1
|
Liang Y, Shi C, Wang Y, Fan B, Song W, Shen R. MiR-363-3p induces tamoxifen resistance in breast cancer cells through PTEN modulation. Sci Rep 2024; 14:32135. [PMID: 39738797 DOI: 10.1038/s41598-024-83938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Nowadays, the investigation for overcoming tamoxifen (TAM) resistance is confronting a considerable challenge. Therefore, immediate attention is required to elucidate the mechanism underlying TAM resistance in breast cancer. This research primarily aimed to define how miRNA-363-3p facilitates resistance to TAM in breast cancer. High-throughput miRNA sequencing was performed using RNAs prepared from breast cancer MCF-7 cells and TAM-resistant MCF-7 cells (MCF-7-TAM). An increase in miRNA-363-3p levels was observed in MCF-7-TAM cells. In MCF-7 cells, miRNA-363-3p directly targeted and negatively regulated phosphatase and tensin homolog (PTEN). Reduction of miRNA-363-3p retarded cell growth and accelerated cell apoptosis, thereby enhancing the sensitivity of TAM. Moreover, analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed significant enrichment of target genes within the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. Ultimately, miR-363-3p decreased the responsiveness of breast cancer cells to TAM by targeting and suppressing PTEN through a mechanism associated with the PI3K-Akt pathway. Therefore, these results suggest that miR-363-3p-dependent PTEN expression contributes to the mechanisms underlying breast cancer endocrine resistance.
Collapse
Affiliation(s)
- Yaning Liang
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Cuiyu Shi
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Bingjie Fan
- Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Rong Shen
- Department of Minimally Invasive Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Jin C, Gao X, Ni J, Zhang B, Wang Z. MiR-592 Attenuates Tamoxifen Resistance in Breast Cancer Through PIK3CA-Mediated PI3K/AKT/mTOR Signaling Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05123-x. [PMID: 39661080 DOI: 10.1007/s12010-024-05123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Tamoxifen (TAM) is vital in breast cancer (BC) treatment, yet its resistance significantly impairs its efficacy. While miR-592 is known for its suppressive role in BC, its effect on chemotherapy resistance remains unclear. In this study, we observed a significant reduction in miR-592 levels in TAM-resistant BC tissues and cell lines. Low miR-592 expression was significantly associated with advanced TNM stage, lymph node metastasis, and poorer patient survival. Dual-luciferase assay confirmed miR-592 binding to the predicted gene PIK3CA. Increasing miR-592 levels decreased the IC50 of TAM, inhibited cell viability, migration, and invasion, and enhanced apoptosis in vitro, which was mimicked by PIK3CA knockdown and reversed by PIK3CA overexpression. Moreover, miR-592 upregulation suppressed tumor growth and improved TAM responsiveness in vivo. Molecularly, both si-PIK3CA and miR-592 mimics decreased the expression ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, while increasing cleaved caspase-3 and E-cadherin expression in MCF-7/TAM cells. PIK3CA overexpression partially reversed these reductions. In conclusion, our study demonstrates that miR-592 attenuates TAM resistance by inhibiting the PIK3CA-driven PI3K/AKT/mTOR signaling pathway, representing a promising strategy to address chemoresistance in BC.
Collapse
Affiliation(s)
- Conghui Jin
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, P.R. China
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, 226361, Jiangsu, P.R. China
| | - Xiangxiang Gao
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, 226361, Jiangsu, P.R. China
| | - Jingyi Ni
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, 226361, Jiangsu, P.R. China
| | - Baochun Zhang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, 226361, Jiangsu, P.R. China
| | - Zhenxin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, P.R. China.
| |
Collapse
|
3
|
Verhoog NJD, Spies LML. The anti-aromatase and anti-estrogenic activity of plant products in the treatment of estrogen receptor-positive breast cancer. J Steroid Biochem Mol Biol 2024; 243:106581. [PMID: 38997071 DOI: 10.1016/j.jsbmb.2024.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively. The use of SOC hormone therapies is, however, significantly hampered by the onset of severe side-effects and the development of resistance. Given that numerous studies have reported on the beneficial effects of plant compounds and/or extracts and the multiple pathways through which they target ER+ breast carcinogenesis, recent research has focused on the use of dietary chemopreventive agents for BC management. When combined with SOC treatments, several of these plant components and/or extracts have demonstrated improved efficacy and/or synergistic impact. Moreover, despite a lack of in vivo investigations, plant products are generally reported to have a lower side-effect profile than SOC therapies and are therefore thought to be a safer therapeutic choice. Thus, the current review summarizes the findings from the last five years regarding the anti-aromatase and anti-estrogenic activity of plant products, as well as their synergistic anti-ER+ BC effects in combination with SOC therapies.
Collapse
Affiliation(s)
| | - Lee-Maine Lorin Spies
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch, 7601, South Africa
| |
Collapse
|
4
|
Khan MM, Yalamarty SSK, Rajmalani BA, Filipczak N, Torchilin VP. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol 2024; 197:104351. [PMID: 38615873 DOI: 10.1016/j.critrevonc.2024.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/24/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Breast cancer is potentially a lethal disease and a leading cause of death in women. Chemotherapy and radiotherapy are the most frequently used treatment options. Drug resistance in advanced breast cancer limits the therapeutic output of treatment. The leading cause of resistance in breast cancer is endocrine and hormonal imbalance, particularly in triple negative and HER2 positive breast cancers. The efflux of drugs due to p-gp's activity is another leading cause of resistance. Breast cancer resistant protein also contributes significantly. Strategies used to combat resistance include the use of nanoparticles to target drug delivery by co-delivery of chemotherapeutic drugs and genes (siRNA and miRNA) that help to down-regulate genes causing resistance. The siRNA is specific and effectively silences p-gp and other proteins causing resistance. The use of chemosensitizers is also effective in overcoming resistance. Chemo-sensitizers sensitize cancer cells to the effects of chemotherapeutic drugs. Novel anti-neoplastic agents such as antibody-drug conjugates and mesenchymal stem cells are also effective tools used to improve the therapeutic response in breast cancer. Similarly, combination of photo/thermal ablation with chemotherapy can act to overcome breast cancer resistance. In this review, we focus on the mechanism of breast cancer resistance and the nanoparticle-based strategies used to combat resistance in breast cancer.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center of Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Chaudhary P, Yadav K, Lee HJ, Kang KW, Mo J, Kim JA. siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression. Breast Cancer Res 2024; 26:72. [PMID: 38664825 PMCID: PMC11046805 DOI: 10.1186/s13058-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ho Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
6
|
Li X, Zhang Y, Zhang T, Zhao L, Lin CG, Hu H, Zheng H. Tafazzin mediates tamoxifen resistance by regulating cellular phospholipid composition in ER-positive breast cancer. Cancer Gene Ther 2024; 31:69-81. [PMID: 37935981 DOI: 10.1038/s41417-023-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Tamoxifen is the frontline therapeutic agent for the estrogen receptor-positive (ER + ) subtype of breast cancer patients, which accounts for 70-80% of total breast cancer incidents. However, clinical resistance to tamoxifen has become increasingly common, highlighting the need to identify the underlying cellular mechanisms. In our study, we employed a genome-scale CRISPR-Cas9 loss-of-function screen and validation experiments to discover that Tafazzin (TAZ), a mitochondrial transacylase, is crucial for maintaining the cellular sensitivity of ER+ breast cancer cells to tamoxifen and other chemotherapies. Mechanistically, we found that cardiolipin, whose synthesis and maturation rely on TAZ, is required to maintain cellular sensitivity to tamoxifen. Loss of metabolic enzymatic activity of TAZ causes ERα downregulation and therapy resistance. Interestingly, we observed that TAZ deficiency also led to the upregulation of lysophosphatidylcholine (LPC), which in turn suppressed ERα expression and nuclear localization, thereby contributing to tamoxifen resistance. LPC is further metabolized to lysophosphatidic acid (LPA), a bioactive molecule that supports cell survival. Thus, our findings suggest that the depletion of TAZ promotes tamoxifen resistance through an LPC-LPA phospholipid synthesis axis, and targeting this lipid metabolic pathway could restore cell susceptibility to tamoxifen treatment.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Luyang Zhao
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Christopher G Lin
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
7
|
Xu Y, Cai H, Xiong Y, Tang L, Li L, Zhang L, Shen Y, Yang Y, Lin L, Huang J. YAP/TAZ axis was involved in the effects of metformin on breast cancer. J Chemother 2023; 35:627-637. [PMID: 36656142 DOI: 10.1080/1120009x.2022.2162221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is malignant tumours in women. A large amount of data analysis shows that Metformin has been shown to play a significance role in reducing the risk of breast cancer, but the mechanism remains unclear. The hippo signalling pathway can be involved in the formation, metastasis and recurrence of breast cancer. When YAP/TAZ is activated, cells can overcome contact inhibition and enter a state of uncontrolled proliferation. Therefore, YAP/TAZ is considered a potential therapeutic target for breast cancer. Eighty breast cancer patients, forty cases of triple-negative and forty cases of HER-2+, were included in this study. In vitro and in vivo experiments were used to confirm the YAP/TAZ axis was involved in the effects of metformin on breast cancer. EMT plays an important role in breast cancer, including chemoresistance and tumour metastasis. Our results confirmed that YAP could modulate the activity of EMT, which in turn altered tumour resistance. Therefore, MET can inhibit EMT by reducing the expression of YAP, and finally achieve the therapeutic effect of breast cancer. Our findings support metformin as a novel YAP inhibitor and potentially as a novel breast cancer drug.
Collapse
Affiliation(s)
- Yu Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Hongke Cai
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanfeng Xiong
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Soussi M, Hasselsweiller A, Gkika D. TRP Channels: The Neglected Culprits in Breast Cancer Chemotherapy Resistance? MEMBRANES 2023; 13:788. [PMID: 37755210 PMCID: PMC10536409 DOI: 10.3390/membranes13090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Breast cancer is a major health concern worldwide, and resistance to therapies remains a significant challenge in treating this disease. In breast cancer, Transient Receptor Potential (TRP) channels are well studied and constitute key players in nearly all carcinogenesis hallmarks. Recently, they have also emerged as important actors in resistance to therapy by modulating the response to various pharmaceutical agents. Targeting TRP channels may represent a promising approach to overcome resistance to therapies in breast cancer patients.
Collapse
Affiliation(s)
| | | | - Dimitra Gkika
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.S.); (A.H.)
| |
Collapse
|
9
|
Zhang M, Wang M, Jiang Z, Fu Z, Ma J, Gao S. Candidate Oligo Therapeutic Target, miR-330-3p, Induces Tamoxifen Resistance in Estrogen Receptor-Positive Breast Cancer Cells via HDAC4. Breast J 2023; 2023:2875972. [PMID: 37711168 PMCID: PMC10499526 DOI: 10.1155/2023/2875972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
Tamoxifen is a drug used for treating breast cancer (BC), especially for individuals diagnosed with estrogen receptor-positive (ER+) BC. Its prolonged use could reduce the risk of recurrence and significantly lengthen the survival rate of BC patients. However, an increasing number of patients developed resistance to tamoxifen treatment, which reduced therapeutic efficiency and caused substandard prognosis. Therefore, the exploration of the molecular processes involved in tamoxifen resistance (TR) is urgently required. This investigation aimed to elucidate the relationship of microRNA-330 (miR-330-3p) with the TR of BC. There is little information on miR-330-3p's link with drug-resistant BC, although it is well known to regulate cell proliferation and apoptosis. Primarily, miR-330-3p expression in parental BC (MCF7/T47D), TR (MCF7-TR), and T47D/TR cell lines was detected by qRT-PCR. Then, the impact of miR-330-3p on the TR of BC cells was assessed by a cell proliferation assay. Lastly, dual-luciferase reporter, qRT-PCR, and western blot assessments were carried out to identify histone deacetylase 4 (HDAC4) as the potential miR-330-3p target gene. The data indicated that miRNA-330 was overexpressed in TR ER+ BC cells and its overexpression could induce TR. Furthermore, miRNA-330 could also reduce the expression of HDAC4, which is closely linked to TR, and overexpression of HDAC4 could reverse miRNA-330-induced drug resistance. In summary, miR-330-3p could induce TR of ER+ BC cells by downregulating HDAC4 expression, which might be a novel marker of TR and a possible treatment target against BC patients who are tamoxifen-resistant.
Collapse
Affiliation(s)
- Meng Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mei Wang
- Department of Pathology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Zhiming Jiang
- Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyi Fu
- Department of Breast Disease Research Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Ma
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Sheng Gao
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| |
Collapse
|
10
|
Zhao H, Wu S, Liu H, Luo Z, Sun J, Jin X. Relationship between food-derived antioxidant vitamin intake and breast cancer risk: a mendelian randomized study. Eur J Nutr 2023; 62:2365-2373. [PMID: 37100890 DOI: 10.1007/s00394-023-03158-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND In previous observational studies, food-derived antioxidant vitamins have been suggested to be associated with breast cancer. However, the findings were inconsistent and the causal relationship could not be clearly elucidated. To confirm the potential causal relationship between food-derived antioxidants (retinol, carotene, vitamin C and vitamin E) and the risk of breast cancer, we conducted a two-sample Mendelian randomization (MR) study. METHODS The instrumental variables (IVs) as proxies of genetic liability to food-derived antioxidant vitamins were obtained from the UK Biobank Database. We extracted breast cancer data (122,977 cases and 105,974 controls) from the Breast Cancer Consortium (BCAC). In addition, we studied estrogen expression status categorically, including estrogen receptor positive (ER+) breast cancer (69,501 cases and 105,974 controls) and versus estrogen receptor (ER-) negative breast cancer (21,468 cases and 105,974 controls). We performed two-sample Mendelian randomization study, and inverse variance-weighted (IVW) test was regarded as main analysis. Sensitivity analyses were further conducted to assess heterogeneity and horizontal pleiotropy. RESULTS The results of IVW showed that among the four food-derived antioxidants, only vitamin E had protective effect on the risk of overall breast cancer (OR = 0.837, 95% CI 0.757-0.926, P = 0.001) and ER+ breast cancer (OR = 0.823, 95% CI 0.693-0.977, P = 0.026). However, we found no association between food-derived vitamin E and ER- breast cancer. CONCLUSIONS Our study suggested food-derived vitamin E can decrease the risk of breast cancer overall and ER+ breast cancer, and the robustness of our results was confirmed by sensitivity analyses.
Collapse
Affiliation(s)
- Hang Zhao
- School of Clinical Medicine, Peking University China-Japan Friendship, Beijing, China
- China-Japan Friendship Hospital, Yinghuadong Road, Chaoyang District, Beijing, 100029, China
| | - Shengnan Wu
- The First Affiliated Hospital of China Medical University, Shengyang, China
| | - Hailong Liu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhenkai Luo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junwei Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xiaolin Jin
- Department of International Physical Examination Center, The First Affiliated Hospital of China Medical University, Shengyang, China.
| |
Collapse
|
11
|
Patellongi I, Amiruddin A, Massi MN, Islam AA, Pratama MY, Sutandyo N, Latar NH, Faruk M. Circulating miR-221/222 expression as microRNA biomarker predicting tamoxifen treatment outcome: a case-control study. Ann Med Surg (Lond) 2023; 85:3806-3815. [PMID: 37554919 PMCID: PMC10406100 DOI: 10.1097/ms9.0000000000001061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
The high mortality rate in breast cancer (BC) patients is generally due to metastases resistant to systemic therapy. Two causes of systemic therapy resistance in BC patients are circulating miRNAs-221 and miR-222, leading to improved BC cell proliferation, survival, and reduced cell apoptosis. This study investigated the miRNA expression changes associated with cancer cell resistance to tamoxifen therapy and is expected to be clinically meaningful before providing endocrine therapy to luminal-type BC patients who express them. Methods This case-control research included individuals with the luminal subtype of BC who had received tamoxifen medication for around one year. Furthermore, the case group contained 15 individuals with local recurrence or metastases, while the control group comprised 19 patients without local recurrence or metastases. Plasma miR-221/222 quantification was performed with real-time PCR using transcript-specific primers. Results A significant difference was found in circulating miR-221 expression between cases and controls (P=0.005) but not in miR-222 expression (P=0.070). There were no significant differences between miR-221/222 expression, progesterone receptor, Ki67 protein levels, lymphovascular invasion, and stage. However, receiver operator characteristic curve analyses showed miR-221/222 expressions predictive of tamoxifen resistance (P=0.030) with a sensitivity of 60.00 and a specificity of 83.33%. Conclusion The use of circulating miR-221/222 expression can predict relapse as well as resistance to tamoxifen treatment in BC patients, and their testing is recommended for luminal subtype BC patients who will undergo tamoxifen therapy to determine their risk of tamoxifen resistance early, increasing treatment effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Noorwati Sutandyo
- Department of Medical Hematology-Oncology, Dharmais Hospital National Cancer Center, Jakarta, Indonesia
| | - Nani H.M. Latar
- Endocrine and Breast Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Universitas Hasanuddin, Makassar
| |
Collapse
|
12
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
13
|
Daoui O, Mali SN, Elkhattabi K, Elkhattabi S, Chtita S. Repositioning Cannabinoids and Terpenes as Novel EGFR-TKIs Candidates for Targeted Therapy Against Cancer: A virtual screening model using CADD and biophysical simulations. Heliyon 2023; 9:e15545. [PMID: 37128337 PMCID: PMC10148140 DOI: 10.1016/j.heliyon.2023.e15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.
Collapse
Affiliation(s)
- Ossama Daoui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
- Corresponding author.
| | - Suraj N. Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, India, 835215
| | - Kaouakeb Elkhattabi
- Department of Fundamental Sciences, Faculty of Dental Medicine, Mohammed V University in Rabat, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, P.O. Box 72, Fez, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P.O. Box 7955, Casablanca, Morocco
| |
Collapse
|
14
|
Adjuvant radiation therapy for older women with early-stage breast cancer: a propensity-matched SEER analysis. Clin Transl Oncol 2023; 25:523-534. [PMID: 36227413 PMCID: PMC9873780 DOI: 10.1007/s12094-022-02967-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023]
Abstract
INTRODUCTION The purpose was to evaluate the effect of adjuvant radiation therapy on the survival prognosis of older women with early-stage breast cancer under different surgical treatments. METHODS We collected patients from the Surveillance, Epidemiology and End Results (SEER) database. Elderly female patients (≥ 70 years) with stage I-IIB diagnosed with invasive carcinoma in 1988-2017 were included. After propensity score matching (PSM), the prognosis of patients who underwent breast-conserving surgery or mastectomy was calculated separately. The effects of radiotherapy on the survival of three special population groups (breast-conserving surgery + T1N0M0 + ER positive, mastectomy + T3N0M0 and mastectomy + T1-2N1M0) were analyzed selectively. RESULTS Of 106,553 older women with early-stage breast cancer were identified. 48,630 patients had received radiotherapy, while 57,923 patients had not. After PSM, older women undergoing breast-conserving surgery benefited significantly from radiotherapy (both OS and BCSS p < 0.001), for patients with T1N0M0 and ER-positive breast cancer (both OS and BCSS p < 0.001). In the subgroup of T1-2N1M0 breast cancer treated by mastectomy, patients undergoing radiotherapy had a worse survival as well (OS p < 0.001; BCSS p = 0.0907). While in the subgroup of T3N0M0 breast cancer treated by mastectomy, survival analyses showed no statistical differences between patients receiving radiation or not (OS p = 0.1778, BCSS p = 0.6957). CONCLUSIONS This study indicated the clinical effects of radiation on older women who received different surgical treatments. Our study suggested that radiotherapy should be omitted in older women undergoing mastectomy + T3N0M0 or T1-2N1M0 and radiotherapy could be considered in women with T1N0M0 + ER-positive undergoing breast-conserving surgery.
Collapse
|
15
|
Malash I, Mansour O, Gaafar R, Shaarawy S, Abdellateif MS, Ahmed OS, Zekri ARN, Bahnassy A. Her2/EGFR-PDGFR pathway aberrations associated with tamoxifen response in metastatic breast cancer patients. J Egypt Natl Canc Inst 2022; 34:31. [DOI: 10.1186/s43046-022-00132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Metastatic breast cancer (MBC) is a major health problem worldwide. Some patients improve on tamoxifen and others do not respond to treatment. Therefore, the aim of the current study is to assess genetic aberrations in the Her2/EGFR-PDGFR pathway associated with tamoxifen response in MBC patients.
Methods
This is a retrospective cohort study, including 157 hormone receptors positive, locally recurrent inoperable and/or MBC patients on tamoxifen treatment. Patients were categorized into 78 (49.7%) tamoxifen responders and 79 (50.3%) tamoxifen non-responder patients. Genetic aberrations of 84 genes involved in the Her2/EGFR-PDGFR pathway were assessed in the tumor tissue samples obtained from the patients using SA-Bioscience assay. The identified panel was correlated to patients’ response to treatment, to detect the differentially expressed genes in tamoxifen responders and non-responders.
Results
One hundred twenty-three (78.3%) patients were estrogen receptor (ER) and progesterone receptor (PR) positive, 108 (68.8%) were ER only positive, and 78 (49.7%) were PR only positive. There were 56 genes overexpressed in the refractory group compared to responders. However, only five out of these 56 genes, Janus kinase 1 (JAK1), collagen type I alpha 1 (COL1A1), GRB2-associated binding protein 1 (GAB1), fibronectin-1 (FN1), and MAP kinase-interacting serine/threonine-protein kinase (MKNK1), showed statistical significance between the two groups. Patients with bone metastasis showed a better response to treatment compared to those with metastatic deposits in other sites such as visceral metastasis (P < 0.005).
Conclusions
Genetic profiling using simple quantitative real-time polymerase chain reaction (qRT-PCR) protocols could be used to assess response to tamoxifen treatment in MBC patients. According to our data, a five-gene panel in the EGFR pathway (JAK1, COL1A1, GAB1, FN1 and MKNK1) could be used to categorize MBC patients into groups according to treatment response.
Collapse
|
16
|
Bouyahya A, El Allam A, Aboulaghras S, Bakrim S, El Menyiy N, Alshahrani MM, Al Awadh AA, Benali T, Lee LH, El Omari N, Goh KW, Ming LC, Mubarak MS. Targeting mTOR as a Cancer Therapy: Recent Advances in Natural Bioactive Compounds and Immunotherapy. Cancers (Basel) 2022; 14:5520. [PMID: 36428613 PMCID: PMC9688668 DOI: 10.3390/cancers14225520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine-protein kinase, which regulates many biological processes related to metabolism, cancer, immune function, and aging. It is an essential protein kinase that belongs to the phosphoinositide-3-kinase (PI3K) family and has two known signaling complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Even though mTOR signaling plays a critical role in promoting mitochondria-related protein synthesis, suppressing the catabolic process of autophagy, contributing to lipid metabolism, engaging in ribosome formation, and acting as a critical regulator of mRNA translation, it remains one of the significant signaling systems involved in the tumor process, particularly in apoptosis, cell cycle, and cancer cell proliferation. Therefore, the mTOR signaling system could be suggested as a cancer biomarker, and its targeting is important in anti-tumor therapy research. Indeed, its dysregulation is involved in different types of cancers such as colon, neck, cervical, head, lung, breast, reproductive, and bone cancers, as well as nasopharyngeal carcinoma. Moreover, recent investigations showed that targeting mTOR could be considered as cancer therapy. Accordingly, this review presents an overview of recent developments associated with the mTOR signaling pathway and its molecular involvement in various human cancer types. It also summarizes the research progress of different mTOR inhibitors, including natural and synthetised compounds and their main mechanisms, as well as the rational combinations with immunotherapies.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Aicha El Allam
- Department of Immunology, Yale University School of Medicine, 333 Cedars Street, TAC S610, New Haven, CT 06519, USA
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnologies and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | | |
Collapse
|
17
|
Relationship of micro-RNA, mRNA and eIF Expression in Tamoxifen-Adapted MCF-7 Breast Cancer Cells: Impact of miR-1972 on Gene Expression, Proliferation and Migration. Biomolecules 2022; 12:biom12070916. [PMID: 35883472 PMCID: PMC9312698 DOI: 10.3390/biom12070916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Tamoxifen-adapted MCF-7-Tam cells represent an in-vitro model for acquired tamoxifen resistance, which is still a problem in clinics. We here investigated the correlation of microRNA-, mRNA- and eukaryotic initiation factors (eIFs) expression in this model. Methods: MicroRNA- and gene expression were analyzed by nCounter and qRT-PCR technology; eIFs by Western blotting. Protein translation mode was determined using a reporter gene assay. Cells were transfected with a miR-1972-mimic. Results: miR-181b-5p,-3p and miR-455-5p were up-, miR-375, and miR-1972 down-regulated and are significant in survival analysis. About 5% of the predicted target genes were significantly altered. Pathway enrichment analysis suggested a contribution of the FoxO1 pathway. The ratio of polio-IRES driven to cap-dependent protein translation shifted towards cap-dependent initiation. Protein expression of eIF2A, -4G, -4H and -6 decreased, whereas eIF3H was higher in MCF-7-Tam. Significant correlations between tamoxifen-regulated miRNAs and eIFs were found in representative breast cancer cell lines. Transfection with a miR-1972-mimic reverses tamoxifen-induced expression for a subset of genes and increased proliferation in MCF-7, but reduced proliferation in MCF-7-Tam, especially in the presence of 4OH-tamoxifen. Migration was inhibited in MCF-7-Tam cells. Translation mode remained unaffected. Conclusions: miR-1972 contributes to the orchestration of gene-expression and physiological consequences of tamoxifen adaption.
Collapse
|
18
|
Attia YM, Salama SA, Shouman SA, Ivan C, Elsayed AM, Amero P, Rodriguez-Aguayo C, Lopez-Berestein G. Targeting CDK7 reverses tamoxifen resistance through regulating stemness in ER+ breast cancer. Pharmacol Rep 2022; 74:366-378. [PMID: 35000145 DOI: 10.1007/s43440-021-00346-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Although tamoxifen is the mainstay endocrine therapy for estrogen receptor-positive (ER+) breast cancer patients, the emergence of tamoxifen resistance is still the major challenge that results in treatment failure. Tamoxifen is very effective in halting breast cancer cell proliferation; nonetheless, the ability of tamoxifen to target cancer stem and progenitor cell populations (CSCs), a major key player for the emergence of tamoxifen resistance, has not been adequately investigated yet. Thus, we explored whether targeting CDK7 modulates CSCs subpopulation and tamoxifen resistance in ER+ breast cancer cells. METHODS Mammosphere-formation assay, stem cell biomarkers and tamoxifen sensitivity were analyzed in MCF7 tamoxifen-sensitive cell line and its resistant counterpart, LCC2, following CDK7 targeting by THZ1 or siRNA. RESULTS Analysis of clinically relevant data indicated that expression of stemness factor, SOX2, was positively correlated with CDK7 expression in tamoxifen-treated patients. Moreover, overexpression of the stemness gene, SOX2, was associated with shorter overall survival in those patients. Importantly, the number of CSC populations and the expression of CDK7, P-Ser118-ER-α and c-MYC were significantly higher in LCC2 cells compared with parental MCF-7 cells. Moreover, targeting CDK7 inhibited mammosphere formation, CSC-regulating genes, and CSC biomarkers expression in MCF-7 and LCC2 cells. CONCLUSION Our data indicate, for the first time, that CDK7-targeted therapy in ER+ breast cancer ameliorates tamoxifen resistance, at least in part, by inhibiting cancer stemness. Thus, targeting CDK7 might represent a potential approach for relieving tamoxifen resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Yasmin M Attia
- Pharmacology and Experimental Therapeutics Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt. .,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Salama A Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt.
| | - Samia A Shouman
- Pharmacology and Experimental Therapeutics Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo, 11796, Egypt
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abdelrahman M Elsayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11651, Egypt.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Chen P, Li B, Ou-Yang L. Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne) 2022; 13:839005. [PMID: 36060947 PMCID: PMC9433670 DOI: 10.3389/fendo.2022.839005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/26/2022] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptors (ERs) regulate multiple complex physiological processes in humans. Abnormal ER signaling may result in various disorders, including reproductive system-related disorders (endometriosis, and breast, ovarian, and prostate cancer), bone-related abnormalities, lung cancer, cardiovascular disease, gastrointestinal disease, urogenital tract disease, neurodegenerative disorders, and cutaneous melanoma. ER alpha (ERα), ER beta (ERβ), and novel G-protein-coupled estrogen receptor 1 (GPER1) have been identified as the most prominent ERs. This review provides an overview of ERα, ERβ, and GPER1, as well as their functions in health and disease. Furthermore, the potential clinical applications and challenges are discussed.
Collapse
Affiliation(s)
| | - Bo Li
- *Correspondence: Bo Li, libo‐‐
| | | |
Collapse
|
20
|
Grote I, Bartels S, Kandt L, Bollmann L, Christgen H, Gronewold M, Raap M, Lehmann U, Gluz O, Nitz U, Kuemmel S, Zu Eulenburg C, Braun M, Aktas B, Grischke EM, Schumacher C, Luedtke-Heckenkamp K, Kates R, Wuerstlein R, Graeser M, Harbeck N, Christgen M, Kreipe H. TP53 mutations are associated with primary endocrine resistance in luminal early breast cancer. Cancer Med 2021; 10:8581-8594. [PMID: 34779146 PMCID: PMC8633262 DOI: 10.1002/cam4.4376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Background Whereas the genomic landscape of endocrine‐resistant breast cancer has been intensely characterized in previously treated cases with local or distant recurrence, comparably little is known about genomic alterations conveying primary non‐responsiveness to endocrine treatment in luminal early breast cancer. Methods In this study, 622 estrogen receptor‐expressing breast cancer cases treated with short‐term preoperative endocrine therapy (pET) from the WSG‐ADAPT trial (NCT01779206) were analyzed for genetic alterations associated with impaired endocrine proliferative response (EPR) to 3‐week pET with tamoxifen or aromatase inhibitors. EPR was categorized as optimal (post‐pET Ki67 <10%) versus slightly, moderately, and severely impaired (post‐pET Ki67 10%–19%, 20%–34%, and ≥35%, respectively). Recently described gene mutations frequently found in previously treated advanced breast cancer were analyzed (ARID1A, BRAF, ERBB2, ESR1, GATA3, HRAS, KRAS, NRAS, PIK3CA, and TP53) by next‐generation sequencing. Amplifications of CCND1, FGFR1, ERBB2, and PAK1 were determined by digital PCR or fluorescence in situ hybridization. Results ERBB2 amplification (p = 0.0015) and mutations of TP53 (p < 0.0001) were significantly associated with impaired EPR. Impaired EPR in TP53‐mutated breast cancer cases was independent from the Oncotype DX Recurrence Score group and was seen both with tamoxifen‐ and aromatase inhibitor‐based pET (p = 0.0005 each). Conclusion We conclude that impaired EPR to pET is suitable to identify cases with primary endocrine resistance in early luminal breast cancer and that TP53‐mutated luminal cancers might not be sufficiently treated by endocrine therapy alone.
Collapse
Affiliation(s)
- Isabel Grote
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Stephan Bartels
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Leonie Kandt
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Laura Bollmann
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | | | - Malte Gronewold
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Mieke Raap
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Ulrich Lehmann
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Oleg Gluz
- West German Study Group, Moenchengladbach, Germany.,Ev. Bethesda Hospital, Moenchengladbach, Germany.,University Clinics Cologne, Women's Clinic and Breast Center, Cologne, Germany
| | - Ulrike Nitz
- West German Study Group, Moenchengladbach, Germany.,Ev. Bethesda Hospital, Moenchengladbach, Germany
| | - Sherko Kuemmel
- West German Study Group, Moenchengladbach, Germany.,Clinics Essen-Mitte, Breast Unit, Essen, Germany.,Charité, Women's Clinic, Berlin, Germany
| | | | | | - Bahriye Aktas
- University Clinics Essen, Women's Clinic, Essen, Germany.,University Clinics Leipzig, Women's Clinic, Leipzig, Germany
| | | | | | | | - Ronald Kates
- West German Study Group, Moenchengladbach, Germany
| | - Rachel Wuerstlein
- Department OB&GYN and CCC Munich, LMU University Hospital, Breast Center, Munich, Germany
| | - Monika Graeser
- West German Study Group, Moenchengladbach, Germany.,Ev. Bethesda Hospital, Moenchengladbach, Germany.,Department of Gynecology, University Medical Center Hamburg, Hamburg, Germany
| | - Nadia Harbeck
- West German Study Group, Moenchengladbach, Germany.,Department OB&GYN and CCC Munich, LMU University Hospital, Breast Center, Munich, Germany
| | | | - Hans Kreipe
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| |
Collapse
|
21
|
Dal Berto M, Dos Santos GT, Dos Santos AV, Silva AO, Vargas JE, Alves RJV, Barbisan F, da Cruz IBM, Bica CG. Molecular markers associated with the outcome of tamoxifen treatment in estrogen receptor-positive breast cancer patients: scoping review and in silico analysis. Discov Oncol 2021; 12:37. [PMID: 35201456 PMCID: PMC8777552 DOI: 10.1007/s12672-021-00432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Tamoxifen (TMX) is used as adjuvant therapy for estrogen receptor-positive (ER+) breast cancer cases due to its affinity and inhibitory effects. However, about 30% of cases show drug resistance, resulting in recurrence and metastasis, the leading causes of death. A literature review can help to elucidate the main cellular processes involved in TMX resistance. A scoping review was performed to find clinical studies investigating the association of expression of molecular markers profiles with long-term outcomes in ER+ patients treated with TMX. In silico analysis was performed to assess the interrelationship among the selected markers, evaluating the joint involvement with the biological processes. Forty-five studies were selected according to the inclusion and exclusion criteria. After clustering and gene ontology analysis, 23 molecular markers were significantly associated, forming three clusters of strong correlation with cell cycle regulation, signal transduction of proliferative stimuli, and hormone response involved in morphogenesis and differentiation of mammary gland. Also, it was found that overexpression of markers in selected clusters is a significant indicator of poor overall survival. The proposed review offered a better understanding of independent data from the literature, revealing an integrative network of markers involved in cellular processes that could modulate the response of TMX. Analysis of these mechanisms and their molecular components could improve the effectiveness of TMX.
Collapse
Affiliation(s)
- Maiquidieli Dal Berto
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Giovana Tavares Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Aniúsca Vieira Dos Santos
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Andrew Oliveira Silva
- Laboratory of Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245,Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - José Eduardo Vargas
- Institute of Biological Sciences, University of Passo Fundo (UPF), 285, Brazil Avenue, Passo Fundo, RS, 99052-900, Brazil
| | - Rafael José Vargas Alves
- Department of Clinical Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street, Porto Alegre, RS, 90050-170, Brazil
| | - Fernanda Barbisan
- Graduate Program in Gerontology, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | | | - Claudia Giuliano Bica
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 245, Sarmento Leite street., Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
22
|
Waddell AR, Huang H, Liao D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers (Basel) 2021; 13:2872. [PMID: 34201346 PMCID: PMC8229436 DOI: 10.3390/cancers13122872] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/10/2023] Open
Abstract
The CREB-binding protein (CBP) and p300 are two paralogous lysine acetyltransferases (KATs) that were discovered in the 1980s-1990s. Since their discovery, CBP/p300 have emerged as important regulatory proteins due to their ability to acetylate histone and non-histone proteins to modulate transcription. Work in the last 20 years has firmly established CBP/p300 as critical regulators for nuclear hormone signaling pathways, which drive tumor growth in several cancer types. Indeed, CBP/p300 are critical co-activators for the androgen receptor (AR) and estrogen receptor (ER) signaling in prostate and breast cancer, respectively. The AR and ER are stimulated by sex hormones and function as transcription factors to regulate genes involved in cell cycle progression, metabolism, and other cellular functions that contribute to oncogenesis. Recent structural studies of the AR/p300 and ER/p300 complexes have provided critical insights into the mechanism by which p300 interacts with and activates AR- and ER-mediated transcription. Breast and prostate cancer rank the first and forth respectively in cancer diagnoses worldwide and effective treatments are urgently needed. Recent efforts have identified specific and potent CBP/p300 inhibitors that target the acetyltransferase activity and the acetytllysine-binding bromodomain (BD) of CBP/p300. These compounds inhibit AR signaling and tumor growth in prostate cancer. CBP/p300 inhibitors may also be applicable for treating breast and other hormone-dependent cancers. Here we provide an in-depth account of the critical roles of CBP/p300 in regulating the AR and ER signaling pathways and discuss the potential of CBP/p300 inhibitors for treating prostate and breast cancer.
Collapse
Affiliation(s)
- Aaron R. Waddell
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| | - Haojie Huang
- Departments of Biochemistry and Molecular Biology and Urology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA;
| | - Daiqing Liao
- UF Health Cancer Center, Department of Anatomy and Cell Biology, University Florida College of Medicine, 2033 Mowry Road, Gainesville, FL 32610, USA;
| |
Collapse
|
23
|
He H, Shao X, Li Y, Gihu R, Xie H, Zhou J, Yan H. Targeting Signaling Pathway Networks in Several Malignant Tumors: Progresses and Challenges. Front Pharmacol 2021; 12:675675. [PMID: 34135756 PMCID: PMC8203325 DOI: 10.3389/fphar.2021.675675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Malignant tumors remain the health problem of highest concern among people worldwide due to its high mortality and recurrence. Lung, gastric, liver, colon, and breast cancers are among the top five malignant tumors in terms of morbidity and mortality. In cancer biology, aberrant signaling pathway regulation is a prevalent theme that drives the generation, metastasis, invasion, and other processes of all malignant tumors. The Wnt/β-catenin, PI3K/AKT/mTOR, Notch and NF-kB pathways are widely concerned and signal crosstalks exist in the five solid tumors. This review provides an innovative summary of the recent progress in research on these signaling pathways, the underlying mechanism of the molecules involved in these pathways, and the important role of some miRNAs in tumor-related signaling pathways. It also presents a brief review of the antitumor molecular drugs that target these signaling pathways. This review may provide a theoretical basis for the study of the molecular biological mechanism of malignant tumors and vital information for the development of new treatment strategies with a focus on efficacy and the reduction of side effects.
Collapse
Affiliation(s)
- Hongdan He
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Yanan Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Ribu Gihu
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
24
|
Wang Y, Pan X, Li Y, Wang R, Yang Y, Jiang B, Sun G, Shao C, Wang M, Gong Y. CUL4B renders breast cancer cells tamoxifen-resistant via miR-32-5p/ER-α36 axis. J Pathol 2021; 254:185-198. [PMID: 33638154 DOI: 10.1002/path.5657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022]
Abstract
Tamoxifen (TAM) resistance is a significant clinical challenge in endocrine therapies for estrogen receptor (ER)-positive breast cancer patients. Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through diverse epigenetic mechanisms. However, the role and the underlying mechanisms of CUL4B in regulating drug resistance remain unknown. Here, we showed that CUL4B promotes TAM resistance in breast cancer cells through a miR-32-5p/ER-α36 axis. We found that upregulation of CUL4B correlated with decreased TAM sensitivity of breast cancer cells, and knockdown of CUL4B or expression of a dominant-negative CUL4B mutant restored the response to TAM in TAM-resistant MCF7-TAMR and T47D-TAMR cells. Mechanistically, we demonstrated that CUL4B renders breast cancer cells TAM-resistant by upregulating ER-α36 expression, which was mediated by downregulation of miR-32-5p. We further showed that CRL4B epigenetically represses the transcription of miR-32-5p by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes to promote trimethylation at H3K27 at the promoter of miR-32-5p. Pharmacologic or genetic inhibition of CRL4B/PRC2/HDAC complexes significantly increased TAM sensitivity in breast cancer cells in vitro and in vivo. Taken together, our findings thus establish a critical role for the CUL4B-miR-32-5p-ER-α36 axis in the regulation of TAM resistance and have important therapeutic implications for combined application of TAM and the inhibitors of CRL4B/PRC2/HDAC complex in breast cancer treatment. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xiaohua Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Yanjun Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yuanyuan Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Gongping Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Changshun Shao
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, PR China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Institute of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
25
|
Baraya YS, Yankuzo HM, Wong KK, Yaacob NS. Strobilanthes crispus bioactive subfraction inhibits tumor progression and improves hematological and morphological parameters in mouse mammary carcinoma model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113522. [PMID: 33127562 DOI: 10.1016/j.jep.2020.113522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Locally known as 'pecah batu', 'bayam karang', 'keci beling' or 'batu jin', the Malaysian medicinal herb, Strobilanthes crispus (S. crispus), is traditionally used by the local communities as alternative or adjuvant remedy for cancer and other ailments and to boost the immune system. S. crispus has demonstrated multiple anticancer therapeutic potential in vitro and in vivo. A pharmacologically active fraction of S. crispus has been identified and termed as F3. Major constituents profiled in F3 include lutein and β-sitosterol. AIM OF THE STUDY In this study, the effects of F3, lutein and β-sitosterol on tumor development and metastasis were investigated in 4T1-induced mouse mammary carcinoma model. MATERIALS AND METHODS Tumor-bearing mice were fed with F3 (100 mg/kg/day), lutein (50 mg/kg/day) and β-sitosterol (50 mg/kg/day) for 30 days (n = 5 each group). Tumor physical growth parameters, animal body weight and development of secondary tumors were investigated. The safety profile of F3 was assessed using hematological and histomorphological changes on the major organs in normal control mice (NM). RESULTS Our findings revealed significant reduction of physical tumor growth parameters in all tumor-bearing mice treated with F3 (TM-F3), lutein (TM-L) or β-sitosterol (TM-β) as compared with the untreated group (TM). Statistically significant reduction in body weight was observed in TM compared to the NM or treated (TM-F3, TM-L and TM-β) groups. Histomorphological examination of tissue sections from the F3-treated group showed normal features of the vital organs (i.e., liver, kidneys, lungs and spleen) which were similar to those of NM. Administration of F3 to NM mice (NM-F3) did not cause significant changes in full blood count values. CONCLUSION F3 significantly reduced the total tumor burden and prevented secondary tumor development in metastatic breast cancer without significant toxicities in 4T1-induced mouse mammary carcinoma model. The current study provides further support for therapeutic development of F3 with further pharmacokinetics studies.
Collapse
Affiliation(s)
- Yusha'u Shu'aibu Baraya
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Hassan Muhammad Yankuzo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| |
Collapse
|
26
|
Fu H, Du B, Chen Z, Li Y. Radiolabeled Peptides for SPECT and PET Imaging in the Detection of Breast Cancer: Preclinical and Clinical Perspectives. Curr Med Chem 2021; 27:6987-7002. [PMID: 32003658 DOI: 10.2174/0929867327666200128110827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. Due to the heterogeneous nature of breast cancer, the optimal treatment and expected response for each patient may not necessarily be universal. Molecular imaging techniques could play an important role in the early detection and targeted therapy evaluation of breast cancer. This review focuses on the development of peptides labeled with SPECT and PET radionuclides for breast cancer imaging. We summarized the current status of radiolabeled peptides for different receptors in breast cancer. The characteristics of radionuclides and major techniques for peptide labeling are also briefly discussed.
Collapse
Affiliation(s)
- Hao Fu
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Bulin Du
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zijun Chen
- Medical College of Xiamen University, Xiamen University, Xiamen, China
| | - Yesen Li
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Teaching Hospital of Fujian Medical University, Xiamen, China
| |
Collapse
|
27
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
28
|
Wang Y, Wang Q, Li X, Luo G, Shen M, Shi J, Wang X, Tang L. Paeoniflorin Sensitizes Breast Cancer Cells to Tamoxifen by Downregulating microRNA-15b via the FOXO1/CCND1/β-Catenin Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:245-257. [PMID: 33519190 PMCID: PMC7837563 DOI: 10.2147/dddt.s278002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022]
Abstract
Background Paeoniflorin (Pae) possesses anti-tumor activity in various malignancies. However, it is unclear whether Pae plays a sensitizer role in breast cancer (BC) and the molecular mechanisms involved in this process. Our oligonucleotide microarray revealed that microRNA (miR)-15b is the most significantly downregulated miRNA in MCF-7/4-hydroxytamoxifen (4-OHT) cells treated with Pae. This paper summarized the relevance of Pae in BC cell endocrine resistance to tamoxifen (Tam) and the molecular mechanisms involved miR-15b expression. Materials and Methods 4-OHT-resistant BC cell lines were developed and treated with different concentrations of Pae. Flow cytometry, lactose dehydrogenase activity, caspase-3 activity, colony formation, and EdU assays were carried out to assess the impact of Pae on BC cells. Differentially expressed miRNAs in BC cells treated with Pae were analyzed by microarray. Targeting mRNAs of screened miR-15b as well as the binding of forkhead box O1 (FOXO1) to the cyclin D1 (CCND1) promoter sequence were predicted through bioinformatics analysis. Finally, the expression of β-catenin signaling-related genes in cells was detected by Western blotting. Results Pae (100 μg/mL) inhibited the clonality and viability of BC cells, while enhancing apoptosis in vitro. Pae also repressed miR-15b expression. Overexpression of miR-15b restored the growth and resistance of BC cells to 4-OHT. Moreover, Pae promoted FOXO1 expression by downregulating miR-15b, thereby transcriptionally inhibiting CCND1 and subsequently blocking β-catenin signaling. Conclusion Pae inhibits 4-OHT resistance in BC cells by regulating the miR-15b/FOXO1/CCND1/β-catenin pathway.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Basic Medicine, Medical College of Yunnan University of Economics and Management, Kunming, Yunnan 650000, People's Republic of China.,Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Qian Wang
- Department of Basic Medicine, Medical College of Yunnan University of Economics and Management, Kunming, Yunnan 650000, People's Republic of China
| | - Xibei Li
- Department of Stomatology, Jining Medical College, Jining, Shandong 272000, People's Republic of China
| | - Gongwen Luo
- Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Mou Shen
- Second Department of Internal Medicine, Chongming Branch of Yueyang Integrated Hospital of Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Chongming, Shanghai, 202150, People's Republic of China
| | - Jia Shi
- Department of Information, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai 200433, People's Republic of China
| | - Xueliang Wang
- Department of Nephrology and Rheumatology, Zhaotong Traditional Chinese Medicine Hospital of Yunnan Province, Zhaotong, Yunnan 657000 People's Republic of China
| | - Lu Tang
- Department of Traditional Chinese Medicine, Kunming Second People's Hospital, Kunming, Yunnan, 650000 People's Republic of China
| |
Collapse
|
29
|
Kalyanaraman A, Gnanasampanthapandian D, Shanmughan P, Kishore P, Ramalingam S, Arunachalam R, Jayaraman S, Kaliappan I, Munuswamy-Ramanujam G, Ramachandran I, Sambandam Y, Anbalagan M, Chandrakesan P, Palaniyandi K. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells. Stem Cell Investig 2020; 7:20. [PMID: 33294429 DOI: 10.21037/sci-2020-020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022]
Abstract
Background To understand the mechanism underlying tamoxifen-induced multidrug resistance (MDR) and stem-like phenotypes in breast cancer cells, we treated the MCF-7 cells with 4-hydroxy-tamoxifen (TAM) for 6 months continuously and established MCF-7 tamoxifen resistance (TR) phenotypes. Methods In the present study, the following methods were used: cell viability assay, colony formation, cell cycle analysis, ALDEFLUOR assay, mammosphere formation assay, chromatin immunoprecipitation (ChIP) assay, PCR array, western blot analysis and quantitative reverse transcription polymerase chain reaction (QRT-PCR). Results The expression of ERα was significantly higher in MCF7-TR cells when compared with parental MCF-7 cells. MCF7-TR cells exposed to TAM showed a significant increase in the proliferation and rate of colony formation. The number of cancer stem cells was higher in MCF7-TR cells as observed by the increase in the number of ALDH+ cells. Furthermore, the number of mammospheres formed from the FACS-sorted ALDH+ cells was higher in MCF7-TR cells. Using PCR array analysis, we were able to identify that the long-term exposure of TAM leads to alterations in the epigenetic and MDR stem cell marker genes. Furthermore, western blot analysis demonstrated elevated levels of Notch-1 expression in MCF-TR cells compared with MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay revealed that Notch-1 enhanced the cyclin D1 expression significantly in these cells. In addition, we observed that MCF7-TR cells were resistant to doxorubicin but not the MCF-7 cells. Conclusions In the present study, we conclude that the treatment with tamoxifen induces multiple epigenetic alterations that lead to the development of MDR and stem-like phenotypes in breast cancers. Therefore, our study provides better insights to develop novel treatment regime to control the progression of breast cancer.
Collapse
Affiliation(s)
- Aparna Kalyanaraman
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Prasad Shanmughan
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Puneet Kishore
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| | - Rathnaswami Arunachalam
- Department of Surgical Gastroenterology, SRM Medical College Hospital and Research Center, Kattankulathur, Kancheepuram, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Velappanchavadi, Chennai, India
| | - Ilango Kaliappan
- Departmemt of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ganesh Munuswamy-Ramanujam
- Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | - Yuvaraj Sambandam
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani campus, Chennai, India
| | | | | | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India
| |
Collapse
|
30
|
Dell’Acqua G, Richards A, Thornton MJ. The Potential Role of Nutraceuticals as an Adjuvant in Breast Cancer Patients to Prevent Hair Loss Induced by Endocrine Therapy. Nutrients 2020; 12:nu12113537. [PMID: 33217935 PMCID: PMC7698784 DOI: 10.3390/nu12113537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Nutraceuticals, natural dietary and botanical supplements offering health benefits, provide a basis for complementary and alternative medicine (CAM). Use of CAM by healthy individuals and patients with medical conditions is rapidly increasing. For the majority of breast cancer patients, treatment plans involve 5–10 yrs of endocrine therapy, but hair loss/thinning is a common side effect. Many women consider this significant, severely impacting on quality of life, even leading to non-compliance of therapy. Therefore, nutraceuticals that stimulate/maintain hair growth can be proposed. Although nutraceuticals are often available without prescription and taken at the discretion of patients, physicians can be reluctant to recommend them, even as adjuvants, since potential interactions with endocrine therapy have not been fully elucidated. It is, therefore, important to understand the modus operandi of ingredients to be confident that their use will not interfere/interact with therapy. The aim is to improve clinical/healthcare outcomes by combining specific nutraceuticals with conventional care whilst avoiding detrimental interactions. This review presents the current understanding of nutraceuticals beneficial to hair wellness and outcomes concerning efficacy/safety in breast cancer patients. We will focus on describing endocrine therapy and the role of estrogens in cancer and hair growth before evaluating the effects of natural ingredients on breast cancer and hair growth.
Collapse
Affiliation(s)
| | | | - M. Julie Thornton
- Centre for Skin Sciences, University of Bradford, Bradford BD17 7DF, UK
- Correspondence:
| |
Collapse
|
31
|
Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and Overcoming Resistance in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2020; 12:211-229. [PMID: 33204149 PMCID: PMC7666993 DOI: 10.2147/bctt.s270799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of breast cancer (BC) have increased in recent years, and BC is the main cause of cancer-related death in women worldwide. One of the most significant clinical problems in the treatment of patients with BC is the development of therapeutic resistance. Therefore, elucidating the molecular mechanisms involved in drug resistance is critical. The therapeutic decision for the management of patients with BC is based not only on the assessment of prognostic factors but also on the evaluation of clinical and pathological parameters. Although this has been a successful approach, some patients relapse and/or eventually develop resistance to treatment. This review is focused on recent studies on the possible biological and molecular mechanisms involved in both response and resistance to treatment in BC. Additionally, emerging treatments that seek to overcome resistance and reduce side effects are also described. A greater understanding of the mechanisms of action of treatments used in BC might contribute not only to the enhancement of our understanding of the mechanisms involved in the development of resistance but also to the optimization of the existing treatment regimens.
Collapse
Affiliation(s)
- Andrea Luque-Bolivar
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| | - Erika Pérez-Mora
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| | | | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| |
Collapse
|
32
|
Zulkifli NI, Muhamad M, Mohamad Zain NN, Tan WN, Yahaya N, Bustami Y, Abdul Aziz A, Nik Mohamed Kamal NNS. A Bottom-Up Synthesis Approach to Silver Nanoparticles Induces Anti-Proliferative and Apoptotic Activities Against MCF-7, MCF-7/TAMR-1 and MCF-10A Human Breast Cell Lines. Molecules 2020; 25:molecules25184332. [PMID: 32971740 PMCID: PMC7570564 DOI: 10.3390/molecules25184332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022] Open
Abstract
A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.
Collapse
Affiliation(s)
- Nurul Izzati Zulkifli
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Musthahimah Muhamad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia;
| | - Noorfatimah Yahaya
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Nik Nur Syazni Nik Mohamed Kamal
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia; (N.I.Z.); (M.M.); (N.N.M.Z.); (N.Y.)
- Correspondence: ; Tel.: +60-4562-2413
| |
Collapse
|
33
|
Inhibition of DNA Repair Pathways and Induction of ROS Are Potential Mechanisms of Action of the Small Molecule Inhibitor BOLD-100 in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092647. [PMID: 32947941 PMCID: PMC7563761 DOI: 10.3390/cancers12092647] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
BOLD-100, a ruthenium-based complex, sodium trans-[tetrachloridobis (1H-indazole) ruthenate (III)] (also known as IT-139, NKP1339 or KP1339), is a novel small molecule drug that demonstrated a manageable safety profile at the maximum tolerated dose and modest antitumor activity in a phase I clinical trial. BOLD-100 has been reported to inhibit the upregulation of the endoplasmic reticulum stress sensing protein GRP78. However, response to BOLD-100 varies in different cancer models and the precise mechanism of action in high-response versus low-response cancer cells remains unclear. In vitro studies have indicated that BOLD-100 induces cytostatic rather than cytotoxic effects as a monotherapy. To understand BOLD-100-mediated signaling mechanism in breast cancer cells, we used estrogen receptor positive (ER+) MCF7 breast cancer cells to obtain gene-metabolite integrated models. At 100 μM, BOLD-100 significantly reduced cell proliferation and expression of genes involved in the DNA repair pathway. BOLD-100 also induced reactive oxygen species (ROS) and phosphorylation of histone H2AX, gamma-H2AX (Ser139), suggesting disruption of proper DNA surveillance. In estrogen receptor negative (ER-) breast cancer cells, combination of BOLD-100 with a PARP inhibitor, olaparib, induced significant inhibition of cell growth and xenografts and increased gamma-H2AX. Thus, BOLD-100 is a novel DNA repair pathway targeting agent and can be used with other chemotherapies in ER- breast cancer.
Collapse
|
34
|
Attia YM, Shouman SA, Salama SA, Ivan C, Elsayed AM, Amero P, Rodriguez-Aguayo C, Lopez-Berestein G. Blockade of CDK7 Reverses Endocrine Therapy Resistance in Breast Cancer. Int J Mol Sci 2020; 21:ijms21082974. [PMID: 32340192 PMCID: PMC7215326 DOI: 10.3390/ijms21082974] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinase (CDK)-7 inhibitors are emerging as promising drugs for the treatment of different types of cancer that show chemotherapy resistance. Evaluation of the effects of CDK7 inhibitor, THZ1, alone and combined with tamoxifen is of paramount importance. Thus, in the current work, we assessed the effects of THZ1 and/or tamoxifen in two estrogen receptor-positive (ER+) breast cancer cell lines (MCF7) and its tamoxifen resistant counterpart (LCC2) in vitro and in xenograft mouse models of breast cancer. Furthermore, we evaluated the expression of CDK7 in clinical samples from breast cancer patients. Cell viability, apoptosis, and genes involved in cell cycle regulation and tamoxifen resistance were determined. Tumor volume and weight, proliferation marker (Ki67), angiogenic marker (CD31), and apoptotic markers were assayed. Bioinformatic data indicated CDK7 expression was associated with negative prognosis, enhanced pro-oncogenic pathways, and decreased response to tamoxifen. Treatment with THZ1 enhanced tamoxifen-induced cytotoxicity, while it inhibited genes involved in tumor progression in MCF-7 and LCC2 cells. In vivo, THZ1 boosted the effect of tamoxifen on tumor weight and tumor volume, reduced Ki67 and CD31 expression, and increased apoptotic cell death. Our findings identify CDK7 as a possible therapeutic target for breast cancer whether it is sensitive or resistant to tamoxifen therapy.
Collapse
Affiliation(s)
- Yasmin M. Attia
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Samia A. Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Kasr Al Eini Street, Fom El Khalig, Cairo 11796, Egypt; (Y.M.A.); (S.A.S.)
| | - Salama A. Salama
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
- Correspondence: ; Tel.: +20-109-550-8894
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdelrahman M. Elsayed
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Pharmacology & Toxicology Department, Al-Azhar University, Cairo 11675, Egypt
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.I.); (A.M.E.); (P.A.); (C.R.-A.); (G.L.-B.)
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Liu J, Li J, Chen H, Wang R, Li P, Miao Y, Liu P. Metformin suppresses proliferation and invasion of drug-resistant breast cancer cells by activation of the Hippo pathway. J Cell Mol Med 2020; 24:5786-5796. [PMID: 32281270 PMCID: PMC7214175 DOI: 10.1111/jcmm.15241] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance limits the clinical efficacy of breast cancer therapies, and overexpression or activation of Yes-associated protein (YAP) is common in drug-resistant cancer cells. Thus, inhibition of YAP may reduce resistance to anti-cancer drugs. Metformin (MET), a first-line diabetes medication that also has anti-tumour activities, induces AMP-activated protein kinase (AMPK), directly phosphorylates YAP and inhibits YAP transcriptional activity. In this study, we determined the effect of MET on the proliferation and invasion of drug-resistant breast cancer cells and then investigated the underlying molecular mechanism. Our in vivo and in vitro experiments indicated that MET suppressed breast cancer by an AMPK-independent pathway to decrease YAP nuclear localization. In drug-sensitive cells, MET activated the Hippo pathway by increasing KIBRA and FRMD6 expression, but this did not occur in drug-resistant cells. Scribble (SCRIB), a cell polarity protein, was notably down-regulated in tamoxifen- and paclitaxel-resistant breast cancer cells relative to sensitive cells. We also found that MET suppressed the proliferation and invasion of drug-resistant breast cancer cells by increasing the expression and cell membrane localization of SCRIB, which enhanced the interaction of SCRIB with MST1 and LATS1, and inhibited YAP nuclear localization and transcriptional activity.
Collapse
Affiliation(s)
- Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruiqi Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Miao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Phosphorylation independent eIF4E translational reprogramming of selective mRNAs determines tamoxifen resistance in breast cancer. Oncogene 2020; 39:3206-3217. [PMID: 32066877 PMCID: PMC7142019 DOI: 10.1038/s41388-020-1210-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 11/12/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) selectively promotes translation of mRNAs with atypically long and structured 5′-UTRs and has been implicated in drug resistance. Through genome-wide transcriptome and translatome analysis we revealed eIF4E overexpression could promote cellular activities mediated by ERα and FOXM1 signalling pathways. Whilst eIF4E overexpression could enhance the translation of both ERα and FOXM1, it also led to enhanced transcription of FOXM1. Polysome fractionation experiments confirmed eIF4E could modulate the translation of ERα and FOXM1 mRNA. The enhancement of FOXM1 transcription was contingent upon the presence of ERα, and it was the high levels of FOXM1 that conferred Tamoxifen resistance. Furthermore, tamoxifen resistance was conferred by phosphorylation independent eIF4E overexpression. Immunohistochemistry on 134 estrogen receptor (ER+) primary breast cancer samples confirmed that high eIF4E expression was significantly associated with increased ERα and FOXM1, and significantly associated with tamoxifen resistance. Our study uncovers a novel mechanism whereby phosphorylation independent eIF4E translational reprogramming in governing the protein synthesis of ERα and FOXM1 contributes to anti-estrogen insensitivity in ER+ breast cancer. In eIF4E overexpressing breast cancer, the increased ERα protein expression in turn enhances FOXM1 transcription, which together with its increased translation regulated by eIF4E, contributes to tamoxifen resistance. Coupled with eIF4E translational regulation, our study highlights an important mechanism conferring tamoxifen resistance via both ERα dependent and independent pathways.
Collapse
|
37
|
Li G, Zhang J, Xu Z, Li Z. ERα36 as a Potential Therapeutic Target for Tamoxifen-Resistant Breast Cancer Cell Line Through EGFR/ERK Signaling Pathway. Cancer Manag Res 2020; 12:265-275. [PMID: 32021441 PMCID: PMC6969677 DOI: 10.2147/cmar.s226410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
Background Acquired tamoxifen resistance is one of the major barriers to the successful treatment of breast cancer. Recently, overexpression of ERα36 was demonstrated to be a potential mechanism for the generation of acquired tamoxifen resistance. This study aims to evaluate the possibility of ERα36 being a therapeutic target for tamoxifen-resistant breast cancer. Methods A tamoxifen-resistant cell subline (MCF-7/TAM) was established by culturing MCF-7 cells in medium plus 1 μM tamoxifen over 6 months. Colony-forming assay was used to determine the sensitivity of MCF-7/TAM cells to tamoxifen. Stable transfection was used to knockdown ERα36 expression in MCF-7/TAM cells. MTT assay and Transwell migration assay were used to assess the in vitro proliferation and migration, respectively. Nude mouse tumorigenicity assay was used to evaluate in vivo tumorigenicity. Western blot analysis and quantitative real-time PCR (qRT-PCR) were used to examine the expression of ERα36, ERα, EGFR and phosphorylated ERK1/2. The dual-luciferase reporter assay was used to determine the effect of ERα36 on the activity of EGFR-promotor. Results MCF-7/TAM cells possessed greatly increased ERα36 expression and EGFR expression and exhibited significantly increased in vitro proliferation and migration ability, as well as increased in vivo tumor growth ability, compared to parental MCF-7 cells. Knockdown of ERα36 expression inhibited in vitro proliferation and migration, as well as in vivo tumor growth ability of MCF-7/TAM cells. ERα36 regulated EGFR expression at the transcriptional level, and knockdown of ERα36 in MCF-7/TAM cells downregulated EGFR expression and then blocked EGFR/ERK signaling pathway. Conclusion Knockdown of ERα36 inhibits the growth of MCF-7/TAM cells in vitro and in vivo by blocking EGFR/ERK signaling pathway. ERα36 may be a candidate therapeutic target for the treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Guangliang Li
- Institute of Cancer Research and Basic Medicine (ICBM), Chinese Academy of Sciences, Department of Medical Oncology (Breast), Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, People's Republic of China
| | - Jing Zhang
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zhongqi Li
- Department of Surgical Oncology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
38
|
Sakunrangsit N, Ketchart W. Plumbagin inhibited AKT signaling pathway in HER-2 overexpressed-endocrine resistant breast cancer cells. Eur J Pharmacol 2019; 868:172878. [PMID: 31863768 DOI: 10.1016/j.ejphar.2019.172878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023]
Abstract
The important mechanism of endocrine resistance is the crosstalk between estrogen receptor (ER) and HER2 signaling pathways. Aside from ER downregulation, there was an increase in HER2 expression and increased activation of the downstream AKT/ERK pathways in endocrine-resistant cells (MCF-7/LCC2 and MCF-7/LCC9) which is similar to HER2-overexpressed (SKBR3) cells. However, nuclear receptor coactivator 3 (NCOA3), the important ER-coactivator, that upregulated in endocrine-resistant cells did not express in HER2-overexpressed (SKBR3) cells. NCOA3 was able to activate AKT/ERK signalling pathway. Our previous study reported that plumbagin (PLB), a naphthoquinone compound, had a potent cytotoxic activity against endocrine-resistant cells. This study aimed to further investigate the mechanism of anti-cancer effects of PLB on ER and HER-2 signaling. PLB can inhibit estradiol (E2)-induced cell proliferation in MCF-7 wild-type cells but had no effect in the resistant cells. It also inhibited HER2 expression in both endocrine-resistant and HER-2 overexpressed cells. Therefore, the mechanism of PLB may be regulated through HER-2 signaling. PLB inhibited the phosphorylation of AKT (pAKT) and pERK1/2 and induced apoptosis and reduced the expression of anti-apoptotic genes Bcl-2 and pro-caspase 3 and Cleaved Caspase 3 protein in both endocrine-resistant and HER-2 overexpressed cells. However, the inhibitory effect of PLB was more obvious when pre-treated the cells with AKT inhibitor only in HER-2 overexpressed cells. In addition, the inhibitory effect of PLB on pAKT was attenuated when NCOA3 was downregulated. Our finding suggested that the inhibitory effect of PLB on AKT signaling pathways regulated through NCOA3 in HER2-overexpressed endocrine-resistant cells.
Collapse
Affiliation(s)
- Nithidol Sakunrangsit
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wannarasmi Ketchart
- Overcoming Cancer Drug Resistance Research Unit, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Song P, Li Y, Dong Y, Liang Y, Qu H, Qi D, Lu Y, Jin X, Guo Y, Jia Y, Wang X, Xu W, Quan C. Estrogen receptor β inhibits breast cancer cells migration and invasion through CLDN6-mediated autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:354. [PMID: 31412908 PMCID: PMC6694553 DOI: 10.1186/s13046-019-1359-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Background Estrogen receptor β (ERβ) has been reported to play an anti-cancer role in breast cancer, but the regulatory mechanism by which ERβ exerts this effect is not clear. Claudin-6 (CLDN6), a tight junction protein, acts as a tumor suppressor gene in breast cancer. Our previous studies have found that 17β-estradiol (E2) induces CLDN6 expression and inhibits MCF-7 cell migration and invasion, but the underlying molecular mechanisms are still unclear. In this study, we aimed to investigate the role of ERβ in this process and the regulatory mechanisms involved. Methods Polymerase chain reaction (PCR) and western blot were used to characterize the effect of E2 on the expression of CLDN6 in breast cancer cells. Chromatin immunoprecipitation (ChIP) assays were carried out to confirm the interaction between ERβ and CLDN6. Dual luciferase reporter assays were used to detect the regulatory role of ERβ on the promoter activity of CLDN6. Wound healing and Transwell assays were used to examine the migration and invasion of breast cancer cells. Western blot, immunofluorescence and transmission electron microscopy (TEM) were performed to detect autophagy. Xenograft mouse models were used to explore the regulatory effect of the CLDN6-beclin1 axis on breast cancer metastasis. Immunohistochemistry (IHC) was used to detect ERβ/CLDN6/beclin1 expression in breast cancer patient samples. Results Here, E2 upregulated the expression of CLDN6, which was mediated by ERβ. ERβ regulated CLDN6 expression at the transcriptional level. ERβ inhibited the migration and invasion of breast cancer cells through CLDN6. Interestingly, this effect was associated with CLDN6-induced autophagy. CLDN6 positively regulated the expression of beclin1, which is a key regulator of autophagy. Beclin1 knockdown reversed CLDN6-induced autophagy and the inhibitory effect of CLDN6 on breast cancer metastasis. Moreover, ERβ and CLDN6 were positively correlated, and the expression of CLDN6 was positively correlated with beclin1 in breast cancer tissues. Conclusion Overall, this is the first study to demonstrate that the inhibitory effect of ERβ on the migration and invasion of breast cancer cells was mediated by CLDN6, which induced the beclin1-dependent autophagic cascade. Electronic supplementary material The online version of this article (10.1186/s13046-019-1359-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yanru Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yingying Liang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiangshu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Yiyang Jia
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
40
|
Demas DM, Demo S, Fallah Y, Clarke R, Nephew KP, Althouse S, Sandusky G, He W, Shajahan-Haq AN. Glutamine Metabolism Drives Growth in Advanced Hormone Receptor Positive Breast Cancer. Front Oncol 2019; 9:686. [PMID: 31428575 PMCID: PMC6688514 DOI: 10.3389/fonc.2019.00686] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/12/2019] [Indexed: 01/08/2023] Open
Abstract
Dependence on the glutamine pathway is increased in advanced breast cancer cell models and tumors regardless of hormone receptor status or function. While 70% of breast cancers are estrogen receptor positive (ER+) and depend on estrogen signaling for growth, advanced ER+ breast cancers grow independent of estrogen. Cellular changes in amino acids such as glutamine are sensed by the mammalian target of rapamycin (mTOR) complex, mTORC1, which is often deregulated in ER+ advanced breast cancer. Inhibitor of mTOR, such as everolimus, has shown modest clinical activity in ER+ breast cancers when given with an antiestrogen. Here we show that breast cancer cell models that are estrogen independent and antiestrogen resistant are more dependent on glutamine for growth compared with their sensitive parental cell lines. Co-treatment of CB-839, an inhibitor of GLS, an enzyme that converts glutamine to glutamate, and everolimus interrupts the growth of these endocrine resistant xenografts. Using human tumor microarrays, we show that GLS is significantly higher in human breast cancer tumors with increased tumor grade, stage, ER-negative and progesterone receptor (PR) negative status. Moreover, GLS levels were significantly higher in breast tumors from African-American women compared with Caucasian women regardless of ER or PR status. Among patients treated with endocrine therapy, high GLS expression was associated with decreased disease free survival (DFS) from a multivariable model with GLS expression treated as dichotomous. Collectively, these findings suggest a complex biology for glutamine metabolism in driving breast cancer growth. Moreover, targeting GLS and mTOR in advanced breast cancer may be a novel therapeutic approach in advanced ER+ breast cancer.
Collapse
Affiliation(s)
- Diane M Demas
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Susan Demo
- Calithera Biosciences, South San Francisco, CA, United States
| | - Yassi Fallah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology, Medical Sciences, Indiana University School of Medicine, Bloomington, IN, United States
| | - Sandra Althouse
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wei He
- Program in Genetics, Bioinformatics, and Computational Biology, VT BIOTRANS, Virginia Tech, Blacksburg, VA, United States
| | - Ayesha N Shajahan-Haq
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
41
|
Porsch M, Özdemir E, Wisniewski M, Graf S, Bull F, Hoffmann K, Ignatov A, Haybaeck J, Grosse I, Kalinski T, Nass N. Time resolved gene expression analysis during tamoxifen adaption of MCF-7 cells identifies long non-coding RNAs with prognostic impact. RNA Biol 2019; 16:661-674. [PMID: 30760083 DOI: 10.1080/15476286.2019.1581597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Acquired tamoxifen resistance is a persistent problem for the treatment of estrogen receptor positive, premenopausal breast cancer patients and predictive biomarkers are still elusive. We here analyzed gene expression changes in a cellular model to identify early and late changes upon tamoxifen exposure and thereby novel prognostic biomarkers. Estrogen receptor positive MCF-7 cells were incubated with 4OH-tamoxifen (10 nM) and gene expression analyzed by array hybridization during 12 weeks. Array results were confirmed by nCounter- and qRT-PCR technique. Pathway enrichment analysis revealed that early responses concerned mainly amine synthesis and NRF2-related signaling and evolved into a stable gene expression pattern within 4 weeks characterized by changes in glucuronidation-, estrogen metabolism-, nuclear receptor- and interferon signaling pathways. As a large number of long non coding RNAs was subject to regulation, we investigated 5 of these (linc01213, linc00632 linc0992, LOC101929547 and XR_133213) in more detail. From these, only linc01213 was upregulated but all were less abundant in estrogen-receptor negative cell lines (MDA-MB 231, SKBR-3 and UACC3199). In a web-based survival analysis linc01213 and linc00632 turned out to have prognostic impact. Linc01213 was investigated further by plasmid-mediated over-expression as well as siRNA down-regulation in MCF-7 cells. Nevertheless, this had no effect on proliferation or expression of tamoxifen regulated genes, but migration was increased. In conclusion, the cellular model identified a set of lincRNAs with prognostic relevance for breast cancer. One of these, linc01213 although regulated by 4OH-tamoxifen, is not a central regulator of tamoxifen adaption, but interferes with the regulation of migration.
Collapse
Affiliation(s)
- Martin Porsch
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Esra Özdemir
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Martin Wisniewski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Sebastian Graf
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Fabian Bull
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Katrin Hoffmann
- b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Atanas Ignatov
- e Department of Obstetrics and Gynecology , Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Johannes Haybaeck
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany.,f Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz , Graz , Austria.,g Department of Pathology , Medical University of Innsbruck , Innsbruck , Austria
| | - Ivo Grosse
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Thomas Kalinski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Norbert Nass
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
42
|
Liu J, Li J, Li P, Jiang Y, Chen H, Wang R, Cao F, Liu P. DLG5 suppresses breast cancer stem cell-like characteristics to restore tamoxifen sensitivity by inhibiting TAZ expression. J Cell Mol Med 2018; 23:512-521. [PMID: 30450766 PMCID: PMC6307757 DOI: 10.1111/jcmm.13954] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Tamoxifen (TAM) is a primary drug for treatment of estrogen receptor positive breast cancer. However, TAM resistance remains a serious threat to breast cancer patients and may be attributed to increased stemness of breast cancer. Here, we show that discs large homolog 5 (DLG5) expression is down‐regulated in TAM‐resistant breast cancer and cells. DLG5 silencing decreased the sensitivity to TAM and increased the frequency and stemness of CD44+/CD24− breast cancer stem cells (BCSCs) and TAZ, a transducer of the Hippo pathway, expression in MCF7 cells while DLG5 overexpression had opposite effects. TAZ silencing restored the sensitivity to TAM and reduced the frequency and stemness in TAM‐resistant breast cancer cells. Taken together, our data indicate that down‐regulated DLG5 expression increases the stemness of breast cancer cells by enhancing TAZ expression, contributing to TAM resistance in breast cancer.
Collapse
Affiliation(s)
- Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pingping Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yina Jiang
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - He Chen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruiqi Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fang Cao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Schrijver W, Schuurman K, van Rossum A, Droog M, Jeronimo C, Salta S, Henrique R, Wesseling J, Moelans C, Linn SC, van den Heuvel M, van Diest P, Zwart W. FOXA1 levels are decreased in pleural breast cancer metastases after adjuvant endocrine therapy, and this is associated with poor outcome. Mol Oncol 2018; 12:1884-1894. [PMID: 29972720 PMCID: PMC6210032 DOI: 10.1002/1878-0261.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor-alpha (ERα)-positive breast cancer is often treated with antihormonal regimens. However, resistance to treatment is common, leading to metastatic disease. ERα activity requires the functional involvement of pioneer factors FOXA1 and GATA3, which enable ERα-chromatin binding and are crucial for ERα-driven cell proliferation. FOXA1 was found increased in metastatic breast cancers in relation to the primary tumor, but a comprehensive clinical assessment thereof, in relation to different metastatic sites and endocrine therapy usage, is currently lacking. Prior cell line-based reports, however, have revealed that FOXA1 is required for tamoxifen-resistant tumor cell proliferation. We studied expression levels of ERα, GATA3, and FOXA1 by immunohistochemistry in samples from both primary tumors and various metastatic sites. For all factors, expression levels varied between the metastatic sites. For pleural metastases, strong variation was found in FOXA1 and GATA3 levels. Although GATA3 levels remained unaltered between primary breast cancer and pleural metastases, FOXA1 levels were reduced exclusively in metastases of patients who received endocrine therapies in the adjuvant setting, even though ERα was still expressed. Importantly, decreased FOXA1 levels in pleural metastases correlated with hormone irresponsiveness in the palliative setting, while no such correlation was found for GATA3. With this, we show divergent clinical correlations of the two ERα pioneer factors FOXA1 and GATA3 in metastatic breast cancer, where endocrine therapy resistance was associated with decreased FOXA1 levels in pleural metastases.
Collapse
Affiliation(s)
| | - Karianne Schuurman
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Annelot van Rossum
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marjolein Droog
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carmen Jeronimo
- Cancer Biology and Epigenetics GroupResearch Center (CI‐IPOP)Portuguese Oncology Institute of PortoPortugal
| | - Sofia Salta
- Cancer Biology and Epigenetics GroupResearch Center (CI‐IPOP)Portuguese Oncology Institute of PortoPortugal
| | - Rui Henrique
- Department of PathologyPortuguese Oncology Institute of Porto (IPO Porto)Portugal
| | - Jelle Wesseling
- Division of PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Cathy Moelans
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
| | - Sabine C. Linn
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
- Division of Molecular PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Michel van den Heuvel
- Division of Thoracic OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul van Diest
- Department of PathologyUniversity Medical Center UtrechtThe Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyThe Netherlands
| |
Collapse
|
44
|
Shi Y, Zhao Y, Zhang Y, AiErken N, Shao N, Ye R, Lin Y, Wang S. AFF3 upregulation mediates tamoxifen resistance in breast cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:254. [PMID: 30326937 PMCID: PMC6192118 DOI: 10.1186/s13046-018-0928-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Background Although tamoxifen is a highly effective drug for treating estrogen receptor–positive (ER+) breast cancer, nearly all patients with metastasis with initially responsive tumors eventually relapse, and die from acquired drug resistance. Unfortunately, few molecular mediators of tamoxifen resistance have been described. Here, we describe AFF3 (AF4/FMR2 family member 3), which encodes a nuclear protein with transactivation potential that confers tamoxifen resistance and enables estrogen-independent growth. Methods We investigated AFF3 expression in breast cancer cells and in clinical breast cancer specimens with western blot and Real-time PCR. We also examined the effects of AFF3 knockdown and overexpression on breast cancer cells using luciferase, tetrazolium, colony formation, and anchorage-independent growth assays in vitro and with nude mouse xenografting in vivo. Results AFF3 was overexpressed in tamoxifen-resistant tumors. AFF3 overexpression in breast cancer cells resulted in tamoxifen resistance, whereas RNA interference–mediated gene knockdown reversed this phenotype. Furthermore, AFF3 upregulation led to estrogen-independent growth in the xenograft assays. Mechanistic investigations revealed that AFF3 overexpression activated the ER signaling pathway and transcriptionally upregulated a subset of ER-regulated genes. Clinical analysis showed that increased AFF3 expression in ER+ breast tumors was associated with worse overall survival. Conclusions These studies establish AFF3 as a key mediator of estrogen-independent growth and tamoxifen resistance and as a potential novel diagnostic and therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13046-018-0928-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yawei Shi
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China
| | - Yang Zhao
- The Department of Vascular surgery, the Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, 510000, Guangdong, China
| | - Yunjian Zhang
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China
| | - NiJiati AiErken
- The Department of General surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, 628# Zhenyuan Road, Shenzhen, 518100, Guangdong, China
| | - Nan Shao
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China
| | - Runyi Ye
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China
| | - Ying Lin
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China.
| | - Shenming Wang
- The Department of Breast and Thyroid surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Two Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
45
|
Oyenihi OR, Krygsman A, Verhoog N, de Beer D, Saayman MJ, Mouton TM, Louw A. Chemoprevention of LA7-Induced Mammary Tumor Growth by SM6Met, a Well-Characterized Cyclopia Extract. Front Pharmacol 2018; 9:650. [PMID: 29973879 PMCID: PMC6019492 DOI: 10.3389/fphar.2018.00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-related deaths in women. Chemoprevention of BC by using plant extracts is gaining attention. SM6Met, a well-characterized extract of Cyclopia subternata with reported selective estrogen receptor subtype activity, has shown tumor suppressive effects in a chemically induced BC model in rats, which is known to be estrogen responsive. However, there is no information on the estrogen sensitivity of the relatively new orthotopic model of LA7 cell-induced mammary tumors. In the present study, the potential chemopreventative and side-effect profile of SM6Met on LA7 cell-induced tumor growth was evaluated, as was the effects of 17β-estradiol and standard-of-care (SOC) endocrine therapies, such as tamoxifen (TAM), letrozole (LET), and fulvestrant (FUL). Tumor growth was observed in the tumor-vehicle control group until day 10 post tumor induction, which declined afterward on days 12-14. SM6Met suppressed tumor growth to the same extent as TAM, while LET, but not FUL, also showed substantial anti-tumor effects. Short-term 17β-estradiol treatment reduced tumor volume on days prior to day 10, whereas tumor promoting effects were observed during long-term treatment, which was especially evident at later time points. Marked elevation in serum markers of liver injury, which was further supported by histological evaluation, was observed in the vehicle-treated tumor control, TAM, LET, and long-term 17β-estradiol treatment groups. Alterations in the lipid profiles were also observed in the 17β-estradiol treatment groups. In contrast, SM6Met did not augment the increase in serum levels of liver injury biomarkers caused by tumor induction and no effect was observed on lipid profiles. In summary, the results from the current study demonstrate the chemopreventative effect of SM6Met on mammary tumor growth, which was comparable to that of TAM, without eliciting the negative side-effects observed with this SOC endocrine therapy. Furthermore, the results of this study also showed some responsiveness of LA7-induced tumors to estrogen and SOC endocrine therapies. Thus, this model may be useful in evaluating potential endocrine therapies for hormone responsive BC.
Collapse
Affiliation(s)
- Omolola R. Oyenihi
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Annadie Krygsman
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Nicolette Verhoog
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Dalene de Beer
- Post-Harvest and Agro-Processing Technologies, Agricultural Research Council of South Africa, Infruitec-Nietvoorbij, Stellenbosch, South Africa
- Department of Food Science, Stellenbosch University, Stellenbosch, South Africa
| | - Michael J. Saayman
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Thys M. Mouton
- Department of Biomedical Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
46
|
Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W, Ye L. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol 2018; 11:26. [PMID: 29471853 PMCID: PMC5824486 DOI: 10.1186/s13045-018-0577-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/15/2018] [Indexed: 02/07/2023] Open
Abstract
Background Resistance to tamoxifen (TAM) frequently occurs in the treatment of estrogen receptor positive (ER+) breast cancer. Accumulating evidences indicate that transcription factor HOXB13 is of great significance in TAM resistance. However, the regulation of HOXB13 in TAM-resistant breast cancer remains largely unexplored. Here, we were interested in the potential effect of HBXIP, an oncoprotein involved in the acceleration of cancer progression, on the modulation of HOXB13 in TAM resistance of breast cancer. Methods The Kaplan-Meier plotter cancer database and GEO dataset were used to analyze the association between HBXIP expression and relapse-free survival. The correlation of HBXIP and HOXB13 in ER+ breast cancer was assessed by human tissue microarray. Immunoblotting analysis, qRT-PCR assay, immunofluorescence staining, Co-IP assay, ChIP assay, luciferase reporter gene assay, cell viability assay, and colony formation assay were performed to explore the possible molecular mechanism by which HBXIP modulates HOXB13. Cell viability assay, xenograft assay, and immunohistochemistry staining analysis were utilized to evaluate the effect of the HBXIP/HOXB13 axis on the facilitation of TAM resistance in vitro and in vivo. Results The analysis of the Kaplan-Meier plotter and the GEO dataset showed that mono-TAM-treated breast cancer patients with higher HBXIP expression levels had shorter relapse-free survivals than patients with lower HBXIP expression levels. Overexpression of HBXIP induced TAM resistance in ER+ breast cancer cells. The tissue microarray analysis revealed a positive association between the expression levels of HBXIP and HOXB13 in ER+ breast cancer patients. HBXIP elevated HOXB13 protein level in breast cancer cells. Mechanistically, HBXIP prevented chaperone-mediated autophagy (CMA)-dependent degradation of HOXB13 via enhancement of HOXB13 acetylation at the lysine 277 residue, causing the accumulation of HOXB13. Moreover, HBXIP was able to act as a co-activator of HOXB13 to stimulate interleukin (IL)-6 transcription in the promotion of TAM resistance. Interestingly, aspirin (ASA) suppressed the HBXIP/HOXB13 axis by decreasing HBXIP expression, overcoming TAM resistance in vitro and in vivo. Conclusions Our study highlights that HBXIP enhances HOXB13 acetylation to prevent HOXB13 degradation and co-activates HOXB13 in the promotion of TAM resistance of breast cancer. Therapeutically, ASA can serve as a potential candidate for reversing TAM resistance by inhibiting HBXIP expression. Electronic supplementary material The online version of this article (10.1186/s13045-018-0577-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bowen Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Huawei Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Feifei Xu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Runping Fang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Leilei Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xiaoli Cai
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
47
|
Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat Commun 2018; 9:482. [PMID: 29396493 PMCID: PMC5797120 DOI: 10.1038/s41467-018-02856-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/04/2018] [Indexed: 11/09/2022] Open
Abstract
Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.
Collapse
|
48
|
Severson TM, Nevedomskaya E, Peeters J, Kuilman T, Krijgsman O, van Rossum A, Droog M, Kim Y, Koornstra R, Beumer I, Glas AM, Peeper D, Wesseling J, Simon IM, Wessels L, Linn SC, Zwart W. Neoadjuvant tamoxifen synchronizes ERα binding and gene expression profiles related to outcome and proliferation. Oncotarget 2017; 7:33901-18. [PMID: 27129152 PMCID: PMC5085127 DOI: 10.18632/oncotarget.8983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/17/2022] Open
Abstract
Estrogen receptor alpha (ERα)-positive breast cancers are frequently treated with tamoxifen, but resistance is common. It remains elusive how tamoxifen resistance occurs and predictive biomarkers for treatment outcome are needed. Because most biomarker discovery studies are performed using pre-treatment surgical resections, the effects of tamoxifen therapy directly on the tumor cell in vivo remain unexamined. In this study, we assessed DNA copy number, gene expression profiles and ERα/chromatin binding landscapes on breast tumor specimens, both before and after neoadjuvant tamoxifen treatment. We observed neoadjuvant tamoxifen treatment synchronized ERα/chromatin interactions and downstream gene expression, indicating that hormonal therapy reduces inter-tumor molecular variability. ERα-synchronized sites are associated with dynamic FOXA1 action at these sites, which is under control of growth factor signaling. Genes associated with tamoxifen-synchronized sites are capable of differentiating patients for tamoxifen benefit. Due to the direct effects of therapeutics on ERα behavior and transcriptional output, our study highlights the added value of biomarker discovery studies after neoadjuvant drug exposure.
Collapse
Affiliation(s)
- Tesa M Severson
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Ekaterina Nevedomskaya
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | | | - Thomas Kuilman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Annelot van Rossum
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Marjolein Droog
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Yongsoo Kim
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Rutger Koornstra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, GA, The Netherlands
| | | | | | - Daniel Peeper
- Division of Molecular Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | | | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| | - Sabine C Linn
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands.,Department of Pathology, University Medical Center Utrecht, CX, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, CX, The Netherlands
| |
Collapse
|
49
|
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J, Schneider RJ. Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev 2017; 31:2235-2249. [PMID: 29269484 PMCID: PMC5769768 DOI: 10.1101/gad.305631.117] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/20/2017] [Indexed: 01/04/2023]
Abstract
Geter et al. show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. The majority of breast cancers expresses the estrogen receptor (ER+) and is treated with anti-estrogen therapies, particularly tamoxifen in premenopausal women. However, tamoxifen resistance is responsible for a large proportion of breast cancer deaths. Using small molecule inhibitors, phospho-mimetic proteins, tamoxifen-sensitive and tamoxifen-resistant breast cancer cells, a tamoxifen-resistant patient-derived xenograft model, patient tumor tissues, and genome-wide transcription and translation studies, we show that tamoxifen resistance involves selective mRNA translational reprogramming to an anti-estrogen state by Runx2 and other mRNAs. Tamoxifen-resistant translational reprogramming is shown to be mediated by increased expression of eIF4E and its increased availability by hyperactive mTOR and to require phosphorylation of eIF4E at Ser209 by increased MNK activity. Resensitization to tamoxifen is restored only by reducing eIF4E expression or mTOR activity and also blocking MNK1 phosphorylation of eIF4E. mRNAs specifically translationally up-regulated with tamoxifen resistance include Runx2, which inhibits ER signaling and estrogen responses and promotes breast cancer metastasis. Silencing Runx2 significantly restores tamoxifen sensitivity. Tamoxifen-resistant but not tamoxifen-sensitive patient ER+ breast cancer specimens also demonstrate strongly increased MNK phosphorylation of eIF4E. eIF4E levels, availability, and phosphorylation therefore promote tamoxifen resistance in ER+ breast cancer through selective mRNA translational reprogramming
Collapse
Affiliation(s)
- Phillip A Geter
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amanda W Ernlund
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Sofia Bakogianni
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Amandine Alard
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Rezina Arju
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Shah Giashuddin
- New York Presbyterian-Brooklyn Methodist Hospital, Brooklyn, New York 11215, USA
| | - Abhilash Gadi
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA
| | - Jacqueline Bromberg
- Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| | - Robert J Schneider
- Department of Microbiology, Alexandria Center for Life Science, New York University School of Medicine, New York, New York 10016, USA.,Memorial Sloan Kettering Cancer Institute, New York, New York 10016 USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016 USA
| |
Collapse
|
50
|
Luo G, Li X, Zhang G, Wu C, Tang Z, Liu L, You Q, Xiang H. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton - A possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer. Eur J Med Chem 2017; 140:252-273. [DOI: 10.1016/j.ejmech.2017.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
|