
Affiliation(s)
- Youn-Kwan Jung
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Hye-Ri Park
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea
| | - Hyun-Jung Cho
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea
| | - Ji-Ae Jang
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea
| | - Eun-Ju Lee
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea
| | - Min-Su Han
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea
| | - Gun-Woo Kim
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea.,Department of Internal medicine, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - Seungwoo Han
- Laboratory for arthritis and bone biology, Fatima Research Institute, Daegu Fatima hospital, Daegu, Republic of Korea. .,Department of Internal medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Polo S, Díaz AF, Gallardo N, Leánez S, Balboni G, Pol O. Treatment With the Delta Opioid Agonist UFP-512 Alleviates Chronic Inflammatory and Neuropathic Pain: Mechanisms Implicated. Front Pharmacol 2019; 10:283. [PMID: 30971925 PMCID: PMC6443715 DOI: 10.3389/fphar.2019.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
Abstract
We investigated whether administration of the δ-opioid receptor (DOR) agonist H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), which also activates nuclear factor erythroid 2-related factor 2 (Nrf2), alleviated chronic inflammatory and/or neuropathic pain and inhibited the depressive-like behaviors associated with persistent neuropathic pain. The possible mechanisms implicated were also assessed. We evaluated the following effects in male C57BL/6J mice with inflammatory pain induced by complete Freund's adjuvant or neuropathic pain caused by the chronic constriction of sciatic nerve: (1) the antinociceptive effects of UFP-512; (2) the effects of UFP-512 on the expression of Nrf2, heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1, phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), inducible nitric oxide synthase, DOR, and mitogen-activated protein kinases (MAPK) in the spinal cord of animals with inflammatory or neuropathic pain; (3) the antinociceptive effects of the coadministration of UFP-512 with the Nrf2 activator sulforaphane (SFN); and (4) the antidepressant effects of UFP-512 in animals with depressive-like behaviors associated with neuropathic pain. Our results demonstrated that the intraperitoneal administration of UFP-512 inhibited chronic inflammatory and neuropathic pain and reduced the depressive-like behaviors associated with persistent neuropathic pain. The antiallodynic effects of UFP-512 were significantly augmented when it was coadministered with SFN in both types of chronic pain. The administration of UFP-512 increased/reestablished the spinal cord protein levels of Nrf2 and HO-1 in mice with inflammatory or neuropathic pain. However, while during inflammatory pain UFP-512 inhibited spinal c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation induced by peripheral inflammation. This DOR agonist blocked the spinal activated PI3K/Akt signaling pathway under chronic neuropathic pain conditions, but it did not alter the enhanced protein levels of p-JNK or p-ERK1/2 induced by sciatic nerve injury. These results revealed the antinociceptive and antidepressant effects of UFP-512 in animals with chronic pain and the different mechanism of action of this DOR agonist in the presence of inflammatory or neuropathic pain. Our data also suggest the administration of UFP-512 as an alternative for the treatment of chronic pain and the depressive-like behaviors associated with neuropathic pain.
Collapse
Affiliation(s)
- Sara Polo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Felipe Díaz
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Gallardo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cagliari, Italy
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Barcelona, Spain.,Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Stötzner P, Spahn V, Celik MÖ, Labuz D, Machelska H. Mu-Opioid Receptor Agonist Induces Kir3 Currents in Mouse Peripheral Sensory Neurons - Effects of Nerve Injury. Front Pharmacol 2018; 9:1478. [PMID: 30618766 PMCID: PMC6305728 DOI: 10.3389/fphar.2018.01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain often arises from damage to peripheral nerves and is difficult to treat. Activation of opioid receptors in peripheral sensory neurons is devoid of respiratory depression, sedation, nausea, and addiction mediated in the brain, and ameliorates neuropathic pain in animal models. Mechanisms of peripheral opioid analgesia have therefore gained interest, but the role of G protein-coupled inwardly rectifying potassium (Kir3) channels, important regulators of neuronal excitability, remains unclear. Whereas functional Kir3 channels have been detected in dorsal root ganglion (DRG) neurons in rats, some studies question their contribution to opioid analgesia in inflammatory pain models in mice. However, neuropathic pain can be diminished by activation of peripheral opioid receptors in mouse models. Therefore, here we investigated effects of the selective μ-opioid receptor (MOR) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) on potassium conductance in DRG neurons upon a chronic constriction injury (CCI) of the sciatic nerve in mice. For verification, we also tested human embryonic kidney (HEK) 293 cells transfected with MOR and Kir3.2. Using patch clamp, we recorded currents at -80 mV and applied voltage ramps in high extracellular potassium concentrations, which are a highly sensitive measures of Kir3 channel activity. We found a significantly higher rate of HEK cells responding with potassium channel blocker barium-sensitive inward current (233 ± 51 pA) to DAMGO application in transfected than in untransfected group, which confirms successful recordings of inward currents through Kir3.2 channels. Interestingly, DAMGO induced similar inward currents (178 ± 36-207 ± 56 pA) in 15-20% of recorded DRG neurons from naïve mice and in 4-27% of DRG neurons from mice exposed to CCI, measured in voltage clamp or voltage ramp modes. DAMGO-induced currents in naïve and CCI groups were reversed by barium and a more selective Kir3 channel blocker tertiapin-Q. These data indicate the coupling of Kir3 channels with MOR in mouse peripheral sensory neuron cell bodies, which was unchanged after CCI. A comparative analysis of opioid-induced potassium conductance at the axonal injury site and peripheral terminals of DRG neurons could clarify the role of Kir3 channel-MOR interactions in peripheral nerve injury and opioid analgesia.
Collapse
Affiliation(s)
- Philip Stötzner
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viola Spahn
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominika Labuz
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
16
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
17
|
Yuill MB, Hale DE, Guindon J, Morgan DJ. Anti-nociceptive interactions between opioids and a cannabinoid receptor 2 agonist in inflammatory pain. Mol Pain 2018; 13:1744806917728227. [PMID: 28879802 PMCID: PMC5593227 DOI: 10.1177/1744806917728227] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cannabinoid 1 receptor and cannabinoid 2 receptor can both be targeted in the treatment of pain; yet, they have some important differences. Cannabinoid 1 receptor is expressed at high levels in the central nervous system, whereas cannabinoid 2 receptor is found predominantly, although not exclusively, outside the central nervous system. The objective of this study was to investigate potential interactions between cannabinoid 2 receptor and the mu-opioid receptor in pathological pain. The low level of adverse side effects and lack of tolerance for cannabinoid 2 receptor agonists are attractive pharmacotherapeutic traits. This study assessed the anti-nociceptive effects of a selective cannabinoid 2 receptor agonist (JWH-133) in pathological pain using mice subjected to inflammatory pain using the formalin test. Furthermore, we examined several ways in which JWH-133 may interact with morphine. JWH-133 produces dose-dependent anti-nociception during both the acute and inflammatory phases of the formalin test. This was observed in both male and female mice. However, a maximally efficacious dose of JWH-133 (1 mg/kg) was not associated with somatic withdrawal symptoms, motor impairment, or hypothermia. After eleven once-daily injections of 1 mg/JWH-133, no tolerance was observed in the formalin test. Cross-tolerance for the anti-nociceptive effects of JWH-133 and morphine were assessed to gain insight into physiologically relevant cannabinoid 2 receptor and mu-opioid receptor interaction. Mice made tolerant to the effects of morphine exhibited a lower JWH-133 response in both phases of the formalin test compared to vehicle-treated morphine-naïve animals. However, repeated daily JWH-133 administration did not cause cross-tolerance for morphine, suggesting opioid and cannabinoid 2 receptor cross-tolerance is unidirectional. However, preliminary data suggest co-administration of JWH-133 with morphine modestly attenuates morphine tolerance. Isobolographic analysis revealed that co-administration of JWH-133 and morphine has an additive effect on anti-nociception in the formalin test. Overall these findings show that cannabinoid 2 receptor may functionally interact with mu-opioid receptor to modulate anti-nociception in the formalin test.
Collapse
Affiliation(s)
- Matthew B Yuill
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,2 Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,3 Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - David E Hale
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA
| | - Josée Guindon
- 4 Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Daniel J Morgan
- 1 Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, USA.,2 Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA.,3 Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
18
|
Tolerance to the antinociceptive and hypothermic effects of morphine is mediated by multiple isoforms of c-Jun N-terminal kinase. Neuroreport 2016; 27:392-6. [PMID: 26914092 DOI: 10.1097/wnr.0000000000000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abuse and overdose of opioid drugs are growing public health problems worldwide. Although progress has been made toward understanding the mechanisms governing tolerance to opioids, the exact cellular machinery involved remains unclear. However, there is growing evidence to suggest that c-Jun N-terminal kinases (JNKs) play a major role in mu-opioid receptor regulation and morphine tolerance. In this study, we aimed to determine the potential roles of different JNK isoforms in the development of tolerance to the antinociceptive and hypothermic effects of morphine. We used the hot-plate and tail-flick tests for thermal pain to measure tolerance to the antinociceptive effects of once-daily subcutaneous injections with 10 mg/kg morphine. Body temperature was also measured to determine tolerance to the hypothermic effects of morphine. Tolerance to morphine was assessed in wild-type mice and compared with single knockout mice each lacking the JNK isoforms (JNK1, JNK2, or JNK3). We found that loss of each individual JNK isoform causes impairment in tolerance for the antinociceptive and hypothermic effects of daily morphine. However, disruption of JNK2 seems to have the most profound effect on morphine tolerance. These results indicate a clear role for JNK signaling pathways in morphine tolerance. This complements previous studies suggesting that the JNK2 isoform is required for morphine tolerance, but additionally presents novel data suggesting that additional JNK isoforms also contribute toward this process.
Collapse
|
19
|
García-Pardo MP, Roger-Sanchez C, Rodríguez-Arias M, Miñarro J, Aguilar MA. Pharmacological modulation of protein kinases as a new approach to treat addiction to cocaine and opiates. Eur J Pharmacol 2016; 781:10-24. [DOI: 10.1016/j.ejphar.2016.03.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
|
20
|
Castany S, Carcolé M, Leánez S, Pol O. The role of carbon monoxide on the anti-nociceptive effects and expression of cannabinoid 2 receptors during painful diabetic neuropathy in mice. Psychopharmacology (Berl) 2016; 233:2209-2219. [PMID: 27020787 DOI: 10.1007/s00213-016-4271-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
RATIONALE The activation of cannabinoid 2 receptors (CB2R) attenuates chronic pain, but the role played by carbon monoxide synthesized by the inducible heme oxygenase 1 (HO-1) on the anti-nociceptive effects produced by a selective CB2R agonist, JWH-015, during painful diabetic neuropathy remains unknown. OBJECTIVES AND METHODS In streptozotocin (STZ)-induced diabetic mice, the anti-allodynic and anti-hyperalgesic effects of the subcutaneous administration of JWH-015 alone or combined with the intraperitoneal administration of a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer (CORM-2)) or an HO-1 inducer compound (cobalt protoporphyrin IX (CoPP)) at 10 mg/kg were evaluated. Reversion of JWH-015 anti-nociceptive effects by the administration of an HO-1 inhibitor (tin protoporphyrin IX (SnPP)) and a CB2R antagonist (AM630) was also evaluated. Furthermore, the protein levels of HO-1, neuronal nitric oxide synthase (NOS1), and CB2R in diabetic mice treated with CORM-2 and CoPP alone or combined with JWH-015 were also assessed. RESULTS The administration of JWH-015 dose dependently inhibited hypersensitivity induced by diabetes. The effects of JWH-015 were enhanced by their coadministration with CORM-2 or CoPP and reversed by SnPP or AM630. The increased protein levels of HO-1 induced by CORM-2 and CoPP treatments were further enhanced in JWH-015-treated mice. All treatments similarly enhanced the peripheral expression of CB2R and avoided the spinal cord over-expression of NOS1 induced by diabetes. CONCLUSIONS The activation of HO-1 enhanced the anti-nociceptive effects of JWH-015 in diabetic mice, suggesting that coadministration of JWH-015 with CORM-2 or CoPP might be an interesting approach for the treatment of painful diabetic neuropathy in mice.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau and Institut de Neurociències. Facultat de Medicina, Edifici M2-115, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
21
|
Castany S, Carcolé M, Leánez S, Pol O. The Induction of Heme Oxygenase 1 Decreases Painful Diabetic Neuropathy and Enhances the Antinociceptive Effects of Morphine in Diabetic Mice. PLoS One 2016; 11:e0146427. [PMID: 26730587 PMCID: PMC4701188 DOI: 10.1371/journal.pone.0146427] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/15/2015] [Indexed: 12/30/2022] Open
Abstract
Painful diabetic neuropathy is a common complication of diabetes mellitus which is poorly controlled by conventional analgesics. This study investigates if treatment with an heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), could modulate the allodynia and hyperalgesia induced by diabetes and enhanced the antinociceptive effects of morphine. In a diabetic mice model induced by the injection of streptozotocin (STZ), we evaluated the antiallodynic and antihyperalgesic effects produced by the intraperitoneal administration of 5 and 10 mg/kg of CoPP at several days after its administration. The antinociceptive actions produced by the systemic administration of morphine alone or combined with CoPP were also evaluated. In addition, the effects of CoPP treatment on the expression of HO-1, the microglial activation marker (CD11b/c), the inducible nitric oxide synthase (NOS2) and μ-opioid receptors (MOR), were also assessed. Our results showed that the administration of 10 mg/kg of CoPP during 5 consecutive days completely blocked the mechanical and thermal hypersensitivity induced by diabetes. These effects are accompanied by the increased spinal cord, dorsal root ganglia and sciatic nerve protein levels of HO-1. In addition, the STZ-induced activation of microglia and overexpression of NOS2 in the spinal cord were inhibited by CoPP treatment. Furthermore, the antinociceptive effects of morphine were enhanced by CoPP treatment and reversed by the administration of an HO-1 inhibitor, tin protoporphyrin IX (SnPP). The spinal cord expression of MOR was also increased by CoPP treatment in diabetic mice. In conclusion, our data provide the first evidence that the induction of HO-1 attenuated STZ-induced painful diabetic neuropathy and enhanced the antinociceptive effects of morphine via inhibition of microglia activation and NOS2 overexpression as well as by increasing the spinal cord levels of MOR. This study proposes the administration of CoPP alone or combined with morphine as an interesting therapeutic approach for the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Castany S, Carcolé M, Leánez S, Pol O. The antinociceptive effects of a δ-opioid receptor agonist in mice with painful diabetic neuropathy: Involvement of heme oxygenase 1. Neurosci Lett 2016; 614:49-54. [PMID: 26762785 DOI: 10.1016/j.neulet.2015.12.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/20/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022]
Abstract
Diabetic neuropathy is poorly controlled by classical analgesics and the research of new therapeutic alternatives is indispensable. Our aim is to investigate if treatment with a carbon monoxide-releasing molecule (tricarbonyldichlororuthenium(II) dimer; CORM-2) or an inducible heme oxygenase (HO-1) inducer (cobalt protoporphyrin IX; CoPP) could enhance the antinociceptive effects produced by a δ-opioid receptor (DOR) agonist in mice with painful diabetic neuropathy. In diabetic mice induced by streptozotocin (STZ) injection, the antiallodynic and antihyperalgesic effects produced by the subcutaneous administration of a DOR agonist ([d-Pen(2),d-Pen(5)]-Enkephalin; DPDPE) and the reversion of its effects with the administration of an HO-1 inhibitor (tin protoporphyrin IX; SnPP) were evaluated. Moreover, the antinociceptive effects produced by the intraperitoneal administration of 10mg/kg of CORM-2 or CoPP, alone or combined, with a subanalgesic dose of DPDPE were also assessed. Our results demonstrated that the subcutaneous administration of DPDPE inhibited the mechanical and thermal allodynia as well as the thermal hyperalgesia induced by diabetes in a dose-dependent manner. Moreover, while the antinociceptive effects produced by a low dose of DPDPE were enhanced by CORM-2 or CoPP co-treatments, the inhibitory effects produced by a high dose of DPDPE were completely reversed by the administration of an HO-1 inhibitor, SnPP, indicating the involvement of HO-1 in the antinociceptive effects produced by this DOR agonist during diabetic neuropathic pain in mice. In conclusion, this study shows that the administration of CORM-2 or CoPP combined with a DOR agonist could be an interesting strategy for the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Sílvia Castany
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mireia Carcolé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
23
|
Marcus DJ, Zee M, Hughes A, Yuill MB, Hohmann AG, Mackie K, Guindon J, Morgan DJ. Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase. Mol Pain 2015; 11:34. [PMID: 26065412 PMCID: PMC4465461 DOI: 10.1186/s12990-015-0031-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Morphine and fentanyl are opioid analgesics in wide clinical use that act through the μ-opioid receptor (MOR). However, one limitation of their long-term effectiveness is the development of tolerance. Receptor desensitization has been proposed as a putative mechanism driving tolerance to G protein-coupled receptor (GPCR) agonists. Recent studies have found that tolerance to morphine is mediated by the c-Jun N-terminal Kinase (JNK) signaling pathway. The goal of the present study was to test the hypotheses that: 1) JNK inhibition will be antinociceptive on its own; 2) JNK inhibition will augment morphine antinociception and; 3) JNK mediates chronic tolerance for the antinociceptive effects of morphine using acute (hotplate and tail-flick), inflammatory (10 μl of formalin 2.5%) and chemotherapy (cisplatin 5 mg/kg ip once weekly)-induced neuropathic pain assays. RESULTS We found that JNK inhibition by SP600125 (3 mg/kg) produces a greater antinociceptive effect than morphine (6 mg/kg) alone in the formalin test. Moreover, co-administration of morphine (6 mg/kg) with SP600125 (3 mg/kg) produced a sub-additive antinociceptive effect in the formalin test. We also show that pre-treatment with SP600125 (3 or 10 mg/kg), attenuates tolerance to the antinociceptive effects of morphine (10 mg/kg), but not fentanyl (0.3 mg/kg), in the tail-flick and hotplate tests. Pre-treatment with SP600125 also attenuates tolerance to the hypothermic effects of both morphine and fentanyl. We also examined the role of JNK in morphine tolerance in a cisplatin-induced model of neuropathic pain. Interestingly, treatment with SP600125 (3 mg/kg) alone attenuated mechanical and cold allodynia in a chemotherapy-induced pain model using cisplatin. Strikingly, SP600125 (3 mg/kg) pre-treatment prolonged the anti-allodynic effect of morphine by several days (5 and 7 days for mechanical and cold, respectively). CONCLUSIONS These results demonstrate that JNK signaling plays a crucial role in mediating antinociception as well as chronic tolerance to the antinociceptive effects of morphine in acute, inflammatory, and neuropathic pain states. Thus, inhibition of JNK signaling pathway, via SP600125, represents an efficacious pharmacological approach to delay tolerance to the antinociceptive effects of chronic morphine in diverse pain models.
Collapse
Affiliation(s)
- David J Marcus
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Michael Zee
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA.,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Alex Hughes
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Matthew B Yuill
- Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA.,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA
| | - Josée Guindon
- Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA. .,Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6592, 79430, Lubbock, TX, USA.
| | - Daniel J Morgan
- Department of Anesthesiology, Penn State College of Medicine, 500 University Drive, Room C2850, Mailcode H187, 17033, Hershey, PA, USA. .,Department of Pharmacology, Penn State College of Medicine, 17033, Hershey, PA, USA. .,Department of Psychological and Brain Sciences, Indiana University, 47405, Bloomington, IN, USA. .,Gill Center for Biomolecular Science, Indiana University, 47405, Bloomington, IN, USA.
| |
Collapse
|
24
|
cGMP and cGMP-dependent protein kinase I pathway in dorsal root ganglia contributes to bone cancer pain in rats. Spine (Phila Pa 1976) 2014; 39:1533-41. [PMID: 24921837 DOI: 10.1097/brs.0000000000000456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A prospective, randomized experimental research. OBJECTIVE To demonstrate the role of cGMP (cyclic guanosine monophosphate)-cGKI (cGMP-dependent protein kinase I) pathway in dorsal root ganglia (DRG) in bone cancer pain. SUMMARY OF BACKGROUND DATA Treating bone cancer pain continues to possess a major clinical challenge because the specific cellular and molecular mechanisms underlying bone cancer pain remain elusive. cGMP and cGMP-dependent protein kinases pathway in DRG plays important role in nerve injury-induced hyperexcitability of DRG neurons, as well as neuropathic pain, however, whether this pathway participates in bone cancer pain is unknown. METHODS The rat model of bone cancer pain was produced by intramedullary injection of rat breast cancer cells (Walker 256) into right tibia. Thermal hyperalgesia and mechanical allodynia were measured before and after administration of inhibitor of cGMP-cGKs pathway (Rp-8-pCPT-cGMPS). Immunofluorescence and reverse transcription-polymerase chain reaction were used to reflect expression of cGKI in DRG neurons, whereas the concentration of cGMP in DRG was tested using enzyme-linked immunosorbent assay method. Whole-cell patch clamp was used to record the hyperexcitability of small neurons in DRG with or without cGKs inhibitor after tumor cell implantation (TCI). RESULTS TCI treatment significantly increased the concentration of cGMP in DRG and activity of cGKs in DRG and the spinal cord. TCI treatment also induced upregulation of cGKI messenger ribonucleic acid and protein in DRG, as well as enhanced hyperexcitability in DRG neurons. Spinal administration of Rp-8-pCPT-cGMPS, cGMP-cGKs inhibitor, significantly suppressed TCI-induced activation of cGMP-cGKI signaling, and hyperexcitability of DRG neurons. Meanwhile, in vivo intrathecal delivery of the Rp-8-pCPT-cGMPS significantly prevented and suppressed TCI-induced hyperalgesia and allodynia. CONCLUSION From these results, we confirm that TCI treatment activates cGMP-cGKI signaling pathway and continuing activation of this pathway in DRG is required for hyperalgesia and/or hyperalgesia and allodynia after TCI treatment. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Wang F, Stefano GB, Kream RM. Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: etiological contribution to complex regional pain syndromes (Part II). Med Sci Monit 2014; 20:1188-200. [PMID: 25027291 PMCID: PMC4106931 DOI: 10.12659/msm.890707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cumulating evidence indicated that nerve injury-associated cellular and molecular changes play an essential role in contributing to the development of pathological pain, and more recent findings implicated the critical role of epigenetic mechanisms in pain-related sensitization in the DRG subsequent to nerve injury. In this part of the dyad review (Part II), we reviewed and paid special attention on the etiological contribution of DGR gene expression modulated by epigenetic mechanisms of CRPS. As essential effectors to different molecular activation, we first discussed the activation of various signaling pathways that subsequently from nerve injury, and in further illustrated the fundamental and functional underpinnings of nerve injury-induced pain, in which we argued for the potential epigenetic mechanisms in response to sensitizing stimuli or injury. Therefore, understanding the specific mediating factors that influence individual epigenetic differences contributing to pain sensitivity and responsiveness to analgesics possesses crucial clinical implications.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Affiliated Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - George B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York at Old Westbury, Old Westbury, China (mainland)
| |
Collapse
|
26
|
Staurengo-Ferrari L, Zarpelon AC, Longhi-Balbinot DT, Marchesi M, Cunha TM, Alves-Filho JC, Cunha FQ, Ferreira SH, Casagrande R, Miranda KM, Verri WA. Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Pharmacol Rep 2014; 66:691-8. [PMID: 24948073 DOI: 10.1016/j.pharep.2014.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angeli's salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. METHODS The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. RESULTS PBQ and acetic acid induced significant writhing responses over 20min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. CONCLUSION The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K(+)) signaling pathway.
Collapse
Affiliation(s)
- Larissa Staurengo-Ferrari
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ana C Zarpelon
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Daniela T Longhi-Balbinot
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Mario Marchesi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sergio H Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Londrina State University, Parana, Brazil
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
27
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
28
|
Labuz D, Machelska H. Stronger antinociceptive efficacy of opioids at the injured nerve trunk than at its peripheral terminals in neuropathic pain. J Pharmacol Exp Ther 2013; 346:535-44. [PMID: 23820126 DOI: 10.1124/jpet.113.205344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of opioid receptors on peripheral sensory neurons has the potential for safe pain control, as it lacks centrally mediated side effects. While this approach often only partially suppressed neuropathic pain in animal models, opioids were mostly applied to animal paws although neuropathy was induced at the nerve trunk. Here we aimed to identify the most relevant peripheral site of opioid action for efficient antinociception in neuropathy. On days 2 and 14 following a chronic constriction injury (CCI) of the sciatic nerve in mice, we evaluated dose and time relationships of the effects of μ-, δ-, and κ-opioid receptor agonists injected either at the CCI site or intraplantarly (i.pl.) into the lesioned nerve-innervated paw, on spontaneous paw lifting and heat and mechanical hypersensitivity (using Hargreaves and von Frey tests, respectively). We found that neither agonist diminished spontaneous paw lifting, despite the application site. Heat hypersensitivity was partially attenuated by i.pl. μ-receptor agonist only, while it was improved by all three agonists applied at the CCI site. Mechanical hypersensitivity was slightly diminished by all agonists administered i.pl., whereas it was completely blocked by all opioids injected at the CCI site. These antinociceptive effects were opioid receptor type-selective and site-specific. Thus, opioids might not be effective against spontaneous pain, but they improve heat and mechanical hypersensitivity in neuropathy. Importantly, efficient alleviation of hypersensitivity is governed by peripheral opioid receptors at the injured nerve trunk rather than at its peripheral terminals. Identifying the primary action site of analgesics is important for the development of adequate pain therapies.
Collapse
Affiliation(s)
- Dominika Labuz
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
29
|
Mena F, González-Hernández A, Navarro N, Castilla A, Morales T, Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M. Prolactin fractions from lactating rats elicit effects upon sensory spinal cord cells of male rats. Neuroscience 2013; 248:552-61. [PMID: 23830906 DOI: 10.1016/j.neuroscience.2013.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/24/2013] [Accepted: 06/23/2013] [Indexed: 12/31/2022]
Abstract
Recently it has been suggested that the neurohormone prolactin (PRL) could act on the afferent nociceptive neurons. Indeed, PRL sensitizes transient receptor potential vanilloid 1 (TRPV1) channels present in nociceptive C-fibers and consequently reduces the pain threshold in a model of inflammatory pain. Accordingly, high plasma PRL levels in non-lactating females have been associated with several painful conditions (e.g. migraine). Paradoxically, an increase of PRL secretion during lactation induced a reduction in pain sensitivity. This difference could be attributed to the fact that PRL secreted from the adenopituitary (AP) is transformed into several molecular variants by the suckling stimulation. In order to test this hypothesis, the present study set out to investigate whether PRL from AP of suckled (S) or non-suckled (NS) lactating rats affects the activity of the male Wistar wide dynamic range (WDR) neurons. The WDR neurons are located in the dorsal horn of the spinal cord and receive input from the first-order neurons (Ab-, Ad- and C-fibers). Spinal administration of prolactin variant from NS rats (NS-PRL) or prolactin variant from S rats (S-PRL) had no effect on the neuronal activity of non-nociceptive Ab-fibers. However, the activities of nociceptive Ad-fibers and C-fibers were: (i) increased by NS-PRL and (ii) diminished by S-PRL. Either NS-PRL or S-PRL enhanced the post-discharge activity. Taken together, these results suggest that PRL from S or NS lactating rats could either facilitate or depress the nociceptive responses of spinal dorsal horn cells, depending on the physiological state of the rats.
Collapse
Affiliation(s)
- F Mena
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - A González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - N Navarro
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - A Castilla
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - T Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - G Rojas-Piloni
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - G Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico
| | - M Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla 3001, Querétaro 76230, Mexico.
| |
Collapse
|
30
|
Treatment with Carbon Monoxide-releasing Molecules and an HO-1 Inducer Enhances the Effects and Expression of µ-Opioid Receptors during Neuropathic Pain. Anesthesiology 2013; 118:1180-97. [DOI: 10.1097/aln.0b013e318286d085] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Background:
The administration of µ-opioid receptors (MOR) and δ-opioid receptors (DOR) as well as cannabinoid-2 receptor (CB2R) agonists attenuates neuropathic pain. We investigated if treatment with two carbon monoxide-releasing molecules (CORM-2 and CORM-3) or an inducible heme oxygenase inducer (cobalt protoporphyrin IX, CoPP) could modulate the local and systemic effects and expression of MOR, DOR, and CB2R during neuropathic pain.
Methods:
In C57BL/6 mice, at 10 days after the chronic constriction of sciatic nerve, we evaluated the effects of the intraperitoneal administration of 10 mg/kg of CORM-2, CORM-3, or CoPP on the antiallodynic and antihyperalgesic actions of a locally or systemically administered MOR (morphine), DOR ([d-Pen(2),d-Pen(5)]-enkephalin) or CB2R ((2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenylmethanone ) agonist. The effects of CORM-2 and CoPP treatments on the expression of MOR, DOR, CB2R, inducible and constitutive heme oxygenases, microglia activation marker (CD11b/c), and neuronal and inducible nitric oxide synthases were also assessed.
Results:
Treatments with CO-RMs and CoPP reduced the mechanical and thermal hypersensitivity induced by sciatic nerve injury, increased the local, but not systemic, antinociceptive effects of morphine, and decreased those produced by DPDPE and JWH-015. Both CORM-2 and CoPP treatments enhanced MOR and inducible heme oxygenase expression, unaltered DOR and constitutive heme oxygenase expression, and decreased the overexpression of CB2R, CD11b/c, and neuronal and inducible nitric oxide synthases induced by sciatic nerve injury.
Conclusions:
This study shows that CO-RMs and CoPP treatments increase the local antinociceptive effects of morphine through enhancing MOR peripheral expression and inhibiting spinal microglial activation and overexpression of neuronal/inducible nitric oxide synthases.
Collapse
|