1
|
Hao KX, Shen CY, Jiang JG. Sedative and hypnotic effects of Polygala tenuifolia willd. saponins on insomnia mice and their targets. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117618. [PMID: 38141791 DOI: 10.1016/j.jep.2023.117618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willd. has been widely used in the treatment of cancer, forgetfulness, depression and other diseases. AIM OF REVIEW The purpose of this study was to investigate the sleep-enhancing effect and mechanism of P. tenuifolia saponins (PTS). MATERIALS AND METHODS The total saponin (YZ-I) and purified saponin (YZ-II) fractions were extracted and ICR mice model of insomnia was established by p-chlorophenylalanine (PCPA) induction to observe anxiety and depression behaviors. Effects of YZ-I and YZ-II on the levels of neurotransmitters, hormones, and inflammation cytokines were detected by ELISA, RT-qPCR and western blotting. RESULTS The results showed that YZ-I and YZ-II reduced the immobility time of mice and prolonged the sleep time of mice and significantly increased the concentrations of 5-HT, NE, PGD2, IL-1β and TNF-α. YZ-I and YZ-II regulated GABAARα2, GABAARα3, GAD65/67, 5-HT1A and 5-HT2A, while regulated the levels of inflammatory cytokines such as DPR, PGD2, iNOS and TNF-α to exert sedative and hypnotic effects. CONCLUSION PTS are mainly achieved sedative and hypnotic effects by altering serotonergic, GABAergic and immune systems, but the effects and mechanisms of action of YZ-I were different from YZ-II.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China; Southern Medical University, School of Traditional Chinese Medicine, Guangzhou 510515, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Lee SM, Kim YH, Min J. Anti-inflammatory effects of yeast-derived vacuoles on LPS-induced murine macrophage activation. Microbiol Spectr 2023; 11:e0146623. [PMID: 37747185 PMCID: PMC10580869 DOI: 10.1128/spectrum.01466-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/26/2023] Open
Abstract
Saccharomyces cerevisiae is a single-celled fungal microorganism. S. cerevisiae-derived vacuoles are closely related to mammalian lysosomes, which play a role in the degradation of macromolecules by various hydrolytic enzymes. This study evaluated the anti-inflammatory efficacy of S. cerevisiae-vacuoles by inhibiting inflammatory mediators induced by lipopolysaccharide (LPS). The results showed that treatment with 5, 10, and 20 µg/mL of S. cerevisiae-derived vacuoles almost completely inhibited the LPS-induced expression of iNOS protein and mRNA. Moreover, vacuoles significantly reduced the mRNA expression of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) in LPS-stimulated macrophages compared to the control cells. The immunofluorescence analysis confirmed that S. cerevisiae-derived vacuoles inhibited the translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in LPS-stimulated cells. Taken together, the treatment with S. cerevisiae-derived vacuoles alone activated macrophages, but LPS-activated macrophages modulated pro-inflammatory mediators by downregulating the NF-κB pathway. These results suggest that S. cerevisiae-derived vacuoles may have therapeutic potential in the treatment of inflammatory diseases. In conclusion, our study provides new insights into the immunomodulatory effects of S. cerevisiae-derived vacuoles and their potential as a novel anti-inflammatory agent. IMPORTANCE This study investigates the potential of using vacuoles derived from the yeast Saccharomyces cerevisiae as a new anti-inflammatory therapy. Inflammation is a natural response of the immune system to invading pathogens, but when it is dysregulated, it can lead to chronic diseases. The researchers found that treating macrophages with vacuoles significantly reduced the production of pro-inflammatory cytokines and iNOS, markers of inflammation when they were stimulated with lipopolysaccharide. The study also showed that vacuoles inhibited the NF-κB signaling pathway, which is involved in the induction of pro-inflammatory cytokines in macrophages. These findings suggest that S. cerevisiae-derived vacuoles may have potential as a new therapeutic agent for regulating the inflammatory response in various diseases. Further studies are needed to evaluate the efficacy and safety of vacuoles in vivo and to elucidate the underlying mechanisms of their anti-inflammatory effects.
Collapse
Affiliation(s)
- Su-Min Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonbuk, South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonbuk, South Korea
| |
Collapse
|
3
|
Teng Y, Lan P, White LV, Banwell MG. The useful biological properties of sucrose esters: Opportunities for the development of new functional foods. Crit Rev Food Sci Nutr 2023; 64:8018-8035. [PMID: 37068001 DOI: 10.1080/10408398.2023.2194438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Sucrose esters have been deployed as surfactants in many food products since the 1950s. In addition to their useful physical characteristics, sucrose esters also have interesting biological properties that enhance their utility. This review critically examines the broad suite of biological activities that has been attributed to both synthetically-derived and naturally-occurring sucrose esters. These include insecticidal, molluscicidal, plant growth-regulating, anti-microbial, anti-tumor, anti-oxidant, anti-depressive, neuro-protective, anti-inflammatory and anti-plasmodial effects. In addition to providing a summary of the structure-activity profiles of sucrose esters, the various known mechanisms-of action of these compounds are also discussed. Furthermore, since sucrose esters are well-known surfactants, the potential to advantageously apply their industrially desirable physical characteristics in combination with their biological properties is considered. Recent advances in synthetic chemistry that have facilitated the deployment of biologically active sucrose esters as food additives are also described.
Collapse
Affiliation(s)
- Yinglai Teng
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| | - Martin G Banwell
- Guangdong Key Laboratory for Research and the Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Yu YY, Yuan CX, Gu C. Clinical efficacy and safety of removing blood stasis and resolving phlegm in the treatment of epilepsy with cognitive impairment: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30212. [PMID: 36123849 PMCID: PMC9478213 DOI: 10.1097/md.0000000000030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS Epilepsy is a chronic encephalopathy caused by abnormal discharge of neurons in the brain, resulting in brain dysfunction. Cognitive impairment is one of the most common complications of epilepsy. The current treatment of epilepsy in the control of symptoms at the same time cause a lot of side effects, especially the aggravation of cognitive impairment. Many literatures have stated that the efficacy and safety of integrated Traditional Chinese and western medicine in the treatment of epilepsy with cognitive impairment is superior to that of western medicine alone. In this systematic review and meta-analysis, we intend to evaluate the clinical efficacy and safety of removing stasis and resolving phlegm in the treatment of epilepsy with cognitive impairment. OBJECTIVE To systematically evaluate the clinical efficacy and safety of removing blood stasis and resolving phlegm in the treatment of epilepsy with cognitive impairment. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to conduct this systematic review. The Chinese Journal Full Text Database (CNKI), Wanfang Database, CQVIP Database (CQVIP), Cochrane Library, EMbase, and Pubmed were searched by computer, and randomized controlled studies on the efficacy of removing blood stasis and resolving phlegm in the treatment of epilepsy with cognitive disorders were included. Retrieval was carried out until January 2022, and relevant data were extracted for meta-analysis using Rev Man5.3 software. RESULTS Fourteen randomized controlled studies with a total of 1198 patients were included, including 601 patients in the control group and 597 patients in the treatment group (experimental group). RESULTS Meta-analysis results showed that compared with the treatment of epilepsy with cognitive impairment in the western anti-epileptic drugs group alone, the treatment of epilepsy with cognitive impairment combined with the method of removing blood stasis and resolving phlegm could significantly improve the clinical efficacy of epilepsy (OR = 3.41, 95% CI 2.39-4.88, P < .001). Improved the TCM symptom score (OR = 3.99, 95% CI 1.72-9.26, P < .001). Increased the EEG improvement rate (RR = 1.39, 95% CI 1.05-1.84, P = .02). Improved MOCA score and cognitive function (MD = 3.54, 95% CI 1.68-5.40, P < .001). Improved QOLIE-31 cognitive function score. Improved cognitive function (MD = 7.22, 95% CI 3.35-11.08, P < .001). Improved the incidence of adverse reactions (RR = 0.50, 95% CI 0.33-0.76, P = .001). CONCLUSION Compared with the treatment of epilepsy with cognitive impairment by western anti-epileptic drugs alone, the treatment of epilepsy with cognitive impairment combined with the method of removing blood stasis and resolving phlegm is superior to the treatment of epilepsy with cognitive impairment by western anti-epileptic drugs alone.
Collapse
Affiliation(s)
- Yang Yang Yu
- Department of Neurology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Can Xing Yuan
- Department of Neurology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Gu
- Department of Neurology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Li Y, Yin S, Chen X, Shi F, Wang J, Yang H. The inhibitory effect of paeoniflorin on reactive oxygen species alleviates the activation of NF-κB and MAPK signalling pathways in macrophages. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35920812 DOI: 10.1099/mic.0.001210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Paeoniflorin (PF) has been proven to possess a protective effect in some inflammatory diseases, but the underlying mechanism remains unclear. Macrophages play central roles in inflammatory responses and LPS-stimulated RAW264.7 macrophage is an ideal model for studying the anti-inflammatory effects and mechanisms of drugs. Thus, it was used to explore the anti-inflammatory mechanism of PF in this study. The results showed that PF markedly attenuated the activation of NF-κB, extracellular signal-regulated kinase (ERK1/2) and p38 mitogen activated protein kinase (p38) signalling pathways induced by LPS exposure. In addition, PF pretreatment dose-dependently suppressed the production of cytokines and the expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Concomitantly, PF pretreatment dramatically inhibited the accumulation of intracellular reactive oxygen species (ROS) without affecting the phagocytosis of macrophages. Furthermore, it has proved the scavenging effect of PF on ROS was involved in the anti-inflammatory process. This study provides a novel aspect to the understanding of the anti-inflammatory mechanism of PF.
Collapse
Affiliation(s)
- Yanyan Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Shaojie Yin
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China.,School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Feifei Shi
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Jing Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| |
Collapse
|
7
|
Lee MJ, Seo HJ, Hwang GS, Choi S, Park SJ, Hwang SJ, Kang KS. Molecular Mechanism of Cinnamomum cassia against Gastric Damage and Identification of Active Compounds. Biomolecules 2022; 12:biom12040525. [PMID: 35454114 PMCID: PMC9028104 DOI: 10.3390/biom12040525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Cinnamomum cassia is a natural product found in plants that has been used as a folk remedy for inflammation. In this study, we investigated the mechanism underlying the anti-inflammatory and antioxidant properties of C. cassia extract (ECC) in lipopolysaccharide (LPS)-induced murine RAW 264.7 cells, in comparison with 4-hydroxycinnamaldehyde, a C. cassia extract component. ECC and 4-hydroxycinnamaldehyde inhibited the production of nitrite oxide in a dose-dependent manner and did not show any change in cellular toxicity when treated with the same dose as that used in the nitrite assay. Moreover, they attenuated ROS accumulation after lipopolysaccharide (LPS) stimulation. ECC and 4-hydroxycinnamaldehyde decreased the mRNA and protein expression levels of inflammatory mediators (iNOS and COX-2) and cytokines such as TNF and IL-6. We also found that ECC and 4-hydroxycinnamaldehyde mitigated the phosphorylation of ERK, JNK, and transcription factors, such as NF-κB and STAT3, suppressing NF-κB nuclear translocation in LPS-activated macrophages. In addition, administration of ECC in a Sprague Dawley rat model of acute gastric injury caused by indomethacin significantly increased the gastric mucus volume. Analysis of serum and tissue levels of inflammatory mediators revealed a significant decrease in serum PGE2 and myeloperoxidase levels and a reduction in gastric iNOS, COX-2, and p65 protein levels. Collectively, these results suggest that ECC has antioxidant and anti-inflammatory effects and is a potential candidate for curing gastritis.
Collapse
Affiliation(s)
- Myong Jin Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (M.J.L.); (G.S.H.); (S.C.)
| | - Hye Jin Seo
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea;
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (M.J.L.); (G.S.H.); (S.C.)
| | - Sungyoul Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (M.J.L.); (G.S.H.); (S.C.)
| | - Shin Jung Park
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin-si 16995, Korea;
| | - Sung-Joo Hwang
- Yonsei Institute of Pharmaceutical Sciences & College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea;
- Correspondence: (S.-J.H.); (K.S.K.); Tel.: +82-32-749-4518 (S.-J.H.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (M.J.L.); (G.S.H.); (S.C.)
- Correspondence: (S.-J.H.); (K.S.K.); Tel.: +82-32-749-4518 (S.-J.H.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
8
|
Lee JA, Shin JY, Hong SS, Cho YR, Park JH, Seo DW, Oh JS, Kang JS, Lee JH, Ahn EK. Tetracera loureiri Extract Regulates Lipopolysaccharide-Induced Inflammatory Response Via Nuclear Factor-κB and Mitogen Activated Protein Kinase Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:284. [PMID: 35161266 PMCID: PMC8839383 DOI: 10.3390/plants11030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2 in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju Young Shin
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Jae Ho Lee
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| |
Collapse
|
9
|
Kim JH, Vinh LB, Hur M, Koo SC, Park WT, Moon YH, Lee YJ, Kim YH, Huh YC, Yang SY. Inhibitory Activity of 4- O-Benzoyl-3'- O-(OMethylsinapoyl) Sucrose from Polygala tenuifolia on Escherichia coliβ-Glucuronidase. J Microbiol Biotechnol 2021; 31:1576-1582. [PMID: 34528918 PMCID: PMC9705844 DOI: 10.4014/jmb.2108.08004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Bacterial β-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10- hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of β-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 μM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new β- glucuronidase inhibitors.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Le Ba Vinh
- Institute of Marine Biochemistry(IMBC), Vietnam Academy of Science and Technology(VAST), Hanoi 100000, Vietnam
| | - Mok Hur
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Sung-Cheol Koo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Woo Tae Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Youn-Ho Moon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Yoon Jeong Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Chan Huh
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea,
Y.C. Huh Phone: +82-43-871-5662 Fax: +82-43-871-5659 E-mail:
| | - Seo Young Yang
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Republic of Korea,Corresponding authors S.Y. Yang Phone: +82-33-738-7921 Fax: +82-33-738-7652 E-mail:
| |
Collapse
|
10
|
Yu Y, Yuan C, Gu C. Clinical efficacy and safety of removing blood stasis and removing phlegm in the treatment of epilepsy with cognitive impairment: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27929. [PMID: 34964768 PMCID: PMC8615331 DOI: 10.1097/md.0000000000027929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epilepsy is a chronic encephalopathy caused by abnormal discharge of neurons in the brain, resulting in brain dysfunction. Cognitive impairment is one of the most common complications of epilepsy. The current treatment of epilepsy in the control of symptoms at the same time cause a lot of side effects, especially the aggravation of cognitive impairment. Many literatures have stated that the efficacy and safety of integrated traditional Chinese and western medicine in the treatment of epilepsy with cognitive impairment is superior to that of western medicine alone. In this systematic review, we intend to evaluate the clinical efficacy and safety of removing stasis and resolving phlegm in the treatment of epilepsy with cognitive impairment. METHODS We will search The Cochrane Library, EMbase, Pubmed, Web of Science, Chinese Journal Full-Text Database (CNKI), Wanfang Database, and VIP database. Simultaneously we will retrieval relevant meeting minutes, eligible research reference lists, symposium abstracts, and gray literatures. We will not apply any restrictions to the language and publication date. All randomized controlled trials about the efficacy and safety of removing blood stasis and phlegm in the treatment of epilepsy with cognitive impairment will be included. Two authors will independently carry out. Any objections will be worked out by a third author through consultation. We will use the Revman 5.3 and Stata 13.0 software for data synthesis, sensitivity analysis, meta regression, subgroup analysis, and risk of bias assessment. The grading of recommendations assessment, development, and evaluation standard will be used to evaluate the quality of evidence. RESULTS This systematic review will synthesize the data from the present eligible high quality randomized controlled trials to assess whether the treatment of removing blood stasis and phlegm is effective and safety for epilepsy with cognitive impairment from various evaluation aspects including clinical efficacy of epilepsy, EEG improvement rate, MOCA score, QOLIE-31 cognitive function score, traditional Chinese medicine symptom score, incidence of adverse reactions, frequency of seizures of epilepsy, and duration of seizure of epilepsy. CONCLUSION The systematic review will provide evidence to assess the efficacy and safety of removing blood stasis and phlegm in the treatment of patients with epilepsy with cognitive impairment. PROSPERO REGISTRATION NUMBER CRD42021224893.
Collapse
|
11
|
Behl T, Upadhyay T, Singh S, Chigurupati S, Alsubayiel AM, Mani V, Vargas-De-La-Cruz C, Uivarosan D, Bustea C, Sava C, Stoicescu M, Radu AF, Bungau SG. Polyphenols Targeting MAPK Mediated Oxidative Stress and Inflammation in Rheumatoid Arthritis. Molecules 2021; 26:6570. [PMID: 34770980 PMCID: PMC8588006 DOI: 10.3390/molecules26216570] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder, predominantly symmetric, which causes joint inflammation, cartilage degeneration and bone erosion, resulting in deformity and the loss of physical function. Although the management of RA has steadily improved, the pathophysiological mechanism is incompletely elucidated, and therapeutic options are still limited. Due to shortcomings in the efficacy or safety profiles of conventional RA therapies, therapeutic alternatives have been considered. Therefore, natural extracts containing polyphenolic compounds can become promising adjuvant agents for RA global management, due to their antioxidant, anti-inflammatory and apoptotic properties. Polyphenols can regulate intracellular signaling pathways in RA and can generate different immune responses through some key factors (i.e., MAPK, interleukins (ILs 1 and 6), tumor necrosis factor (TNF), nuclear factor light k chain promoter of activated receptor (NF-κB), and c-Jun N-terminal kinases (JNK)). The critical function of the Toll like-receptor (TLR)-dependent mitogen-activating protein kinase (MAPK) signaling pathway in mediating the pathogenic characteristics of RA has been briefly discussed. Oxidative stress can trigger a change in transcription factors, which leads to the different expression of some genes involved in the inflammatory process. This review aims to provide a comprehensive perspective on the efficacy of polyphenols in mitigating RA by inhibiting signaling pathways, suggesting future research perspectives in order to validate their use.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Tanuj Upadhyay
- Amity Institute of Pharmacy, Amity University Gwalior, Gwalior 474005, Madhya Pradesh, India;
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Diana Uivarosan
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (D.U.); (C.B.)
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (C.S.); (M.S.)
| | - Andrei-Flavius Radu
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
| | - Simona Gabriela Bungau
- Faculty of Medicine and Pharmacy, Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania;
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
12
|
Sharifiaghdam M, Shaabani E, Sharifiaghdam Z, De Keersmaecker H, Lucas B, Lammens J, Ghanbari H, Teimoori-Toolabi L, Vervaet C, De Beer T, Faridi-Majidi R, De Smedt SC, Braeckmans K, Fraire JC. Macrophage reprogramming into a pro-healing phenotype by siRNA delivered with LBL assembled nanocomplexes for wound healing applications. NANOSCALE 2021; 13:15445-15463. [PMID: 34505619 DOI: 10.1039/d1nr03830c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive inflammatory responses in wounds are characterized by the presence of high levels of pro-inflammatory M1 macrophages rather than pro-healing M2 macrophages, which leads to delayed wound healing. Macrophage reprogramming from the M1 to M2 phenotype through knockdown of interferon regulatory factor 5 (irf5) has emerged as a possible therapeutic strategy. While downregulation of irf5 could be achieved by siRNA, it very much depends on successful intracellular delivery by suitable siRNA carriers. Here, we report on highly stable selenium-based layer-by-layer (LBL) nanocomplexes (NCs) for siRNA delivery with polyethyleneimine (PEI-LBL-NCs) as the final polymer layer. PEI-LBL-NCs showed good protection of siRNA with only 40% siRNA release in a buffer of pH = 8.5 after 72 h or in simulated wound fluid after 4 h. PEI-LBL-NCs also proved to be able to transfect RAW 264.7 cells with irf5-siRNA, resulting in successful reprogramming to the M2 phenotype as evidenced by a 3.4 and 2.6 times decrease in NOS-2 and TNF-α mRNA expression levels, respectively. Moreover, irf5-siRNA transfected cells exhibited a 2.5 times increase of the healing mediator Arg-1 and a 64% increase in expression of the M2 cell surface marker CD206+. Incubation of fibroblast cells with conditioned medium isolated from irf5-siRNA transfected RAW 264.7 cells resulted in accelerated wound healing in an in vitro scratch assay. These results show that irf5-siRNA loaded PEI-LBL-NCs are a promising therapeutic approach to tune macrophage polarization for improved wound healing.
Collapse
Affiliation(s)
- Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Bart Lucas
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, B-9000, Belgium.
| |
Collapse
|
13
|
Abstract
Edible flowers have been widely consumed for ages until now. The attractive colors and shapes, exotic aroma, and delightful taste make edible flowers very easy to attain. Moreover, they also provide health benefits for consumers due to the unique composition and concentration of antioxidant compounds in the matrices. Knowing the bioactive compounds and their functional properties from edible flowers is necessary to diversify the usage and reach broader consumers. Therefore, this reported review could be useful for functional product development, engaging the discussed edible flowers. We present a comprehensive review of edible flower composition and the functional properties of their antioxidant compounds, mainly phenolics.
Collapse
|
14
|
Liu M, Cai M, Ding P. Oligosaccharides from Traditional Chinese Herbal Medicines: A Review of Chemical Diversity and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:577-608. [PMID: 33730992 DOI: 10.1142/s0192415x21500269] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Most of traditional Chinese herbal medicine (TCHM) substances come from medicinal plants, among which oligosaccharides have gradually attracted widespread attention at home and abroad due to their important biological activities and great medicinal potential. Numerous in vitro and in vivo experiments exhibited that oligosaccharides possess various activities, such as antitumor, anti-oxidation, modulate the gut microflora, anti-inflammatory, anti-infection, and immune-regulatory activities. Generally, biological activities are closely related to chemical structures, including molecular weight, monosaccharide composition, glycosidic bond connection, etc. The structural analysis of oligosaccharides is an important basis for studying their structure-activity relationship, but the structural diversity and complexity of carbohydrate compounds limit the study of oligosaccharides activities. Understanding the structures and biological functions of oligosaccharides is important for the development of new bioactive substances with natural oligosaccharides. This review provides a systematic introduction of the current knowledge of the chemical structures and biological activities of oligosaccharides. Most importantly, the reported chemical characteristics and biological activities of the famous TCHM oligosaccharides were briefly summarized, including Morinda officinalis, Rehmannia glutinosa, Arctium lappa, Polygala tenuifolia, Panax ginseng, Lycium barbarum and Astragalus membranaceus. TCHM oligosaccharides play an important role in nutrition, health care, disease diagnosis and prevention as well as have broad application prospects in the field of medicine.
Collapse
Affiliation(s)
- Mengyun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Miaomiao Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Comparative Study on the Chemical Components and Gastrointestinal Function on Rats of the Raw Product and Licorice-Simmered Product of Polygala tenuifolia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8855536. [PMID: 33505508 PMCID: PMC7810529 DOI: 10.1155/2021/8855536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
The root of Polygala tenuifolia Willd. (Polygalaceae) (PT) has been listed as a nootropic, anti-inflammatory, and antipsychotic medicine that can cure insomnia. Raw PT (RPT) is toxic and must be processed before clinical use. Licorice-simmered PT (LPT) is one of the most common processed products. We conducted this study in order to investigate the differences in chemical components and gastrointestinal function between RPT and LPT. We used principal component analysis (PCA) and quantitative analysis to study the differences in the chemical components. Animal experiments were conducted to evaluate the effects of PT on the gastrointestinal function of rats before and after simmering. Pathological sections of gastrointestinal tissues, serum hormone levels, and inflammatory cytokines were observed. The PCA results demonstrated that obvious separation was achieved between the RPT and LPT samples. Tenuifoliside B (TFSB), 3,6'-disinapoyl sucrose (DSS), tenuifoliose A (TFOA), tenuifoliose H (TFOH), onjisaponin B (OJB), onjisaponin Z (OJZ), and total saponins levels were decreased after licorice processing, while glomeratose A (GA) and 3,4,5-trimethoxycinnamic acid (TMCA) levels were markedly increased. Compared to the control group, the RPT groups exhibited dramatically lower levels of gastrin (GAS), motilin (MTL), and substance P (SP) and markedly higher levels of vasoactive intestinal peptide (VIP) and somatostatin (SS), but the LPT groups exhibited no significant differences in the above indexes. The levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) in gastrointestinal tissue were markedly increased in the low RPT (L-RPT), high RPT (H-RPT), and H-LPT groups, showing a certain inflammatory effect, but the inflammatory effect in the L-LPT group was relatively weak. Licorice simmering can effectively reduce the inhibitory effect of RPT on gastrointestinal function in rats and reduce damage to gastrointestinal tissue. This study provides a scientific basis for research on the processing mechanism and clinical application of PT.
Collapse
|
16
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
17
|
Jiang N, Wei S, Zhang Y, He W, Pei H, Huang H, Wang Q, Liu X. Protective Effects and Mechanism of Radix Polygalae Against Neurological Diseases as Well as Effective Substance. Front Psychiatry 2021; 12:688703. [PMID: 34975553 PMCID: PMC8719339 DOI: 10.3389/fpsyt.2021.688703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Radix Polygalae (also known as Yuanzhi in China) is the dried rhizome of Polygala tenuifolia Willd. or Polygala sibirica L., which is a famous Chinese herb and has been widely used for centuries in traditional medicines including expectorants, tonics, tranquilizers, antipsychotic, and so on. This article reviews the neuroprotective effects of Radix Polygalae in preclinical models of central nervous system (CNS) disorders, especially anxiety, depression, declining cognition, Alzheimer's disease (AD), and Parkinson's disease (PD). The chemical composition of Radix Polygalae as well as the underlying mechanisms of action were also reviewed. We found that Radix Polygalae possesses a broad range of beneficial effects on the abovementioned conditions. The multifold mechanisms of action include several properties such as antioxidant and associated apoptotic effects; anti-inflammatory and associated apoptotic effects; neurogenesis, regeneration, differentiation, and neuronal plasticity improvement; hypothalamic-pituitary-adrenal axis (HPA) regulation; neurotransmitter release; and receptor activation (A2AR, NMDA-R, and GluR). Nevertheless, the detailed mechanisms underlying this array of pharmacological effects observed in vitro and in vivo still need further investigation to attain a coherent neuroprotective profile.
Collapse
Affiliation(s)
- Ning Jiang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Wei
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlu He
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Haiyue Pei
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xinmin Liu
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Tran DNH, Hwang IH, Chen FJ, Tseng YP, Chang CM, Tsai SJ, Yang JL, Wu TP, Hsu CH, Chen FP, Kung YY. Core prescription pattern of Chinese herbal medicine for depressive disorders in Taiwan: a nationwide population-based study. Integr Med Res 2020; 10:100707. [PMID: 33665095 PMCID: PMC7903348 DOI: 10.1016/j.imr.2020.100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Depressive disorders (DD) affect not only mood and behavior but also various physical functions. Traditional Chinese medicine (TCM) has been shown to have some benefits in treating DD. However, one formula or one single herb might be not show high efficacy when used to treat depression. Thus, this study aimed to examine the core prescription pattern of Chinese herbal medicine (CHM) among patients with DD in Taiwan as a reference for related research and clinical applications. Methods All patients, who had been diagnosed with major depressive disorder or minor depression or dysthymia without any other baseline diseases and had at least one CHM outpatient clinical visit from 2002 to 2011, were extracted from three randomly sampled cohorts, namely the 2000, 2005 and 2010 cohorts of the National Health Insurance Research Database (NHIRD) of Taiwan. The collected data was analyzed to explore the patterns of herbal products. Results There were 197,146 patients with a diagnosis of DD and of these 1806 subjects had only a diagnosis of DD and utilized CHM. The most common formula was Gan-Mai-Da-Zao-Tang (12.19%), while Suan-Zao-Ren (3.99%) was the most commonly prescribed single herb. The core pattern of prescriptions consisted of a combination of Gan-Mai-Da-Zao-Tang, Jia-Wei-Xiao-Yao-San, Chai-Hu-Jia-Long-Gu-Mu-Li-Tang, He-Huan-Pi, Yuan-Zhi and Shi-Chang-Pu. Conclusions This study describes the CHM core prescription pattern used to treat patients in Taiwan with DD and it is a potential candidate for study in future pharmacological or clinical trials targeting DD.
Collapse
Affiliation(s)
- Diem Ngoc Hong Tran
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
| | - I-Hsuan Hwang
- Quality Management Center, Cheng Hsin General Hospital, Taiwan
| | - Fun-Jou Chen
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Pu Tseng
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Mao Chang
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Lin Yang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ta-Peng Wu
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Division of Chinese Internal Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Fang-Pey Chen
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Ying Kung
- Institute of Traditional Medicine, National Yang-Ming University, School of Medicine, Taipei, Taiwan
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Corresponding author at: No. 201, Section 2, Shipai Road, Beitou District, Taipei City, 112 Taiwan, ROC.
| |
Collapse
|
19
|
Zhao X, Xu B, Wu P, Zhao P, Guo C, Cui Y, Zhang Y, Zhang X, Li H. UHPLC-MS/MS method for pharmacokinetic and bioavailability determination of five bioactive components in raw and various processed products of Polygala tenuifolia in rat plasma. PHARMACEUTICAL BIOLOGY 2020; 58:969-978. [PMID: 32956609 PMCID: PMC7534330 DOI: 10.1080/13880209.2020.1818790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Sibiricose A5 (A5), sibiricose A6 (A6), 3,6'-disinapoyl sucrose (DSS), tenuifoliside A (TFSA) and 3,4,5-trimethoxycinnamic acid (TMCA) are the main active components of Polygala tenuifolia Willd. (Polygalaceae) (PT) that are active against Alzheimer's disease. OBJECTIVE To compare the pharmacokinetics and bioavailability of five active components in the roots of raw PT (RPT), liquorice-boiled PT (LPT) and honey-stir-baked PT (HPT). MATERIALS AND METHODS The median lethal dose (LD50) was evaluated through acute toxicity test. The pharmacokinetics of five components after oral administration of extracts of RPT, LPT, HPT (all equivalent to 1.9 g/kg of RPT extract for one dose) and 0.5% CMC-Na solution (control group) were investigated, respectively, in Sprague-Dawley rats (four groups, n = 6) using UHPLC-MS/MS. In addition, the absolute bioavailability of A5, A6, DSS, TFSA and TMCA after oral administration (7.40, 11.60, 16.00, 50.00 and 3.11 mg/kg, respectively) and intravenous injection (1/10 of the corresponding oral dose) in rats (n = 6) was studied. RESULTS The LD50 of RPT, LPT and HPT was 7.79, 14.55 and 15.99 g/kg, respectively. AUC 0- t of RPT, LPT and HPT were as follows: A5 (433.18 ± 65.48, 680.40 ± 89.21, 552.02 ± 31.10 ng h/mL), A6 (314.55 ± 62.73, 545.76 ± 123.16, 570.06 ± 178.93 ng h/mL) and DSS (100.30 ± 62.44, 232.00 ± 66.08, 197.58 ± 57.37 ng h/mL). The absolute bioavailability of A5, A6, DSS, TFSA and TMCA was 3.25, 2.95, 2.36, 1.17 and 42.91%, respectively. DISCUSSION AND CONCLUSIONS The pharmacokinetic and bioavailability parameters of each compound can facilitate future clinical studies.
Collapse
Affiliation(s)
- Xin Zhao
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoxin Xu
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Wu
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changchuan Guo
- Shandong Institute for Food and Drug Control, Jinan, China
| | - Yueli Cui
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanxue Zhang
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuelan Zhang
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, China
- CONTACT Xuelan Zhang
| | - Huifen Li
- School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Huifen Li School of Chinese Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan250355, China
| |
Collapse
|
20
|
Zhao X, Cui Y, Wu P, Zhao P, Zhou Q, Zhang Z, Wang Y, Zhang X. Polygalae Radix: A review of its traditional uses, phytochemistry, pharmacology, toxicology, and pharmacokinetics. Fitoterapia 2020; 147:104759. [DOI: 10.1016/j.fitote.2020.104759] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
|
21
|
Çelik H, Kucukler S, Çomaklı S, Caglayan C, Özdemir S, Yardım A, Karaman M, Kandemir FM. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology 2020; 81:197-208. [PMID: 33121995 DOI: 10.1016/j.neuro.2020.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Isoniazid (INH) is among the most important anti-tuberculosis agents widely prescribed. However, its clinical use is restricted due to its severe side effects associated with neurotoxicity. The aim of the present study was to investigate the neuroprotective effects of chrysin (CR), a natural antioxidant, against INH-induced neurotoxicity in rats. The rats were treated orally with INH (400 mg/kg body weight) alone or with CR (25 and 50 mg/kg body weight) for 7 consecutive days. INH administration significantly increased brain lipid peroxidation and resulted in a significant decrease in antioxidant biomarkers including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH). INH treatment also increased levels of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), glial fibrillary acidic protein (GFAP) and activities of p38α mitogen-activated protein kinase (p38α MAPK) while decreasing levels of neural cell adhesion molecule (NCAM). Double immunofluorescence expressions of c-Jun N-terminal kinase (JNK) and Bcl-2 associated X protein (Bax) in brain tissues were increased after INH administration. Furthermore, INH increased mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (Gclm), glutamate cysteine ligase catalytic subunit (Gclc), NF-κB, TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6) and GFAP in rat brain tissues. Co-treatment with CR increased anti-oxidant capacity as well as regulated inflammation and apoptosis in brain. Additionally, molecular docking results showed that CR had the potential to interact with the active sites of TNF-α and NFκ-B. In conclusion, CR improved INH-induced brain oxidative damage, inflammation and apoptosis, possibly through their antioxidant properties.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, 79000, Kilis, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
22
|
Dong L, Dongzhi Z, Jin Y, Kim YC, Lee DS, Huang S, Panichayupakaranant P, Li B. Taraxacum officinale Wigg. Attenuates Inflammatory Responses in Murine Microglia through the Nrf2/HO-1 and NF- κB Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:445-462. [PMID: 32138531 DOI: 10.1142/s0192415x20500238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a long-established medicinal and edible homologous plant, Taraxacum officinale Wigg. is widely distributed in Asia, Europe, and other parts of the world. T. officinale is reported to exert a variety of biological and pharmacological activities, including anticancer, hepatoprotective, and anti-obesity effects. In this study, we evaluated the anti-inflammatory effects of ethanol extracts of T. officinale (A-TOW) by examining the suppression of proinflammatory mediators in LPS-stimulated BV2 and mouse hippocampus. Furthermore, A-TOW also inhibited the nuclear translocation of nuclear factor κB p65 caused by stimulation with LPS. In addition, A-TOW regulates heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in BV2 cells. The effects of A-TOW on the over-expression of proinflammatory mediators were partially reversed by transfection of the cells with HO-1 siRNA. These findings suggest that the potent anti-inflammatory activity of T. officinale, possibly through the regulation of Nrf2/HO-1 and NF-κB signaling pathway.
Collapse
Affiliation(s)
- Linsha Dong
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Zhuoma Dongzhi
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China.,Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Yonglong Jin
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, South Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, South Korea
| | - Shan Huang
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science and Technology, Qingdao, China.,Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
23
|
Lacaille-Dubois MA, Delaude C, Mitaine-Offer AC. A review on the phytopharmacological studies of the genus Polygala. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112417. [PMID: 31765761 DOI: 10.1016/j.jep.2019.112417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Polygala, the most representative genus of the Polygalaceae family, comprises more than 600 species from all over the world of which around 40 are distributed in China, some of them, being used in the Traditional Chinese Medicine system. AIM OF THE REVIEW We intend to discuss the current knowledge about the traditional uses, and the newest phytochemical and pharmacological achievements with tentative elucidation of the mechanism of action on the genus Polygala covering the period 2013-2019 to provide a scientific support to the traditional uses, and to critically analyze the reported studies to obtain new insights for further researches. MATERIALS AND METHODS The data were systematically collected from the scientific electronic data bases including SciFinder, Scopus, Elsevier, PubMed and Google Scholar. RESULTS This literature overview reported several traditional uses of different species of Polygala, mainly against wounds, inflammation, cardiovascular and central nervous system disorders. P. altomontana, P caudata, P. flavescens, P. glomerata, P. japonica, P. molluginifolia, P. sibirica, P. tenuifolia are the main species which have been studied in the last few years. Phytochemical studies showed that they contain triterpene saponins, triterpenes, terpenoids, xanthones, flavonoids, coumarins, oligosaccharide esters, styryl-pyrones, benzophenones, and polysaccharides. Pharmacological in vitro and in vivo studies and proposal of the mechanisms of action indicated that pure constituents and extracts of Polygala ssp exhibited significant anti-inflammatory, neuroprotective, antiischemic, antidepressant, sedative, analgesic, antiatherosclerosis, antitumor and enzyme inhibitory properties. CONCLUSION This review on traditional uses and phytopharmacological potential of the genus Polygala revealed updated insights which can be explored for further mechanism-based pharmacological activities and structure/activity relationships studies and a better comprehension of the development of Chinese medicine preparations. However some pharmacological studies showed several gaps such as incomplete methodologies and ambiguous findings. More high scientific quality preclinical studies with pharmacokinetic considerations will be required in the future to assess the traditional uses of some species of this genus. This might lead to efficacy and safety issues in clinical trials and to potential medicinal applications.
Collapse
Affiliation(s)
- Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, (PEPITE EA 4267), Université de Bourgogne Franche-Comté, Faculté de Pharmacie, 7, Bd Jeanne d'Arc, 21079, Dijon, France.
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège, Belgium
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, (PEPITE EA 4267), Université de Bourgogne Franche-Comté, Faculté de Pharmacie, 7, Bd Jeanne d'Arc, 21079, Dijon, France
| |
Collapse
|
24
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Park CH, Yang PS, Yoon YS, Ra JC. Study on the safety of Polygala tenuifolia Willdenow root extract powder (BT-11) in young person aged from 9 to 19 years old. JOURNAL OF ETHNOPHARMACOLOGY 2019; 232:119-129. [PMID: 30576772 DOI: 10.1016/j.jep.2018.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala tenuifolia Willdenow root extract (BT-11) has beneficial effects on central nervous system disorders in human. The safety of BT-11 should be elucidated in younger person further. AIM OF THE STUDY To evaluate the safety of BT-11 in human aged from 9 to 19 years old. MATERIAL AND METHODS The safety was evaluated in randomly assigned subjects who received the test products (61 subjects in BT-11 300 mg daily or 60 subjects in matching placebo) for 12 weeks. Adverse reactions were analyzed by the incidence rate, type, and severity. The clinical examination included hematology and blood chemistry tests, urinalysis, vital signs, body weight, and electrocardiogram (ECG). RESULTS Eleven adverse reactions were observed in ten subjects receiving BT-11 while seven adverse reactions in six subjects receiving placebo. There were no statistical differences in the incidence of adverse reactions between the two groups. Serious adverse reactions such as acute appendicitis and acute viral gastroenteritis were observed in the BT-11 group4 and the placebo group, respectively. However, it was confirmed that they were not associated with the test product. All other adverse reactions observed during the test period were resolved completely without special treatment. No statistical difference was also observed in safety laboratory tests, vital signs, and ECG between two groups. CONCLUSIONS This study demonstrates the safety of BT-11 in the adolescent by showing no apparent adverse reactions related to it.
Collapse
Affiliation(s)
- Cheol Hyoung Park
- GDFI Braincell Laboratory Co. Ltd., Room 401, Innoplex (1) 151, Gasan digital 1-ro, Geumcheon-gu, Seoul 08506, Republic of Korea.
| | - Pil-Soon Yang
- Bethesda Hospital, The Yeseong Medical Foundation, 28 Singi-ro, Yangsan City, Gyeongsangnam Do, Republic of Korea.
| | - Yeo Sang Yoon
- GDFI Braincell Laboratory Co. Ltd., Room 401, Innoplex (1) 151, Gasan digital 1-ro, Geumcheon-gu, Seoul 08506, Republic of Korea.
| | - Jeong-Chan Ra
- GDFI Braincell Laboratory Co. Ltd., Room 401, Innoplex (1) 151, Gasan digital 1-ro, Geumcheon-gu, Seoul 08506, Republic of Korea.
| |
Collapse
|
26
|
Anti-Inflammatory Effects of Aster incisus through the Inhibition of NF- κB, MAPK, and Akt Pathways in LPS-Stimulated RAW 264.7 Macrophages. Mediators Inflamm 2018; 2018:4675204. [PMID: 30622433 PMCID: PMC6304821 DOI: 10.1155/2018/4675204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 01/29/2023] Open
Abstract
Aster incisus is a common flower found in almost all regions of South Korea. In the current study, we investigated the potential antioxidant and anti-inflammatory properties of the Aster incisus methanol extract in LPS-stimulated RAW 264.7 cells. We analyzed the phytochemicals contained in the extract by GC-MS. GC-MS results showed that the Aster incisus extract contains 9 known compounds. Later on, DPPH assay, WST-1 assay, nitric oxide (NO) assay, Western blot, and RT-PCR were conducted to investigate the anti-inflammatory effects of the extract. Our WST-1 assay results revealed that Aster incisus did not affect the viability of all tested cell lines up to a concentration of 200 μg/ml; therefore, lower concentrations (50 μg/ml and 150 μg/ml) were used for further assays. Aster incisus scavenged DPPH and inhibited the production of NO. Aster incisus also reduced significantly the production of inflammation-related enzymes (iNOS, Cox-2) and cytokines (TNFα, IL-1β, and IL-6) and the gene expression of the proinflammatory cytokines. Additionally, further Western blot results indicated that Aster incisus inhibited the expression of p-PI3K, p-IκBα, p-p65 NF-κB, p-ERK1/2, p-SAPK/JNK, and p-Akt. Our results demonstrated that Aster incisus suppressed the expression of the inflammation mediators through the regulation of NF-κB, MAPK, and Akt pathways.
Collapse
|
27
|
δ-Tocotrienol, Isolated from Rice Bran, Exerts an Anti-Inflammatory Effect via MAPKs and PPARs Signaling Pathways in Lipopolysaccharide-Stimulated Macrophages. Int J Mol Sci 2018; 19:ijms19103022. [PMID: 30287730 PMCID: PMC6212927 DOI: 10.3390/ijms19103022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
δ-Tocotrienol, an important component of vitamin E, has been reported to possess some physiological functions, such as anticancer and anti-inflammation, however their molecular mechanisms are not clear. In this study, δ-tocotrienol was isolated and purified from rice bran. The anti-inflammatory effect and mechanism of δ-tocotrienol against lipopolysaccharides (LPS) activated pro-inflammatory mediator expressions in RAW264.7 cells were investigated. Results showed that δ-tocotrienol significantly inhibited LPS-stimulated nitric oxide (NO) and proinflammatory cytokine (TNF-α, IFN-γ, IL-1β and IL-6) production and blocked the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 (ERK1/2). δ-Tocotrienol repressed the transcriptional activations and translocations of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1), which were closely related with downregulated cytokine expressions. Meanwhile, δ-tocotrienol also affected the PPAR signal pathway and exerted an anti-inflammatory effect. Taken together, our data showed that δ-tocotrienol inhibited inflammation via mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor (PPAR) signalings in LPS-stimulated macrophages.
Collapse
|
28
|
Xu B, Qu C, Zheng W, Xi Y, Zhao X, Li H, Liu J, Zhang X. UHPLC-MS/MS method for simultaneous determination of Radix Polygalae glycolipids and organic acids in rat plasma and application in a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:165-173. [PMID: 30340065 DOI: 10.1016/j.jchromb.2018.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022]
Abstract
Radix Polygala (Yuanzhi in Chinese) is well-known in traditional Chinese medicine (TCM) and has been used for treatment of depression, brain protection, and memory improvement for thousands of years. This plant medicine is rich in saponins, glycolipids, and organic acids. The purpose of the current study was to develop a rapid, accurate, and sensitive ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of the following seven active components of Radix Polygala extracts in rat plasma: sibiricose A5 (A5); sibiricose A6 (A6); 3,6'-disinapoyl sucrose (DSS); tenuifoliside A (TFSA); tenuifoliside B (TFSB); tenuifoliside C (TFSC); and 3,4,5-trimethoxycinnamic acid (TMCA). Then, the pharmacokinetics were studied following oral administration. Plasma samples were precipitated with methanol. Chromatographic separation was successfully performed on a thermo C18 column (100 × 3.0 mm, 3 μm) with a mobile phase consisting of acetonitrile and 10 mmol/L of an ammonium acetate aqueous solution. Seven analytes were detected by multiple reaction monitoring (MRM) with an electrospray ionization source in the positive mode. The transitions of m/z were 517.1/174.9, 547.0/204.9, 753.2/205.2, 681.3/443.3, 667.2/205.1, 767.4/529.2, 236.8/103.2, and 136.9/92.9 for A5, A6, DSS, TFSA, TFSB, TFSC, TMCA, and salicylic acid (IS), respectively. The method validation showed good linearity in the range of 1-2000 ng/mL and LLOQs of 1 ng/mL for the 7 components in plasma. The accuracy, precision, and stability of QC samples were all within allowable ranges. In addition, no significant matrix effect was observed using this method. For the first time, the validated method has been successfully applied to the pharmacokinetic study of the seven components of Radix Polygala extracts in rat plasma. Moreover, this method may be applied for detecting prescriptions that contain Radix Polygala or other plant medicines that include one or more components above. The results of the pharmacokinetic study of the seven ingredients will provide important guidance to clinical medicine regarding Radix Polygala and prescriptions include Radix Polygala.
Collapse
Affiliation(s)
- Baoxin Xu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Congcong Qu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenhua Zheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yaya Xi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin Zhao
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huifen Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Provincial Inherit Base of Processing of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiangting Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Provincial Inherit Base of Processing of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuelan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Provincial Inherit Base of Processing of Chinese Materia Medica of State Administration of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
29
|
Huang S, Meng N, Chang B, Quan X, Yuan R, Li B. Anti-Inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract. J Med Food 2018; 21:726-733. [DOI: 10.1089/jmf.2017.4088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Ning Meng
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Bingquan Chang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Xianghua Quan
- Department of Medicament, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - RuiYing Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
30
|
Cho H, Park JH, Ahn EK, Oh JS. Kobophenol A Isolated from Roots of Caragana sinica (Buc'hoz) Rehder Exhibits Anti-inflammatory Activity by Regulating NF-κB Nuclear Translocation in J774A.1 Cells. Toxicol Rep 2018; 5:647-653. [PMID: 30023311 PMCID: PMC6046687 DOI: 10.1016/j.toxrep.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 01/01/2023] Open
Abstract
Kobophenol A (KPA) is a biologically active natural compound isolated from the roots of Caragana sinica (Buc'hoz) Rehder (C. sinica). However, the anti-inflammatory effects of KPA have not been reported. This study aims to find out whether KPA isolated from roots of C. sinica can act as a potential substance on inflammation and analyze the molecular mechanism using the lipopolysaccharide (LPS)-stimulated J774 A.1 macrophage cell line. We showed that KPA treatment significantly suppressed the production of nitric oxide (NO) by inhibiting inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner without cytotoxicity. In the KPA also inhibited pro-inflammatory cytokine gene expression and production, such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) in LPS-stimulated J774 A.1 cells. As continuing study on the mechanisms involved, we confirmed that these effects of KPA were related to the inhibition of nuclear factor-κB (NF-κB) pathway including the suppression of IκB kinase α/β (IKKα/β) phosphorylation and translocation of NF-κB into the nucleus. Taken together, the present study is the first to demonstrate that KPA isolated from C. sinica suppresses the expression of inflammatory mediators and cytokines by inhibiting NF-κB nuclear translocation in LPS-stimulated J774 A.1 macrophages. KPA may be a potential candidate for the treatment of inflammatory diseases in the future.
Collapse
Key Words
- C. sinica, Caragana sinica
- IKKα/β, IκB kinase α/β
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- IκB, inhibitory κB
- KPA, Kobophenol A
- LPS, lipopolysaccharide
- MAPKs, Mitogen-activated protein kinases
- NF-κB, nuclear factor-κB
- NO, nitric oxide
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PGE2, Prostaglandin E2
- TNF-α, tumor necrosis factor-α
- iNOS, inducible nitric oxide synthase
- inducible nitric oxide synthase
- kobophenol A
- nitric oxide
- nuclear factor-κB
- pro-inflammatory cytokines
Collapse
Affiliation(s)
- Hana Cho
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
| | - Eun-Kyung Ahn
- Bio-center, Gyeonggido Business and Science Accelerator, Gwanggyo-ro 147, Yeoungtong, Suwon, Gyeonggi 16229, Republic of Korea
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea
- Correspondining author at: Department of Pharmacy, College of Pharmacy, Dankook University, Dandae-ro 119, Dongnam, Cheonan, Chungnam 31116, Republic of Korea.
| |
Collapse
|
31
|
Yang F, Yu H, Chai X, Peng S, Yang J, Wu D, Du J, Wang Y. Illumination on "Reserving Phloem and Discarding Xylem" and Quality Evaluation of Radix polygalae by Determining Oligosaccharide Esters, Saponins, and Xanthones. Molecules 2018; 23:molecules23040836. [PMID: 29621185 PMCID: PMC6017119 DOI: 10.3390/molecules23040836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/16/2022] Open
Abstract
The root of Polygala tenuifolia Willd. or Polygala sibirica L. exhibits protective effects on the central nervous system and is frequently used to treat insomnia, amnesia, and other cognitive dysfunction. In our study, we studied nine bioactive compounds spanning oligosaccharide esters, saponins, and xanthones by using a sensitive, efficient, and validated method established on ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. The quantified result of interesting compounds proved that accumulation of those compounds were found in phloem rather than in xylem. By taking the standardized result of nine compound contents into account, the “Spider-web” analytical result of xylem and phloem from Radix polygalae (RP) unveiled the rationality of RP’s classical use in clinic including discarding the xylem and reserving the phloem. Moreover, the remarkable variation was also revealed from the quantitative result of 45 samples with different diameters from the different origins, which did not significantly correlate with the variation of RP’s diameter. Our study could shed the light on the quality assessment of RP for further research and illustrate the scientific connotation of the processing method of “discarding the xylem and reserving the phloem”.
Collapse
Affiliation(s)
- Fan Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Huijuan Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xin Chai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Siwei Peng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Junjun Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Dan Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Jie Du
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
32
|
Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of MAPKs activation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
33
|
Dong J, Li J, Cui L, Wang Y, Lin J, Qu Y, Wang H. Cortisol modulates inflammatory responses in LPS-stimulated RAW264.7 cells via the NF-κB and MAPK pathways. BMC Vet Res 2018; 14:30. [PMID: 29378573 PMCID: PMC5789647 DOI: 10.1186/s12917-018-1360-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background The uteruses of most dairy cattle are easily infected by bacteria, especially gram-negative bacteria, following parturition. Macrophages are important cells of the immune system and play a critical role in the inflammatory response. In addition, cortisol levels become significantly increased due to the stress of parturition in dairy cattle, and cortisol is among the most widely used and effective therapies for many inflammatory diseases. In this study, we assessed the anti-inflammatory effects and potential molecular mechanisms of cortisol using a Lipopolysaccharide (LPS)-induced RAW264.7 macrophage cell line. Results Cortisol significantly suppressed the production of prostaglandin E2 (PGE2) and decreased the gene and protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Moreover, cortisol inhibited the mRNA expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6) and decreased IL-1β secretion in an LPS-treated RAW264.7 macrophage cell line. Moreover, we found that cortisol suppressed nuclear factor-kappa B (NF-κB) signaling in RAW264.7 macrophages stimulated with LPS. This suppression was mediated by the inhibition of IκBα degradation and NF-κB p65 phosphorylation. In addition, cortisol also suppressed the phosphorylation of mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). Conclusions These results suggest that high cortisol levels can attenuate LPS-induced inflammatory responses in the RAW264.7 macrophage cell line by regulating the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yefan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Jiaqi Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yang Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
34
|
Kook MG, Choi SW, Seo Y, Kim DW, Song BK, Son I, Kim S, Kang KS. KCHO-1, a novel herbal anti-inflammatory compound, attenuates oxidative stress in an animal model of amyotrophic lateral sclerosis. J Vet Sci 2017; 18:487-497. [PMID: 28385005 PMCID: PMC5746442 DOI: 10.4142/jvs.2017.18.4.487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/27/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by selective death of motor neurons in the central nervous system. The main cause of the disease remains elusive, but several mutations have been associated with the disease process. In particular, mutant superoxide dismutase 1 (SOD1) protein causes oxidative stress by activating glia cells and contributes to motor neuron degeneration. KCHO-1, a novel herbal combination compound, contains 30% ethanol and the extracts of nine herbs that have been commonly used in traditional medicine to prevent fatigue or inflammation. In this study, we investigated whether KCHO-1 administration could reduce oxidative stress in an ALS model. KCHO-1 administered to ALS model mice improved motor function and delayed disease onset. Furthermore, KCHO-1 administration reduced oxidative stress through gp91phox and the MAPK pathway in both classically activated microglia and the spinal cord of hSOD1G93A transgenic mice. The results suggest that KCHO-1 can function as an effective therapeutic agent for ALS by reducing oxidative stress.
Collapse
Affiliation(s)
- Myung Geun Kook
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Soon Won Choi
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yoojin Seo
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Dong Woung Kim
- Center of Integrative Medicine, Department of Internal Medicine, Wonkwang University Gwangju Hospital, Wonkwang University Gwangju Medical Center, Gwangju 61729, Korea
| | - Bong Keun Song
- Department of Internal Medicine, School of Oriental Medicine, Wonkwang University, Iksan 54538, Korea
| | - Ilhong Son
- Department of Neurology, Inam Neuroscience Research Center, Wonkwang Univ. Sanbon Hospital, Gunpo 15865, Korea
| | - Sungchul Kim
- ALS/MND Center of Wonkwang University Korean Medical Hospital, Wonkwang University Gwangju Medical Center, Gwangju 61729, Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
35
|
Abstract
A significant number of patients with major depression do not respond optimally to current antidepressant drugs. As depression is likely to be a heterogeneous disorder, it is possible that existing neurotransmitter-based antidepressant drugs do not fully address other pathologies that may exist in certain cases. Biological pathologies related to depression that have been proposed and studied extensively include inflammation and immunology, hypercortisolemia, oxidative stress, and impaired angiogenesis. Such pathologies may induce neurodegeneration, which in turn causes cognitive impairment, a symptom increasingly being recognized in depression. A neurotoxic brain hypothesis unifying all these factors may explain the heterogeneity of depression as well as cognitive decline and antidepressant drug resistance in some patients. Compared with neurotransmitter-based antidepressant drugs, many botanical compounds in traditional medicine used for the treatment of depression and its related symptoms have been discovered to be anti-inflammatory, immunoregulatory, anti-infection, antioxidative, and proangiogenic. Some botanical compounds also exert actions on neurotransmission. This multitarget nature of botanical medicine may act through the amelioration of the neurotoxic brain environment in some patients resistant to neurotransmitter-based antidepressant drugs. A multitarget multidimensional approach may be a reasonable solution for patients resistant to neurotransmitter-based antidepressant drugs.
Collapse
|
36
|
Vinh LB, Kim JH, Lee JS, Nguyet NTM, Yang SY, Ma JY, Kim YH. Soluble epoxide hydrolase inhibitory activity of phenolic glycosides from Polygala tenuifolia and in silico approach. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2096-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Wang CC, Yen JH, Cheng YC, Lin CY, Hsieh CT, Gau RJ, Chiou SJ, Chang HY. Polygala tenuifolia extract inhibits lipid accumulation in 3T3-L1 adipocytes and high-fat diet-induced obese mouse model and affects hepatic transcriptome and gut microbiota profiles. Food Nutr Res 2017; 61:1379861. [PMID: 29056891 PMCID: PMC5642193 DOI: 10.1080/16546628.2017.1379861] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/10/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity, the excessive accumulation of lipids in the body, is closely associated with many prevalent human disorders. Continued efforts to identify plant extracts that exhibit anti-obesity effects have drawn much attention. This study investigated whether a Polygala tenuifolia extract (PTE) possesses anti-obesity activity and how PTE may affect liver gene expression and gut microbiota. We used 3T3-L1 adipocytes and a high-fat diet–induced obese mouse model to determine the effects of PTE on lipid accumulation. Next-generation sequencing analysis of liver gene expression and gut microbiota profiles following PTE treatment were conducted to elucidate possible mechanisms. We found that treatment of fully differentiated 3T3-L1 adipocytes with PTE inhibited lipid accumulation in the cells through reducing lipid formation and triglyceride content and by increasing lipase activity. No cytotoxicity was observed from the PTE treatment. After 5 weeks of treatment with PTE, the increased body weight, elevated serum triglyceride content, and liver steatosis in the high-fat diet–induced obese mice were each reduced. Liver transcriptomic analysis revealed that expression of genes involved in lipid and cholesterol metabolism was significantly altered. The low-grade chronic inflammation of obesity caused by a high-fat diet was also decreased after PTE treatment. In addition, treatment with PTE improved the relatively low Bacteroidetes/Firmicutes ratio in the gut of high-fat diet–fed mice through enrichment of the Proteobacteria population and reduction of the Deferribacteres population. In conclusion, treatment with PTE inhibited lipid accumulation by inducing the expression of the master transcription factor PPARα, attenuated the low-grade chronic inflammation of obesity, and also altered gut microbiota profiles. These results indicate that PTE has the potential to be developed into an anti-obesity food supplement and therapy. Abbreviations: Abcg5: ATP-binding cassette subfamily G member 5; ALT: alanine aminotransferase; AMPK: adenosine monophosphate-activated protein kinase; AST: aspartate aminotransferase; B/F: Bacteroidetes to Firmicutes [ratio]; C/EBPα: CCAAT/enhancer-binding protein alpha; CR: creatinine; Cyp51: cytochrome P450 family 51; DMEM: Dulbecco’s modified Eagle’s medium; Fabp5: fatty acid-binding protein 5; FBS: fetal bovine serum; Fdps: farnesyl diphosphate synthase; Glc: Glucose; HFD: high-fat diet; GO: gene ontology; HPRT: hypoxanthine guanine phosphoribosyl transferase; IBMS: 3-isobutyl-1-methylxanthine; Idi1: isopentenyl-diphosphate delta isomerase 1; IL-1β: interleukin-1-beta; Lpin1: phosphatidic acid phosphohydrolase; LPS: lipopolysaccharide; Mvd: mevalonate diphosphate decarboxylase; ND: normal diet; OTU: operational taxonomic units; Pcsk9: proprotein convertase subtilisin/kexin 9; Pctp: phosphatidylcholine transfer protein; PPARα: peroxisome proliferator-activated receptor alpha; PPARγ: peroxisome proliferator-activated receptor gamma; PTE: Polygala tenuifolia extract; Saa1: serum amyloid A1; SD: standard deviation; SEM: standard error of the mean; Serpina12: serpin family member 12; Sqle: squalene monooxygenase; SREBP1C: sterol regulatory element-binding protein 1C; TCHO: total cholesterol; TG: triglyceride
Collapse
Affiliation(s)
- Chun-Chung Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jui-Hung Yen
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yi-Cheng Cheng
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chia-Yu Lin
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Cheng-Ta Hsieh
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Rung-Jiun Gau
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shu-Jiau Chiou
- Biomedical Technology and Device Research Laboratory, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
38
|
Sujitha S, Rasool M. MicroRNAs and bioactive compounds on TLR/MAPK signaling in rheumatoid arthritis. Clin Chim Acta 2017; 473:106-115. [DOI: 10.1016/j.cca.2017.08.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 12/17/2022]
|
39
|
Fumigaclavine C exhibits anti-inflammatory effects by suppressing high mobility group box protein 1 relocation and release. Eur J Pharmacol 2017; 812:234-242. [DOI: 10.1016/j.ejphar.2017.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/25/2022]
|
40
|
Shin JY, Kang JS, Byun HW, Ahn EK. Regulatory effects and molecular mechanism of Trigonostemon reidioides on lipopolysaccharide‑induced inflammatory responses in RAW264.7 cells. Mol Med Rep 2017; 16:5137-5142. [PMID: 28849132 PMCID: PMC5647046 DOI: 10.3892/mmr.2017.7297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
Trigonostemon reidioides (Kurz) Craib has been traditionally used for the treatment of vomiting and asthma in Cambodia. However, the underlying molecular mechanisms of the anti‑inflammatory effect of T. reidioides extract remains unknown. The present study investigated the anti‑inflammatory activity and molecular action of an ethanol extract of T. reidioides (ETR) in lipopolysaccharide (LPS)‑induced RAW264.7 macrophage cells. Nitric oxide assays, ELISA, reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used. ETR treatment inhibited the production of nitric oxide by downregulating inducible nitric oxide synthase expression, while exhibiting no significant cytotoxicity compared with macrophages treated with LPS‑alone. Consequently, ETR decreased the production of certain proinflammatory cytokines, including interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α. Additionally, ETR inhibited the activation of mitogen‑activated protein kinases (MAPKs), including extracellular signal‑regulated kinase, c‑Jun N‑terminal kinase and p38 MAPK, as well as the phosphatidylinositol 3‑kinase (PI3K)/Akt signaling pathway. These effects were mediated by inhibition of the nuclear localization of nuclear factor κ‑B (NF‑κB). Taken together, the results of the present study demonstrate that ETR may exert an anti‑inflammatory effect by inhibiting the expression of inflammatory mediators and cytokines via downregulation of the NF‑κB, PI3K/Akt and the MAPK signaling pathways in LPS‑stimulated macrophages. Based on these results, we hypothesize that ETR may be a potential therapeutic agent for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Ju Young Shin
- Bio‑Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 443‑270, Republic of Korea
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 404‑708, Republic of Korea
| | - Hye-Woo Byun
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 404‑708, Republic of Korea
| | - Eun-Kyung Ahn
- Bio‑Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Gyeonggi 443‑270, Republic of Korea
| |
Collapse
|
41
|
Li J, Wang DD, Xu XS, Bai L, Peng B, Pu YJ, Tian HL, Qin XM, Zhang FS, Ma CG. Utilization of UPLC/Q-TOF-MS-Based Metabolomics and AFLP-Based Marker-Assisted Selection to Facilitate/Assist Conventional Breeding of Polygala tenuifolia. Chem Biodivers 2017; 14. [PMID: 28608948 DOI: 10.1002/cbdv.201700163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/08/2017] [Indexed: 11/12/2022]
Abstract
As one of the most important traditional Chinese medicine, the quality of Polygala tenuifolia is difficult to control and a new method must be established to facilitate/assist the breeding of P. tenuifolia. In this study, UPLC/Q-TOF-MS-based metabolomics analysis was performed to determine the chemical composition and screen metabolite biomarkers according to agronomic traits. A total of 29 compounds and 18 metabolite biomarkers were found. AFLP-based marker-assisted selection (MAS) was used to identify molecular marker bands and screen characteristic bands associated with specific agronomic traits. 184 bands and 76 characteristic AFLP bands were found. The correlation network between compounds and characteristic AFLP bands was built, so we may directly breed certain P. tenuifolia herbs with special agronomic traits (or characteristic AFLP bands), which exhibit specific pharmacological functions depending on the content of the active compounds. The proposed method of metabolomics coupled with MAS could facilitate/assist the breeding of P. tenuifolia.
Collapse
Affiliation(s)
- Juan Li
- Pharmacy Department, Shanxi Pharmaceutical Vocational College, Taiyuan, 030031, P. R. China
| | - Dan-Dan Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Xiao-Shuang Xu
- School of Electrical and Information Engineering, Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| | - Lu Bai
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Bing Peng
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, 100010, P. R. China
| | - Ya-Jie Pu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China.,College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hong-Ling Tian
- Research Institute of Economics Crop, Shanxi Academy of Agriculture Science, Fenyang, 032200, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China
| | - Fu-Sheng Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, P. R. China
| | - Cun-Gen Ma
- Shanxi University of Traditional Chinese Medicine, Taiyuan, 030024, P. R. China
| |
Collapse
|
42
|
Sur B, Lee B, Yoon YS, Lim P, Hong R, Yeom M, Lee HS, Park H, Shim I, Lee H, Jang YP, Hahm DH. Extract of Polygala tenuifolia Alleviates Stress-Exacerbated Atopy-Like Skin Dermatitis through the Modulation of Protein Kinase A and p38 Mitogen-Activated Protein Kinase Signaling Pathway. Int J Mol Sci 2017; 18:ijms18010190. [PMID: 28106783 PMCID: PMC5297822 DOI: 10.3390/ijms18010190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/26/2016] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) and stress create a vicious cycle: stress exacerbates atopic symptoms, and atopic disease elicits stress and anxiety. Targeting multiple pathways including stress and allergic inflammation is, therefore, important for treating AD. In this study, we investigated the remedial value of Polygala tenuifolia Willd. (PTW) for treating immobilization (IMO) stress-exacerbated atopy-like skin dermatitis and its underlying mechanism. Trimellitic anhydride (TMA) was applied to dorsal skin for sensitization and subsequently both ears for eliciting T-cell-dependent contact hypersensitivity in mice, which underwent 2 h-IMO stress and PTW administration for the latter 6 and 9 days in the ear exposure period of TMA, respectively. To elicit in vitro degranulation of human mast cell line-1 (HMC-1), 10 µM substance P (SP) and 200 nM corticotrophin-releasing factor (CRF) were sequentially added with 48 h-interval. PTW extract (500 µg/mL) was added 30 min before CRF treatment. IMO stress exacerbated TMA-induced scratching behavior by 252%, and increased their blood corticosterone levels by two-fold. Treatment with 250 mg/kg PTW significantly restored IMO stress-exacerbated scratching behavior and other indicators such as skin inflammation and water content, lymph node weights, and serum histamine and immunoglobulin E (lgE) levels. Furthermore, it also reversed TMA-stimulated expression of tumor necrosis factor (TNF)-α and interleukin (IL)-4 mRNAs in ear tissues. PTW significantly inhibited SP/CRF-stimulated degranulation of HMC-1 cells, subsequent tryptase secretion, and protein kinase A (PKA) activity. PTW also selectively inhibited p38 mitogen-activated protein kinase (MAPK) phosphorylation in SP/CRF-treated HMC-1 cells. PTW significantly inhibited HMC-1 cell degranulation and alleviated IMO stress-exacerbated atopic dermatitis symptoms by modulating the PKA/p38 MAPK signaling pathway.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Cell Line
- Chromatography, High Pressure Liquid
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Dermatitis, Atopic/blood
- Dermatitis, Atopic/complications
- Dermatitis, Atopic/drug therapy
- Ear/pathology
- Humans
- Immobilization
- Immunoglobulin E/blood
- Interleukin-4/genetics
- Interleukin-4/metabolism
- MAP Kinase Signaling System/drug effects
- Male
- Mast Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Phytochemicals/analysis
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Polygala/chemistry
- Protein Kinase C/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Skin/pathology
- Spectrometry, Mass, Electrospray Ionization
- Stress, Psychological/blood
- Stress, Psychological/complications
- Stress, Psychological/drug therapy
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Water
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Bongjun Sur
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ye Seul Yoon
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Pooreum Lim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Riwon Hong
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyang Sook Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Hijoon Park
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Insop Shim
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
43
|
Tursun X, Zhao Y, Alat Z, Xin X, Tursun A, Abdulla R, AkberAisa H. Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages. Biomol Ther (Seoul) 2016; 24:184-90. [PMID: 26797110 PMCID: PMC4774500 DOI: 10.4062/biomolther.2015.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/10/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022] Open
Abstract
Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-a, interleukin (IL)-6, and interleukin 1β (IL-1β), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-κB) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.
Collapse
Affiliation(s)
- Xirali Tursun
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, China
| | - Yongxin Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Zulfiya Alat
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xuelei Xin
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Adila Tursun
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Rahima Abdulla
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, China
| | - Haji AkberAisa
- Key Laboratory of Chemistry of Plant Resources in Arid Regions, China.,State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
44
|
Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells. Int J Mol Sci 2016; 17:255. [PMID: 26907256 PMCID: PMC4783984 DOI: 10.3390/ijms17020255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/12/2016] [Accepted: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation.
Collapse
|
45
|
Ko W, Sohn JH, Jang JH, Ahn JS, Kang DG, Lee HS, Kim JS, Kim YC, Oh H. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-кB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem Biol Interact 2016; 244:16-26. [DOI: 10.1016/j.cbi.2015.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 01/06/2023]
|
46
|
Shi Q, Chen J, Zhou Q, Lei H, Luan L, Liu X, Wu Y. Indirect identification of antioxidants in Polygalae Radix through their reaction with 2,2-diphenyl-1-picrylhydrazyl and subsequent HPLC–ESI-Q-TOF-MS/MS. Talanta 2015; 144:830-5. [DOI: 10.1016/j.talanta.2015.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/06/2015] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
|
47
|
Shi Q, Geng S, Chen J, Zhou Q, Jin Y, Lei H, Luan L, Liu X, Wu Y. An efficient procedure for preparing main acylated pentasaccharides from Polygalae Radix using integrated extraction–adsorption method followed by semi-preparative high performance liquid chromatography. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:512675. [PMID: 25861364 PMCID: PMC4377491 DOI: 10.1155/2015/512675] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/25/2014] [Accepted: 01/02/2015] [Indexed: 11/23/2022]
Abstract
A great number of naturally occurring oligosaccharides and oligosaccharide esters have been isolated from traditional Chinese medicinal plants, which are used widely in Asia and show prominent curative effects in the prevention and treatment of kinds of diseases. Numerous in vitro and in vivo experiments have revealed that oligosaccharides and their esters exhibited various activities, including antioxidant, antidepressant, cytotoxic, antineoplastic, anti-inflammatory, neuroprotective, cerebral protective, antidiabetic, plant growth-regulatory, and immunopotentiating activities. This review summarizes the investigations on the distribution, chemical structures, and bioactivities of natural oligosaccharides and their esters from traditional Chinese medicines between 2003 and 2013.
Collapse
|
49
|
Lee B, Sur B, Shin S, Baik JE, Shim I, Lee H, Hahm DH. Polygala tenuifoliaprevents anxiety-like behaviors in mice exposed to repeated restraint stress. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.982176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
KCHO-1, a Novel Antineuroinflammatory Agent, Inhibits Lipopolysaccharide-Induced Neuroinflammatory Responses through Nrf2-Mediated Heme Oxygenase-1 Expression in Mouse BV2 Microglia Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:357154. [PMID: 25580149 PMCID: PMC4279125 DOI: 10.1155/2014/357154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/24/2014] [Indexed: 12/16/2022]
Abstract
The brain is vulnerable to oxidative stress and inflammation that can occur as a result of aging or neurodegenerative diseases. Our work has sought to identify natural products that regulate heme oxygenase (HO)-1 and to determine their mechanism of action in neurodegenerative diseases. KCHO-1 is a novel herbal therapeutic containing 30% ethanol (EtOH) extracts from nine plants. In this study, we investigated the antineuroinflammatory effects of KCHO-1 in lipopolysaccharide- (LPS-) treated mouse BV2 microglia. KCHO-1 inhibited the protein expression of inducible nitric oxide synthase (iNOS), iNOS-derived nitric oxide (NO), cyclooxygenase- (COX-) 2, and COX-2-derived prostaglandin E2 (PGE2) in LPS-stimulated BV2 microglia. It also reduced tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 production. This effect was correlated with the suppression of inhibitor of nuclear factor kappa B-α (IκB-α) phosphorylation and degradation and nuclear factor kappa B (NF-κB) translocation and DNA binding. Additionally, KCHO-1 upregulated HO-1 expression by promoting nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in mouse BV2 microglia. Tin protoporphyrin (SnPP), an HO activity inhibitor, was used to verify the inhibitory effects of KCHO-1 on proinflammatory mediators and proteins associated with HO-1 expression. Our data suggest that KCHO-1 has therapeutic potential in neurodegenerative diseases caused by neuroinflammation.
Collapse
|