1
|
Li Q, Liu P, Zhu X, Zhou C, Hu Y, Cao S, Li H, Zou X, Gao S, Cao X, Bao X, Xu Y, Li J. NG-497 Alleviates Microglia-Mediated Neuroinflammation in a MTNR1A-Dependent Manner. Inflammation 2025:10.1007/s10753-024-02218-9. [PMID: 39751706 DOI: 10.1007/s10753-024-02218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Microglia-mediated neuroinflammation plays a crucial role in multiple neurological diseases. We have previously found that Atglistatin, the mouse Adipose Triglyceride Lipase (ATGL) inhibitor, could promote lipid droplets (LDs) accumulation and suppress LPS-induced neuroinflammation in mouse microglia. However, Atglistatin was species-selective, which limited its use in clinical settings. Here, we found that NG-497, a previously identified human ATGL inhibitor, significantly increased LDs accumulation and inhibited LPS-induced pro-inflammatory responses in human microglia. Moreover, NG-497 also protected human neurons against neurotoxic cytokines in a humanized in vitro model of neuroinflammation. However, the anti-inflammatory capacity of NG-497 was independent of its effect on ATGL. Instead, we revealed that NG-497 alleviated microglia-mediated neuroinflammation through elevating the protein level of melatonin receptor 1A (MTNR1A). Therefore, in this study, we uncovered a novel MTNR1A-targeting compound, which exhibited anti-inflammatory and neuroprotective effect, highlighting its potential in the treatment of neuroinflammation. Moreover, the MTNRs agonist, Ramelteon, exerts comparable anti-inflammation effects with NG-497.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Pinyi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xuan Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Chao Zhou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yujie Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shiying Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Huiya Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinxin Zou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Shenghan Gao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| | - Jingwei Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Nanjing Neurology Clinical Medical Center, Nanjing, China.
| |
Collapse
|
2
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2024:10.1007/s43440-024-00683-5. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ku H, Kim Y, Kim AL, Lee G, Choi Y, Kim B. Protective Effects of Melatonin in High-Fat Diet-Induced Hepatic Steatosis via Decreased Intestinal Lipid Absorption and Hepatic Cholesterol Synthesis. Endocrinol Metab (Seoul) 2023; 38:557-567. [PMID: 37652870 PMCID: PMC10613779 DOI: 10.3803/enm.2023.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGRUOUND The preventative effect of melatonin on the development of obesity and the progression of fatty liver under a high-fat diet (HFD) has been well elucidated through previous studies. We investigated the mechanism behind this effect regarding cholesterol biosynthesis and regulation of cholesterol levels. METHODS Mice were divided into three groups: normal chow diet (NCD); HFD; and HFD and melatonin administration group (HFD+M). We assessed the serum lipid profile, mRNA expression levels of proteins involved in cholesterol synthesis and reabsorption in the liver and nutrient transporters in the intestines, and cytokine levels. Additionally, an in vitro experiment using HepG2 cells was performed. RESULTS Expression of hepatic sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) demonstrated that melatonin administration significantly reduces hepatic cholesterol synthesis in mice fed an HFD. Expression of intestinal sodium-glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), GLUT5, and Niemann-pick C1-like 1 (NPC1L1) demonstrated that melatonin administration significantly reduces intestinal carbohydrate and lipid absorption in mice fed an HFD. There were no differences in local and circulatory inflammatory cytokine levels among the NCD, HFD, and HFD+M group. HepG2 cells stimulated with palmitate showed reduced levels of SREBP, LDLR, and HMGCR indicating these results are due to the direct mechanistic effect of melatonin on hepatocytes. CONCLUSION Collectively, these data indicate the mechanism behind the protective effects of melatonin from weight gain and liver steatosis under HFD is through a reduction in intestinal caloric absorption and hepatic cholesterol synthesis highlighting its potential in the treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Hyungjune Ku
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yeonji Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Alvin Lyle Kim
- Department of Surgery, Kosin University College of Medicine, Busan, Korea
| | - Garam Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Youngsik Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Bukyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
4
|
Ban Q, Chi W, Tan Y, Wang S, Li N, Song L, Huang X, Wang D, Peng W, Granato D, Zhao G. Melatonin improved glucose homeostasis is associated with the reprogrammed gut microbiota and reduced fecal levels of short-chain fatty acids in db/db mice. Food Sci Nutr 2023; 11:2012-2026. [PMID: 37051358 PMCID: PMC10084979 DOI: 10.1002/fsn3.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Accumulated evidence shows that melatonin possesses the potential to improve lipid metabolism by modifying gut microbiota and glucose metabolism via regulating the melatonin receptor signaling pathway. However, the contribution of melatonin consumption on glucose homeostasis by affecting gut microbiota has not been investigated in diabetes. In the current work, we investigated the effect of melatonin administration on gut microbiota and glucose homeostasis in db/db mice, a type 2 diabetes model with leptin receptor deficiency. Administration of melatonin through drinking water (at 0.25% and 0.50%) for 12 weeks decreased diabetic polydipsia and polyuria, increased insulin sensitivity and impeded glycemia. The accumulated fecal levels of total short-chain fatty acids (SCFAs) and acetic acid are positively correlated with diabetes-related parameters-homeostasis model assessment of insulin resistance (HOMA-IR) index and fasting blood glucose (FBG) level. The reprogramming of gut microbiota structure and abundance and the reduction of fecal levels of SCFAs, including acetic acid, butyric acid, isovaleric acid, caproic acid, and isobutyric acid, by melatonin may be beneficial for enhancing insulin sensitivity and lowering FBG, which were verified by the results of correlation analysis between acetic acid or total SCFAs and HOMA-IR and FBG. In addition, the melatonin downregulated hepatic genes, including fructose-1,6-bisphosphatase 1, forkhead box O1 alpha, thioredoxin-interacting protein, phosphoenolpyruvate carboxy-kinase (PEPCK), PEPCK1 and a glucose-6-phosphatase catalytic subunit, that responsible for gluconeogenesis support the result that melatonin improved glucose metabolism. Overall, results showed that the melatonin supplementation reduced fecal SCFAs level via reprogramming of gut microbiota, and the reduction of fecal SCFAs level is associated with improved glucose homeostasis in db/db mice.
Collapse
Affiliation(s)
- Qiuyan Ban
- Department of Tea Science, College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Wenjing Chi
- Department of Tea Science, College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yu Tan
- Department of Cell Biology, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Shiqiong Wang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Ning Li
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Lianjun Song
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Xianqing Huang
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| | - Dongxu Wang
- School of Grain Science and TechnologyJiangsu University of Science and TechnologyZhenjiangChina
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value‐added Products, School of ForestryHenan Agricultural UniversityZhengzhouChina
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and EngineeringUniversity of LimerickLimerickIreland
| | - Guangshan Zhao
- Innovation Team of Food Nutrition and Safety Control, College of Food Science & TechnologyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
5
|
Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells 2023; 12:cells12060838. [PMID: 36980179 PMCID: PMC10047594 DOI: 10.3390/cells12060838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Melatonin is a neurohormone that is mainly secreted by the pineal gland. It coordinates the work of the superior biological clock and consequently affects many processes in the human body. Disorders of the waking and sleeping period result in nervous system imbalance and generate metabolic and endocrine derangements. The purpose of this review is to provide information regarding the potential benefits of melatonin use, particularly in kidney diseases. The impact on the cardiovascular system, diabetes, and homeostasis causes melatonin to be indirectly connected to kidney function and quality of life in people with chronic kidney disease. Moreover, there are numerous reports showing that melatonin plays a role as an antioxidant, free radical scavenger, and cytoprotective agent. This means that the supplementation of melatonin can be helpful in almost every type of kidney injury because inflammation, apoptosis, and oxidative stress occur, regardless of the mechanism. The administration of melatonin has a renoprotective effect and inhibits the progression of complications connected to renal failure. It is very important that exogenous melatonin supplementation is well tolerated and that the number of side effects caused by this type of treatment is low.
Collapse
|
6
|
Hardman S, O'Mahony E. Is there a role for melatonin in the treatment of schizophrenia? PROGRESS IN NEUROLOGY AND PSYCHIATRY 2022. [DOI: 10.1002/pnp.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephen Hardman
- Dr Hardman is a Clinical Research Fellow at Kingshill Research Centre, Avon & Wiltshire Mental Health Partnership NHS Trust and Dr O'Mahony is a Consultant Forensic Psychiatrist at Wickham LSU, Avon & Wiltshire Mental Health Partnership NHS Trust
| | - Elizabeth O'Mahony
- Dr Hardman is a Clinical Research Fellow at Kingshill Research Centre, Avon & Wiltshire Mental Health Partnership NHS Trust and Dr O'Mahony is a Consultant Forensic Psychiatrist at Wickham LSU, Avon & Wiltshire Mental Health Partnership NHS Trust
| |
Collapse
|
7
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
8
|
Tavares BS, Tsosura TVS, Mattera MSLC, Santelli JO, Belardi BE, Chiba FY, Cintra LTA, Silva CC, Matsushita DH. Effects of melatonin on insulin signaling and inflammatory pathways of rats with apical periodontitis. Int Endod J 2021; 54:926-940. [PMID: 33411973 DOI: 10.1111/iej.13474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
AIM To verify the effects of melatonin supplementation on insulin sensitivity, plasma concentrations of inflammatory cytokines, insulin signalling and inflammatory pathways in the soleus (SM) and extensor digitorum longus (EDL) muscles of rats with apical periodontitis (AP). METHODOLOGY Seventy-two Wistar rats were distributed into 4 groups: (a) control (C), (b) control supplemented with melatonin (M), (c) AP (AP), and (d) AP supplemented with melatonin (AP + M). AP was induced by pulp exposure of the maxillary and mandibular right first and second molars to the oral environment. After AP induction, oral supplementation with 5 mg kg-1 melatonin (diluted in drinking water) for 60 days was initiated. At the end of the treatment, the following were analysed: (1) plasma concentrations of insulin and inflammatory cytokines (TNF-α, IL-6, IL-1β and IL-10) using ELISA kits; (2) glycaemia using enzymatic assay; (3) insulin resistance using homoeostasis model assessment of insulin resistance (HOMA-IR) index; and (4) phosphorylation status of pp185 tyrosine, Akt serine, IKKα/β, and JNK in SM and EDL using Western blot. Analysis of variance of two or three factors was performed, followed by the Bonferroni test. P values < 0.05 were considered statistically significant. RESULTS AP promoted insulin resistance, significantly increased (P < 0.05) plasma concentrations of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), significantly decreased (P < 0.05) the concentration of anti-inflammatory cytokine IL-10, impaired insulin signalling in SM, and increased IKKα/β phosphorylation status in SM and EDL. Melatonin supplementation in rats with AP improved insulin sensitivity, significantly decreased (P < 0.05) TNF-α and IL-1β, significantly increased (P < 0.05) IL-10 plasma concentrations, and changed the insulin signalling in soleus muscle and IKKα/β phosphorylation status in SM and EDL muscles. CONCLUSIONS Melatonin is a potent adjuvant treatment for improving apical periodontitis-associated changes in insulin sensitivity, insulin signalling and inflammatory pathways. In addition, the negative impact of AP on general health was also demonstrated.
Collapse
Affiliation(s)
- B S Tavares
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - T V S Tsosura
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - M S L C Mattera
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - J O Santelli
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - B E Belardi
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - F Y Chiba
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - L T A Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - C C Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - D H Matsushita
- Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas, PPGMCF, SBFis, Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| |
Collapse
|
9
|
Garaulet M, Qian J, Florez JC, Arendt J, Saxena R, Scheer FAJL. Melatonin Effects on Glucose Metabolism: Time To Unlock the Controversy. Trends Endocrinol Metab 2020; 31:192-204. [PMID: 31901302 PMCID: PMC7349733 DOI: 10.1016/j.tem.2019.11.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
Abstract
The past decade has witnessed a revival of interest in the hormone melatonin, partly attributable to the discovery that genetic variation in MTNR1B - the melatonin receptor gene - is a risk factor for impaired fasting glucose and type 2 diabetes (T2D). Despite intensive investigation, there is considerable confusion and seemingly conflicting data on the metabolic effects of melatonin and MTNR1B variation, and disagreement on whether melatonin is metabolically beneficial or deleterious, a crucial issue for melatonin agonist/antagonist drug development and dosing time. We provide a conceptual framework - anchored in the dimension of 'time' - to reconcile paradoxical findings in the literature. We propose that the relative timing between elevated melatonin concentrations and glycemic challenge should be considered to better understand the mechanisms and therapeutic opportunities of melatonin signaling in glycemic health and disease.
Collapse
Affiliation(s)
- Marta Garaulet
- Department of Physiology, University of Murcia and Research Biomedical Institute of Murcia, Murcia, Spain; Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingyi Qian
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jose C Florez
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | | | - Richa Saxena
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Hajam YA, Rai S, Ghosh H, Basheer M. Combined administration of exogenous melatonin and insulin ameliorates streptozotocin induced toxic alteration on hematological parameters in diabetic male Wistar rats. Toxicol Rep 2020; 7:353-359. [PMID: 32095432 PMCID: PMC7033445 DOI: 10.1016/j.toxrep.2020.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/31/2019] [Accepted: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the present was to ameliorate the protective effect of exogenous melatonin and insulin against the diabetes induced alterations in the different hematological variables. Albino rats were administrated streptozotocin at the dose of 15 mg/kg for 6 days. Total 54 rats were randomly selected for the experimental purpose and were divided into two major groups. Group-1 consisting twenty four (24) and were further sub-divided into four (4) different groups viz. group-I served as normal control, group-II served as melatonin treated, group-III served as insulin treated and group-IV served as glibenclamide treated. Group-2 consisting thirty (30) rats were given streptozotocin (STZ) injection (15 mg/kg) for 6 days. After confirmation of diabetes by measuring blood glucose level, animals having blood glucose level above 250 mg/dl) confirmed as diabetic. Thirty (30) Diabetic rats were further subdivided into following sub-groups and were given different therapeutic treatments, Viz group-I served as Diabetic control, group-II treated with melatonin, group-III treated with insulin, group-IV given treatment of melatonin and insulin and group-V were given treatment of glibenclamide respectively. Diabetic rats showed modulation in all the studied hematological variables. Diabetic rats displayed significant decline in RBCs count, HB level and its associated indices (HCT, RDW, MCV, MCH, MCHC), WBCs and its related indices (polymorphs and lymphocytes) and platelet distribution width (PDW %) whereas platelet count showed significant increase. Nonetheless alone as well as combined treatment of exogenous melatonin and insulin restored all altered hematological parameters. However, significant recovery was found in the group in which combined dose of melatonin and insulin was administrated. Therefore, it might be concluded that combined administration of melatonin and insulin will be better remedy to normalize the altered blood profile during the diabetic condition.
Collapse
Affiliation(s)
| | - Seema Rai
- Institution Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G., 495009, India
| | | | | |
Collapse
|
11
|
Kamsrijai U, Wongchitrat P, Nopparat C, Satayavivad J, Govitrapong P. Melatonin attenuates streptozotocin-induced Alzheimer-like features in hyperglycemic rats. Neurochem Int 2020; 132:104601. [DOI: 10.1016/j.neuint.2019.104601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
|
12
|
Shen LL, Jin Y. Effects of MTNR1B genetic variants on the risk of type 2 diabetes mellitus: A meta-analysis. Mol Genet Genomic Med 2019; 7:e611. [PMID: 30811895 PMCID: PMC6503061 DOI: 10.1002/mgg3.611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Background Whether melatonin receptor 1B (MTNR1B) variants are associated with type 2 diabetes mellitus (T2DM) remains unclear. Therefore, we performed this meta‐analysis to better explore correlations between MTNR1B variants and T2DM. Methods Literature research was performed in PubMed, Medline, and Embase. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Results Totally 21 studies were enrolled to analyses. Pooled overall analyses showed that MTNR1B rs10830963 variant was significantly correlated with the susceptibility to T2DM (allele model: p = 0.02, OR = 0.97, 95% CI 0.95–1.00). Further subgroup analyses by ethnicity of participants revealed that rs10830963 variant was significantly correlated with the susceptibility to T2DM in South Asians, but not in Caucasians or East Asians. No any other positive results were found in overall and subgroup analyses. Conclusions Our findings indicated that MTNR1B rs10830963 variant might serve as a genetic biomarker of T2DM, especially in South Asians.
Collapse
Affiliation(s)
- Ling-Long Shen
- Department of Clinical Laboratory, Huzhou Maternity and Child Health Care Hospital, Huzhou, China
| | - Yin Jin
- Department of Clinical Laboratory, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
13
|
Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018; 23:molecules23081999. [PMID: 30103453 PMCID: PMC6222335 DOI: 10.3390/molecules23081999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is an indole mainly synthesized from tryptophan in the pineal gland and secreted exclusively during the night in all the animals reported to date. While the pineal gland is the major source responsible for this night rise, it is not at all the exclusive production site and many other tissues and organs produce melatonin as well. Likewise, melatonin is not restricted to vertebrates, as its presence has been reported in almost all the phyla from protozoa to mammals. Melatonin displays a large set of functions including adaptation to light: dark cycles, free radical scavenging ability, antioxidant enzyme modulation, immunomodulatory actions or differentiation–proliferation regulatory effects, among others. However, in addition to those important functions, this evolutionary ‘ancient’ molecule still hides further tools with important cellular implications. The major goal of the present review is to discuss the data and experiments that have addressed the relationship between the indole and glucose. Classically, the pineal gland and a pinealectomy were associated with glucose homeostasis even before melatonin was chemically isolated. Numerous reports have provided the molecular components underlying the regulatory actions of melatonin on insulin secretion in pancreatic beta-cells, mainly involving membrane receptors MTNR1A/B, which would be partially responsible for the circadian rhythmicity of insulin in the organism. More recently, a new line of evidence has shown that glucose transporters GLUT/SLC2A are linked to melatonin uptake and its cellular internalization. Beside its binding to membrane receptors, melatonin transportation into the cytoplasm, required for its free radical scavenging abilities, still generates a great deal of debate. Thus, GLUT transporters might constitute at least one of the keys to explain the relationship between glucose and melatonin. These and other potential mechanisms responsible for such interaction are also discussed here.
Collapse
|
14
|
Thakur P, Kumar A, Kumar A. Targeting oxidative stress through antioxidants in diabetes mellitus. J Drug Target 2018; 26:766-776. [DOI: 10.1080/1061186x.2017.1419478] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Parul Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
15
|
Tsunoda T, Yamada M, Akiyama T, Minami T, Yoshii T, Kondo Y, Satoh S, Terauchi Y. The Effects of Ramelteon on Glucose Metabolism and Sleep Quality in Type 2 Diabetic Patients With Insomnia: A Pilot Prospective Randomized Controlled Trial. J Clin Med Res 2016; 8:878-887. [PMID: 27829954 PMCID: PMC5087628 DOI: 10.14740/jocmr2754w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2016] [Indexed: 01/13/2023] Open
Abstract
Background Insomnia is associated with the onset and development of diabetes. Melatonin affects sleep quality and glucose metabolism in diabetic patients with insomnia. We administered ramelteon, an agonist of melatonin, to type 2 diabetic patients and investigated its effects on glucose metabolism and insomnia. Methods This multicenter, prospective, randomized, and observational pilot study was performed between April 2014 and April 2015 at three institutes in Japan. Patients were prescribed ramelteon 8 mg/day for 3 months (first period). And patients were divided at random into the continuation group that continued taking ramelteon and the discontinuation group that discontinued taking ramelteon for 3 additional months (second period). The primary endpoint was change in glycated hemoglobin (HbA1c) level. Secondary endpoints were changes in global Pittsburgh sleep questionnaire index (PSQI) score and other glucose metabolism makers. Results We enrolled 42 patients, and 32 patients completed the first period. Their mean HbA1c was 6.7%, and global PSQI score was 8.1 on average. HbA1c level did not change but global PSQI score improved from 8.1 to 7.2 by ramelteon (P = 0.030). Thirty-one patients completed the second period. HbA1c level did not change in the continuation group, but it increased from 6.7% to 6.9% (P = 0.003) in the discontinuation group. Global PSQI score did not change in each group. There was no rebound insomnia. Conclusion Treatment with ramelteon did not change the HbA1c level but improved sleep quality in type 2 diabetic patients with insomnia. Discontinuation of ramelteon slightly increased the HbA1c level and did not worsen sleep quality.
Collapse
Affiliation(s)
- Tetsuji Tsunoda
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama, Japan; Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masayo Yamada
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama, Japan
| | - Tomoaki Akiyama
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama, Japan
| | - Taichi Minami
- Division of Metabolism and Endocrinology, Department of Internal Medicine, Yokohama Sakae Kyosai Hospital, Federation of National Public Service Personnel Mutual Associations, Yokohama, Japan
| | - Taishi Yoshii
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinobu Kondo
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan; Department of Endocrinology and Metabolism, Chigasaki Municipal Hospital, Chigasaki, Japan
| | - Shinobu Satoh
- Department of Endocrinology and Metabolism, Chigasaki Municipal Hospital, Chigasaki, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
16
|
Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 2016; 100:97-109. [PMID: 27620814 DOI: 10.1016/j.neuint.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
A deviant level of melatonin in blood circulation has been associated with the development of diabetes and with learning and memory deficiencies. Melatonin might have an important function in diabetes control; however, the mechanism of melatonin in diabetes remains unknown. The present study aimed to investigate the hyperglycemic condition induced by high-fat diet (HFD) feeding and streptozotocin (STZ) injection and to examine the effect of melatonin on adult hippocampal functions. HFD-fed and STZ-treated rats significantly increased blood glucose level. The present study showed that HFD-fed and STZ-treated rats significantly impaired memory in the Morris Water Maze task, reduced neurogenesis in the hippocampus shown by a reduction in nestin, doublecortin (DCX) and β-III tubulin immunoreactivities, reduced axon terminal markers, synaptophysin, reduced dendritic marker including postsynaptic density 95 (PSD-95) and the glutamate receptor subunit NR2A. Moreover, a significant downregulation of melatonin receptor, insulin receptor-β (IR-β) and both p-IR-β and phosphorylated extracellular signal-regulated kinase (p-ERK) occurred in HFD-fed and STZ-treated rats, while the level of glial fibrillary acidic protein (GFAP) increased. Treatment of melatonin, rats had shorter escape latencies and remained in the target quadrant longer compared to the HFD-fed and STZ-treated rats. Melatonin attenuated the reduction of neurogenesis, synaptogenesis and the induction of astrogliosis. Moreover, melatonin countered the reduction of melatonin receptor, insulin receptor and downstream signaling pathway for insulin. Our data suggested that the dysfunction of insulin signaling pathway occurred in the diabetes may provide a convergent mechanism of hippocampal impaired neurogenesis and synaptogenesis lead to impair memory while melatonin reverses these effects, suggesting that melatonin may reduce the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Niyada Lansubsakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Utcharaporn Kamsrijai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
17
|
Kose O, Arabaci T, Kara A, Yemenoglu H, Kermen E, Kizildag A, Gedikli S, Ozkanlar S. Effects of Melatonin on Oxidative Stress Index and Alveolar Bone Loss in Diabetic Rats With Periodontitis. J Periodontol 2016; 87:e82-90. [PMID: 26832833 DOI: 10.1902/jop.2016.150541] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study is to evaluate the effects of systemic melatonin treatment on serum oxidative stress index (OSI) and alveolar bone loss (ABL) in rats with diabetes mellitus (DM) and periodontitis. METHODS Seventy Sprague Dawley rats were divided into control, experimentally induced periodontitis (EP), DM, EP-DM, EP and melatonin treatment (EP-MEL), DM and melatonin treatment (DMMEL), and EP-DM-MEL groups. DM was induced by alloxan, after which periodontitis was induced by ligature for 4 weeks. After removal of the ligature, the rats in the melatonin groups (EP-MEL, DM-MEL, and EP-DM-MEL) were treated with a single dose of melatonin (10 mg/body weight) every day for 14 consecutive days. At the end of the study, all of the rats were euthanized, and intracardiac blood samples and mandible tissues were obtained for biochemical and histologic analyses. Serum levels of total oxidant status/total antioxidant status and OSI were measured. In addition, neutrophil and osteoclast densities and myeloperoxidase activities were determined in gingival tissue homogenates, and ABL was evaluated with histometric measurements. RESULTS Melatonin treatment significantly reduced fasting plasma glucose levels in the rats with DM. In addition, reduced OSI and ABL levels were detected in the EP-MEL and DM-MEL groups; the reductions in the EP-DM-MEL group were found to be more prominent. Melatonin also significantly decreased the increased myeloperoxidase activities and osteoclast and neutrophil densities in the EP, DM, and EP-DM groups. CONCLUSION It is revealed in this experimental study that melatonin significantly inhibited hyperglycemia-induced oxidative stress and ABL through antiDM and antioxidant effects in rats with DM and periodontitis.
Collapse
Affiliation(s)
- Oguz Kose
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Taner Arabaci
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - Adem Kara
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ataturk University
| | - Hatice Yemenoglu
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Eda Kermen
- Department of Periodontology, Faculty of Dentistry, Ataturk University, Erzurum, Turkey
| | - Alper Kizildag
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ataturk University
| | - Seckin Ozkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University
| |
Collapse
|
18
|
Garaulet M, Gómez-Abellán P, Rubio-Sastre P, Madrid JA, Saxena R, Scheer FAJL. Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 2015; 64:1650-7. [PMID: 26440713 PMCID: PMC4856010 DOI: 10.1016/j.metabol.2015.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 01/12/2023]
Abstract
AIMS The common MTNR1B genetic variant rs10830963 is associated with an increased risk of type 2 diabetes (T2D). To date, no experimental study has tested the effect of the MTNR1B variant on glucose metabolism in humans during exposure of the melatonin receptors to their ligand. The aim of this study was to investigate whether this MTNR1B variant influenced the effect of melatonin (5mg) on glucose tolerance assessed by an oral glucose tolerance test (OGTT; 75 g) at different times of the day (morning and evening) as compared to a placebo. METHODS Seventeen normoglycemic women (24 ± 6 years; BMI 23.0 ± 3.3 kg/m(2)) completed the study (11 carriers of the risk allele [CG] and 6 noncarriers [CC]). RESULTS The effect of melatonin on glucose tolerance depended on the genotype. In the morning, the effect of melatonin (melatonin-placebo) on the glucose area under the curve (AUC) above baseline differed significantly (P=0.036) between the carriers and noncarriers. This effect of melatonin in the carriers was six times as large as that in the noncarriers. The MTNR1B SNP explained over one-quarter (26%) of the inter-individual differences in the effect of melatonin on glucose AUC. However, in the evening, the effect of melatonin on glucose AUC of the carriers and noncarriers did not differ significantly (P>0.05). CONCLUSIONS MTNR1B rs10830963 risk variant worsens the effect of melatonin on glucose tolerance, suggesting the importance of genotyping and personalized recommendations, especially in people consuming food when melatonin levels are elevated. Large-scale studies in vulnerable populations are necessary to translate these results into real-world, clinically relevant recommendations.
Collapse
Affiliation(s)
- Marta Garaulet
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain; IMIB-Arrixaca, Murcia, Spain.
| | - Purificación Gómez-Abellán
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain; IMIB-Arrixaca, Murcia, Spain.
| | - Patricia Rubio-Sastre
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain; IMIB-Arrixaca, Murcia, Spain.
| | - Juan A Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain; IMIB-Arrixaca, Murcia, Spain.
| | - Richa Saxena
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Quan X, Wang J, Liang C, Zheng H, Zhang L. Melatonin inhibits tunicamycin-induced endoplasmic reticulum stress and insulin resistance in skeletal muscle cells. Biochem Biophys Res Commun 2015; 463:1102-7. [DOI: 10.1016/j.bbrc.2015.06.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
20
|
Matuszek MA, Anton A, Thillainathan S, Armstrong NJ. Increased Insulin following an Oral Glucose Load, Genetic Variation near the Melatonin Receptor MTNR1B, but No Biochemical Evidence of Endothelial Dysfunction in Young Asian Men and Women. PLoS One 2015. [PMID: 26196519 PMCID: PMC4510533 DOI: 10.1371/journal.pone.0133611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim To identify biochemical and genetic variation relating to increased risk of developing type 2 diabetes mellitus and cardiovascular disease in young, lean male and female adults of different ethnicities. Method Fasting blood and urine and non-fasting blood following oral glucose intake were analysed in 90 Caucasians, South Asians and South East/East Asians. Results There were no differences in age, birthweight, blood pressure, body mass index, percent body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol, adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine, tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with Caucasians, but there was no significant difference in glucose area under curve (AUC). Non-fasting insulin in South Asians (15–120 min), in South East/East Asians (60–120 min), and insulin AUC in South Asians and South East/East Asians, were elevated compared with Caucasians (P≤0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant difference in allele frequency distributions in Caucasians and South Asians was found for rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin receptor MTNR1B. Conclusions Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemical evidence exists of endothelial dysfunction at this stage of development. MTNR1B signalling may be a useful therapeutic target in Asian populations in the prevention of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maria A. Matuszek
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Angelyn Anton
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|